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Quark Schwinger-Dyson evaluation of thel ;,l, coefficients in the chiral Lagrangian
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Using a systematic expansion of the quark-antiquark Bethe-Salpeter wave functions in the relativistic quark
model and working taO(P#) in the chiral limit, we are able to derive theoretical expressions relating the
coefficients of the chiral Lagrangidn,|, to the underlying quark-antiquark wave functions and interaction
kernels. This is accomplished by using a novel technique based on a Ward identity for the quark-antiquark
ladder kernel which greatly simplifies the required effort. Numerical evaluations are performed in two simple
specific models.
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[. INTRODUCTION Unfortunately, this derivative expansion has to incorpo-
rate new coefficients order by order. These new coefficients
It has traditionally been considered a triumph of theoret-absorb the divergences of loops generated by the vertices of
ical physics when the parameters of an effective, low energgmaller order terms, and so their value is generally renormal-
theory that correctly describe phenomena at a given scale caged. Still, the common usage of this Lagrangi#) pro-
be related to those of an underlying, more fundamenta¢eeds by fitting these coefficients to some observable set at a
scheme of thought that grounds it. Brilliant examples are Fgiven scale.
London’s explanation of the quantum nature of the van der We show how these coefficients can be related systemati-
Waals forceg1] and the derivation of the atomic relativistic cally to quark level parameters in the planar approximation.
corrections as a consequence of the Dirac’s equation for thehis_has been accomplished in the past for the simplest,
electron. Low energy hadronic processes are interpreted wit®(P?) chiral Lagrangian whose parameters are only 2, in the
the aid mainly of two types of theories: nucleon-nucleonusual notationM ,f . (the pion mass and decay consjant
nonrelativistic interactions such as the Nijmed&hor Ar-  To this order, these two parameters are conventionally set to
gonne[3] potentials for the heavier hadrons, and relativistictake their physical values. To the next order, the Lagrangian
chiral Lagrangian$4] for the lightest components, the pions. contains six parameters, which generate @@*) vertices
The deeper quark theories such as QCD or any microl;,l, absorbing divergences in the four-pion Green’s func-
scopic models thereof pretend in principle to describe thdion, I3,l4, which absorb counterterms of the mass and axial
totality of hadronic physics. They attempt to be completecurrent renormalizations, and final ,,f .. The complete
descriptions of hadronic processes. Unfortunately, the comrenormalization scheme is specified [#]. The parameters
plexity of many body hadronic calculations makes it forbid- M . ,f . have long been accounted for by relativistic quark
ding to fully exploit the underlying scheme and maintain themodels[7,8]. The I's, on the other hand, have not been
validity of the low energy effective theory. treated in quark models with noncontact interactions. We em-
As a consequence, an initial goal for the microscopicphasize the point that any theory which respects the
theory should be to reproduce in some limit the macroscopiSU(2), X SU(2)g chiral symmetry breaking pattern, let it be
models and to relate their parameters to its own(sepe- a Nambu-Jona-Lasinio quark thed), a largeN. expan-
fully smallen. In this paper we make the case for micro- sion[10], a string theory, or any other exotic creation, can be
scopic quark models inspired in QCD as generating the paesast in the form of the chiral Lagrangian, and the only dif-
rameters of the chiral Lagrangian. This Lagrangianferences between all of them are the numerical values of the
describing the low energy behavior of a pion system, and; coefficients.
being able to incorporate the coupling of pions to other me- It is therefore of paramount importance to determine them
sons[as much as do the low energy theorems of PGA&-  from the theories that we believe correctly describe the phys-
tial conservation of axial vector currerf]] is universal(in ics at the GeV scale, in terms of quarks and antiquarks. Lat-
the sense that any theory with the same symmetries can hiee determinations are making progress in that direction
cast in its formy and provides a consistent derivative expan-[11], but the Schwinger-DysoriSD) equation formalism
sion in powers of the momentum and mass of any pionshould provide an alternative determination in the near fu-
present in a system, divided by a typical scale of the strongure. An interesting papdd2] exists where, at the Lagrang-
interactions. ian level, the action for a relativistic quark model is
bosonized to obtain an effective meson Lagrangian and then
used to calculate pion-pion scattering lengths. We are going
*Electronic address: fllanes@fis.ucm.es to extend this approach theoretically in two directions. First,
"Electronic address: bicudo@ist.utl.pt we will start with the most general chirally symmetric quark
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model, in which the pion is well described by a quark-terterms should also be prespand contributes at the tree
antiquark pair after chiral symmetry breakitgncompassing level to theO(P%) pion-pion scattering amplitude; and it is
in this way an ample spectrum of modedsid, by using their  this contribution that we aim to reproduce microscopically.
chiral properties, reduce the four-pion Green’s functions to dn the chiral formalism, there are also one-loop contributions
minimal set of diagrams. In this way, no bosonization is perfrom theO(P?) Lagrangian which we do not consider in this
formed, and at all steps the arrangement of the quark intemwork, since our quark level calculation will not be extended
actions to comply with the chiral theorems is explicitly vis- to meson loops. Therefore, to this level, it is fair to compare
ible. Second, comparing the result with the same calculatiowur results only with those obtained in chiral perturbation
in a chiral Lagrangian formalism, one can immediately reacheory without meson loops. With this caveat in mind, the
off the I; coefficients of the chiral Lagrangian in terms of pion-pion scattering amplitudes are straightforwardly ob-
diagrams which can be calculated numerically in the quarkained. By using crossing symmetry, the different isospin
model. This rather technical numerical evaluation will bechannels can be related in terms of only one amplitdde
simplified in this work by confining ourselves to simple, fi-

nite models, although the numerical results will then be lim- Ti—2=A(t,s,u) +A(u,t,s),

ited. The method used here has already been successfully

exploited to demonstrate how this class of models comply Ti=1=A(t,s,u)—A(u,t,s),

with the Weinberg theorem ifL3—15. The Weinberg theo-

rem was derived with an expansion @(P?),0(M?). We Ti—o=3A(s,t,u) +A(t,s,u) +A(u,t,s). (©)]

now concentrate on thé)(P“),O(M?T) chiral Lagrangian,
that is, the only parameters afg, 1, andl,. We will per-

form the same expansion in the quark-antiquark diagram . oL . )
P g 9 J chiral limit when the Mandelstam variables satisfyt

and compare the results to read iffl ,. The expansion will - o
b gk P +u=0, the most general amplitude of ordef containing

be carried out whenever possible in a Feynman diagram Ianh | ialss? 12 U2 d A4 A
guage to avoid lengthy expressions for the sake of readabil'® EO ynomialss '.t U ,st,sg,tu reduces toA,s"+ .Z(t
u)“. The coefficients obtained from the Lagrangié?)

ity. The rest of this paper is organized as follows. In Sec. Il | .

we briefly settle the notation for our chiral perturbation 2P0Ve yield

theory discussion and remind the reader of a few well-known

facts in this field. Section Il settles the notation of the mi- A@(s t,u)= i

croscopic quark manipulations to follow and provides the v 4

reader with a useful chiral Ward identity recently introduced

[13,14). Section IV is the core of the paper and presents theé\ full discussion of this and related issuder example, the

reduction of the pion scattering amplitude, whereas the rerelation betweerf . andF, which we further ignore in this

sulting diagrams are calculated in two simple models in Segpaper to the order we are workingan be found irf4,16).

V. Some issues clarifying the normalization of the Bethe-

Salpeter equation are relegated to the Appendix. Ill. NOTATION FOR QUARK MODELS AND CHIRAL
WARD IDENTITIES

This amplitudeA(s,t,u) can be obtained from the process
%r: 7_—mgmy. Due to the final state Bose symmetry, and in
the

|
S+ 2(t—u)?

> @

|2
+=
213+ 5

Il. CHIRAL LAGRANGIAN OF ORDER P* . . . .
A pion with momentunP couples in relativistic models to

The macroscopic theory one generally writes down forfermion lines whose momenta will be denoted kk'. In
pion fields alone is to lowest order the nonlinear sigmathe massless quark limit, whenever0, thenk=k’. We
model. One can proceed by constructing, from the three piostart by considering the bare fermion propagator from any
fields = (my,1,,73), a four-vector normalized to fthis  Standard quark theory,
normalization is equivalent to eliminating the explioitde-
gree of freedom from the linear sigma moylel

V1-7?F?

lF

So(k)= ®

K—m+ie

) and, after spontaneous chiral symmetry breaking mediated
by a strong interactiof17,18], the full fermion propagator

. N . arameterized as
and then constructing Lorentz scalar, parity invariant terms'.3

To O(P% that Lagrangian can be extended by terms which

in the chiral limit (m,=0) have to be of the forr4] S(k)= , (6)
AK?)k—B(K?) +ie
1 - - - - .
LO=—T[ly(7 - ) (7 - 7")+lp(mH-7") (7 - 7,)],  which we take to be a solution of the planar rainbow
F @ Schwinger-Dyson equation
4
where the scalar dot products are in isospin space. This La- S(k)—lzso(k)—l_f d"q VAS(k+q)V.K(q). (7)
grangian is on shell, for massless pidetse thel 3,1, coun- )4
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We further define the bare axial vertex which couples &
guark-antiquark pair to a pseudoscalar current by means ¢
the shorthandyi (notice thatm,=0=my in the chiral limit
employed in this papér

a

o . .
Ya=— (ZiP vy yst2imyys), (8)
which satisfies
a
a N_ 9 et —1,1
Yk k)= =[S (k) s+ 755 “(K')], ©)

and the dressed axial vertex, dressed with a planar lddder
is given by

FACkK) = ya(k,K") + f VaS(ky+ o) IAS(k, + ) VaK(q).
(10

Reconstructing the planar ladder expansiam graphical
form)

(11)

Eq. (10) takes the form
ST S = ::I RNB X

from which one can deduce the axial vector Ward identity

12

a

a r_o-a —1 —1/ g
Tk k) =[S (K ystysS (k) ]=5Ta. (13

This is analogous to the Abelian vector Ward-Takahash
identity which in terms of the vertek , defined by

stes = 1 [

i(kﬂ—kl’L)Fﬂ(k,k’)=S’1(k’)—S’1(k).

(14

yields
(15
Next we introduce the bound state formalism for quark-

antiquark systems. To this end we remind the reader of th
Bethe-Salpete(BS) amplitudey (see[7,12]) for further de-

PHYSICAL REVIEW D68, 094014 (2003

k—P k—~P k'—P
X8 (P k) = X8 (P, k')
— (17)
k k k'

Each incoming or outgoing pion in a particular process must
contribute with one of thesg functions, which carry pseu-
doscalar quantum numbers by construcfid®]. The BS am-
plitude for a particular pion depends on the total momentum
of the pionP and the momentum of its fermion component
k= P/2. Notice that this equation is the homogeneous part of
Eg. (10) above, when we interpret the pion momentBras
k—k’ in the vertex definition.

Now let us deepen our study of the vertex. From Eq.
(13) it can easily be seen that in the chiral limitg=0)

a

g
Fﬁ(k,k’=k)=2iB(k2)y5?, (18)

in terms of the SD amplitudB solution of Eq.(7). Equations
(16) and(10), homogeneous and not homogeneous, coincide
when y,=0. This is satisfied in the limiin,=0 when also
P=0 as can be seen explicitly from E@); this allows us to
identify, up to a normalization constany,.(P=0K) with
I'a(k,k’ =k). This constant coincides wiilf ., the pion de-
cay constant in the chiral limitthe proof is sketched in the
Appendi® and finally entails, in combination with E¢L8),

O_a

—ilCa(k,k'=k) 2B(k?
: ST a9

f f

X7(P=0k)=

w m

In [20] a proof was given that this BS amplitude, in connec-
tion with the axial vector ward identity, makes the pion a
Goldstone boson. In terms of our notation this was rewritten
in [14].

This discussion suggests a strategy to systematically orga-
pize the corrections to the chiral, low momentum limit, in an
analogous fashion to that used in chiral perturbation theory.
Since the verteX’, and diagrams constructed thereof satisfy
interesting chiral identities, let us define

—iT4(P,k)+A3(P,k)
f

X4(P.k)= (20)

)
w

where the functiod (P,k) so introduced can be expanded in
a Taylor series for lowP. This expansion will organize the
fhomentum corrections to any diagram. One first uses the
chiral results forl" 5, which provide one with exact low en-

tailS) which satisfies a homogeneous Bethe-Salpeter equ@'rgy theorems, and the numerical correctionsPas in-

tion:

P
Xb(P,k)zf V,S |<'+E

Xb(P,k’)S< k’ —;) VaK (k—k'),
(16)

or in graphical form

creased can then be expressed as overlaps fahctions.

We do not yet specify the color, spin, flavor, or momen-
tum structure of the interaction kernel and vertices
V,V@K(q), except for one property: they must be chiral
symmetry preserving, that i3/ commutes withys. This
guarantees the satisfaction of the following chiral ward iden-
tity (also discussed ifi13,14)), which proved essential:
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T4 ‘]:A — A% i,
= - o o) =-
Ta g1
"5 X3 _ Ja; o°
o + o E-29)II= o
. 21
@) The ladder can also be expanded in powers of the external
or, for a general vertex not necessarily pseudoscalar, momentum: starting from the geometrical sefigh and ex-
panding all propagators, then resumming when possible, we
__:[ - v can show that, in analogy with the matrix relations
;5_1 || , »
"=or + 2o 5l
. o, = -lSv S
. . . . _ 1\ 1 1 1
This identity allows the reduction of terms with two axial — ] =2 y’ y’
vertices and is the core of the present calculat[e re- 1-y 1-y 1-y 1-y
mark thatS™S=1 is introduced in Eq(21) andS completes 1 1
the ladder in Eq(11) leaving the explicitS™ 2. ] +(—) y”( )
1-y 1-y
one has

Further ladder properties

We start by observing that the pseudoscalar ladder can be
Laurent expanded around its pion pole. Keeping only the

first term, containing the pole, one obtains f‘_‘D::q ~ I;:D:‘g + / :g
k+P— ¢+P K+ Py
X"C: = Xz g i @3 +
" i ] 24 tgﬁ;j + t:l: AT =4

(26)
(in the calculations contained in this papmf,zO). Com-

bining this together with the definition df in Eq. (20), one  where the following momentum expansion of the propaga-

can use tors is meant by the superscrigts, (2):
Af+B
5(q+P/2)|P=o:m, (27)
., Al2 A'4+B’ (Af+B)(A’+2g°AA’—2BB’)
I*S(q+ P/2)|P:°:7"A2q2—52+q“ N (A2 B2 : (29
9"9,S(q+P/2)|p—o= an A2+2q2AA’_ZBB,[qA+2 2(4A'+B')]+ 297 Aq+E
p A4 P=0 A2q2—BZ (A2q2—BZ)2 q a 2(A2q2—Bz)
Af+B [ (A’+2g°AA’—2BB’)? o o L .,
(Ao BD)? pers —[2AA"+0g%(A")2+g2AA"—(B')>—BB"]
[(A'¢+B’)(A%02—B?) — (Af+B)(A2+29%°AA’ —2BB')]. (29

B —
(A2q2_ BZ)Z
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The last diagram in Eq(26) contains an annoying explicit 1 _
rung of the interaction. This can be eliminated at the cost of 7T+=§(01+|02),
adding a diagram to any expression where it appears: in anal-
ogy with
m_==(—0o1+io,),
y - 1 . 2 1 2
1-y 1-y
y y 1

one can use 7To—ﬁ"a- (33

= - From them follow the traces

:D: :D: — @0
1
IV. PION-PION SCATTERING Tr(m m_momo)=— 5 (34)

A. Generalities
which multiplies the four first permutations in E¢32)

The pion scattering amplitude with the Bethe-Salpeter anghove where the two charged pions are adjdcand
planar approximations can be derived from the following

Feynman diagrams: 1
Tr(m, mom_mo) = > (39
X Xy
Xr4 Xry  Xma Xm [multiplying the last two permutations in E32) where the
+ : , , : ) S : ) two charged pions are in opposite corners of the amplitude
Xmg Xm2  Xws Xma Finally, the Mandelstam variables in the chiral limit sat-
Xna\\J Xma isfy

(31

$=20i10i2= 2001002,
where the first two terms provide all possible planar topolo-
gies, but upon substitution of E¢l1) their zeroth order is
seen to be double counted; hence we subtract it. The two
approximations involved are, first, coupling of the pion to u=—2q. ——92a. _ 36
higher Fock space states is not considered and, second, only fi1Coz Gizfo1 (36
planar diagrams are utilized. It was shown, using the axiakince isospin has been factored out, we can ignore it in the
Ward identity, that these two approximations are consistenfest of the calculation. Instead of working with, we em-

within the Schwinger-Dyson method in the rainbow approxi-pjoy I' as defined in Eq(13). Accordingly, we define
mation for the fermion mass generation and in the ladder

t=—20;1001= — 202002,

approximation for the bound state equatidr8,14. This is P
also consistent with past wof21] on resonance exchange, x3i=—=yx (37)
and is equivalent to the lowest order in al/expansion. V2

Reduction of this combination of Feynman diagrams tot ield th lized | . funci in E83)
O(p“),O(M?T) is our goal. The calculations in this section o yie e normalized isospin wave functions in &§

will treat the P’s as incoming momenta. Matching the and the normalization fog,I"s will be
dummy P; to the incominggq; ,q;, and outgoingd, ,do,

—ilp+A
physical pion momenta leads to six different permutations, X= Sy (39
namely, V2f,
(Gi1,%i2:— o2+ — Uo1) We now start evaluating the Feynman amplitude in terms
_ _ of the P’s. Start by employing Eq38) to treat the product of
(Gliz, iz, ~Coz» ~ Go2) four BS amplitudes:
(P1 Py Py Py (di1,— o1, Yo2,i2) 32
Lzt (Qi1»— o2, o1,Gi2) | XmiXmpX Xy
(qilv_qollqi27_q02) _ 1 4<F1 A ) F2+A F3+A )(F4+A
(di1»—Y02,0i2s—do1) Jaf ) \i i 2]\ 31\ 4
where the first momentum is fixed to avoid double counting 1 \* r,
by rotational symmetry of ther-7 scattering amplitudé31). = N A182838,+ == AxAA,+perm| + - -,
We concentrate o\(s,t,u), the amplitude form, m_ &
— oo, and use the following isospin wave functions: (39
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where the omitted terms contain an increasing number o8alpeter wave functionss chosen. Notice that this simple
powers ofl". Next we proceed to a term by term analysis of momentum routing is correct only to ordef.
this expansion, further explained fiti4]. The first and second diagrams in E4Q) contain a ladder.

A simple way to calculate them is to write an integral equa-

B. Contribution with four As tion for the object

The term with fourA’s is model dependent and no chiral Ay
properties can be used to simplify it, since it contains correc- il = ;‘;[::3 (42)
tions to the BS pion wave function beyond the zero- - A,
momentum limit. Without evaluating it explicitly in a par-
ticular model yet(but see later we can parameterize it. TO \yhose most general expansion up to second order in the
the ordemn’ we use here, for on-shell piorB{=0 for alli.  eyternal pion momenta is
Therefore, the 4 diagrams can only be a combination of
products of different momentg; P; . But to orderP?, since U=Lg(k?)Py- Pyt Uy (kA)k- Pik- Pyt Lix(k?) Py - PoK
eachA brings at least one momentum powghe zeroth
power is accounted for already If), only combinations of +U3(k?)k- P1k- Pok+L4(k*)k- PoP 1+ Lig(k*)k- P1P,
the type @1P;)(P3P4), (P1P4)(P2Ps), (P1P3)(P2P,)
can appear. The coefficients of the first two terms have to be +Ug(K?)k- PokP 1+ Lo (k) k- PPyt Lg(k*) P17,
equal because of the cyclic symmetry of E8{1). The coef- +Uo(K2) KPP, . (43)
ficient of the last term is in general independent.

In terms of fictitious momenta, all flowing into the dia- The functions ; are obtained by projecting this linear inte-

9[)‘"1‘”_‘* whose conservation law & +P,+ P35+ P4=0, we  grg| equationanalogous to the Bethe-Salpeter equation
obtain

Ay
Ay A % .
; _ + XU (44
A A A A iU (P1,P2,k) = x:__A)z S LI C)
s ot [ R Sl SEDE'
N Az Az A3 Az with the matrix projectors, KKP,, ... kP, P,, which pro-
3 2

vides us with a linear system of eight integral equations for
the U;. Defining a convenient quantitp :=2k-P k- P,

=3dy(P1-PoP3- Pyt Py P4Py- P3)+3dyP 1 P3Py Py. —k2P; - P,, the projections are

(40
The two numbersl; ,d, contain the nontrivial information in 4D(Py-Pollgtk:Pok-Pally)
this diagram. We have explicitly pulled out the color factor =TI (2D — 2k- PLkP,+ 9P, P,L,

(3, as will be shown short)yfrom thed’s, which contain in
this way only momentum and spisince flavor will be dealt
with at the end when the external legs are matched to the 4D(Py-Pollatk-Pik-Polly)

The third term in EQq(40), to order 4 in momentum, with
no ladder, is simply a wave function overlap given by the

. : — . . (k. D)2
usual Feynman rulefnotice an extra £ 1) due to the fer- APy PoDK-Polls =T (2k- PoPy- PoK=2(k-P2)"P;

mion loop|, +DP,—k- Pk P, L],
4 4
_f d’q TAD(P, q)(AG+B) 4P,-P,Dk-P,Us=TI[(DP;—2(k- P;)?+k- P KP,P,)L],
(2,”_)4 AZqZ_BZ
AP P,Dk-PoLig=TI[(P;- PokP,— k- PR P,)L],
X AD(P,,q)(AG+B)AD(P;,a) (Al B) v PaDle Pt =TI (Pur PakFo i PPl
X AD(P,,q)(AG+B)]. (41) 4Py PyDk- P17 =Ti[(=2K-P1Py-Py+ Py - PoKP,

The Dirac traces can easily be computed withRm. The +k-P1kP,Po)U],

integral is then reduced by using tensor identities like
4Pl. PzDUgZTr[(kzpl P2_ k P2k|¢l+ k Plkpz

gﬂvgprr_f_g,upgwr_’_g,u(rgvp 2
J F(9®)a*9"q°q"= 52 fq“F(qZ) k*P1Po)U],

4P1' P2Du9=Tr[(P1' sz_k P2|¢1+ k PlpZ

to a one-dimensional expression which can then be numeri-
cally evaluated once a specific modeind hence Bethe- —KP,P,)U], (45
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and the inhomogeneous part of the equation can easily be N VR Ay

written down from the first right-hand diagram in E@4). (.\Q&xa_.‘Y_Aa.)(“"’ e Y+

Once the equation for! is solved on a computer, the dia- o : — g-1 Ag
gram can be closed from the left to give

/5 o st A,

Ay (_gXL_‘Y_‘:a')( | . _: -

ity o (46) Ty Az

s

Az

oau (48

and calculated as a simple integral. Here the color factor of 3
in Eq. (40) can easily be seen, since all three vertices are
color singlets and carry.. in color space.

>
w
b

Next one can apply Eq22) to the singlel” appearing in this
expression to generate, after some simple manipulations,

Ay

C. Contribution with T'—3A —
. _ L L 0 (M—l:-}'k . . D +
We will reduce the 3-A contribution fixing the indices €3 L A
I';A1A,A 5 (the other permutations can be easily generated 2A
at the engl Employing Eq.(25) in — 2
(B 2| 0 (49
As
Tav Ay From this expression, the two terms with are zero in the
chiral limit (as appropriate to this papemhec;’s diverge for
Ty — . M Ty A low energies in the chiral limit: they contain the pseudoscalar
T o . ) - C:D ladder pole. But in this diagram, the object to the right of the
Ay — Az Ag Az ladder contains a product of tw's, each of negative parity,
Az(J A2 the result carrying positive parity. By the symmetry breaking

pattern of the theory, no massless scalar, pseudovector, or
(47 tensor meson pole can make the ladder divergent at low mo-
mentum. Therefore the terms with) can be discarded and
[in the first diagram fixj =3 to substitute Eq(25), in the  we have to consider onl§substitutingy,= (P/i) ys, good in

second diagram emplagy=1], we obtain the chiral limif
. A A
T P :>A ~ PC‘.:_:IDA (50
2 3

Therefore our next problem is to evaluate diagrams such asse the vector Ward identity for thg, on the left, but the
momenta flowing in the adjoining propagators would require
this v, to be contracted with-P,—P,=P3+P, and not

kA — Ay just with P5. Or in the right part of the diagram we could
PK || o) reuse our result for the twa- (L) vertex from the previous
k—P,—P, Ag section. But again the momentum flow is not adequate. The
solution to this impasse is to use both ideas, but in a momen-
=3d;3P;- P3P, P,+3d,P,- P3Py - Py, (52 tum expansion. The ladder in this diagram can be substituted

by its momentum expansig26). Since there are three pow-
which again explicitly displays the color factor and whereers of momentum already committéahe is the expliciiPs,
the new constantd; andd, have to be calculated in a spe- the other two need to be one in eadl) only one more
cific model. power is needed. Therefore we can use the ladder expansion
To reduce the ladder in this diagram we could attempt tdo order 1, and diagrartb1) can be rewritten as
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- 1 Now we can use the vector Ward-Takahashi identity, which
< ]: +Py is satisfied toO(PY), on the first diagram and on the left

X PPy Da ladder of the second diagram, allowing us to substitute
O(P) O(P?)
+ P;—iS 1(q)—iS (q—Py).
L —
k k 1 The matrix object with a ladder and two deltas,Q¢P(?)),

P

- YA which appears on the second diagram, is justs defined in
k (k,+P1"?2)( ) ) Eqg. (42). Now it is straightforward to show that E¢GD) is
o(pP) O(p) O(P? (520 equal to

Ay

(2k-Ps(4' k= B') + APs). Ay + iy
(¢+Prt+P2) (g+Pi+Pz)
(53
|
where the diagrams have to be evaluated to ordf)) 9
since an explicit power o has already been used. The left AL || P+
diagram in particular gives rise to four simple subdiagrams ¢+Pr+Py
since two powers oP are committed in thd’s, but the other
power can be distributed alternatively between th&&eor —
the two propagators which carry a powermf i€ P
These diagrams can all be evaluated easily as a simple q{.pﬁ.pf
loop integral on the computer to obtaiy,d,. The contribu-
tion from Eq.(47) is finally
2 +permutations . (56)
(\/Ef,T)“[dS(P1 PaP1 P2 Py-PaPyPo) In this expression, two explicit powers &f are present,
namely, P; and P; in the vertices. The other two powers
+d4(P2- P3Py Po— Py P3Py P3) + permutations have to be produced from a propagator expansion. This is

(54) the third (and last different diagram type that we need to
parametrize:

D. Contribution with AT'T'T —
The contribution P . P

@+Pi+Ps

| e VAY
:3d5P1'P3P1'P4+3d6P3'P4 Pl'P4. (57)

F4 — A1 F4 A1
+ (l"' || -1.\] B C;% Next we show how to calculatd;,dg. Since there is a ladder
st fr, 3 2 3 2 that contains powers d?, we need to recall the ladder ex-

(55) pansion to second order in E(R6). Eliminating the loose
rung with the help of Eq(30), and employing the vector
can be reduced as follow&l) apply Eqs(20) and(23) to the ~ Ward identity to generate a vertex
A4 in the first term, and Eq(12) to theI'5 in the second

diagram to obtain an expression similar to E4g) in which V(P)=2q-P(A’(q)§—B’(q))+A(q)P,
I', is isolated.(2) Employ Eq.(22) to eliminatel'4. (3) Re-
peat the operation to eliminaie,. We obtain we can show that

|
V(Pl)cj:)vwa) v H T S v V(P € TSy VIR

2) -
(57) = (aHFrtFa) (gHPr+Pa) M (kPrtPs) M) (¢+PrHP)D  (q+PrPy) D (58)
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The first and third diagrams are again straightforward La —~ A,
traces and integrals. Only the middle diagram contains a lad- *

: . . . L Ay Ls A
der. We can interpret this ladder as “dressing” either of the + _

vertices and immediately write an integral equation for one q;_::% Q;ZD
of them. Taking, for example, i 2 i Az

r
B
— (63
[2kPy (A" (R)¥—-B' (k) +A(K)P1] § * V
(btPor p;)TT’—x (and the corresponding three more permutadioAgain, by

applying Eq.(23) to theA; in the first diagram and Eq10)
(59 to thel'; in the second, then using E€L3) to simplify the
remainingl’,, neglecting the positive parity ladders when
the function vertex,/ so defined satisfies a linear inhomoge- they are divided by &; containing the pion pole, reabsorb-
neous integral equatiofthe first argument is the momentum ing the ladders and simplifying, one obtains
entering the diagram through the vertex; the second is the

relative and the third the total momentum between the fer- — AN}
mion lines at the vertex L < ) +
(11+P3+P4T Ay
P,+P,
\/ Pl,k+ —,Pl+ P4
! ! ,P2
={2kPy[A' (k=B (K)]+A(K)P1} A (ﬁdpﬁm—:
X S(k+ P+ P,)Ms(k) 1
- +permutations (64)
+V (_—g.j (60)
q which can be written down immediately in terms of tii's

. . i ) defined in Egs(51),(57) as
As is evident,\/ admits an expansion up to second order

in momentum identical to Eq43) in terms of a new set of  3[ —d,P,.P,P;-P,—d,P, P3P, P,+dsP;-P,P;-P,

functions\/q(k?), . .. \/o(k?). The integral system of equa-

tions (60) is very similar to(44), the only difference being +dgP,- P4P1- P4+ permutationg (65)
the inhomogeneous term. Therefore the linear projections in

Eq. (45 still apply, and both systems can be solved with F. ATAT

basically the same iterative computer code. . .
Finally, the middle diagram in Eq58) can be closed to _ TWo permutations contributek,I';A5I'y andl’; Aol'3A .
read The reduction is in all respects analogous to the previous

ones, yielding a contribution
v e

e |
(Q+P1+P4)(l) (61) (\/Efw)4[d5(P1 P3Pl P4 Pl P3P3 I:)4 permUtaUOl)

which is easy to evaluate with the help of a symbolic ma- T g(Ps: Py Py Pyt Py Py Pg- Pyt permutation].

nipulation program. Finally, we give the expression for Eg. (66)
(55) in terms of thed’s:

G. 4—T contribution

3dsP;-P3(Py- P4+ P1-Py)+3dg(Py- P,P,- Py The last piece stems from the term with four power$’ of

+P;-P,P3-P,)+ permutations. (62) By repeated use of Eq22) it can be shown to contribute
-3
E. Contribution with AAT'T m[ds(Pl' P3P3- P4+ P1-P3P;-Ps)
With two A corrections, there are two topologically dis- "
tinct diagrams that can contribute. They are different because +dg(P1- Py P3-Py+P-PsP5-P3)]. (67)
while reading around the fermion loop one can find the ex-
ternal legs in the ordeFT’'AA or in the ordel AT A. [Here the cyclicity of Eq.(31) can be recovered by using
We start with the first term, namely, >;P;=0.]
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Combining the results from Secs. IV A—IV F and sum- where the standard function decouples from the rest of the
ming all permutation$32) with the isospin factor§24), (35), system and therefore is ignored, and the momentum expan-
the standard amplitudé(s,t,u), takes a form identical to sion shown is complete up to second order for a symmetric
Eq. (4), and we deduce momentum routingy (that is, the fermion lines out of
carry k+P/2 andk—P/2). The EO term is determined by
chiral symmetry to bd’5(P=0k)/2if .. The rest of the
expansion constructs the functia{P,k). The same power
series(70) can be written down for the axial vertex

3
I]_: 3_2(_2d1+ d2_6d3+ 2d4+ 5d5+ dG)!

3
= —(d,— — P P
2=~ 7g(d2 203+ 204+ ds o). ©9  rypa- A(q—P/2>(q—5)—A<q+P/2> i+
Therefore, to obtain th&s numerically, one mustl) solve
the Schwinger-Dyson equations for the propagator, (5. —[B(q—P/2)+B(q+P/2)]| — (72)

(2) employ the functions obtainedl, B as input to the Bethe-
Salpeter equationg16) and solve them;(3) use the expanding in powers oP, and up to a normalization we

Fo,Go, - .. obtained as input for Eq$44) and (60) to ob-  recover the equivalent to E¢70):

tainu and\/; (4) perform the integral$46), (53), (61); and

(5) assemble Eq940), (54), (62), (65), (66), (67). In this E0A=2B(g?),

external momentum expansion all integrals and integral

equations are functions only of internal variables of quark FOa=—A(g?),

momentaq?,k?,k-q. The diagrams could alternatively be

evaluated on the lattice. GOx=—2A" (),
E2,=2B"(q?),

V. MODEL EVALUATIONS

We would like to provide simple model evaluations of all P (72
these calculations, well aware of model limitations and that a ) )
thorough phenomenological analysis can be carried out onlpubtracting Eq (72) from Eq. (70) we obtain some new
with more sophisticated interactions such as those employdgnctions ofq® which provide the needed expansions far
in [7,12]. We employ two Feynman gauge models featuring
the interaction AN (q+Py/2,Py) =AM (q,Py)

— 2 2
VK(Q)V=1y,K(q)y* (69) FO(g*)P1+GO(q9)q- P14,
This simple choice of a vector-vector interacti@s opposed (q 1)?
to the more popular Landau gauge transverse tensor kernel
simplifies the Gamma matrix traceologin this calculation _
carried out with the help of two independent computer codes, +GO'(g?)q(q- P,)? (73
one written iINMATHEMATICA and one inFORM [22]) so that
the standard Llewelyn-Smith BS wave function for the pion(valid for symmetric momentum routing whéit ,F1,G1 all

A®(q+Py/2Py)=EXg*)—5— +F0’ (q)P1q.P,

[7] reduces to vanish. Further, with they,y* kernel another trace-related
simplification occurs in Eqg44) and(60), and the functions
x(P,K)=y5(E(P,k)+F(P,k)P+G(P,k)Kk- P) Us, U7, Ug, Ve, V7, and\/g equal the inhomogeneous
term in their respective equations, the homogendmte-

(kp)2 gral) parts of the equations being zero.
=y5(EO(k2)+—E2(k2)+F0(k2)I¢ All that remains is to consider some specific form for
K(g?). We will look at two models whose Euclidean angular
integrals can be done analytically, leaving only one-

+GO(k?>)Kk-P+- - - |, (70 dimensional integral equations to solve numerically.

TABLE I. Results for the toy Gaussian model in the chiral limit. Dimensionful magnitudes are in MeV.

A g M(k*=0) (T f Iy 12
500 6.3 385 222 76 —-0.02 0.066
600 6.3 462 267 91 —0.02 0.060
500 6.5 468 237 83 —0.018 0.062
800 55 125 213 51 —0.019 0.080
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TABLE II. Results for the toy rational model in the chiral limit. Dimensionful magnitudes are in MeV.

A A g M(k?=0) —(VWp)e f Iy I,
250 300 13.0 559 242 82 —0.011 0.11
300 350 13.0 471 240 77 -0.015 0.11
500 550 14.2 269 247 68 —0.015 0.12
700 770 13.4 155 250 56 —-0.012 0.12

The first is a simple Gaussian kernglhose Euclidean meson loops that would appear in chiral perturbation theory.
angular integrals are Bessel functidi2s]) We are currently investigating these issues.

K(q)=g” exp(—g?/A?), (74)
VI. RESULTS AND DISCUSSION
whereg provides the coupling strength andthe scale of the
interaction(the results are sketched in Tabje |
The second is a rational kernel

We have worked out the pion-pion scattering amplitude at
low energy in the chiral limit taO(P*) from a general mi-
croscopic quark Schwinger-Dyson approach. Upon compari-
son with the chiral Lagrangian formalism, the main result of
K(a)=g71M(q*—\?)—1(g*~ A?)], (75 this paper is a pair of relations that would in principle allow
us to directly evaluate the coefficierltgs,|, in any specific

whereg, \, and A represent some quark model parameteré“oqel(i-e-z after c_hoosing the Lorentz structure of the quark-
fitted to provide a good condensate and constituent quarRntiquark interaction and the strength and shape of any po-
mass via the Schwinger-Dyson equation. The Euclidean arfential or dressed gluon propagatprovided it supports the
gular integrals are straightforward using relations such as Standard mechanism of chiral symmetry breaKing, 18,24.

The symmetry properties of thE pion vertex are model

dependent and are of ord®* (therefore vanishing at low

1 \/1—x2:7T(a_ Jai=1) energy. Lorentz invariance restricts their form and allows
_1 a—x ' for only two coefficients.

On a first glance, the diagran¥0), etc., seem as difficult
to calculate as the full pion-pion scattering amplitude, but
1 x{1—x? ) 5 one needs to remember that eattpion wave function en-
La-x m(a®—1/2—aya’—-1). tering the calculation can be taken to have only one power of
the externaP to this order, since there are four of them and
Hence all integral equations are one dimensional in momerfey vanish by definition ab=0, and the propagators can
tum space. also be taken qleO, [eavmg just one momentukaround
When the dimensionful parameters, of the order of thdn€ 00p. This is a major simplification. ,
strong interaction scale, are close in value, and for large N the previous section we showed how the numerical
enoughg, the potential is infrared enhanced, supporting chi-€valuation can be performed with two very simpl®o
ral symmetry breaking. Notice that the rainbow-ladder fer-SIMPI® kernels. Our results for, andl; have phenomeno-
mion loop diagrams constructed with these interactions artPdically correct signs and ratios, especially for the Gaussian
finite due to the exponential or q¥ high-energy behavior, toy model(see Tables | and.)l.l Poss!bly because our results
and no renormalization program is needed. This is associatéf€ computed a=0 and without pion loops, our andl;
with a gluon propagator scale, which determines the scale gi¢€M 100 large in absolute value. This can be appreciated
the Bethe-Salpeter wave functions, which in turn regulate thé?6:9,10,21,25-29,31n Tables Ill, IV, and V, which sum-
marize the present status of knowledge of these coefficients.
TABLE lll. Phenomenological determinations of thegaram-
eters(fits to scattering lengths or phase shifts in pion scattgring TABLE IV. Phenomenological determinations of theparam-
eters(based orp meson resonance saturation

Authors 15(m,)x10*  15(m,)x10°
r r
Gasser and Leutwyld#] —4.2+3.9 9.0:2.7 Authors li(m,) 10 l5(m,) <10
Bijnens, Colangelo, Talavera; Gasser and Leutwyld#] —-8.4 8.4
Colangelo, Gasser, Leutwylg?6] —2.2+0.6 9.0+-2.7 Pham and Truon§27] —55t0—-24 14
Yndurain[28] —4.1+0.7 9.8-0.5 Eckeret al.[21] —-6.1+-3.9 5.3:2.7
Gomez Nicola and Pékz [6] —3.3:0.7 4.8-0.6 Pennington and Portade —-2.1*x1.2 5.9:1.0
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TABLE V. Theoretical determinations of tHeparametergbased  was partially supported by Univ. Complutense on a travel
on the largeN. approximation and/or the Nambu-Jona-Lasinio grant, and by grants FPA 2000-0956 and BFM 2002-01003
mode). (Spain, F.J.L.-E. is thankful for the hospitality and scholarly
atmosphere at IST Lisbon.

Authors 15(m,)x10*  I5(m,)x10°
Espriu, de Rafael, Tarof29] -3.18 6.3
Bijnens, Bruno, de RafagB] -4.8 6.4 APPENDIX: NORM AND f
Ruiz Arriola[9] —-7.4 7.8 . .
Andrianov[10] 39 6.4 In this appendix we present the proof of the well-known

fact that the normalization of the Bethe-Salpeter wave func-
tion is the pion decay constant, rewritten in terms of our
Ward identity techniques. At null external pion momentum,

SU(2), renormalized, barred, ejchave been unified to the g the homogeneous BS equatitk6). We introduce an ar-
renormalized’s at the scale of the meson. Some of those bitrary proportionality constam,, by means of

determinations carry information relative to finite quéakd

therefore pioh masses, to kaons and etas, or to pion loops,

none of which have been taken into account in this work. a a

The fairest comparison therefore is with the oldest results of x(P=0)= m (A1)
Andrianov[10] in the largeN, limit (no gluon corrections

and those of Pham and Truof@y]. The latter authors obtain

the interesting relations thei guaranteey to be real because of the explicit form of
I' in Eq. (18).
ffT The normalizing condition for the Bethe-Salpeter solution
IZZF is, following Llewelyn-Smith[30],
P
and a — ) b
XZ i X
§2 € Bpn (—>— Xe =2iP,6% . (A2

1
| 1= § m_g_ - 2| 2.
Because the right hand side of the normalization condition is
If the ¢ mass is sent to infinity, then the lard& ratio is  of first order inP* we can expand iry and inT", as in Eq.
recovered. For finiter masses between 350 and 750 MeV (20). There are two terms, depending on whether the deriva-
we obtain the range given in Table IV. This demonstrates th&ve is applied to the upper or lower propagator.
importance of repeating the model evaluations with kernels The first term can be written as
whose meson excitations in various channels are known.
Our approach is potentially superior to the resonance satu-

ration approximations since it includes the full vertex and 9,81 BuS™
ladder structures, that is, effects of continua and higher reso- é [,0 A_ b
nances. In particular, we include the four-pion direct interac- X%, x2 A-rp Ap
tion, and the exchange of the full series of excited vector and - T (in,)?
scalar mesons. We also stress that the masses ¢f and o

mesons are expected to be of the right order of magnitude, 9,8~ 39S
because our constituent quark mass has reasonable values of . b b

the order of 300 to 400 Me\(see Tables | and )l Our LaZ, Xp X~ Ta,
approach is also potentially superior to Nambu—Jona-Lasinio + .y + in
determinations in allowing us to lift the approximation of 4 4

contact interactions between quarks. Thus we pave the way (A3)

to calculating thd; coefficients from the lattice or from ac-

curate Schwinger-Dyson solutions. Finite current quark

masses and meson loops remain to be incorporated to im- The term with['T" can be shown to be zero. To see it, one
prove the precision of our calculation. We are currently conneeds to take a derivative of E) that gives

sidering some of these issug?].

58,818 = ::I OS5 (A4)
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_ I‘Aip _
—%P%L—h— y 3 6“80—1
— g-1
o "o
|
n,=f_,

Reabsorbing the remaining ladder, and employing the free

propagator and bare axial vertex in ES),(9) this is pro-
portional (because of the isospin factor not inclugéol

- -1 _ ’}/,LL’YS
Trf(IPSo'?MS S FAipsTS.

(AB)
Eliminating I' with its Ward identity (13), and after some
elementary operations, this equals

—i TrJ (v,0,5—3,Sy,)P,=0. (A7)
Returning to Eq.(A3), once the term with['l" has been
shown to vanish, we need to evaluate the terms withaad
arl.

Diagrammatically again, one hdeecall Egs.(22), (23),
and (A4)]

3,871t
- X5
Xb [ ] F‘Z‘-P ] -1
= R s
— — 81
b
a -1
_ 1552 € P0uS
ﬂ’p 3u80_175—PT
+ k+Pj2

1 o
= “ZT"'{'Y5—P =X O0uS(k + P/2)}

L1 COwng

24 ’ (A8)

We get two terms. The first is of ord®’ because of the in

which immediately leads to E20). Finally, direct calcula-
tion of Eq. (A10) leads to

nizsf

X{EO

d*q 1
(277)4 (A2 2—82)2

4AB+20? B

dA A dB )
d(g®d  d(g?

+F0(29%A%2+4B?)+g2G0(B?— %A% ;. (A1l

Notice the explicit color factor of 3. All through the paper
the Bethe-Salpeter wave functions have been taken propor-
tional to the identitys.., in color space. Had we normalized
them in a different way, say,. /3, this would immedi-
ately affect the formula above, reducing the factox/& the
rest being absorbed by the functioB®, FO, andG0. The
low energy theoremgGell-Mann—Oakes—Renner theorem,
Weinberg’'s amplitude, etfc.are unchanged by this choice
since the explicit form of these functions is never used to
prove them: they are always eliminated in termd pf But
the I1,l, constants of the chiral Lagrangian would indeed
have to be rewritten in terms of the modified Bethe-Salpeter
wave functions. This, of course, would not affect its numeri-
cal value.

The normalizing conditiorfA2),

X_p 0 (T ) Dx
P ap,,(.._)}*":zipp (A12)
which yields Eq.(A10), can also be directly evaluated with-
out using Ward identities. By taking the derivative of this

equation with respect td®* (and contracting ove as

the denominator, and vanishes. The second is indeed notisua), we get the followingderivatives with respect tB act

zero. Going back now to EqA2), we obtain

b VNG
2P, = (.—1—2i) xp COWWT (a9

m

The definition of the weak decay constdntyields (with no
pion loops

b Vg
Xp €M = 1P, fn6%

and therefore we must have

(A10)

only on the function immediately behind them and the color
factor is explici}:

[ d*a ;
8i= 3](277)4 T 20, x+(P)3*S(q+ P/2) x (= P)S(q—P/2)

+2x2(P)3,*S(q+ PI2) x o( — P)S(q— P/2)

+2x4(P)3,S(q+P12)a*x .(— P)S(q— P/2)

+2xa(P)3*S(q+ PI2)x o(— P)3,S(q— PI2) +].
(A13)
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To calculate this normalization one needs to make the wave . o
function explicit, 2imI'g(k, k)= 5 ¥5S 1+ S ye) (A16)
— 2 2 2
X+(P)=vs[EO(6?) + FO(g) 4+ GO(c?)q- ph+ - - -1, and, as previously discussed,
(A14) .
. _ . Bk g
which evaluated aP=0 yields Fg:m s (A17)

_ 2 P _ _
X+(0)=1vsEO(Q), d,x.(P=0)=1y5(FOy,+G04qq,), To start the simple demonstration of the GMOR relation,

“undress” the vertex'g to write
and make use of the propagator expangidn, (28), (29

above. A simple check on the resulting expression is to sub-

stitute y by I, yielding STes = :[D’Ys% (A18)
d*q 1 . o . : .
_3f —-2B(4,B)"| ——5—— and, neglecting the contribution of higher pion statehkich
(2m)* A?q*—B? exactly decouple in the chiral limit, as in R¢R4]), we can
saturate the ladder using the pion pole, yielding
_R2 = =
B%3,0" A2q2—82) =0,

re o BT OX X (A19)
2 o

which vanishes upon employing Green’s first identity. This . .
checks the zero in EqA7) with a completely independent SuPstituting now Eq(Al) in the form
calculation and is also approximately observed in our com- S 1954 4551 g

puter codes. The result for,, is Y= - (A20)
in,
4q 1
nf,zBif —— ————[(AB'—BA) and comparing with EqIA17), we immediately obtain
(277)4 AZqZ_BZ

L L —2mTrS=n2M2
X 29°B(Fo+q°Go) —AB*(4F+q°Go)],
(A15) corresponding to the GMOR relation upon identification of
n,=f_, consistent with the Llewelyn-Smith normalization
condition.
which, upon comparison with EA11) provides an integral We finally remind the reader of the explicit expression for
constraint between the Schwinger-Dyson and Bethe-Salpet#ie BCS planar condensate:
solutions. The barred quantities have been defined in Eq.

(73). — — ) Ak+ By
To conclude this discussion we recall the derivation of the ~ (¥Yu¥u)=(¥q¥a)=TrS=i Trj AK—_Bltis
Gell-Mann—Oakes—RennéGMOR) relation in the Bethe- K kT1e
Salpeter formalism. This has been presentefilBy14], to- d%ke 4B,
gether with a discussion of the Weinberg theorem. At zero = —3f 1 3 o3 (A21)
external pion momentum, the axial Ward identity reads (2m)" Ak®+ By
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