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Quark Schwinger-Dyson evaluation of thel 1 ,l 2 coefficients in the chiral Lagrangian
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Using a systematic expansion of the quark-antiquark Bethe-Salpeter wave functions in the relativistic quark
model and working toO(P4) in the chiral limit, we are able to derive theoretical expressions relating the
coefficients of the chiral Lagrangianl 1 ,l 2 to the underlying quark-antiquark wave functions and interaction
kernels. This is accomplished by using a novel technique based on a Ward identity for the quark-antiquark
ladder kernel which greatly simplifies the required effort. Numerical evaluations are performed in two simple
specific models.
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I. INTRODUCTION

It has traditionally been considered a triumph of theor
ical physics when the parameters of an effective, low ene
theory that correctly describe phenomena at a given scale
be related to those of an underlying, more fundamen
scheme of thought that grounds it. Brilliant examples are
London’s explanation of the quantum nature of the van
Waals forces@1# and the derivation of the atomic relativist
corrections as a consequence of the Dirac’s equation for
electron. Low energy hadronic processes are interpreted
the aid mainly of two types of theories: nucleon-nucle
nonrelativistic interactions such as the Nijmegen@2# or Ar-
gonne@3# potentials for the heavier hadrons, and relativis
chiral Lagrangians@4# for the lightest components, the pion

The deeper quark theories such as QCD or any mic
scopic models thereof pretend in principle to describe
totality of hadronic physics. They attempt to be comple
descriptions of hadronic processes. Unfortunately, the c
plexity of many body hadronic calculations makes it forb
ding to fully exploit the underlying scheme and maintain t
validity of the low energy effective theory.

As a consequence, an initial goal for the microsco
theory should be to reproduce in some limit the macrosco
models and to relate their parameters to its own set~hope-
fully smaller!. In this paper we make the case for micr
scopic quark models inspired in QCD as generating the
rameters of the chiral Lagrangian. This Lagrangia
describing the low energy behavior of a pion system, a
being able to incorporate the coupling of pions to other m
sons@as much as do the low energy theorems of PCAC~par-
tial conservation of axial vector current! @5## is universal~in
the sense that any theory with the same symmetries ca
cast in its form! and provides a consistent derivative expa
sion in powers of the momentum and mass of any pi
present in a system, divided by a typical scale of the str
interactions.

*Electronic address: fllanes@fis.ucm.es
†Electronic address: bicudo@ist.utl.pt
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Unfortunately, this derivative expansion has to incorp
rate new coefficients order by order. These new coefficie
absorb the divergences of loops generated by the vertice
smaller order terms, and so their value is generally renorm
ized. Still, the common usage of this Lagrangian@6# pro-
ceeds by fitting these coefficients to some observable set
given scale.

We show how these coefficients can be related system
cally to quark level parameters in the planar approximati
This has been accomplished in the past for the simpl
O(P2) chiral Lagrangian whose parameters are only 2, in
usual notation,Mp , f p ~the pion mass and decay constan!.
To this order, these two parameters are conventionally se
take their physical values. To the next order, the Lagrang
contains six parameters, which generate theO(P4) vertices
l 1 ,l 2 absorbing divergences in the four-pion Green’s fun
tion, l 3 ,l 4, which absorb counterterms of the mass and ax
current renormalizations, and finallyMp , f p . The complete
renormalization scheme is specified in@4#. The parameters
Mp , f p have long been accounted for by relativistic qua
models @7,8#. The l ’s, on the other hand, have not bee
treated in quark models with noncontact interactions. We e
phasize the point that any theory which respects
SU(2)L3SU(2)R chiral symmetry breaking pattern, let it b
a Nambu–Jona-Lasinio quark theory@9#, a largeNc expan-
sion @10#, a string theory, or any other exotic creation, can
cast in the form of the chiral Lagrangian, and the only d
ferences between all of them are the numerical values of
l i coefficients.

It is therefore of paramount importance to determine th
from the theories that we believe correctly describe the ph
ics at the GeV scale, in terms of quarks and antiquarks. L
tice determinations are making progress in that direct
@11#, but the Schwinger-Dyson~SD! equation formalism
should provide an alternative determination in the near
ture. An interesting paper@12# exists where, at the Lagrang
ian level, the action for a relativistic quark model
bosonized to obtain an effective meson Lagrangian and t
used to calculate pion-pion scattering lengths. We are go
to extend this approach theoretically in two directions. Fir
we will start with the most general chirally symmetric qua
©2003 The American Physical Society14-1
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model, in which the pion is well described by a quar
antiquark pair after chiral symmetry breaking~encompassing
in this way an ample spectrum of models! and, by using their
chiral properties, reduce the four-pion Green’s functions t
minimal set of diagrams. In this way, no bosonization is p
formed, and at all steps the arrangement of the quark in
actions to comply with the chiral theorems is explicitly vi
ible. Second, comparing the result with the same calcula
in a chiral Lagrangian formalism, one can immediately re
off the l i coefficients of the chiral Lagrangian in terms
diagrams which can be calculated numerically in the qu
model. This rather technical numerical evaluation will
simplified in this work by confining ourselves to simple,
nite models, although the numerical results will then be li
ited. The method used here has already been success
exploited to demonstrate how this class of models com
with the Weinberg theorem in@13–15#. The Weinberg theo-
rem was derived with an expansion toO(P2),O(Mp

2 ). We
now concentrate on theO(P4),O(Mp

0 ) chiral Lagrangian,
that is, the only parameters aref p , l 1, and l 2. We will per-
form the same expansion in the quark-antiquark diagra
and compare the results to read offl 1 ,l 2. The expansion will
be carried out whenever possible in a Feynman diagram
guage to avoid lengthy expressions for the sake of reada
ity. The rest of this paper is organized as follows. In Sec
we briefly settle the notation for our chiral perturbatio
theory discussion and remind the reader of a few well-kno
facts in this field. Section III settles the notation of the m
croscopic quark manipulations to follow and provides t
reader with a useful chiral Ward identity recently introduc
@13,14#. Section IV is the core of the paper and presents
reduction of the pion scattering amplitude, whereas the
sulting diagrams are calculated in two simple models in S
V. Some issues clarifying the normalization of the Beth
Salpeter equation are relegated to the Appendix.

II. CHIRAL LAGRANGIAN OF ORDER P4

The macroscopic theory one generally writes down
pion fields alone is to lowest order the nonlinear sig
model. One can proceed by constructing, from the three p
fields pW 5(p1 ,p2 ,p3), a four-vector normalized to 1~this
normalization is equivalent to eliminating the explicits de-
gree of freedom from the linear sigma model!,

U5FA12pW 2/F2

pW /F
G , ~1!

and then constructing Lorentz scalar, parity invariant ter
To O(P4) that Lagrangian can be extended by terms wh
in the chiral limit (mq50) have to be of the form@4#

L (4)5
1

F4
@ l 1~pW ,m•pW ,m!~pW ,n•pW ,n!1 l 2~pW ,m

•pW ,n!~pW ,m•pW ,n!#,

~2!

where the scalar dot products are in isospin space. This
grangian is on shell, for massless pions~else thel 3 ,l 4 coun-
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terterms should also be present! and contributes at the tre
level to theO(P4) pion-pion scattering amplitude; and it i
this contribution that we aim to reproduce microscopica
In the chiral formalism, there are also one-loop contributio
from theO(P2) Lagrangian which we do not consider in th
work, since our quark level calculation will not be extend
to meson loops. Therefore, to this level, it is fair to compa
our results only with those obtained in chiral perturbati
theory without meson loops. With this caveat in mind, t
pion-pion scattering amplitudes are straightforwardly o
tained. By using crossing symmetry, the different isos
channels can be related in terms of only one amplitudeA:

TI 525A~ t,s,u!1A~u,t,s!,

TI 515A~ t,s,u!2A~u,t,s!,

TI 5053A~s,t,u!1A~ t,s,u!1A~u,t,s!. ~3!

This amplitudeA(s,t,u) can be obtained from the proces
p1p2→p0p0. Due to the final state Bose symmetry, and
the chiral limit when the Mandelstam variables satisfys1t
1u50, the most general amplitude of orderP4 containing
the polynomialss2,t2,u2,st,su,tu reduces toA1s21A2(t
2u)2. The coefficients obtained from the Lagrangian~2!
above yield

A(4)~s,t,u!5
1

F4 F S 2l 11
l 2

2 D s21
l 2

2
~ t2u!2G . ~4!

A full discussion of this and related issues~for example, the
relation betweenf p and F, which we further ignore in this
paper to the order we are working! can be found in@4,16#.

III. NOTATION FOR QUARK MODELS AND CHIRAL
WARD IDENTITIES

A pion with momentumP couples in relativistic models to
fermion lines whose momenta will be denoted byk,k8. In
the massless quark limit, wheneverP50, thenk5k8. We
start by considering the bare fermion propagator from a
standard quark theory,

S0~k!5
i

k”2m1 i e
, ~5!

and, after spontaneous chiral symmetry breaking media
by a strong interaction@17,18#, the full fermion propagator
parameterized as

S~k!5
i

A~k2!k”2B~k2!1 i e
, ~6!

which we take to be a solution of the planar rainbo
Schwinger-Dyson equation

S~k!215S0~k!212E d4q

~2p!4
VaS~k1q!VaK~q!. ~7!
4-2
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QUARK SCHWINGER-DYSON EVALUATION OF THEl 1, . . . PHYSICAL REVIEW D68, 094014 ~2003!
We further define the bare axial vertex which couples
quark-antiquark pair to a pseudoscalar current by mean
the shorthandgA

a ~notice thatmu505md in the chiral limit
employed in this paper!:

gA
a5

sa

2
~2 iPmgmg512imug5!, ~8!

which satisfies

gA
a~k,k8!5

sa

2
@S0

21~k!g51g5S0
21~k8!#, ~9!

and the dressed axial vertex, dressed with a planar laddeGA
is given by

GA
a~k,k8!5gA

a~k,k8!1E VaS~k11q!GA
aS~k21q!VaK~q!.

~10!

Reconstructing the planar ladder expansion~in graphical
form!

~11!

Eq. ~10! takes the form

~12!

from which one can deduce the axial vector Ward identit

GA
a~k,k8!5

sa

2
@S21~k!g51g5S21~k8!#ª

sa

2
GA . ~13!

This is analogous to the Abelian vector Ward-Takaha
identity which in terms of the vertexGm defined by

~14!

yields

i ~km2km8 !Gm~k,k8!5S21~k8!2S21~k!. ~15!

Next we introduce the bound state formalism for qua
antiquark systems. To this end we remind the reader of
Bethe-Salpeter~BS! amplitudex ~see@7,12#! for further de-
tails! which satisfies a homogeneous Bethe-Salpeter e
tion:

xb~P,k!5E VaSS k81
P

2 Dxb~P,k8!SS k82
P

2 DVaK~k2k8!,

~16!

or in graphical form
09401
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Each incoming or outgoing pion in a particular process m
contribute with one of thesex functions, which carry pseu
doscalar quantum numbers by construction@19#. The BS am-
plitude for a particular pion depends on the total moment
of the pionP and the momentum of its fermion compone
k6P/2. Notice that this equation is the homogeneous par
Eq. ~10! above, when we interpret the pion momentumP as
k2k8 in the vertex definition.

Now let us deepen our study of the vertexGA . From Eq.
~13! it can easily be seen that in the chiral limit (mq50)

GA
a~k,k85k!52iB~k2!g5

sa

2
, ~18!

in terms of the SD amplitudeB solution of Eq.~7!. Equations
~16! and~10!, homogeneous and not homogeneous, coinc
whengA50. This is satisfied in the limitmq50 when also
P50 as can be seen explicitly from Eq.~9!; this allows us to
identify, up to a normalization constant,xp(P50,k) with
GA(k,k85k). This constant coincides withi f p , the pion de-
cay constant in the chiral limit~the proof is sketched in the
Appendix! and finally entails, in combination with Eq.~18!,

xp
a ~P50,k!5

2 iGA
a~k,k85k!

f p
5

2B~k2!

f p
g5

sa

2
. ~19!

In @20# a proof was given that this BS amplitude, in conne
tion with the axial vector ward identity, makes the pion
Goldstone boson. In terms of our notation this was rewrit
in @14#.

This discussion suggests a strategy to systematically o
nize the corrections to the chiral, low momentum limit, in
analogous fashion to that used in chiral perturbation the
Since the vertexGA and diagrams constructed thereof satis
interesting chiral identities, let us define

xa~P,k!5
2 iGA

a~P,k!1Da~P,k!

f p
, ~20!

where the functionD(P,k) so introduced can be expanded
a Taylor series for lowP. This expansion will organize the
momentum corrections to any diagram. One first uses
chiral results forGA , which provide one with exact low en
ergy theorems, and the numerical corrections asP is in-
creased can then be expressed as overlaps ofD functions.

We do not yet specify the color, spin, flavor, or mome
tum structure of the interaction kernel and vertic
VaVaK(q), except for one property: they must be chir
symmetry preserving, that is,V commutes withg5. This
guarantees the satisfaction of the following chiral ward ide
tity ~also discussed in@13,14#!, which proved essential:
4-3
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. ~21!

or, for a general vertex not necessarily pseudoscalar,

~22!

This identity allows the reduction of terms with two axi
vertices and is the core of the present calculation.@We re-
mark thatS21S5I is introduced in Eq.~21! andScompletes
the ladder in Eq.~11! leaving the explicitS21.#

Further ladder properties

We start by observing that the pseudoscalar ladder ca
Laurent expanded around its pion pole. Keeping only
first term, containing the pole, one obtains

~23!

where

~24!

~in the calculations contained in this paper,mp
2 50). Com-

bining this together with the definition ofD in Eq. ~20!, one
can use
09401
be
e

~25!

The ladder can also be expanded in powers of the exte
momentum: starting from the geometrical series~11! and ex-
panding all propagators, then resumming when possible,
can show that, in analogy with the matrix relations

S 1

12yD 8
5S 1

12yD y8S 1

12yD ,

S 1

12yD 9
52S 1

12yD y8S 1

12yD y8S 1

12yD
1S 1

12yD y9S 1

12yD ,

one has

~26!

where the following momentum expansion of the propa
tors is meant by the superscripts~1!, ~2!:
S~q1P/2!uP505
Aq/ 1B

A2q22B2
, ~27!

]mS~q1P/2!uP505gm

A/2

A2q22B2
1qmS A8q/ 1B8

A2q22B2
2

~Aq/ 1B!~A212q2AA822BB8!

~A2q22B2!2 D , ~28!

]m]mS~q1P/2!uP505
q/ A8

A2q22B2
2

A212q2AA822BB8

~A2q22B2!2
@q/ A12q2~q/ A81B8!#12q2F A9q/ 1B9

2~A2q22B2!

1
Aq/ 1B

~A2q22B2!2 S ~A212q2AA822BB8!2

A2q22B2
2@2AA81q2~A8!21q2AA92~B8!22BB9# D G

1
2

~A2q22B2!2
@~A8q/ 1B8!~A2q22B2!2~Aq/ 1B!~A212q2AA822BB8!#. ~29!
4-4
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QUARK SCHWINGER-DYSON EVALUATION OF THEl 1, . . . PHYSICAL REVIEW D68, 094014 ~2003!
The last diagram in Eq.~26! contains an annoying explici
rung of the interaction. This can be eliminated at the cos
adding a diagram to any expression where it appears: in a
ogy with

y

12y
5

1

12y
21

one can use

~30!

IV. PION-PION SCATTERING

A. Generalities

The pion scattering amplitude with the Bethe-Salpeter
planar approximations can be derived from the followi
Feynman diagrams:

~31!

where the first two terms provide all possible planar topo
gies, but upon substitution of Eq.~11! their zeroth order is
seen to be double counted; hence we subtract it. The
approximations involved are, first, coupling of the pion
higher Fock space states is not considered and, second,
planar diagrams are utilized. It was shown, using the a
Ward identity, that these two approximations are consis
within the Schwinger-Dyson method in the rainbow appro
mation for the fermion mass generation and in the lad
approximation for the bound state equation@13,14#. This is
also consistent with past work@21# on resonance exchang
and is equivalent to the lowest order in a 1/Nc expansion.
Reduction of this combination of Feynman diagrams
O(p4),O(Mp

0 ) is our goal. The calculations in this sectio
will treat the P’s as incoming momenta. Matching th
dummy Pj to the incomingqi 1

,qi 2
and outgoingqo1

,qo2

physical pion momenta leads to six different permutatio
namely,

~P1 ,P2 ,P3 ,P4!5S ~qi1 ,qi2 ,2qo2 ,2qo1!

~qi1 ,qi2 ,2qo1 ,2qo2!

~qi1 ,2qo1 ,2qo2 ,qi2!

~qi1 ,2qo2 ,2qo1 ,qi2!

~qi1 ,2qo1 ,qi2 ,2qo2!

~qi1 ,2qo2 ,qi2 ,2qo1!

D , ~32!

where the first momentum is fixed to avoid double count
by rotational symmetry of thep-p scattering amplitude~31!.

We concentrate onA(s,t,u), the amplitude forp1p2

→p0p0, and use the following isospin wave functions:
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p15
1

2
~s11 is2!,

p25
1

2
~2s11 is2!,

p05
1

A2
s3 . ~33!

From them follow the traces

Tr~p1p2p0p0!52
1

2
~34!

@which multiplies the four first permutations in Eq.~32!
above where the two charged pions are adjacent# and

Tr~p1p0p2p0!5
1

2
~35!

@multiplying the last two permutations in Eq.~32! where the
two charged pions are in opposite corners of the amplitud#.

Finally, the Mandelstam variables in the chiral limit sa
isfy

s52qi1qi252qo1qo2 ,

t522qi1qo1522qi2qo2 ,

u522qi1qo2522qi2qo1 . ~36!

Since isospin has been factored out, we can ignore it in
rest of the calculation. Instead of working withGa we em-
ploy G as defined in Eq.~13!. Accordingly, we define

xa
ª

sa

A2
x ~37!

to yield the normalized isospin wave functions in Eq.~33!
and the normalization forx,GA will be

x5
2 iGA1D

A2 f p

. ~38!

We now start evaluating the Feynman amplitude in ter
of theP’s. Start by employing Eq.~38! to treat the product of
four BS amplitudes:

xp1
xp2

xp3
xp4

5S 1

A2 f p
D 4S G1

i
1D1D S G2

i
1D2D S G3

i
1D3D S G4

i
1D4D

5S 1

A2 f p
D 4S D1D2D3D41

G1

i
D2D3D41permD1•••,

~39!
4-5
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where the omitted terms contain an increasing numbe
powers ofG. Next we proceed to a term by term analysis
this expansion, further explained in@14#.

B. Contribution with four Ds

The term with fourD ’s is model dependent and no chir
properties can be used to simplify it, since it contains corr
tions to the BS pion wave function beyond the ze
momentum limit. Without evaluating it explicitly in a par
ticular model yet~but see later!, we can parameterize it. T
the orderm0 we use here, for on-shell pions,Pi

250 for all i.
Therefore, the 4D diagrams can only be a combination
products of different momentaPi Pj . But to orderP4, since
each D brings at least one momentum power~the zeroth
power is accounted for already inG), only combinations of
the type (P1P2)(P3P4), (P1P4)(P2P3), (P1P3)(P2P4)
can appear. The coefficients of the first two terms have to
equal because of the cyclic symmetry of Eq.~31!. The coef-
ficient of the last term is in general independent.

In terms of fictitious momenta, all flowing into the dia
gram, whose conservation law isP11P21P31P450, we
obtain

53d1~P1•P2P3•P41P1•P4P2•P3!13d2P1•P3P2•P4 .

~40!

The two numbersd1 ,d2 contain the nontrivial information in
this diagram. We have explicitly pulled out the color fact
~3, as will be shown shortly! from thed’s, which contain in
this way only momentum and spin~since flavor will be dealt
with at the end when the external legs are matched to
physical particles!.

The third term in Eq.~40!, to order 4 in momentum, with
no ladder, is simply a wave function overlap given by t
usual Feynman rules@notice an extra (21) due to the fer-
mion loop#,

2E d4q

~2p!4 S i

A2q22B2D 4

Tr@D (1)~P1 ,q!~Aq/ 1B!

3D (1)~P4 ,q!~Aq/ 1B!D (1)~P3 ,q!~Aq/ 1B!

3D (1)~P2 ,q!~Aq/ 1B!#. ~41!

The Dirac traces can easily be computed withFORM. The
integral is then reduced by using tensor identities like

E F~q2!qmqnqrqs5
gmngrs1gmrgns1gmsgnr

24 E q4F~q2!

to a one-dimensional expression which can then be num
cally evaluated once a specific model~and hence Bethe
09401
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Salpeter wave functions! is chosen. Notice that this simpl
momentum routing is correct only to orderP4.

The first and second diagrams in Eq.~40! contain a ladder.
A simple way to calculate them is to write an integral equ
tion for the object

~42!

whose most general expansion up to second order in
external pion momenta is

tªt0~k2!P1•P21t1~k2!k•P1k•P21t2~k2!P1•P2k”

1t3~k2!k•P1k•P2k”1t4~k2!k•P2P”11t5~k2!k•P1P”2

1t6~k2!k•P2k”P”11t7~k2!k•P1k”P”21t8~k2!P”1P”2

1t9~k2!k”P”1P”2 . ~43!

The functionst i are obtained by projecting this linear inte
gral equation~analogous to the Bethe-Salpeter equation!

~44!

with the matrix projectorsI, k”k”P”1 , . . . ,k”P”1 P”2, which pro-

vides us with a linear system of eight integral equations
the t i . Defining a convenient quantityDª2k•P1k•P2
2k2P1•P2, the projections are

4D~P1•P2t01k•P1k•P2t1!

5Tr@~2D22k•P1k”P”21q2P”1P”2t,

4D~P1•P2t21k•P1k•P2t3!

5Tr@~22P1•P2k”12k•P2P”11k”P”1P”2!t#,

4P1•P2Dk•P2t45Tr@~2k•P2P1•P2k”22~k•P2!2P”1

1DP”22k•P2k”P”1P”2!t#,

4P1•P2Dk•P1t55Tr@~DP”122~k•P1!21k•P1k”P”1P”2!t#,

4P1•P2Dk•P2t65Tr@~P1•P2k”P”22k•P2P”1P”2!t#,

4P1•P2Dk•P1t75Tr@~22k•P1P1•P21P1•P2k”P”1

1k•P1k”P”1P”2!t#,

4P1•P2Dt85Tr@~k2P1•P22k•P2k”P”11k•P1k”P”2

2k2P”1P”2!t#,

4P1•P2Dt95Tr@~P1•P2k”2k•P2P”11k•P1P”2

2k”P”1P”2!t#, ~45!
4-6
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and the inhomogeneous part of the equation can easily
written down from the first right-hand diagram in Eq.~44!.
Once the equation fort is solved on a computer, the dia
gram can be closed from the left to give

~46!

and calculated as a simple integral. Here the color factor
in Eq. ~40! can easily be seen, since all three vertices
color singlets and carrydcc8 in color space.

C. Contribution with GÀ3D

We will reduce the 32D contribution fixing the indices
G4D1D2D3 ~the other permutations can be easily genera
at the end!. Employing Eq.~25! in

~47!

@in the first diagram fixj 53 to substitute Eq.~25!, in the
second diagram employj 51], we obtain
a

re
-

t t

09401
be

3
e

d

~48!

Next one can apply Eq.~22! to the singleG appearing in this
expression to generate, after some simple manipulations

~49!

From this expression, the two terms withcj are zero in the
chiral limit ~as appropriate to this paper!. Thecj ’s diverge for
low energies in the chiral limit: they contain the pseudosca
ladder pole. But in this diagram, the object to the right of t
ladder contains a product of twoD ’s, each of negative parity
the result carrying positive parity. By the symmetry breaki
pattern of the theory, no massless scalar, pseudovecto
tensor meson pole can make the ladder divergent at low
mentum. Therefore the terms withcj can be discarded an
we have to consider only~substitutinggA5(P” / i )g5, good in
the chiral limit!
~50!
ire

d

The
en-
ted
-

sion
Therefore our next problem is to evaluate diagrams such

53d3P1•P3P1•P213d4P2•P3P1•P2 , ~51!

which again explicitly displays the color factor and whe
the new constantsd3 andd4 have to be calculated in a spe
cific model.

To reduce the ladder in this diagram we could attemp
s

o

use the vector Ward identity for thegm on the left, but the
momenta flowing in the adjoining propagators would requ
this gm to be contracted with2P12P25P31P4 and not
just with P3. Or in the right part of the diagram we coul
reuse our result for the two-D (t) vertex from the previous
section. But again the momentum flow is not adequate.
solution to this impasse is to use both ideas, but in a mom
tum expansion. The ladder in this diagram can be substitu
by its momentum expansion~26!. Since there are three pow
ers of momentum already committed~one is the explicitP3,
the other two need to be one in eachD) only one more
power is needed. Therefore we can use the ladder expan
to order 1, and diagram~51! can be rewritten as
4-7
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~52!
ft
m

p

09401
Now we can use the vector Ward-Takahashi identity, wh
is satisfied toO(P(1)), on the first diagram and on the le
ladder of the second diagram, allowing us to substitute

P”3→ iS21~q!2 iS21~q2P3!.

The matrix object with a ladder and two deltas, toO(P(2)),
which appears on the second diagram, is justt as defined in
Eq. ~42!. Now it is straightforward to show that Eq.~51! is
equal to
~53!
s
s is
o

r
-

r

where the diagrams have to be evaluated to order (P(3))
since an explicit power ofP has already been used. The le
diagram in particular gives rise to four simple subdiagra
since two powers ofP are committed in theD ’s, but the other
power can be distributed alternatively between theseD ’s or
the two propagators which carry a power ofP.

These diagrams can all be evaluated easily as a sim
loop integral on the computer to obtaind3 ,d4. The contribu-
tion from Eq.~47! is finally

3

~A2 f p!4
@d3~P1•P3P1•P22P1•P2P2•P3!

1d4~P2•P3P1•P22P1•P3P2•P3!1permutations#.

~54!

D. Contribution with DGGG

The contribution

~55!

can be reduced as follows.~1! apply Eqs.~20! and~23! to the
D1 in the first term, and Eq.~12! to the G3 in the second
diagram to obtain an expression similar to Eq.~48! in which
G4 is isolated.~2! Employ Eq.~22! to eliminateG4. ~3! Re-
peat the operation to eliminateG2. We obtain
s

le

~56!

In this expression, two explicit powers ofP are present,
namely, P1 and P3 in the vertices. The other two power
have to be produced from a propagator expansion. Thi
the third ~and last! different diagram type that we need t
parametrize:

53d5P1•P3P1•P413d6P3•P4 P1•P4 . ~57!

Next we show how to calculated5 ,d6. Since there is a ladde
that contains powers ofP, we need to recall the ladder ex
pansion to second order in Eq.~26!. Eliminating the loose
rung with the help of Eq.~30!, and employing the vecto
Ward identity to generate a vertex

V~P!52q•P~A8~q!q/ 2B8~q!!1A~q!P” ,

we can show that
~58!
4-8
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The first and third diagrams are again straightforwa
traces and integrals. Only the middle diagram contains a
der. We can interpret this ladder as ‘‘dressing’’ either of t
vertices and immediately write an integral equation for o
of them. Taking, for example,

~59!

the function vertex~ so defined satisfies a linear inhomog
neous integral equation~the first argument is the momentu
entering the diagram through the vertex; the second is
relative and the third the total momentum between the
mion lines at the vertex!:

~S P1 ,k1
P11P4

2
,P11P4D

5$2kP1@A8~k!k”2B8~k!#1A~k!P”1%

3S~k1P11P4!(1)S~k!21

~60!

As is evident,~ admits an expansion up to second ord
in momentum identical to Eq.~43! in terms of a new set o
functions~0(k2), . . . ,~9(k2). The integral system of equa
tions ~60! is very similar to~44!, the only difference being
the inhomogeneous term. Therefore the linear projection
Eq. ~45! still apply, and both systems can be solved w
basically the same iterative computer code.

Finally, the middle diagram in Eq.~58! can be closed to
read

~61!

which is easy to evaluate with the help of a symbolic m
nipulation program. Finally, we give the expression for E
~55! in terms of thed’s:

3d5P1•P3~P1•P41P1•P2!13d6~P1•P2P2•P3

1P1•P4P3•P4!1permutations. ~62!

E. Contribution with DDGG

With two D corrections, there are two topologically di
tinct diagrams that can contribute. They are different beca
while reading around the fermion loop one can find the
ternal legs in the orderGGDD or in the orderGDGD.

We start with the first term, namely,
09401
d
d-

e

e
r-

r

in

-
.

se
-

~63!

~and the corresponding three more permutations!. Again, by
applying Eq.~23! to theD1 in the first diagram and Eq.~10!
to theG3 in the second, then using Eq.~13! to simplify the
remainingG4, neglecting the positive parity ladders whe
they are divided by acj containing the pion pole, reabsorb
ing the ladders and simplifying, one obtains

~64!

which can be written down immediately in terms of thed’s
defined in Eqs.~51!,~57! as

3@2d3P1•P3P1•P22d4P2•P3P1•P21d5P1•P2P1•P4

1d6P2•P4P1•P41permutations#. ~65!

F. DGDG

Two permutations contribute:D1G2D3G4 andG1D2G3D4.
The reduction is in all respects analogous to the previ
ones, yielding a contribution

23

~A2 f p!4
@d5~P1•P3P1•P41P1•P3P3•P41permutation!

1d6~P3•P4 P1•P41P1•P4 P3•P41permutation!#.

~66!

G. 4ÀG contribution

The last piece stems from the term with four powers ofG.
By repeated use of Eq.~22! it can be shown to contribute

23

~A2 f p!4
@d5~P1•P3P3•P41P1•P3P2•P3!

1d6~P1•P4 P3•P41P1•P2P2•P3!#. ~67!

@Here the cyclicity of Eq.~31! can be recovered by usin
( i Pi50.#
4-9



-

-

ra
ar
e

ll
t
n
y

in

rn

e

on

e
an-
tric

d

s

or
ar
e-

F. J. LLANES-ESTRADA AND P. de A. BICUDO PHYSICAL REVIEW D68, 094014 ~2003!
Combining the results from Secs. IV A–IV F and sum
ming all permutations~32! with the isospin factors~24!, ~35!,
the standard amplitudeA(s,t,u), takes a form identical to
Eq. ~4!, and we deduce

l 15
3

32
~22d11d226d312d415d51d6!,

l 252
3

16
~d222d312d41d52d6!. ~68!

Therefore, to obtain thel ’s numerically, one must~1! solve
the Schwinger-Dyson equations for the propagator, Eq.~7!;
~2! employ the functions obtainedA,B as input to the Bethe
Salpeter equations~16! and solve them; ~3! use the
F0 ,G0 , . . . obtained as input for Eqs.~44! and ~60! to ob-
tain t and~; ~4! perform the integrals~46!, ~53!, ~61!; and
~5! assemble Eqs.~40!, ~54!, ~62!, ~65!, ~66!, ~67!. In this
external momentum expansion all integrals and integ
equations are functions only of internal variables of qu
momentaq2,k2,k•q. The diagrams could alternatively b
evaluated on the lattice.

V. MODEL EVALUATIONS

We would like to provide simple model evaluations of a
these calculations, well aware of model limitations and tha
thorough phenomenological analysis can be carried out o
with more sophisticated interactions such as those emplo
in @7,12#. We employ two Feynman gauge models featur
the interaction

VK~q!V5gmK~q!gm. ~69!

This simple choice of a vector-vector interaction~as opposed
to the more popular Landau gauge transverse tensor ke!
simplifies the Gamma matrix traceology~in this calculation
carried out with the help of two independent computer cod
one written inMATHEMATICA and one inFORM @22#! so that
the standard Llewelyn-Smith BS wave function for the pi
@7# reduces to

x~P,k!5g5~E~P,k!1F~P,k!P”1G~P,k!k”k•P!

5g5S E0~k2!1
~kp!2

2
E2~k2!1F0~k2!P”

1G0~k2!k”k•P1••• D , ~70!
09401
l
k

a
ly
ed
g

el
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where the standardH function decouples from the rest of th
system and therefore is ignored, and the momentum exp
sion shown is complete up to second order for a symme
momentum routingx ~that is, the fermion lines out ofx
carry k1P/2 andk2P/2). The E0 term is determined by
chiral symmetry to beGA(P50,k)/A2i f p . The rest of the
expansion constructs the functionD(P,k). The same power
series~70! can be written down for the axial vertex

GA~P,q!5FA~q2P/2!S q/ 2
P”

2 D 2A~q1P/2!S q/ 1
P”

2 D
2@B~q2P/2!1B~q1P/2!#G g5

i
, ~71!

expanding in powers ofP, and up to a normalization we
recover the equivalent to Eq.~70!:

E0A52B~q2!,

F0A52A~q2!,

G0A522A8~q2!,

E2A52B9~q2!,

A. ~72!

Subtracting Eq.~72! from Eq. ~70! we obtain some new
functions ofq2 which provide the needed expansions forD:

D (1)~q1P1/2,P1!5D (1)~q,P1!

5F0~q2!P”11GO~q2!q•P1q” ,

D (2)~q1P1/2,P1!5E2~q2!
~q•P1!2

2
1F08~q2!P”1q.P1

1GO8~q2!q” ~q•P1!2 ~73!

~valid for symmetric momentum routing whenE1,F1,G1 all
vanish!. Further, with thegmgm kernel another trace-relate
simplification occurs in Eqs.~44! and~60!, and the functions
t6 , t7 , t8 , ~6 , ~7, and ~8 equal the inhomogeneou
term in their respective equations, the homogeneous~inte-
gral! parts of the equations being zero.

All that remains is to consider some specific form f
K(q2). We will look at two models whose Euclidean angul
integrals can be done analytically, leaving only on
dimensional integral equations to solve numerically.
V.
TABLE I. Results for the toy Gaussian model in the chiral limit. Dimensionful magnitudes are in Me

L g M(k250) 2^C̄C&1/3 f p l 1 l 2

500 6.3 385 222 76 20.02 0.066
600 6.3 462 267 91 20.02 0.060
500 6.5 468 237 83 20.018 0.062
800 5.5 125 213 51 20.019 0.080
4-10
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TABLE II. Results for the toy rational model in the chiral limit. Dimensionful magnitudes are in MeV

l L g M(k250) 2^C̄C&1/3 f p l 1 l 2

250 300 13.0 559 242 82 20.011 0.11
300 350 13.0 471 240 77 20.015 0.11
500 550 14.2 269 247 68 20.015 0.12
700 770 13.4 155 250 56 20.012 0.12
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The first is a simple Gaussian kernel~whose Euclidean
angular integrals are Bessel functions@23#!

K~q!5g2 exp~2q2/L2!, ~74!

whereg provides the coupling strength andL the scale of the
interaction~the results are sketched in Table I!.

The second is a rational kernel

K~q!5g2@1/~q22l2!21/~q22L2!#, ~75!

whereg, l, andL represent some quark model paramet
fitted to provide a good condensate and constituent qu
mass via the Schwinger-Dyson equation. The Euclidean
gular integrals are straightforward using relations such a

E
21

1 A12x2

a2x
5p~a2Aa221!,

E
21

1 xA12x2

a2x
5p~a221/22aAa221!.

Hence all integral equations are one dimensional in mom
tum space.

When the dimensionful parameters, of the order of
strong interaction scale, are close in value, and for la
enoughg, the potential is infrared enhanced, supporting c
ral symmetry breaking. Notice that the rainbow-ladder f
mion loop diagrams constructed with these interactions
finite due to the exponential or 1/q4 high-energy behavior
and no renormalization program is needed. This is associ
with a gluon propagator scale, which determines the scal
the Bethe-Salpeter wave functions, which in turn regulate

TABLE III. Phenomenological determinations of thel param-
eters~fits to scattering lengths or phase shifts in pion scattering!.

Authors l 1
r (mr)3103 l 2

r (mr)3103

Gasser and Leutwyler@4# 24.263.9 9.062.7
Bijnens, Colangelo, Talavera;

Colangelo, Gasser, Leutwyler@26# 22.260.6 9.062.7
Yndurain @28# 24.160.7 9.860.5

Gómez Nicola and Pela´ez @6# 23.360.7 4.860.6
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meson loops that would appear in chiral perturbation theo
We are currently investigating these issues.

VI. RESULTS AND DISCUSSION

We have worked out the pion-pion scattering amplitude
low energy in the chiral limit toO(P4) from a general mi-
croscopic quark Schwinger-Dyson approach. Upon comp
son with the chiral Lagrangian formalism, the main result
this paper is a pair of relations that would in principle allo
us to directly evaluate the coefficientsl 1 ,l 2 in any specific
model~i.e., after choosing the Lorentz structure of the qua
antiquark interaction and the strength and shape of any
tential or dressed gluon propagator! provided it supports the
standard mechanism of chiral symmetry breaking@17,18,24#.
The symmetry properties of theG pion vertex are mode
dependent and are of orderP4 ~therefore vanishing at low
energy!. Lorentz invariance restricts their form and allow
for only two coefficients.

On a first glance, the diagrams~40!, etc., seem as difficult
to calculate as the full pion-pion scattering amplitude, b
one needs to remember that eachD pion wave function en-
tering the calculation can be taken to have only one powe
the externalP to this order, since there are four of them a
they vanish by definition atP50, and the propagators ca
also be taken atP50, leaving just one momentumk around
the loop. This is a major simplification.

In the previous section we showed how the numeri
evaluation can be performed with two very simple~too
simple! kernels. Our results forl 1 and l 2 have phenomeno
logically correct signs and ratios, especially for the Gauss
toy model~see Tables I and II!. Possibly because our resul
are computed atP50 and without pion loops, ourl 1 and l 2
seem too large in absolute value. This can be appreci
@4,6,9,10,21,25–29,31# in Tables III, IV, and V, which sum-
marize the present status of knowledge of these coefficie

TABLE IV. Phenomenological determinations of thel param-
eters~based onr meson resonance saturation!.

Authors l 1
r (mr)3103 l 2

r (mr)3103

Gasser and Leutwyler@4# 28.4 8.4
Pham and Truong@27# 25.5 to 224 14

Eckeret al. @21# 26.163.9 5.362.7
Pennington and Portole´s 22.161.2 5.961.0
4-11
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The various conventions used in the literature@SU(3),
SU(2), renormalized, barred, etc.# have been unified to the
renormalizedl ’s at the scale of ther meson. Some of thos
determinations carry information relative to finite quark~and
therefore pion! masses, to kaons and etas, or to pion loo
none of which have been taken into account in this wo
The fairest comparison therefore is with the oldest results
Andrianov @10# in the largeNc limit ~no gluon corrections!
and those of Pham and Truong@27#. The latter authors obtain
the interesting relations

l 25
f p

2

mr
2

and

l 15
1

3

f p
2

ms
2

22l 2 .

If the s mass is sent to infinity, then the largeNc ratio is
recovered. For finites masses between 350 and 750 Me
we obtain the range given in Table IV. This demonstrates
importance of repeating the model evaluations with kern
whose meson excitations in various channels are known

Our approach is potentially superior to the resonance s
ration approximations since it includes the full vertex a
ladder structures, that is, effects of continua and higher re
nances. In particular, we include the four-pion direct inter
tion, and the exchange of the full series of excited vector
scalar mesons. We also stress that the masses of ourr ands
mesons are expected to be of the right order of magnitu
because our constituent quark mass has reasonable valu
the order of 300 to 400 MeV~see Tables I and II!. Our
approach is also potentially superior to Nambu–Jona-Las
determinations in allowing us to lift the approximation
contact interactions between quarks. Thus we pave the
to calculating thel i coefficients from the lattice or from ac
curate Schwinger-Dyson solutions. Finite current qu
masses and meson loops remain to be incorporated to
prove the precision of our calculation. We are currently co
sidering some of these issues@32#.
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APPENDIX: NORM AND f p

In this appendix we present the proof of the well-know
fact that the normalization of the Bethe-Salpeter wave fu
tion is the pion decay constant, rewritten in terms of o
Ward identity techniques. At null external pion momentu
xa(P50) andGA

a are proportional because Eq.~10! reduces
to the homogeneous BS equation~16!. We introduce an ar-
bitrary proportionality constantnp by means of

xa~P50!5
Ga

inp
; ~A1!

the i guaranteesx to be real because of the explicit form o
G in Eq. ~18!.

The normalizing condition for the Bethe-Salpeter soluti
is, following Llewelyn-Smith@30#,

~A2!

Because the right hand side of the normalization conditio
of first order inPm we can expand inx and inGA as in Eq.
~20!. There are two terms, depending on whether the der
tive is applied to the upper or lower propagator.

The first term can be written as

~A3!

The term withGG can be shown to be zero. To see it, o
needs to take a derivative of Eq.~7! that gives

~A4!

which applied to theGG term in Eq.~A3! and employing Eq.
~22! reduces it to
4-12
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Reabsorbing the remaining ladder, and employing the
propagator and bare axial vertex in Eqs.~5!,~9! this is pro-
portional ~because of the isospin factor not included! to

TrE S iP”S]mS21S2GA2P
S

gmg5

2i
SD . ~A6!

Eliminating G with its Ward identity ~13!, and after some
elementary operations, this equals

2 i TrE ~gn]mS2]nSgm!Pn50. ~A7!

Returning to Eq.~A3!, once the term withGG has been
shown to vanish, we need to evaluate the terms with ax and
a G.

Diagrammatically again, one has@recall Eqs.~22!, ~23!,
and ~A4!#

~A8!

We get two terms. The first is of orderP2 because of thec in
the denominator, and vanishes. The second is indeed
zero. Going back now to Eq.~A2!, we obtain

~A9!

The definition of the weak decay constantf p yields ~with no
pion loops!

~A10!

and therefore we must have
09401
e

n-

np5 f p ,

which immediately leads to Eq.~20!. Finally, direct calcula-
tion of Eq. ~A10! leads to

i f p
2 53E d4q

~2p!4

1

~A2q22B2!2

3H E0F4AB12q2S B
dA

d~q2!
2A

dB

d~q2!
D G

1F0~2q2A214B2!1q2G0~B22q2A2!J . ~A11!

Notice the explicit color factor of 3. All through the pape
the Bethe-Salpeter wave functions have been taken pro
tional to the identitydcc8 in color space. Had we normalize
them in a different way, saydcc8 /A3, this would immedi-
ately affect the formula above, reducing the factor toA3, the
rest being absorbed by the functionsE0, F0, andG0. The
low energy theorems~Gell-Mann–Oakes–Renner theorem
Weinberg’s amplitude, etc.! are unchanged by this choic
since the explicit form of these functions is never used
prove them: they are always eliminated in terms off p . But
the l 1 ,l 2 constants of the chiral Lagrangian would inde
have to be rewritten in terms of the modified Bethe-Salpe
wave functions. This, of course, would not affect its nume
cal value.

The normalizing condition~A2!,

~A12!

which yields Eq.~A10!, can also be directly evaluated with
out using Ward identities. By taking the derivative of th
equation with respect toPm ~and contracting overm as
usual!, we get the following~derivatives with respect toP act
only on the function immediately behind them and the co
factor is explicit!:

8i 53E d4q

~2p!4
Tr@2]mxp~P!]mS~q1P/2!xp~2P!S~q2P/2!

12xp~P!]m]mS~q1P/2!xp~2P!S~q2P/2!

12xp~P!]mS~q1P/2!]mxp~2P!S~q2P/2!

12xp~P!]mS~q1P/2!xp~2P!]mS~q2P/2!1#.

~A13!
4-13
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To calculate this normalization one needs to make the w
function explicit,

xp~P!5g5@E0~q2!1F0~q2!q/ 1G0~q2!q•pq/ 1•••#,

~A14!

which evaluated atP50 yields

xp~0!5g5E0~q2!, ]m
Pxp~P50!5g5~F0gm1G0q/ qm!,

and make use of the propagator expansion~27!, ~28!, ~29!
above. A simple check on the resulting expression is to s
stitutex by G, yielding

23E d4q

~2p!4 F22B~]rB!]rS 1

A2q22B2D
2B2]r]rS 1

A2q22B2D G50,

which vanishes upon employing Green’s first identity. Th
checks the zero in Eq.~A7! with a completely independen
calculation and is also approximately observed in our co
puter codes. The result fornp is

np
2 53i E d4q

~2p!4

1

A2q22B2
@~AB82BA8!

32q2B~ F̄01q2Ḡ0!2AB2~4F̄01q2Ḡ0!#,

~A15!

which, upon comparison with Eq.~A11! provides an integra
constraint between the Schwinger-Dyson and Bethe-Salp
solutions. The barred quantities have been defined in
~73!.

To conclude this discussion we recall the derivation of
Gell-Mann–Oakes–Renner~GMOR! relation in the Bethe-
Salpeter formalism. This has been presented in@13,14#, to-
gether with a discussion of the Weinberg theorem. At z
external pion momentum, the axial Ward identity reads
09401
e

b-

-

ter
q.

e

o

2imG5
a~k,k!5

sa

2
~g5S211S21g5! ~A16!

and, as previously discussed,

G5
a5

Bk

m

sa

2
g5 . ~A17!

To start the simple demonstration of the GMOR relatio
‘‘undress’’ the vertexG5

a to write

~A18!

and, neglecting the contribution of higher pion states~which
exactly decouple in the chiral limit, as in Ref.@24#!, we can
saturate the ladder using the pion pole, yielding

~A19!

Substituting now Eq.~A1! in the form

xa5
S21g51g5S21

inp

sa

2
~A20!

and comparing with Eq.~A17!, we immediately obtain

22m Tr S5np
2 Mp

2

corresponding to the GMOR relation upon identification
np5 f p , consistent with the Llewelyn-Smith normalizatio
condition.

We finally remind the reader of the explicit expression f
the BCS planar condensate:

^C̄uCu&5^C̄dCd&5Tr S5 i TrE Akk”1Bk

Akk
22Bk

21 i«

523E d4kE

~2p!4

4Bk

Ak
2k21Bk

2
. ~A21!
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