ARITHMETIC MOTIVIC POINCARE SERIES OF TORIC VARIETIES

H. COBO PABLOS AND P.D. GONZALEZ PEREZ

ABsTrRACT. The arithmetic motivic Poincaré series of a variety V' defined over a field of
characteristic zero, is an invariant of singularities which was introduced by Denef and Loeser
by analogy with the Serre-Oesterlé series in arithmetic geometry. They proved that this
motivic series has a rational form which specializes to the Serre-Oesterlé series when V is
defined over the integers. This invariant, which is known explicitly for a few classes of
singularities, remains quite mysterious. In this paper we study this motivic series when V is
an affine toric variety. We obtain a formula for the rational form of this series in terms of the
Newton polyhedra of the ideals of sums of combinations associated to the minimal system of
generators of the semigroup of the toric variety. In particular, we deduce explicitly a finite
set of candidate poles for this invariant.

INTRODUCTION

Let S denote an irreducible and reduced algebraic variety defined over a field k of characteristic
zero. The set H(S) of formal arcs of the form Spec k[[t]] — S can be given the structure of
scheme over k (not necessarily of finite type). If 0 € S we denote by H(S)o the subscheme of the
arc space consisting on arcs in H(S) with origin at 0. The set H,,(S) of m-jets of S, of the form
Spec k[t]/(t™T1) — S, has the structure of algebraic variety over k. By a theorem of Greenberg,
the image of the space of arcs H(S) by the natural morphism of schemes j,, : H(S) — H,,(5)
which maps any arc to its m-jet, is a constructible subset of H,,(.S).

It follows from this that j,,(H(S)) defines a class [j,(H(S))] in the Grothendieck ring of
varieties Ko(Varg) and also a class x.([Hm(5)]) € Ko(CHMoty) in the Grothendieck ring of
Chow motives, where y. : Ko(Vary) — Ko(CHMotyg) is the unique ring homomorphism, which
maps the class of a smooth projective variety to its Chow motive (see [12] [14]). We denote by
Kot (Varg) the image of Ko(Vary) by the homomorphism y.. We use the same symbol L to
denote the class [A}] € Ko(Vary) and the class x.([A}]) € K§°t(Vary).

Denef and Loeser have defined various notions of motivic Poincaré series, motivated by some
generating series in arithmetic geometry (see [8]). Assume for simplicity that the variety S is
defined over the integers. We denote by p a prime number and by Z, the p-adic integers. For
every positive integer m, the symbol N ,,(S) denotes the number of rational points of S over
Z/p™T'Z which can be lifted to rational points of S over Z, by the projection induced by the
natural map Z, — Z/p™ T Z. The Serre-Oesterlé series of S at the prime p is

PIT) = 3 Ny (S)T™ € Z|[T]

The definition of the geometric motivic Poincaré series,

Piow(T) = Y Xe(lim(H))T™ € K5 (Vary) ® Q[T]]

m>0

is inspired by that of the Serre-Oesterlé series. However, there is no specialization of the series
P o (T) into P¥(T) in general (see [3]).

geom
Denef and Loeser studied the “motivic nature” of the series Pps (T'), passing through the

Grothendieck ring Ko (Fieldy) of ring formulas over k. First, by Greenberg’s theorem for every
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2 H. COBO PABLOS AND P.D. GONZALEZ PEREZ

m there exists a formula 1, over k such that, for any field extension k C K, the m-jets over
k which can be lifted to arcs defined over K correspond to the tuples satisfying 1, in K. It
follows that 1, defines an element [,,] € Ko(Fieldy). Then, Denef and Loeser defined a ring
homomorphism x : Ko(Fieldy) — K{"°*(Vary) ® Q. This homomorphism can be seen as a
generalization of x., since the image by x s of the class of the ring formula defining a variety V'
coincides with the class x.([V]) in K§*°*(Vary) ® Q . The arithmetic motivic Poincaré series of
S is defined as
PIT) = > xs([$m])T™ € K (Vary) @ Q[T]].

m>0

Denef proved the rationality of the series P (T') using quantifier elimination results (see [4]).
Denef and Loeser proved the rationality of the series Py, (T') and P2 (T) by using quantifier
eliminations theorems, various forms of motivic integration and the existence of resolution of
singularities (see [6 [7]).

If V is a variety defined over the integers and p is a prime number, the symbol N, (V') denotes
the number of rational points of V' over the field of p elements. Denef and Loeser proved that
the result of applying the operator N, to the motivic arithmetic series P3(T) provides the
Serre-Oesterlé series Py (T) for almost all primes p.

If we fix the origin of the arcs in a fixed point 0 € S we obtain local versions of these series

(S ’0)(T) and Péf(;gl) (T'), which are also rational (see [6] [7]). The rationality proofs in [6] [7]
are qualitative in nature, in particular there is no conjecture on the significance of the terms

appearing in the denominator of the rational form of the series Pd(rs ’0)(T) or in ng(;ﬁf (7).

The rational form of the series d(rs ’0)(T) is known explicitly for a few classes of singularities.

If (S,0) is an analytically irreducible germ of plane curve, the information provided by the
series P ’0)(T) is equivalent to the data of the Puiseux pairs (see [7]). In [19] Nicaise proved
the equality of the geometric and arithmetic motivic Poincaré series in the case of varieties
which admits a very special resolution of singularities, in particular for normal toric surfaces
(see also [I8][I7]). He gave a criterion for the equality P (T) = g(f;;?,? (T) for various classes of

singularities and also an example of normal toric threefold (Sp, 0) such that the series pi0 (T)
and Péfé};? ) (T') are different. Some features of the motivic arithmetic series are studied for quasi-
ordinary singularities in [21].

In this paper we describe the arithmetic motivic Poincaré series of an affine toric variety
Z% = Speck[A], in terms of the semigroup A. We assume that A is a semigroup of finite
type of a rank d lattice M (lattice of characters), which generates M as a group, and such
that the cone R>¢A contains no lines. In this situation there is a unique minimal system of
generators eq, ..., e, of the semigroup A. The monomial ideal (X¢);=1 ., C k[A] is maximal
and defines the distinguished point 0 € Z*. In this paper we consider other monomial ideals as
the logarithmic jacobian ideals J;, generated by monomials of the form X* for u in the set

{ei, +--+e, ey, Ao ANey, #0}

for I =1,...,d (see [2]), and the ideals of sums of combinations C;, defined by monomials X"
with w in the set
1,...
{eil + oty |{i1,...,ij}€ <{ ’ j ’n})},
where ({1";’”}) denotes the set of combinations of j elements of {1,...,n}, for j =1,...,n.

We study the motivic arithmetic series p £.0) (T') by extending the approach we used in
[2, B] to describe the geometric motivic Poincaré series of toric and quasi-ordinary singularities.

By convenience we explain the methods and results first when the variety Z* is normal. The
set jm(H(Z™)o) of m-jets of arcs through (Z*,0) is constructible; it is a finite disjoint union
of locally closed subsets of the form j,,(H}) (see [2]). Here H denotes the set of arcs through
(Z%,0) which have generic point in the torus and a given order v € M*. The set H is an orbit
of the natural action of the arc space of the torus on the arc space of the toric variety Z* (see
[15 [16]).
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We describe the class, denoted by x r([jm (H;)]s), of the formula defining the locally closed
subset jp, (H}) in terms of the Newton polyhedra of the logarithmic jacobian ideals and the de-
gree of certain Galois cover. This Galois cover reflects the relation between the initial coefficients
of the arcs in H; and the initial coefficients of the m-jets in j,(H, ), see Section

A key point in the description of the rational form of the series P(ng £.0) (T) is that using the

ideals C; we can refine a finite partition of the set of possible pairs {(v,m)}, which was defined
A

in [2] to describe the sum of ngg)r,;o) (T). If (v,m) and (/,m’) belong to the same subset of this

refinement then the degrees of the Galois covers associated to j, (H;) and j,, (H ) coincide (see

A
Sections[Bland [7)). Using these partitions we decompose the series P (T') as a sum of a finite

A
number of contributions. The main result is a formula for the rational form of P{Z *) (T) (see
Theorem [[T.4l and Corollary 0.4]). The proofs pass by the results on the generating function of
the projection of the set of integral points in the interior of a rational polyhedral cone (see [2]).

The denominator of Pa(rZA’O) (T) is a finite product of terms of the form 1 — L*T® with a > 0 and
b > 0, which are determined explicitly in terms of the ideals of sums of combinations C;. The
integers a and b can be described in terms of the orders of vanishing of the ideals C; and J; at
the codimension one orbits of various toric modifications given by the Newton polyhedra of the
ideals C; (see Remark [I0.8). In the normal toric case we obtain a formula for PjA (T) in terms
of arithmetic motivic series at the distinguished points of the orbits.

In the non-normal case, we obtain in a similar way a formula for the rational form of

A
érZ 0 (T') and the factors of its denominator. The main difference is that we have to con-
sider contributions of jets of arcs with generic point in the various orbits of ZU'. We deduce a

formula for the difference Péezo?ﬁo) (T) - érZ .0 (T) and we give a criterion for the equality of
these two series which generalizes the one given by Nicaise in [I8] (see Proposition and
Theorem [I0.6]).

The paper is organized as follows. In Sections [I] and 2] we introduce the Grothendieck rings,
the arc and jet spaces and the motivic Poincaré series. The notations on toric varieties, their
monomial ideals and their arcs are introduced in Sections Bl and @ The computation of the
class x;([jm(H})]r) is given in Section Bl Sections 6 and [7] deal with the partitions associated
to sequences of monomial ideals. The main results are stated and proved in Sections B [ and
[0 In the case of normal toric varieties some features of the computation can be simplified (see
Section [TI]). We discuss some examples in Section

1. GROTHENDIECK RINGS OF VARIETIES AND OF RING FORMULAS

The Grothendieck ring Ko(Vary) of k-varieties is the free abelian group of isomorphism
classes [X] of k-varieties X modulo the relations [X] = [X'] + [X \ X'] if X’ is closed in X,
and where the product is defined by [X][X’] = [X x X’]. We denote by L := [A}] the class of
the affine line. If C' is a constructible subset of some variety X, i.e. a disjoint union of finitely
many locally closed subvarieties A; of X, then [C] € Ky(Vary) is well defined as [C] := ) [A;]
independently of the representation. Bittner proved, using the weak factorization theorem, that
the ring Ko(Vary) is generated by classes of smooth projective k-varieties, modulo relations of
the form [W] — [E] = [X] — [Y], where Y C X is a closed subvariety, and W is the blowing up
of X along Y with exceptional divisor E (see [1]).

There exists a unique ring homomorphism:

(1) Xe @ Ko(Varg) — Ko(CHMoty),

which maps the class of a smooth projective variety over k to its Chow motive, where Ko(CHMoty,)
denotes the Grothendieck ring of the category of Chow motives over k (with coefficients in Q).
This result, which is due to Guillet and Soulé [I2] and Guillén and Navarro Aznar [14], can be
seen also in terms of Bittner’s result. We refer to [12] 14} 1] for details and to [22] for an introduc-
tion to the notion of motives. We denote by K§*°*(Vary) the image of Ko(Vary) in Ko(CHMoty)
under this homomorphism. Notice that the image of L in K§*°*(Vary), which we denote with
the same symbol, is not a zero divisor in K§*°*(Vary) since it is a unit in Ko(CHMoty).
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A ring formula 1 over k is a first order formula in the language of k-algebras and free variables
X1,...,%n, that is, the formula ¢ is built from boolean combinations ("and", "or", "not") of
polynomial equations over k and existential and universal quantifiers. The Grothendieck ring
Ko(Fieldy) of ring formulas over k, is generated by symbols [¢)], where 1 is a ring formula over
k, subject to the relations [1)1 V o] = [t1] + [2] — [1h1 A ¢2] if b1 and 12 have the same free
variables, and [1)1] = [1)o] if there exists a ring formula ¥ over k such that, when interpreted in
any field K D k provides the graph of a bijection between the tuples of elements of K satisfying
11 and those satisfying 1. The ring multiplication is induced by the conjunction of formulas
in disjoint sets of variables (see [7]). Denef and Loeser defined a ring homomorphism

(2) Xf - Ko(Fieldk) — Kén‘“(Vark) ® Q.

They proved that this homomorphism is characterized by two conditions. The first one is that
for any ring formula 1 which is a conjunction of polynomial equations over k, the element
xr([¢]) is equal to the class x.([V]) in K§°*(Vary) ® Q of the variety V defined by 1. The
second condition, which is more technical, expresses that certain relations should hold in terms
of unramified Galois coverings over k. We refer to [7},[8] for the precise statement. In the simplest
case it implies the following:

Example 1.1. (see [8] Example 6.4.3) If n > 1 is a fixed integer, k is a field containing all
n-th roots of unity and ¢ is the ring formula v : (Jy)(z = y™ and = # 0) then we have that

xs([¢]) = 7 (L =1).
We deduce from this example the following Lemma:

Lemma 1.2. Let ¢ be the ring formula whose interpretation in any field K O k provides the
set of K -rational points of T which lift to K -rational points of T' by a Galois covering T' — T
of degree n of d-dimensional algebraic k-tori. If the field k contains all the n-th roots of unity
then we have that x;([¥]) = L(L — 1)%.

n

Proof. The morphism T” — T induces a finite index inclusion of the corresponding character
group M C M’, and hence a map of k—algebras k[M] — k[M’']. By the classification theorem
of finitely generated abelian groups applied to M’/M there exists a basis {v1,...,vq} of M’
and unique integers by |ba| - - - |bg, where | denotes division, such that {bjv1,...,bsvg} is a basis
of M and n = by ---bg. It follows that the map of coordinate rings K[M] — K[M’] express
in coordinates as K[zi",..., 23] < K[z, ..., 2F"]. We deduce that the ring formula ¢ is
the conjunction of formulas ; : (Jy;)(z; = yfi and z; # 0), for i = 1,...,d where the variables

x1,...,xq are independent. Then we get that xr([¢]) = ﬁ(L — 1)< O

Remark 1.3. Denef and Loeser defined the map x¢ by factoring it through the Grothendieck
ring Ko(PFF}) of ring formulas for the category of pseudo-finite fields containing k. See [7, 8 [5].

2. ARCS, JETS SPACES AND MOTIVIC POINCARE SERIES

We start this Section by recalling the definition of the space of arcs of a variety S. We assume
for simplicity that S is an affine irreducible and reduced algebraic variety defined over a field &
of characteristic zero.

For any integer m > 0 the functor from the category of k-algebras to the category of sets,
sending a k-algebra R to the set of R[t]/(t™"!)-rational points of S is representable by a k-
scheme H,,(S) of finite type over k, called the m-jet scheme of S. The natural maps induced
by truncation j7*! : H,,11(S) — H,,(S) are affine and hence the projective limit H(S) :=
@HW(S’) is a k-scheme, not necessarily of finite type, called the arc space of S.

In what follows we consider the schemes H,,(S) and H(S) with their reduced structure. We
have natural morphisms j,, : H(S) — Hp,(S). By an arc we mean a k-rational point of H(S),
i.e., a morphism Spec k[[t]] — S. By an m-jet we mean a k-rational point of H,,(5), i.e., a
morphism Spec k[t]/(#™*1) — S. The origin of the arc (resp. of the m-jet) is the image of the
closed point 0 of Spec k[[t]] (resp. of Spec k[t]/(t™1)).
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If Z C S is a closed subvariety then H(S)z := jo *(Z) (resp. Hp(S)z := (ji*)~*(Z)) denotes
the subscheme of H(S) (resp. of Hy,(S)) formed by arcs (resp. m-jets) in S with origin in Z.

By a Theorem of Greenberg [I3], for any integer m > 0, j,,, (H(S)) is a constructible subset
of the k-variety H,,(S). We can then consider the class [j, (H(S))] € Ko(Varg). Greenberg’s
result implies also that there is a ring formula v,, over k, such that for any field K containing k,
the k-rational points of H,,(S) which can be lifted to K-rational points of H(S) correspond to
the tuples satisfying v, in K. If ¢ is another ring formula over k with the same property then
[¥m] = [¢],] in Ko(Fieldy). The same applies for j,,(H(S)z) if Z C S is a closed subvariety.

Notation 2.1. We denote the class [¢,] by [jm(H(S))]s to avoid confusion with the class
[im(H(S))] € Ko(Varg).

The following Poincaré series were introduced by Denef and Loeser in the papers ([6, [7]).

Definition 2.2.

(1) The geometric motivic Poincaré series of (S, Z) is

P =Y Xellim (H(S)2))T™ € K (Vary,) ® Q[[T])-

m>0

(2) The arithmetic motivic Poincaré series of (S, Z) is

PEAT) = xi([im(H(8)2)])T™ € Kg*"(Vary) @ Q[[T]].

m>0

Remark 2.3. We have slightly modified the original definition of the geometric motivic Poincaré
series, as > < o[im(H(S)z2)|T™ € Ko(Vary)[[T]] (see [6]), in order to have the geometric and
arithmetic setting in the same ring. This does not affect the rationality results below.

Denef and Loeser proved that these series have a rational form:

Theorem 2.4. (see [6] Theorem 1.1 and [7] Theorem 9.2.1) The series Pg((i;fl) (T) and PEE;‘;’Z) (T)
belong to the subring of Ki*°'(Varg) @ Q|[T]] generated by K§**(Vary) ® Q[T] and the series
(1 —LeT*) "L, witha € Z and b > 0.

The arithmetic motivic Poincaré series has interesting properties of specialization to classical
arithmetic series. Let p be a prime number. The operators N, and NN, ,,, are applied to a variety
V defined over the integers by N,(V) := #V(Z/pZ) and Np (V) := #{7n(V(Z,))} where Z,,
denotes the p-adic integers, m,, (V(Z,)) C V(Z/p™'Z) is the image of V(Z,)) by the natural
projection induced by Z, — Z/p™T1Z, and # denotes the cardinality. Suppose that the variety
S is defined over the integers. The Serre-Oesterlé series Py (T) := Y < NpmT™ € Z[[T]] of
S at the prime p is a rational function of T (see [4]). Denef and Loeser proved that for p > 0
the series Py (T) is obtained from P2 (T) by applying to each coefficient the operator N, (see
7, 5, §)).

Remark 2.5. These results hold in a more general setting, in particular when S is not affine as
assumed here (see [6} [7]). The proof of the rationality of Py (T) involves the use of quantifier
elimination results and p-adic integration (see [4]). The proof of the rationality of PS5 (T') requires
also quantifier elimination results and arithmetic motivic integration (see [7, [8 [5]).

3. AFFINE TORIC VARIETIES AND MONOMIAL IDEALS

In this Section we introduce the basic notions and notations from toric geometry(see [9} 20,
10| [TT] for proofs).

If N = Z4 is a lattice we denote by Nr := N ® R (resp. Nq := N ® Q) the vector space
spanned by N over the field R (resp. over Q). In what follows a cone in Ng mean a rational
convez polyhedral cone: the set of non negative linear combinations of vectors a;j ...,a, € N.
The cone 7 is strictly convex if it contains no line through the origin, in that case we denote by 0
the 0-dimensional face of 7; the cone 7 is simplicial if the primitive vectors of the 1-dimensional
faces are linearly independent over R. We denote by 7 or by int(7) the relative interior of the
cone T.
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We denote by M the dual lattice. The dual cone 7V C Mg (resp. orthogonal cone 7+) of 7
is the set {w € Mg | {w,u) >0, (resp. (w,u) =0) Yu € 7}.

A fan ¥ is a family of strictly convex cones in Ng such that any face of such a cone is in the
family and the intersection of any two of them is a face of each. The relation § < 7 (resp. 6 < 1)
denotes that 6 is a face of 7 (resp. 6 # 7 is a face of 7). The support (resp. the k-skeleton) of
the fan ¥ is the set [X] := o5y 7 C Nr (resp. »*) = {7 € ¥ |dimT = k}). We say that a
fan Y/ is a subdivision of the fan ¥ if both fans have the same support and if every cone of ¥/ is
contained in a cone of 3. If 3; for ¢ = 1,...,n, are fans with the same support their intersection

NP X = {Niy7 |7 € 3;} is also a fan.

Notation 3.1. In this paper A is a sub-semigroup of finite type of a lattice M, which generates
M as a group and such that the cone 0¥ = R>A is strictly convex and of dimension d. We
denote by N the dual lattice of M and by ¢ C Ngr the dual cone of ¢¥. We denote by Z*
the affine toric variety Z» = Speck[A], where k[A] = {> q..icax X | ax € k} denotes the
semigroup algebra of the semigroup A with coefficients in the field k. The semigroup A has a
unique minimal set of generators ey, ..., e, (see the proof of Chapter V, Lemma 3.5, page 155
[9]). We have an embedding of Z* C AT given by, z; := X¢ fori=1,...,n.

If A =0V N M then the variety Z*, which we denote also by Z, x or by Z, when the lattice
is clear from the context, is normal. If A # o¥ N M the inclusion of semigroups A — A defines
a toric modification Z* — Z%, which is the normalization map.

The torus Ty := ZM is an open dense subset of Z*, which acts on Z* and the action extends
the action of the torus on itself by multiplication. The origin 0 of the affine toric variety Z*
is the O-dimensional orbit, defined by the maximal ideal (X*)ozrea of k[A]. There is a one to
one inclusion reversing correspondence between the faces of ¢ and the orbit closures of the torus
action on Z*. If < o, we denote by orb([,\ the orbit corresponding to the face 6 of o. The orbit
closures are of the form ZA0" for § < o.

The Newton polyhedron of a monomial ideal corresponding to a non empty set of lattice
vectors Z C A is defined as the convex hull of the Minkowski sum of sets Z+o". We denote this
polyhedron by N(Z). Notice that the vertices of N'(Z) are elements of Z. We denote by ordz the
support function of the polyhedron NV(Z), which is defined by ordz : 0 — R, v+ inf,,cnr(7) (v, w).
The face of the polyhedron N (Z) determined by v € o is the set F, := {w € N(Z) | (v,w) =
ordz(v)}. All faces of N'(Z) are of this form, the compact faces are defined by vectors v €5. The
set X(Z) consisting of the cones o(F) := {v € ¢ | (v,w) = ordz(v), Yw € F}, for F running

through the faces of N(Z), is a fan supported on o. Notice that if 7 € $(Z) and if v,/ €7 then
F, = F,. We denote this face of N'(Z) also by F;.
The affine varieties Z, corresponding to cones 7 in a fan 3 glue up to define a toric variety

Zy. A fan ¥ subdividing the cone o defines a toric modification 7y : Zyx — Z,.
If Z C A defines a monomial ideal the composite Zxz) el Z, — ZM is equal to the

normalized blowing up of Z* centered at Z (see [I7] for instance).

Definition 3.2. For 1 < j < n the j-th ideal of sums of combinations of Z" is the monomial
ideal C; of k[A] generated by X where a runs through:

(3) {eil—l—---—i-eij|{i1,...,z’j}€<{1"',"n}>},

J

where ({1"}’"}) denotes the set of combinations of j elements of {1,...,n}, for j = 1,...,n.

We denote by ©; (resp. by ordc;) the dual subdivision of o (resp. the support function) of the
polyhedron N'(C;). The maps

w1 = orde, and ¢; := orde, —orde,_, forj=2,...,n,

are piece-wise linear functions defined on the cone o. If v € o we denote by convenience
wo(v) := 0 and p,4+1(v) := +oo.
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Definition 3.3. For 1 <[ < d the [-th logarithmic jacobian ideal of ZM is the monomial ideal
J; of k[A] generated by X¢ where a runs through:

(4) {ei, +-4e, | ey N Neyy 0, for 1 <iq,...,5 <n}.

We denote by ¥; (resp. by ordy,) the dual subdivision of o (resp. the support function) of the
polyhedron N (7). The maps

¢1 = ordy and ¢ = ordy —ordy_ , forl=2,...,d,

are piece-wise linear functions defined on the cone o. If v € o we denote by convenience
¢o(v) :== 0 and ¢g41(v) = +o0.

We use the notation J; (resp. C;) also for the set (@) (resp. @B)).
Lemma 3.4. If v €6 and if (p1,--.,Dn) is a permutation of (1,...,n) such that
(vep) <o < (wrep,).
then orde; (v) = (v, Ei:l ep,) and p;(v) = (v, ep,;) for 1 < j < n. Moreover, the following holds
0=¢o(v) <pr(v) < - <n(v) and 0=¢o(v) < d1(v) <--- < ga(v).

Proof. The first assertion follows by induction on j € {1,...,n}.
See Lemma 5.3 [2] for the second sequence of inequalities. O

Proposition 3.5. The Newton polyhedra of the ideals C;, j = 1,...,n, determine and are
determined by the minimal system of generators of the semigroup A.

Proof. The Newton polyhedron NV (C;) determines and it is determined by its support function

orde;, for j =1,...,n. By Lemma[3.4land the definitions if 6 is a d dimensional cone of the fan
N;'—1©, there exists a permutation 4y, ...,4, of 1,...,n such that ¢;(v) = (v,e;;) for j = 1,...,n
and all v €. Thus, the functions ¢;, j = 1,...,n, , or equivalently, orde,, j = 1,...,n,
determine the vectors eq,...,e,. ]

4. ARCS AND JETS ON A TORIC SINGULARITY

Let A be a semigroup as in Notation Bl If R is a k-algebra, a R-rational point of Z% is
a homomorphism of semigroups (A,+) — (R, ), where (R, -) denotes the semigroup R for the
multiplication. In particular, the closed points are obtained for R = k. An arc h on the affine
toric variety Z* is given by a semigroup homomorphism (A, +) — (k[[t]],-). An arc in the torus
Ty is defined by a semigroup homomorphisms A — k[[t]]*, where k[[t]]* denotes the group of
units of the ring k[[t]].

Notation 4.1. We denote the set of arcs H(Z")y of Z* with origin at the distinguished point
0 of Z* simply by Hy, and by H} the set consisting of those arcs of Hy with generic point in
the torus Tl .

Notice that h € Hj if and only if for all u € A the formal power series X* o h € k[[t]] is
non-zero. Any arc h € Hj defines two group homomorphisms v, : M — Z and wy, : M —

E[[t]* by: X™ o h = t*»(™wy, (m). If m € A then vj,(m) > 0 hence v, belongs to & NN. Notice
that wy, defines an arc in the torus, i.e., wy, € H(Tw).

Remark 4.2. The space of arcs in the torus acts on the arc space of a toric variety (see |15} [16]).

Lemma 4.3. (see Theorem 4.1 of [15], Lemma 5.6 of [16], and Proposition 3.3 [I7]). The
map & NN x H(Tn) — Hj which applies a pair (v,w) to the arc h defined by X" o h =
tww(u), foru € A, is a one to one correspondence. The sets Hy , ={h€ H} | v, = v} for

v €0 NN are orbits for the action of Hry on Hy and we have that Hy = |_|V€gmN HY .

Remark 4.4. We often denote the set Hy (resp. the orbit Hy ) by H* (resp. by H;) if A is
clear from the context.
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An arc h € H) has its generic point 1 contained in exactly one orbit of the torus action
on ZA. If h(n) € orby, for some § < o, then h factors through the orbit closure ZAN0" and
h € Hy p.,ie., his an arc through (ZAN’L,O) with generic point in the torus orbfg\. We can
apply Lemma 3] to describe the set H} . , just replacing the semigroup A by AN 6+ (see [2]).
In particular, if § = 0 then h € H}; if 6 = o then AN @+ = 0 and h is the constant arc at the
distinguished point 0 € Z*. We have a partition Hx = | |y, H} .-

5. THE IMAGE OF THE CLASS OF THE FORMULA DEFINING js(H})

Definition 5.1. We associate to (v,s) € (3 NN) x Z~( the sets
M} = spang{e; | (v,e;) <s,i=1,...,n}, and £ :=spangle; | (v,e;) <s,i=1,...,n}.

We denote by (v, s) the dimension of the Q-vector space £5. The integer [(v, s) is also the rank
of the lattice MS. We denote by ¢(v, s) the index of the lattice extension M} C ¢5 N M.

Proposition 5.2. If (v, s) €0 xZo, l(v,s) > 0, and if the field k contains all the q(v, s)-th

roots of unity then we have
'5 H* D) — L _ 1 l(l/,s) L'Sl(l’vs)fordjl(ms) (V)
GUH))) = s (L= 1)) x

If l(v,s) = 0 then we have xr([js(H})] ) = 1.

1

Proof. It h € H} the equality ord;(X® o h) = (v, e;) holds for 1 < ¢ < n. By Definition
11 those vectors e; such that j,(X o h) # 0 span the Q-vector space £5 since (v,e;) < s. If
(v, s) = 0 this vector space is empty, the jet space js(H}) consists of the constant 0-jet and the
conclusion follows easily from the definitions.

Suppose then that [ :=I(v,s) > 0. If h € H} then it is given by n series of the form

X% oh= t<”’€i>c(ei)(1 + Z U (e)t™), i=1,...,n.

m>1

We have that the s-jet j5(X ¢ o h) is different from zero if and only if (v, e;) < s.

By Lemma 5.7 of [2] there exist integers 1 < kq, ...,k < n such that ¢;(v) = (v,ex,) < s, for
i=1,...,l, ¢; =spang{ex,, ..., ey} and ordy (v) = 2221@, €k, )-

By Section 6 of [2] if & is the universal family of arcs parametrizing H}, the terms {u., (e, ) |
i=1,...,1,m > 1} are algebraically independent over Q and the terms {c(e;)*' |i=1,...,n}
generate a k-algebra isomorphic to k[M] by the isomorphism which maps c¢(e;) — X .

By the proof of Theorem 7.1 [2] a formula defining j,(H}}) is the conjunction of two formulas
and 19 with independent sets of variables. The first formula 1) is a finite sequence of polynomial
equalities with rational coefficients expressing the terms w,(e;) appearing in js(X® o h), for
1 <r <s—{ve), in terms of the variables {u,(ex;) | 1 < <1, 1 <r < s— (v,e,)}. We
deduce that x/([¢1]) = Ls-01ds () The second formula comes from the effect on the initial
coefficients c(e;) for e; € €3, of the operation taking the s-jet of an arc. This operation is
described by taking the image by the map

U:T = SpeCk[C(€i>il]ei€gﬁ — T := SpeCk[c(ei)il](U,ei>§sv

of the point determined by h € H. The map ¥ is the unramified covering of I-dimensional
algebraic tori determined by the inclusion M C £ N M of index ¢(v, s) of rank I(v, s) lattices.
Thus the second formula is equivalent to 12 : (Jy € T7)(¥(y) = z, and = € T), hence by Lemma
L2 we get that x¢([v2]) = ﬁ(L — 1)L O

v,s)

6. SEQUENCES OF CONVEX PIECE-WISE LINEAR FUNCTIONS AND FANS

Let 0 C Ngr be a rational convex polyhedral cone of dimension d = dim Ng. Consider a
sequence of piece-wise linear continuous functions

hp:o—=R, for 1 <p<m,
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such that h,(c N N) C Z, and
(5) 0<hi(v) < - < hpv) Vveo.

By convenience we set ho(v) = 0 and hy,41(v) = +00. We denote by Eg the fan consisting on
the faces of o and by =, the coarser fan such that the restriction of h, to 7 is linear for any
cone n € 5, for 1 < p < m. In addition we assume that for any cone n € Z,_; the restriction
hyjy is upper convex, that is hy,(v) + hy(V') < hy(v +1/') for all v, 0" € 7.

Notation 6.1. For 0 < p < m and for n € NE_,Z, we set
n(h,p) :={(v,s) € N x R>g | v eonm, hp(v) < s < hpt1(v)}.

Lemma 6.2. The closure fj(h,p) of the set n(h,p) is a convex polyhedral cone which is rational
for the lattice N x Z.

Proof. If n € NP_,E, then the restriction hjj,:m — R is linear if j = p and upper convex

if j = p+ 1. It follows that 7j(h,p) is a convex polyhedral cone, rational for the lattice N x Z
since h, and h,41 take integral values on V. 0

Notation 6.3. For 0 < p < m and n € 5, we define the following sets:
(i) A(h,p) :={(v,s) € N X Z|v €, hy(v) <5 < hpp1 ()}
(ii) A(h,p,n):={(r,s) e N xZ|veon 7%, hp(v) < s < hpt1(v)}.
Remark 6.4. We have partitions

(0 NN) x Zzo=| | A(h,p) and  A(h,p)= || Alh.p,n).

p=0 neENL_Er
7. REFINEMENTS OF PARTITIONS

We apply the procedure of Section[f to both sequences ¢ = (¢1,...,¢q) and ¢ = (¢1,...,n)
(see Lemma [34).

Remark 7.1. Notice that the sequence of fans associated to ¢ (resp. @) is NS, i=0,...,d
(resp. Ni_O,, i =0,...,n), where for convenience we denote by X or by Og the fan consisting
of the faces of the cone o.

Lemma 7.2. If A(p,j,0) # 0 for some 1 < j <n and § € N _,0, (¢f. Notation[63) then the
restriction of the functions (3 NN) X Zso — Z>q given by
(v,8) = U(v,s), and (v,5)—q(v,s),
to the set A(yp, j,0) are constant functions. We denote their values on the set A(y, j,0) by 1(j,0)
and q(34,6) respectively.
Proof. By elementary properties of Minkowski sums every vector in the relative interior of
6, for 6 € N!_,©,, defines the same face F, g of the polyhedron N'(C,) for 1 < r < j. Suppose

[e]
that v,v' €0 and (p1,...,pn) and (p},...,p),) are two permutations of (1,...,n) such that the
inequalities

(6) (vep) < < (vyep,) and (V,ep) <o < (Ve ),
hold. We prove first that
(7) <V76p’1>§"'§<yuep;>'

By definition, for any 1 < r < j we have that orde, (v) = (v, u,) for any u, € F, 9. We get from
Lemma [3.4] that the vectors u, := ey, + -+ +¢€p, and u; 1= ey + -+ + ey belong to F; g for
1 <r < j. This implies (@).

If (v,5) € A(yp, j,0) then by Lemma [.4] we obtain that ¢;(v) = (v,ep,) < s < pjp1(v). We
deduce that if (v, s) and (¢, s') belong to A(yp, j,0) then

(8) {ei|1<i<n, (vie;) <sp={ei|1<i<n, (V,e;) <s'}={ep,...ep}.
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Since (B) spans the lattice M and the vector space £ we get that the sublattices £5NM and M3
are independent of the choice of (v,s) in A(y, j,0). This implies the constancy of the functions
I 'and q on A(gp, j,0). O

Remark 7.3. If 1 <1 < d and if 7 € NL._, ¥, we denoted in [2] the set A(¢,1) (resp. A(¢,l,7))
by A; (resp. by A;;). The map I(v,s) is also constant on the sets of the form A(¢,l,7) for
T €N_y%;, see Lemma 5.7 [2].

By Remark we have two partitions:

n d
9 (NN)xZso=|]| || Al and (6NN)xZso=|]| []| Aleln)

i=09eni_,0, 1=0neni_oi

associated to the sequences ¢ and ¢.

Proposition 7.4. If0(p,j) # 0 for some 1 < j <n andf € ﬁ£:1®T then there exists a unique
cone T € ﬁl(j’e)ET such that 0 C 7 and

r=1

(10) A(p,j,0) € A(¢,1(5,0), 7).

Proof. Given (v,s) and (v/,s') in A(g,j,0) C (6 NN) x Zsg, we deduce from (@) that there
exist cones 7 € NL_¥; and 7’ € ﬂﬁl:OZi for integers 0 < [,I’ < d such that (v,s) € A(¢,l,7)
and (/,s') € A(¢,I',7'). By Lemma 5.7 [2] we have that [ = I(v,s) and I’ = I(+/, '), and then
I =1"by ®). Notice then that [ = I(j,#) by definition in Lemma

Let (p1,...,pn) and (p},...,p,) be two permutations of (1,...,n) such that (6) holds. Then
we can apply the method given in Proposition 5.1 [2] to determine the value of ord 7, (v), 1 <14 <
(v, s). Moreover, it is enough to apply this on the set () instead of on {e1,...,e,}. We deduce
from (7) that v and v/ define the same face of N'(J;) for 1 < i < [(v,s). This is equivalent to
the equality 7 = 7. We have proven ([I0) and, as a consequence, the inclusion § C 7 holds. 0

Definition 7.5. (see Definition 8.1 and Remark 8.6 [2]). We consider the equivalence relation
~ defined on the set (6 NN) x Zsg by:

(vs)~(V,s) & s=5,0,=10, and vjg = Vs .
v

Lemma 7.6. The set A(yp, j,0) is union of equivalence classes by the relation ~ of Definition
734, for1<j<nandf € ﬂZ:1®T. Moreover we have that

ocr
(11) A, 1,7) [~ = | | Alg, 5,0)/~.

0eni_,0,,1(5,0)=l

Proof. By (@) and Proposition [Z4] it follows that A(¢,l,7) = Uzg:ﬂ:l@hl(j,@):l A(p,j,0). If
(v,s) belongs to A(p,j,0) and (v,s) ~ (V,s) then () holds. The vectors v and v define the
same face of N(C,) for 1 < r < j, and therefore v/ € intf. Since ¢; (V') < s < p;11(V) we
conclude that (v/,s) € A(g,j,0). O

A
8. THE STRUCTURE OF THE SERIES Pa(rZ 0) (T)

We consider the following auxiliary Poincaré series:

(12) Pu(A) =Y xp([Gs(HA)\ | ds(Hang)])T* € Kt (Vary,) ® Q[T]).
s>0 0#£60<o

Notice that the Poincaré series P, (A) measures the class of the formula defining the set of
jets of arcs with origin in 0 which are not jets of arcs factoring through proper orbit closures of
the toric variety Z2.

Proposition 8.1. We have that P;,FZA’O) (T) = Z P (AN6t).

<o
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A
It follows from Proposition [B.] that in order to describe the motivic series PESIAZ -0) (T) it is
enough to describe the form of the auxiliary series P,,;(A) for any semigroup A.

Remark 8.2. In the normal case the equality jm,(Ha) = jm(HJ) holds for all m > 0, see [18],
but this property fails in general.

We recall the following definition from [2].
Definition 8.3. (see [2] Definition 8.9) If 1 < < d the set D; is the subset of cones 7 € ﬂi:l P

such that the face F, of N(J;) is contained in the interior of 0. We denote by |D;| the set
Urep, T-

Proposition 8.4. Let us fiz an integer so > 1. The set js,(H3)\ Upzg<o Jso (Hanot) expresses
as a finite disjoint union of locally closed subsets, as follows:

n 0C|Dig,el
(13) o (HON U dsoHaro) =] || L] Jso(HR,)-
0#£0<o Jj=1 9601‘: O, [(V,So)]EA(f,j,@)/N

Proof. This partition follows from the partition given in Proposition 8.11 [2] by using Formula

(1) (see Remark [T3]). O

If sp > 1 the coefficient of T%° in the auxiliary series P(A) is obtained by applying the map
X to the class of the formula defining (I3]). Then we determine this class by using Proposition

We introduce the following auxiliary series for 6 € ﬁizl@rz

(14) VE U EED D DEE
521 [(v,5)] €A(,5,0)/~

We deduce the following Proposition from Proposition B4 and Formula (I4).
Proposition 8.5. We have that

(15) Z Z WPW»,G(A).

9. THE RATIONAL FORM OF SOME GENERATING SERIES

In this Section we fix an integer 1 < j < mn and a cone 0 € ﬂZ:1®T such that A(p, j,0) # 0.

For simplicity we denote by [ the integer I(j,60) defined in Lemma and by 7 the unique
element of the fan NL_,; 3, such that (I0) holds.
Since § C 7 C NL_; %, the restriction of ¢, to 6 is a linear function of the form

(r)jo(v) = (v,ei,), forr=1,...,1
where {i1,...,i;} C {1,...,n}.
Consider the lattice homomorphisms
p: NXZ— 7 (v,5) = ((veq), ..., (v, e,),s)
and
T = (7T1,7T2): Zl+l — Z2, (al, .. .,al+1) — (lal+1 —ay — - — al,alﬂ).
We set € = 7o p.
Remark 9.1. The homomorphisms 7, u and & were also considered in [2]. Since € is contained

in 7 we get that the kernels of p and £ intersect the cone € only at the origin. Similarly by
Formula (I0) the inclusion £(A(gp, 5,6)) C Z%, \ {(0,0)} holds. See [2] Section 9.

If j # n the lower boundary of the cone 6 is the set 9_0 := {(v,s) | v € 0, s = ¢;(V)}.
Notice that d_ is a cone since § € M/_,0; and then the function ¢; is linear on f. The
upper boundary is the set 0;0(p,7) == {(v,s) | v € 0, s = @jr1(v) # @;(V)}. Ifj=mn
then | = d and @,4+1(v) = 400 and the upper boundary is the union of cones spanned by
(0,1) € Nr x R and the proper faces of the cone 9_0(y,j). The edges of the cone 0(¢p, j) are
edges of 0_0(p,j) U d+0(p, 7).
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Notation 9.2. If p C 7 is a one-dimensional cone rational for the lattice N we denote by v,
the primitive integral vector on p, that is, the generator of the semigroup pN N.

Remark 9.3. The primitive integral vectors for the lattice N x Z on the edges of the cone 0 are
(Vp,0j(vp)) for p<O,dimp=1
together with

(Vp, pj41(vp)) for p € ©j11, pC O, dimp=1 and p;(v) # @jt1(v) i j#n
(0,1) if j=n.

Then notice that

(lpj(vp) —ordyg, (vp), 05 (V) it (v,8) = (vp,05(vp))
(16) §(v,s) = (lpj+1(vp) —ordg, (vp), pj+1(vp) i (v,8) = (Vp, pi+1(v)p))
(d, 1) if  (v,8)=(0,1).

Definition 9.4. Suppose that A(p, j,0) # (. We denote by By j¢(A) the finite set:

{(l%‘(’/p) - Orsz (Vp)v <Pj(”p)) | p < 0,dimp = 1}
{(lpjs1(vp) — ordg, (), i1 (1) | pe O p 8} if  j#n,

{(d,1)) = n.

Definition 9.5. If A C Z'™! is a set we denote by Fa(z) := Y, 4 2* the generating function
of A (see Section 12 of [2]) .

U

Proposition 9.6. We have the following equality:
(17) Ppje(d) = (L-1)00 N Lm@rm@ e Z[L)([T]).
a€p(A(p.j,0))

There ezists a polynomial Ry j o € Z[L,T] such that Py jo(A) has the rational form:

P, jo(A) = Ry s II «a-vrerhH)—
(a,b)eBg,j’e(A)

Proof. The map u defines a bijection

A(f)jv 9)/N —>:U(A(£a.]7 9))7 [(V,S)] H/L(Va S)'
(see Lemma 9.3 [2] and Lemma [T.6)). Then the equality (IT7) follows from the definitions.
We denote by 7, : k[[Z*1]] — k[[L, T]] the monomial transformation defined by 7. (z%) :=
L™ (@) 7m(@) for q € ZH!, Then we get that

Pyjo(A) = (L= 1)U (Fya, (@)

We apply the Theorem 12.4 of [2]. We obtain that the denominator of a rational form of
Flua,,, o) () consists of products of terms 1 — 2#®) for b running through the primitive integral
vectors in the edges of the closure of the cone 6(¢p, j). Then the result follows by Remark
and Definition O

10. MAIN RESULTS
We summarize the main results of the paper.

Definition 10.1.

(i) If 0 < n < o then Bu (A Nnt) is the finite subset of Z2, given by Definition when
we replace A by the semigroup A NnL. If n = o we set By (AN ot) := {(0,1)}. We
define the finite sets:

1<j<n
Bar(A) == U Byjo(A) and  Bua:= | Ba(Annh).

0€N]_10:,6C| D50 Osn<e
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(ii) We define the integer
(18) g(A) :=1lem{q(j.0) | 0 € 0] _,1©,, 0 C [Dyj)l,1 < j < n}.
If n < o then ¢(A Nnt) is the number obtained by replacing A by A Nn* in (I¥). We
set ¢(ANot) := 1. We define also the integer
ga = lem{g(A Noy*) | < o}
Theorem 10.2. Suppose that the field k contains all g(A)-th roots of unity. Then there exists
a polynomial Qar(A) € Z[L, T| such that

Pu(h) = —Qu(n) [ (1 -Lert)

1) (a.0)€ Bar ()
Proof. This follows from Propositions and O

Notation 10.3. If ) < ¢ then the polynomial Q..(A Nnt) is obtained from Theorem by
replacing A by the semigroup A Nn*. We set Q. (ANot) := 1.

Corollary 10.4. If the field k contains all qp-th roots of unity then there exists a polynomial
Qar.a € Z[L, T] such that such that

1
PEONT) = —Qua [ (-LT%)
an (a,b)€Bar,a

Moreover, we have the equality:

1
(19) PZONT) =Y — - Qu(AN ") I1 (1 —LoT?) 2,
— q(ANn*) N
n<o (a,b)€Bar (ANnL)
Proof. The result follows by Theorem and Proposition B} O

We can compare at this moment the series Péez(;,?l) (T') and pPEo (T) (see Definition 22]). In
[2] we introduced the series

(20) Pgeom(A) = Z Xc([]s(HX) \ U js(HAQOJ-)])TS € Kénm(vark) ® Q[[T]]7
>0 0#£0<0

and we proved that
PZOT) = Preom(AN6Y).

geom
0<o

Proposition 10.5. If the field k contains all g(A)-th roots of unity, then

n  0CIDig,0)]

1 _
Pur(A) = Preom(M) =>_ > (1- m) Ry.j6 II a-vr7H)—
=1 geni_ e, ’ (a.5)€B .0 (A)
Proof. This follows from Proposition [0.6] Formula (20), Theorem [[0.2] and the results in [2]
for Pyeom(A). O

Corollary 10.6. If for every integer 1 < | < d, and any vertex v of the Newton polyhedra
N(J) there exists a subset I, C {1,...,n} of I elements such that v =3_,_; e; and the vectors
A A
e;,1 € I,,, form part of a basis of M then the series pE0 (T) and Pg(czonio) (T) coincide .
Proof. This condition implies that ¢(v, s) = 1 for every (v, s) € (3 NN) x Z~q. By Proposition
we get that P(A) = Paeom(A). Now for any face n < o the vertices of the Newton
polyhedra of the logarithmic jacobian ideals of A N n' are also vertices of the logarithmic
jacobian ideals of A. The hypothesis implies that A N7+ spans the lattice M Nn* and then also
that P, (ANnt) = Pycom(AN nt). |

Remark 10.7. Corollary [[0.6]is a generalization of Nicaise condition in the case of normal toric
varieties (see Theorem 1 [I§]).
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Remark 10.8. The coordinates of the vectors in the set B, j o(A) can be described geometrically
in terms of the ideals C; and J, for | = 1(j,0). Let m; : Z; — Z* be the composite of the
normalization of Z* with the toric modification defined by the subdivision N/_,0, of o. The
modification 7; is the minimal toric modification which factors through the normalized blowing
up with center C,., forr =1,...,j. If pis an edge of f the orbit closure I, of the orbit associated
to p on Z; has codimension 1. We denote by v, the divisorial valuation defined by E,. It verifies
that v,(X™) = (v,, m), for m € M. The pull back 77(Z) of a monomial ideal Z of ZM is a sheaf
of monomial ideals on Z;. The ideals 7} (Cr), r=1,...,7 are locally principal on Z;. Then we
get the following identities:

wj(vp) = UP(W; (Cj))— ”p( $(Ci-1)), pi+1(vp) = vy(m *(CJ+1))_UP(7T;(CJ)) ordg, (v,) = Up( J (7).
Compare with the geometrical description of the set of candidate poles of Pg(coni )(T), see [2].

11. THE NORMAL CASE

In the normal case, when the semigroup A is saturated, i.e., A = 0¥ N M we describe the
motivic arithmetic series in a simpler way by using that j°(Ha) = js(H}) (see [I8]).

Notation 11.1.

(1) A = I_lldzl I_l-reﬂl ((ba la T)/
(ii) For sy > 0 we set ASO ={[(v,s)] € A| s=s0}.

Remark 11.2. The set A, is finite (see Remark 8.2 in [2]). By (@) and Lemma we deduce
tha‘t A I_lj 1 l_leemJ A(@?]u 9)/

Proposition 11.3. Let us fiz an integer so > 1. The set js,(H*) expresses as a finite
disjoint union of locally closed subsets as js,(H*) = U[(u,s)]eAso Jso (HY). We deduce that

Xf (s (H)5) = X,syea. X (s (H))]g)-

Proof. The first assertion follows by applying the method of Proposition 8.11 of [2]. The
second assertion is a consequence of the first and Proposition 0

Theorem 11.4. If Z" is normal then we have
(ZA 0) _ 1 _ raqby—1
P! Z > (JH)R,M II a-vu7)
i=1 geni_,o, (a,b)EBy j,0(A)
Proof. Tt is consequence of Proposition [1.3] Remark 1.2l and Proposition [0.61 O

Corollary 11.5. Suppose that the affine toric variety Z» is normal. If § < o we denote by
oy the image of the cone oV in (My)r, where My := M/0+ N M and by A(0) the saturated
semigroup A(0) := (o N My) x Zczoéiime. With this notation we have

A codim AO)
PI(T) =Y (L — 1)t pZm0(T).

0<o

Proof. The proof follows by the same arguments as in Corollary 4.11 [2]. O

12. EXAMPLES

12.1. The case of monomial curves. Let A C Z>( be a semigroup with minimal system
of generators e; < eg < --- < e, such that gcd{e1,...,e,} = 1. In this case we have that

o NN = Z-g. If g; :== ged{ey, ..., e;} then we obtain that:

1 L _ 1 1 Tel qz 1= ql L€¢—el Tei
21 pZ0) ) — )
( ) ar ( ) 1-T + 1-LT — Te ; qi—14; 1 —Lei—eiTei

This follows from the results of this paper taking the following observations into account:
e We have the equality js(H) = js(H*).
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o If v,V € Z-q verify that j,(H), js(H}) # {0} then the equality js(H}) = js(H})
implies that v = /.
o If v € Z- verifies that ve; < s < ve;41 then ¢(v, s) = g;.

Then, setting e441 := 0o, we get the following equality which implies 21I):

‘P(ZA 0)( iz Z 1)511571/81115.

Remark 12.1. The inequalities ¢ > g2 > -+ > g, = 1 are not always strict. For instance if
A is generated by e; = 8,e2 = 18,e3 = 20 and ey = 21 then we get qg1 = 8, ¢2 = ¢35 = 2,
qs = 1. Tt follows from (1)) that the term 1 — L'272° is not a factor of the denominator of the

A
series P(ng 0 (T). Notice that if A’ is the semigroup generated by ej, e2 and e4 then we obtain

from (21) that pr o) (T) = pr "0 (T') while the semigroups A and A’ are not isomorphic. In
contrast with this behavior, the motivic series P.{ ’O)(T) of a plane branch (C, 0) determines the
semigroup of the branch (C,0) (see [7]).

12.2. An example of non-normal toric surface. Consider the semigroup A generated by the
vectors e; = (5,0),e2 = (0,2),e3 = (0,3) and e4 = (6,2). The cone o is R2,, and the lattice M
is equal to Z2. We have the semigroups ANni = (5,0)Z~o, and ANny = (0,2)Zsq + (0,3)Z~o,
where 77; and 7, are the one-dimensional faces of o. By the case of monomial curves we get that:

_ _ 2 3
Par(AN 77%) L LlT -T a‘nd Par(A N1, ) (1LflfT) (ITT2 + 1E€T3 )

The subdivisions associated with the ideals C,, r = 1,...,4 are indicated in Figure[Il
P1 = P11 =
612 b5 b4 p1=(2,5)
p2 = (3 5) 933 P2 = (37 5)
0
22 Do
911 921 031
0, O N6, 01NN O3

FiGURE 1. The subdivisions ©1, ©; N Oy and ©1 N O, N O3

In the following table we give the different values of ¢(j, 6) and (4, 8), for 6 in the subdivisions
of Figure M and j such that A(y, j,0) # 0. We exclude from this table the cones in 6 € N;}_, O,
for j = 4 since in this case ¢(4,60) =1 and [(4,0) = 2.

j=114q(1,011)=2] ¢(1,612) =5
0,0) =1 | 1(1,61) = 1
J=21q(2,001) =1 q(2,02) =10 | ¢(2,63) =10 | ¢(2,p1) =10
0(2,001) =1 | 1(2,00) =2 | 1(2,03)=2 | I(2,p1)=2
J=314@3,051) =5 q(3,032) =5 | q(3,033) =5 | q(3,034) =2 | q(3,p1) =5 | q(3,p2) =5
1(3,051) =2 | 1(3,032) =5 | I(3,033) =2 | 1(3,034) =2 | I(3,p1) =2 | I(3,p2) =2
Notice that we have A(p,1,p1) = A(p,

2,p2) = Ay, 3) = (. In the following table we
have filled in the cases corresponding to the pairs (a,b) € Bar(A), (a,b) # (2,1) in terms of the

rays appearing in the subdivisions of Figure [k
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(a,b) € Bar(A) | vp, = (2,5) | Vp, = (3,5) | ¥py = (1,6) | vovrps = (1,0) | vovrye = (0,1)
(22 —ordyz,, 2) | (0,10) (5,15) (2,2)
(2()03 — Ordjza(p?)) (10715) (5a15) (19718) (555) (2a2)
(2<P4 - Ord]z ) </74) (24522) (31528) (19518) (756) (473)

It follows that Baya = Bar(A) U{(1,3),(0,2),(1,1),(0,1)}. We have computed the sum of

the series Pd(rZ 0 (T') with the methods of [2]. We have obtained an irredundant representation

of
B

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

the form PEEYZA’O) (T) = R(L,T) [ L(apen(l — LeT®)~! with R(L,T) € Q[L,T] and where

= Bara \ {(24,22), (31,28)}.
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