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Abstract

We define the vector of conditional coverage values generated over the business cycle by a constant capital figure. Using
a convenient analytical framework, we explore its properties and propose two applications based on it. For the former,
we state a result that links the concepts of conditional and unconditional solvency and offers an alternative interpretation
of the unconditional capital. For the latter, we propose using the minimum of the conditional coverage vector in the
determination of long-term capital requirements, as well as using its minimum and its standard deviation in the long-term
assessment of a given capital figure. Both applications are illustrated empirically. The entire analysis can be understood
as an attempt to recognize and incorporate capital cyclicality into the measurement and analysis of default risk.
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1. Introduction

A whole body of literature has emerged in recent years
regarding the potential cyclicality of banks’ capital re-
quirements, Drumond (2009). As discussed by Kashyap
and Stein (2004), capital cyclicality may produce adverse
effects on the economy and, consequently, it should be
properly measured and if possible, tempered. Basel III,
BCBS (2011) and BCBS (2013), has acknowledged this
fact by introducing regulatory changes from Basel II, BCBS
(2006).

Regarding default risk, the mechanism of capital cycli-
cality can be synthesized, informally, into two causal re-
lationships: (i) the worse the economic environment, the
higher the default risk borne by the credit portfolio, and
(ii) the higher the default risk, the higher the capital re-
quirement.

The first relationship has been widely corroborated,
Festic et al. (2011). As noted by Truck and Rachev (2005),
a change in the portfolio’s default risk is given by either a
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change in its exposure profile (e.g., debtors moving from
high-quality ratings to low-quality ones) or a change in the
probability of default (PD) of a given type of debtor. In
this paper, we focus exclusively on the latter. For this pur-
pose, we assume a given and fixed credit investment expo-
sition that is subject to a wide range of economic scenarios.
Such scenarios give rise to different PD distributions and
therefore different degrees of default risk.

The second relationship is the natural consequence of
having to satisfy a certain solvency condition in every point
of the business cycle. Thus, if capital is intended to cover
losses up to a certain coverage level that remains the same
over time, then if default risk increases, capital must in-
crease to guarantee that coverage. Correspondingly, if the
bank holds a constant amount of capital over time, then
what changes is its conditional coverage, which is the cov-
erage offered by the constant capital at a given stage of
the business cycle. This dual view of cyclicality is the one
we focus on throughout the paper.

Therefore, we study capital cyclicality in terms of the
conditional coverage achieved over time by a constant cap-
ital under a framework where only probabilities of default
vary from the hand of the economy.

This approach allows us to explore capital cyclicality
from a perspective different from that focused on cyclical
capital requirements caused by cyclical migrations, which
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is the case of interest in the regulatory framework1 and
therefore has received most of the attention and shaped
most of the discussion, as observed by Drumond (2009).

Moreover, when the focus is placed on the capital cycli-
cality caused by the PD, Koopman et al. (2005) and Rösch
and Scheule (2010), or when coverage cyclicality is studied,
Peura and Jokivuolle (2004), the main concern is the anal-
ysis of the previous causal relationships—i.e., the mecha-
nism underlying capital cyclicality. On the contrary, we
are not interested in capital cyclicality itself but in its po-
tential uses. Thus, the objective of this paper is not to
obtain evidence of capital cyclicality, Ayuso et al. (2004)
and Jokipii and Milne (2008); discuss its theoretical roots,
Heid (2007) and Zhu (2008); or study mitigation strategies,
Gordy and Howells (2006) and Repullo et al. (2010). In-
stead, we seek to enhance default risk management by tak-
ing advantage of its existence, especially as regards long-
term capital requirements. That is, we are interested in
determining and assessing long-term capital requirements
through an approach that takes into account the cyclical
nature of default risk.

Our analysis adds to the existing literature in two ways.
Theoretically, we introduce and discuss the vector of

conditional coverage values generated by a constant cap-
ital during the business cycle, on which the rest of the
paper relies. Under a specific framework, we state a new
result that links this vector with the corresponding uncon-
ditional coverage, showing that the average of the former
equals the latter. This relationship ties the concepts of
conditional and unconditional solvency and offers an al-
ternative interpretation of the unconditional capital.

Methodologically, we introduce and discuss two appli-
cations of the conditional coverage vector in the long-term
capital determination and assessment processes. For the
former, we propose a solvency condition based on the min-
imum conditional coverage. That is, the long-term capital
must be such that the all the components of the conditional
coverage vector are equal to, or greater than, a pre-defined
target. This is a novel approach to determining long-term
capital requirements as the solvency condition does not
rely on the unconditional loss distribution. For the capital
assessment process, we propose evaluating the long-term
solvency offered by a given capital not only in terms of its
unconditional coverage, which is the standard approach,
but also in terms of the minimum and the standard devia-
tion of the conditional coverage vector. This means adding
metrics of resilience and stability to the standard measure
of long-term solvency.

We complete the analysis with an empirical exercise
based on American data for six different types of credit
products. Results show that conditional coverage follows
cyclical and asymmetric behavior, that a significant down-

1Because the regulatory framework assumes a through-the-cycle
PD, which takes a long-term average instead of its point-in-time
value, cyclical movements in the regulatory capital are mainly driven
by cyclical rating migrations.

fall occurred during the Great Recession, and that both
the minimum and the standard deviation of the condi-
tional coverage vector are useful metrics for screening port-
folios in terms of long-term solvency.

The rest of the paper is set up as follows. Section
2 presents the analytical framework on which the rest of
the paper relies. Section 3 introduces the concept of con-
ditional coverage and the theoretical result based on it.
Section 4 and Section 5 present and discuss our alternative
methods of determining and assessing long-term capital re-
quirements, respectively. Section 6 contains the empirical
analysis and Section 7 provides a conclusion. Appendix
A presents the proof for the theoretical result stated in
Section 3.

2. Framework

2.1. Loss model

Time is measured discretely at regular intervals that,
for simplicity, match the time horizon used by the bank to
measure the default risk of its credit portfolio2. In prac-
tice, this time horizon is usually a year, but no specific
assumptions about it are done. We assume that the only
source of loss for the bank is its credit portfolio. With the
purpose of dealing with a stylized mathematical frame-
work, but without undermining the generality of the dis-
cussion, we consider a reduced, although standard, struc-
ture for the credit portfolio and its loss distribution, see
Gordy (2000) and Frey and McNeil (2003).

The portfolio is formed by N risk units, which are ho-
mogeneous groups of debtors whose exposure is assumed
constant and infinitely fine-grained, Gordy (2003), so there
is no need to characterize debtors individually3.

Thus, there is a vector e =
(
e1, ..., eN

)
, ej > 0, j =

1, ..., N , representing the net exposure of each risk unit.
In order to keep the notation clean, we do not add any
temporal subscript indicating the current period.

The loss experienced by the bank during the time hori-
zon is then a fraction of E =

∑N
j=1 e

j . For simplicity,
the traditional distinction between expected loss—to be
absorbed by provisions—and unexpected loss—to be ab-
sorbed by equity—vanishes, and the focus is placed on the
total volume of loss the bank is able to absorb with its own
resources, which we denote as capital.

Hence, the bank’s objective is to hold capital η, 0 ≤
η ≤

∑N
j=1 e

j , large enough to guarantee a pre-defined cov-
erage, or solvency, condition depending on e and the loss
distribution that it generates.

2However, our analysis can easily be extended to the multi-period
framework, Duffie et al. (2007).

3Although this assumption is analytically convenient, it does not
affect the conclusions at all, since idiosyncratic risk is not tied to the
business cycle.
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Given e, we assume that the portfolio loss distribution,
L, is given by:

L =
N∑
j=1

Lj =
N∑
j=1

ejF j (1)

where F j is the PD of risk unit j during the time horizon.
F j is a continuous random variable with support in (0 1),
with F =

(
F 1, ..., FN

)
being the continuous multivariate

PD random vector with support in (0 1)
N

.
Different F distributions result in different L distribu-

tions. Throughout the paper, we consider two alternatives.
On the one hand, the conditional PD distribution, Ft =(

F 1
t , ..., F

N
t

)
. Ft reflects the economic environment pre-

vailing in t and is identified on the basis of the vector
ht =

(
h1t , ..., h

N
t

)
of observed hazard rates of the portfolio,

where hjt is the realized default rate for risk unit j in pe-
riod t. It follows that Ft ∼ Ht, with Ht =

(
H1
t , ...,H

N
t

)
being the conditional distribution of ht in t given all avail-
able information up to t− 1. This means that identifying
Ft requires previously identifying a dynamic model for ht,
see Pesaran et al. (2006).

On the other hand, the unconditional PD distribution,
F ∗ =

(
F ∗1, ..., F ∗N). F ∗ is a PD distribution not subject

to any specific economic scenario. As an unconditional PD
model, we consider that proposed by Ferrer et al. (2014).
That is, F ∗ is defined as the equally weighted mixture,
or simply, mixture, of the conditional PD distributions
Ft =

(
F 1
t , ..., F

N
t

)
included in a time window large enough

to properly capture the long-term behavior of the portfo-
lio’s default risk. This time window should include both
recessions and expansions to avoid biases. We frequently
refer to it throughout the paper as the full-business-cycle
time window to emphasize this alleged feature. We denote
it by the stint t = 1, ..., T , so that it has length T . There-
fore, F ∗ is the mixture of the conditional distributions
Ft, t = 1, ..., T . This approach is significantly different
from the traditional static formulations, like the model of
Vasicek, Vasicek (2002), which underpins the regulatory
framework.

2.2. Determining long-term capital requirements

Determining η requires defining a solvency condition to
be met through a capital determination process. For the
former, we consider as baseline a common framework in
the literature for long-term capital requirements: η is the
Value at Risk (VaR) of the unconditional loss distribution
at the coverage level u, 0 < u < 1. That is, η is such that:

u = P (L ≤ η) (2)

for a given u and with L being the loss distribution of
Eq. 1 taking F ∗ as the PD distribution. From now on,
L represents an unconditional loss distribution and u an
unconditional coverage level4.

4η, however, only represents a long-term capital figure, which will
be unconditional if it has been derived from an unconditional loss

According to this basic framework, the process for de-
termining η follows the next steps:

1. Defining a target value for the unconditional cover-
age level, u.

2. Fitting a dynamic model to ht =
(
h1t , ..., h

N
t

)
.

3. Defining the full-business-cycle time window, t =
1, ..., T .

4. Identifying the collection of conditional PD distri-
butions Ft =

(
F 1
t , ..., F

N
t

)
, t = 1, ..., T , in terms of

ht =
(
h1t , ..., h

N
t

)
.

5. Forming F ∗ =
(
F ∗1, ..., F ∗N) as the mixture of the

conditional PD distributions Ft, t = 1, ..., T .

6. Characterizing L in terms of F ∗ and the vector e =(
e1, ..., eN

)
according to Eq. 1.

7. Obtaining the capital requirement as the value η sat-
isfying u = P (L ≤ η).

We will refer to this process as the standard long-term
capital determination process. There are two points worth
mentioning.

Regarding Step 1, u is chosen by the shareholders ac-
cording to their risk appetite: The higher the coverage
level, the higher the bank’s solvency, but also the lower
the bank’s efficiency. Therefore, a trade-off must be elu-
cidated. Although some theoretical frameworks of opti-
mizing behavior have been proposed, like those of Estrella
(2004) and Elizalde and Repullo (2007), in practice, share-
holders usually follow a simpler approach. As noted by
Carey (2002), they first choose a target rating from the
scale of a rating agency, and then define u according to
this target rating. For example, if shareholders want an
AA rating, and such a rating has a long-term (average over
time) PD of 0.001, then5 u = 99.9.

Regarding Step 6 and Step 7, the estimation of η, which
is the estimation of the u percentile of L, can be solved
either by analytical approximation, Glasserman (2004), or
by Monte Carlo simulation, Glasserman et al. (2008).

2.3. Assessing long-term capital requirements

Although the standard process described before states
a causal relationship—u determines η given L—these two
parameters, u and η, can also be seen as a pair just linked
by the condition u = P (L ≤ η). That means that two in-
terpretations are valid: The capital that achieves a given
unconditional coverage level, or the unconditional coverage
level achieved by a given capital figure. The former em-
anates from the capital determination process, while the
latter is related to the capital assessment process. More
generally, by capital assessment process we mean evalu-
ating a given capital η in terms of a particular solvency
condition. η can be the capital that the bank actually

distribution.
5Throughout the paper, coverage values are expressed in percent-

age points.

3



holds after introducing discretionary capital buffers, a hy-
pothetical capital estimate, or, in general, any capital fig-
ure whose long-term solvency is worth evaluating regard-
less of the logic followed to determine it.

From a long-term perspective, the standard approach
to the assessment of η is similar to that used for its deter-
mination. In fact, the process is the same as that described
in Section 2.2 except for Step 1, where defining u must be
replaced with defining η, because now u is an output and η
an input. Similarly, in Step 7 the condition u = P (L ≤ η)
must now be solved for u in terms of η, and not the other
way around.

The resulting u can be used by the bank for its internal
solvency and risk appetite analysis. It can also be reported
to supervisor authorities as part of the regulatory exami-
nation, and to investors and rating agencies as part of the
market discipline policies.

3. Conditional coverage

3.1. Conditional coverage vector

Given η, e =
(
e1, ..., eN

)
and the conditional distribu-

tion Ft, it is natural to define the concept of conditional
coverage ut as follows:

ut = P (Lt ≤ η) (3)

where Lt is the conditional loss distribution, given by Eq. 1,
taking Ft as the PD distribution.

ut represents the coverage that η offers at a given point
of the cycle, that is, at a given, and observed, economic
scenario. Therefore, ut is a measure of conditional solvency
in the same way u is a measure of unconditional solvency.
Since Lt is effectively faced by the bank at each period t,
while L is just a synthetic loss distribution, it could be said
that conditional solvency is a much more real concern.

ht and ut are expected to exhibit a close and opposite
movement driven by the economic cycle. Thus, as observed
by Jiménez and Menćıa (2009), the mass of Ljt is expected
to present a cyclical shift, moving to the right in recession
times and to the left in expansion times. Under a constant
capital η, this effect leads to higher values of ut during
expansions and lower ones during recessions, which is just
the opposite behavior of ht.

Obtaining the conditional coverage ut for each period
of the time window used to form F ∗ gives rise to the con-
ditional coverage vector u = (u1, ..., uT ). This vector is
the core of the paper and can be seen as the collection
of conditional coverage values that the bank would expe-
rience during a full-business-cycle time window if e and
η were kept constant. Therefore, in spite of containing
conditional information, u offers a long-term view of bank
solvency.

3.2. Relationship with the unconditional coverage

Under the model assumed for F ∗, u and u are linked
by a linear condition, as stated in Proposition A.

Proposition A.

Let L be the unconditional loss distribution given by

L =
N∑
j=1

Lj =
N∑
j=1

ejF ∗j (4)

with F ∗ =
(
F ∗1, ..., F ∗N) formed as the mixture of the con-

ditional PD distributions Ft =
(
F 1
t , ..., F

N
t

)
, t = 1, ..., T .

Given η, 0 < η <
∑N
j=1 e

j, it is satisfied that

u =
1

T

T∑
t=1

ut (5)

where u = P (L ≤ η) and ut = P (Lt ≤ η), being

Lt =

N∑
j=1

Ljt =

N∑
j=1

ejF jt (6)

Proof.
See Appendix A.

�

Proposition A states that the unconditional coverage is
the average of the conditional coverage values for any given
time window, capital, and exposure profile. This is a new
result whose relevance stems from the clear and simple
relationship it provides between unconditional and condi-
tional solvency. It also outlines the analytical tractability
of the model considered for F ∗, as opposed to the static
formulations.

There are two immediate implications of Proposition
A.

First, in practice, ut will be lower than u in some peri-
ods, especially during recession periods. This is, arguably,
what keeping a constant capital is all about: Obtaining
a lower coverage in recessions and a higher one in expan-
sions, with the average of these conditional coverage values
equal to the unconditional one, according to Proposition
A. In other words, η has to meet an unconditional restric-
tion, not a conditional one. However, if ut << u the mar-
ket may fear that the actual value of η is less than reported.
If this occurs, a confidence crisis regarding the solvency of
the bank may appear and trigger rating downgrades.

Second, Eq. 5 offers a different interpretation of the
unconditional condition to be met by η. Thus, instead
of understanding the unconditional capital as the capital
that guarantees a target coverage level u under the un-
conditional loss distribution, it can be seen as the capital
that guarantees that the average of the coverage values
obtained under a varied collection of conditional loss dis-
tributions, which represent different stages of the business
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cycle, equals u. Since the concept of conditional loss distri-
bution may be easier to understand than that of uncondi-
tional loss distribution6, especially by those not interested
in the more technical details, like the senior management,
this approach to the concept can be convenient for com-
munication purposes.

4. Using the conditional coverage vector in the
capital determination process

4.1. Proposal

The long-term capital determination process described
in Section 2 is based on the unconditional loss distribution
and the unconditional coverage level related to it. We pro-
pose an alternative process relying on the conditional loss
distributions included in the time window and the vector
u = (u1, ..., uT ) of conditional coverage levels related to
them. This means defining η in terms of some function
of u and not in terms of u. To this end, we propose us-
ing its minimum, which can be understood as a downturn
coverage level, udt = min {u1, ..., uT }.

Under this choice, the proposed capital determination
process follows the next steps:

1. Defining a target value for the downturn coverage
level, udt.

2. Fitting a dynamic model to ht =
(
h1t , ..., h

N
t

)
.

3. Defining the full-business-cycle time window, t =
1, ..., T .

4. Identifying the collection of conditional PD distri-
butions Ft =

(
F 1
t , ..., F

N
t

)
, t = 1, ..., T , in terms of

ht =
(
h1t , ..., h

N
t

)
.

5. Characterizing Lt, t = 1, ..., T , in terms of Ft and
the vector of total exposures e =

(
e1, ..., eN

)
.

6. Obtaining the capital requirement as the value η sat-
isfying udt = min

t
{P (Lt ≤ η)}.

4.2. Discussion

The most striking difference between our proposal and
the standard determination processes is that the step de-
voted to characterizing L disappears under the former, as
there is no need to use the unconditional loss distribution
at any stage of the process. In other words, the proposed
capital determination process attempts to provide a long-
term capital figure without relying on the unconditional
measurement.

This is a remarkable feature. By defining the solvency
condition in terms of u, which contains conditional in-
formation but reflects a full-business-cycle time window,
we have disjoined two concepts usually presented as one:

6As noted by Ferrer et al. (2014), the concept of unconditional PD
distribution, and therefore unconditional loss distribution, is tricky,
especially if ht is not stationary. The conditional PD distributions,
by contrast, can always be properly defined regardless of the station-
arity of ht.

Long-term capital and unconditional capital. The former
is now more general than the latter and can be understood,
informally, as a capital estimate derived from a solvency
condition that is not related to any economic scenario, and
therefore to any conditional loss distribution. On the con-
trary, it is derived from a general economic environment
observed during a full-business-cycle time window. Such
time window is, in fact, what the standard process, based
on the unconditional loss distribution, and the proposed
process, based on the T conditional loss distributions, have
in common, although they make use of it in a different way.

Three additional points can be made about the pro-
posed determination process.

First, it reduces the information contained in u to a
one-dimension variable, udt. This is due to the fact that
there is no univocal relationship between η and u. In other
words, for any arbitrary η, there is always a vector u, but
the inverse is not true. Thus, shareholders cannot, for ex-
ample, define a target value for both the minimum and
the maximum conditional coverage to be satisfied by the
same constant capital η. The alternative to this limitation
is, of course, to use a dynamic capital schedule oriented
to achieve a target conditional coverage at every point of
the cycle. Such target can depend on the prevailing eco-
nomic conditions, with a lower level in recessions than in
expansions, as suggested by Repullo (2013), or, on the con-
trary, be constant over time, which would exacerbate the
cyclicality problem.

Second, it produces a capital figure that is influenced,
as also happens with the standard determination process,
by the choice of time window. Thus, for example, if a sig-
nificant crisis is included or removed from the time win-
dow, the minimum of u changes and so does η. Conversely,
adding or removing a period related to a moderate reces-
sion will not change it at all if the recession periods already
included in the time window are more severe.

Finally, it also helps shareholders to better understand,
and hence better manage, the risk of suffering a confidence
crisis due to a downfall in conditional coverage. Thus,
the proposed determination process is specifically oriented
to achieve a coverage level equal to, or greater than, a
target value at every period of the full-business-cycle time
window, including recession periods.

This point could suggest that we are not obtaining a
long-term capital estimate but a stressed one, as in the
analysis of Varotto (2012). However, we do not character-
ize udt in terms of any specific economic scenario, either
observed, like the Great Recession, or hypothetically de-
fined, like those considered in stress test exercises. On the
contrary, udt is defined as the minimum of u, which means
that its economic interpretation depends on the choice of
full-business-cycle time window and the behavior of the
hazard rates series during it.

Implementing the proposed determination process re-
quires (i) defining a target value for udt, Step 1, and (ii)
solving η for the condition udt = min

t
{P (Lt ≤ η)}, Step

5



6.
Regarding Step 1, the rating method introduced in Sec-

tion 2 for the standard process can be adapted to be used
in the proposed process. Thus, instead of considering the
average of the rating hazard rate series during the time
window, shareholders should now resort to its maximum,
hR. Thus, the target value would be:

udt = 1− hR (7)

With respect to the calculation of η, Step 6, if ηt is the
conditional capital at level udt,

udt = P (Lt ≤ ηt) (8)

then it is clear that, under the proposed process, η is given
by

η = max {η1, ..., ηT } (9)

Under this definition η ≥ ηt, t = 1, ..., T , and therefore
ut ≥ udt, t = 1, ..., T , with these inequalities becoming
equalities in one period at least.

This result suggests an increase in the complexity of
the determination process, since the percentile estimation,
solved either by Monte Carlo simulation or analytical ap-
proximation, must be repeated for each conditional loss
distribution instead of being conducted only for the un-
conditional loss distribution. There are, however, some
extenuating conditions.

On the one hand, in practice, only a small number of
conditional loss distributions will be sufficiently shifted to
the right to generate the minimum conditional coverage
of the time window. So if the hazard rate series present
a clear and common cyclical pattern, the conditional loss
distributions related to the growth part of the business
cycle can be discarded in advance. This kind of filter can
save a large part of the total computational cost.

On the other hand, the target values for udt are ex-
pected to be lower than those for u because the criterion
to be met by η is more stringent under the former—a min-
imum coverage must now be achieved at each period of
the time window. This fact allows for a lower number of
Monte Carlo simulations or better accuracy of the analyt-
ical approximation because η is a less extreme percentile.

5. Using the conditional coverage vector in the
capital assessment process

5.1. Proposal

Similar to the capital determination process, different
long-term interpretations of the solvency that is offered
by a given η can be obtained in the capital assessment
process. The word “interpretation” outlines the fact that
η is evaluated under different solvency conditions related
to different views about the concept of long-term solvency.

Before presenting our proposed assessment, it is worth
noting that the fact that η can be interpreted in various

ways could suggest that the capital determination pro-
cess is unimportant: Both the unconditional and down-
turn processes can lead to any given η, 0 < η < E, with
a clever choice of u or udt. Therefore, the only relevant
feature of η would be that it is constant.

On the contrary, the logic that supports η matters: As
happens in any other field, decision-making in risk man-
agement is influenced by the framework that is assumed.
Thus, the solvency condition to be met by η shapes the
shareholders’ final decision about how much capital to
hold. Moreover, in purity, first the bank sets the target
coverage level according to some rationale and then ob-
tains the capital that satisfies it, rather than the other
way around. In other words, the capital determination
process is intended to provide a capital estimate, not to
justify the existing capital by defining a convenient target
value for either u or udt.

Thus, any given capital η generates an unconditional
coverage, u, derived from the unconditional loss distribu-
tion, L, and also a minimum conditional coverage, udt,
that is derived from the collection of conditional loss dis-
tributions Lt, t = 1, ..., T . The long-term assessment of
η could then be given by the pair formed by u and udt.
However, the vector u comprises more relevant informa-
tion than just its average and its minimum. More specifi-
cally, since ut is expected to vary cyclically over the time
window, a measure of the variability of u can be useful for
evaluating the stability of the conditional solvency offered
by η. We consider the standard deviation of u, su, for this
purpose.

Therefore, we propose assessing the long-term solvency
of a given capital η by means of three indicators: u, udt,
and su. This means adding metrics of resilience, udt, and
stability, su, to the standard measure of long-term sol-
vency, u.

5.2. Discussion

Three points can be drawn about the use of su for
measuring conditional solvency stability.

First, although derived from conditional information,
it is a long-term indicator, since it reflects a full-business-
cycle time window. In general, a lower value of su is prefer-
able to a higher one because it reduces the probability of
suffering a conditional coverage downfall.

Second, it is appropriate for comparing different port-
folios or time windows if their corresponding capital figures
all achieve the same unconditional coverage, u, since the
mean of u is then the same. On the other hand, using su

in the capital determination process would be impracti-
cal because there is nothing to guarantee that, for a given
value of su, there is a η, or that, if it does exist, that it is
unique.

Third, su is related to udt, since lower values of the
latter are expected to cause higher values of the former.
However, it captures a different feature of η—stability in-
stead of resilience—and, therefore, both are informative in
their own.
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The triplet formed by u, udt, and su enhances the stan-
dard long-term capital assessment, which is focused exclu-
sively on u. The bank could use this triplet for its own sol-
vency analysis—e.g., setting its risk appetite statement—
or report it to the senior management, regulators, super-
visors, investors, rating agencies or any other stakeholder
in the same way as with u.

It is worth mentioning that, although stress test exer-
cises are also oriented to the assessment of solvency from a
conditional perspective, Sorge and Virolainen (2006) and
Foglia (2009), our approach differ from them significantly.
Thus, stress testing usually considers hypothetical, rather
than observed, scenarios. Stress testing also focuses on
short-term solvency and not its long-term equivalent. Fur-
ther, it measures capital sensitivity under a fixed coverage
target and not coverage sensitivity under a fixed amount
of capital.

6. Empirical analysis

6.1. Data, dynamic models and credit portfolios

We use the same set of hazard rate series, dynamic
models and portfolios than those employed by Ferrer et al.
(2014).

In the case of the hazard rate series, that means us-
ing as a proxy of hazard rate series the quarterly series
of charge-off provided by the FDIC7 for “Mortgages” (1-4
Family Residential Real Estate Loans), “Business” (Com-
mercial & Industrial Loans to U.S. Addressees), “Credit
Cards” (Credit Cards), “Individuals” (Other Loans to In-
dividuals), “Rest” (All Other Loans) and “Lease” (Lease
Financing Receivables) between 1991Q1-2010Q4. We con-
sider the stint 1991Q1-2010Q4 as the full-business-cycle
time window.

Table 1 summarizes their main statistics and Figure 1
shows the six series together. They are non-stationary and
exhibit a cyclical pattern with some degree of heterogene-
ity.

The dynamic model for each hazard rate series is ARIMA
with a probit link function. That is, an univariate ARIMA
model with normal innovations is fitted to each series xjt =

N−1
(
hjt

)
. This formulation generates conditional distri-

butions of the form F jt = Hj
t = N

(
Xj
t

)
, with Xj

t being

the conditional distribution of xjt given all the available in-
formation up to t− 1. Table 2 summarizes the univariate
ARIMA models.

Each hazard rate series represents a stand-alone port-
folio that is formed by a single risk unit, so that there
are six portfolios. For simplicity, we assume that the to-
tal exposure of each portfolio satisfies e = 1. Therefore,
L = eF = F has support in (0 1). For the unconditional

7Federal Deposit Insurance Corporation, see
http://www.fdic.gov/ .
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Figure 1: Hazard rates series. Shaded areas indicate
U.S. recessions according to NBER (National Bureau of
Economic Research).

coverage target, we use 99.9, which is the Basel coverage,
as well as 99 for comparison purposes.

Based on these series, models, and portfolios, we study
the behavior of u, udt, and su.

6.2. Results

Table 3 presents the unconditional capital figures for
the coverage levels u = 99 and u = 99.9. The greater val-
ues correspond to the Credit Cards unit and, as expected,
they increase significantly when passing from the former
coverage level to the latter.

Portfolio u = 99 u = 99.9

Mortgages 0.0070 0.0088
Business 0.0089 0.0103
Credit Cards 0.0299 0.0329
Individuals 0.0099 0.0108
Rest 0.0085 0.0115
Lease 0.0050 0.0064

Table 3: Unconditional capital for the 99, u = 99, and
the 99.9, u = 99.9, coverage levels.

For each portfolio, Figure 2 shows the conditional cov-
erage series generated by the unconditional capital η at
both coverage levels. Similarly, Figure 3 compares, stan-
dardized, the hazard rate series and the conditional cover-
age series generated by the unconditional 99.9 capital.

These figures reveal three results.
First, ut follows, as expected, a cyclical pattern with

higher conditional coverage values in periods of economic
growth and lower ones in recessions. This result supports
the use of u for capturing cyclicality. It is also consistent
with the evidence presented by Koopman et al. (2005) and
Rösch and Scheule (2010) for a cyclical capital under a
constant coverage level.

Second, such cyclical evolution is asymmetric, with ut
being very close to 1 in almost every period of the time
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Series Mean Std. Dev. Min Median Max JB test ADF test

Mortgages 0.0010 0.0015 0.0002 0.0004 0.0062 0.0010 0.9667
Business 0.0030 0.0018 0.0012 0.0023 0.0078 0.0133 0.3653
Credit cards 0.0148 0.0044 0.0086 0.0138 0.0282 0.0010 0.8222
Individuals 0.0044 0.0016 0.0021 0.0039 0.0093 0.0016 0.7740
Rest 0.0017 0.0014 0.0004 0.0013 0.0077 0.0010 0.1569
Lease 0.0017 0.0009 0.0005 0.0014 0.0043 0.0075 0.2294

Table 1: Main statistics for the hazard rate series. The p-value is presented for the Jarque-Bera test (JB test) and the
Augmented Dickey-Fuller test (ADF test).

Risk Unit
ρ1 ρ2 θ1 θ2

σ̂a LBQ(16) AIC SBC
ρ̂1 σ̂ρ̂1 ρ̂2 σ̂ρ̂2 θ̂1 σ̂

θ̂1
θ̂2 σ̂

θ̂2

Mortgages - - 0.2120 0.1070 - - - - 0.0670 0.0913 -2.44 -2.38
Business 0.7602 0.1137 - - 0.4882 0.1456 - - 0.0435 0.4473 -3.25 -3.16
Credit Cards - - - - - - - - 0.0359 0.1160 -3.72 -3.69
Individuals 0.6230 0.1443 - - 0.5208 0.2090 -0.2886 0.1183 0.0208 0.1218 -4.69 -4.57
Rest - - - - - - - - 0.0869 0.9121 -1.98 -1.95
Lease - - - - - - - - 0.0712 0.8821 -2.37 -2.34

Table 2: Univariate ARIMA models fitted to xdt , x
d
t = xt − xt−1, being xdt = ρ1x

d
t−1 + ρ2x

d
t−2 − θ1at−1 − θ2at−2 + at

and V [at] = (σa)
2
. β̂, estimated parameter. σ̂β̂ , estimated standard deviation of β̂. LBQ(16), Ljung–Box Q test p-value

with 16 lags. AIC, Akaike Information Criteria. SBC, Schwarz Information Criteria.

window except during the Great Recession, when ut << u.
This result emphasizes the severity of the Great Recession
with respect to previous crises, this time in terms of con-
ditional coverage values. Therefore, it can be considered
an “acid test” for the conditional solvency that is offered
by a given capital η.

It is worth noting, however, that the precise period of
the Great Recession where the minimum conditional cover-
age is achieved differs across portfolios. This mild hetero-
geneity can be considered a signal of diversification if such
portfolios are interpreted as risk units of the same aggre-
gated portfolio. Thus, this result suggests that the stand-

alone conditional coverage vectors, uj =
(
ujt , ..., u

j
t

)
, where

ujt = P
(
Ljt ≤ ηj

)
, with ηj satisfying u = P

(
Lj ≤ ηj

)
,

can help to identify diversification opportunities within the
aggregated portfolio.

Third, during the Great Recession the 99.9 uncondi-
tional capital presents a moderate decrease in conditional
coverage, while the 99 generates a sharper decline. On the
contrary, during the rest of the time window, both series
are very close. This effect shows that, in expansions, high
conditional coverage values can be achieved with moderate
unconditional coverage. However, in recessions, holding
an amount of capital with a high unconditional coverage
makes a real difference. In other words, since u is the av-
erage of u, any variation in the former means a variation
in the average of the latter. The results obtained indicate
that, for high values of u, such variation is likely to be
achieved through a reduced group of elements—those re-
lated to severe recessions—and not through a harmonized
variation in every element of u.

Table 4 clarifies the differences in resilience during the

Great Recession by showing the value of udt for each port-
folio and unconditional coverage value.

Portfolio η99 η99.9

Mortgages 69.68 95.96
Business 65.96 95.09
Credit Cards 76.96 97.21
Individuals 51.15 94.26
Rest 65.69 95.57
Lease 77.55 97.17

Table 4: Downturn coverage generated by the capital fig-
ures of Table 3, η99 and η99.9, which have been obtained for
the 99 and 99.9 unconditional coverage levels, respectively.

A marked decrease in coverage can be observed, espe-
cially if the results are read in terms of α = 1 − u and
αdt = 1 − udt, which can be interpreted as the uncondi-
tional and conditional PD of the bank. Thus, for example,
for the Business portfolio αdt is approximately 34 times
higher than α for u = 99, and 49 times for u = 99.9.
Therefore, banks may experience sharp downfalls in con-
ditional coverage even if they present a sound long-term
solvency, which is a threat worth considering.

Table 4 also suggests that achieving a value of udt sim-
ilar to those considered for u, 99 and 99.9, would require
a significant increase in η. Table 5, which presents those
increases, confirms this hypothesis.

Given a target for udt, Table 5 shows that there is not
a clear relationship between the initial value presented by
udt and the required increase in η that achieves such target.
In general, the increase will depend on the shape of L, or,
given its condition of mixture, the conditional loss distri-
butions that form it. For instance, if all Lt, t = 1, ..., T , are
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Figure 2: Conditional coverage series generated by the
unconditional capital estimates for the 99 and 99.9 cover-
age levels. Shaded areas indicate U.S. recessions according
to NBER (National Bureau of Economic Research).

identically distributed—that is, there is no cyclical behav-
ior at all—then L would be also distributed as Lt. There-
fore, udt = u and no increase in η is needed regardless of
the value of u.

Also, for example, if the time window is formed by two
time periods with L1 being uniform in (0 1) and L2 uni-
form (2 4), then, at u = 90, η = 3.7 and the corresponding
minimum conditional coverage is udt = 85. It would be
necessary to consider η = 3.8 to get udt = 90; that is, an
increase of 2.70% in η. However, if L1 is uniform (0 2)
and L2 uniform (3 4), then, at u = 90, η = 3.7 too, but
udt = 70 and the required capital to get udt = 90 would
be η = 3.9, which means an increase of 5.41% instead of
2.70%.

Obviously, capital figures high enough so as to guaran-
tee values of udt equal to 99 or 99.9 would generate huge
coverage values when interpreted in terms of the uncondi-
tional loss distribution, as can be seen in Table 6.

To put this data into perspective, it is worth conduct-
ing the next back-of-the-envelope calculation. According
to S&P (2012), the maximum annual hazard rate observed
between 1991 and 2010 in the Standard & Poor’s AA rat-
ing for corporate debtors is 0.0038 (achieved in 2008). As-
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Figure 3: Hazard rate, ht, and conditional coverage, ut,
series generated by the unconditional 99.9 capital estimate.
Both series are presented standardized. Shaded areas indi-
cate U.S. recessions according to NBER (National Bureau
of Economic Research).

suming proportional hazards8, this is equivalent to 0.0011
on a quarterly basis, or approximately 0.001. Then, follow-
ing the methodology discussed in Section 3, hR ≈ 0.001,
which means taking udt = 99.9. According to Table 6, a
capital estimate achieving such downturn coverage would
offer an unconditional coverage ranging from u = 99.9967
for Lease to u = 99.9985 in the case of Individuals. On
the other hand, the average of the AA corporate rating
hazard rate series is 0.000275, or approximately 0.00007
on a quarterly basis. That means an unconditional cov-
erage u = 100 − 0.0070 = 99.9930. Therefore, in this toy
example, determining η in terms of udt through the rating-
based methodology leads to a slightly higher capital9 than
that obtained in terms of u.

With respect to the stability of the conditional cov-
erage values, Table 7 presents the value of su for each
combination of portfolio and unconditional coverage level.

Given u, differences among portfolios can be observed,
with Credit Cards and Lease being the most, and Individ-

8That is, y = 1 − (1 − x)0.25, with x being the annual rate and y
its quarterly equivalent.

9A higher unconditional coverage requires more capital.
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Portfolio udt = 99 udt = 99.9

Mortgages 0.3901 0.2780
Business 0.2476 0.1793
Credit Cards 0.1370 0.0982
Individuals 0.1328 0.0885
Rest 0.5572 0.3533
Lease 0.3773 0.2597

Table 5: Relative increase in the capital figures of Table 3
needed to achieve a downturn coverage equal to 99, udt =
99, and to 99.9, udt = 99.9.

Portfolio udt = 99 udt = 99.9

Mortgages 99.9752 99.9977
Business 99.9790 99.9971
Credit Cards 99.9675 99.9978
Individuals 99.9830 99.9985
Rest 99.9792 99.9976
Lease 99.9665 99.9967

Table 6: Unconditional coverage achieved by the capital
figures whose downturn coverage is equal to 99, udt = 99,
and to 99.9, udt = 99.9.

uals the least, stable portfolios. Correspondingly, given
a portfolio, the higher the u, the lower the su. In other
words, increasing the unconditional coverage also guaran-
tees increasing the conditional solvency stability, which is
a result consistent with Figure 2.

Figure 4 presents, for η obtained at u = 99.9, the scat-
ter plot of the pair

(
udt su

)
for each portfolio. Data are

obtained from Table 4 and Table 7. According to Section
4 and Section 5, those placed in the lower-right corner are
preferable to those placed in the upper-left corner. Thus,
the Credit Cards portfolio presents the best performance,
with Individuals being the worst. The strong correlation
between udt and su observed is further evidence of the fact
that the variability in u is mainly driven by the marked
decrease in conditional coverage values experienced during
the Great Recession.

Figure 4 also outlines the differences in resilience and
stability among the seven portfolios, since both axes ex-
hibit discrimination power. Obviously, this kind of repre-
sentation cannot be obtained if the long-term assessment
of a given capital figure, η, is reduced to its unconditional
coverage, u.

7. Concluding remarks

The main conclusion supported by this paper is the
usefulness of incorporating the conditional coverage vector
into the unconditional measurement of default risk. This
statement rests on the theoretical result proved and the
two applications proposed.

Regarding the theoretical result, Proposition A, we
have shown that, under a certain model of unconditional
PD distribution, the average of the conditional coverage

Portfolio η99 η99.9

Mortgages 0.0460 0.0054
Business 0.0463 0.0059
Credit Cards 0.0416 0.0045
Individuals 0.0592 0.0066
Rest 0.0496 0.0055
Lease 0.0408 0.0047

Table 7: Standard deviation of the conditional coverage
vector u generated by the capital figures of Table 3, which
have been obtained at the 99, η99, and the 99.9, η99.9,
unconditional coverage levels.
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Figure 4: Downturn coverage, udt, displayed at the hori-
zontal axis, and standard deviation of the conditional cov-
erage vector, su, displayed at the vertical axis. Both are
derived from the conditional coverage vector generated by
the 99.9 unconditional capital estimate.

values generated by a given constant capital equals the
corresponding unconditional coverage. This result coher-
ently links the concepts of conditional and unconditional
solvency and allows for an alternative interpretation of the
unconditional capital.

Regarding the applications, we have used the condi-
tional coverage vector in both the long-term capital de-
termination and assessment processes. For the former,
we have proposed determining the capital in terms of the
minimum of the vector instead of resorting to the uncondi-
tional coverage, which constitutes the standard approach.
For the latter, we have proposed assessing the long-term
solvency of a given capital, not only by means of its un-
conditional coverage, but also in terms of the minimum
and standard deviation of the conditional coverage vector.
We have illustrated both applications empirically, observ-
ing a cyclical and asymmetric pattern in the conditional
coverage vector and a remarkable discriminating power in
its minimum and standard deviation.

An additional remark can be drawn on the basis of
these results. Since determining or assessing a long-term
capital means implementing or evaluating a long-term risk
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appetite statement, our contribution indicates that the
characterization of such a statement should not be left to
a single variable, u, but it should also include udt and su,
which complement u by recognizing the cyclical nature of
default risk. Therefore, they provide new possibilities for
setting, communicating and monitoring risk appetite.

Appendix A.

Proof of Proposition A.

The proof follows directly from the elementary proper-
ties of finite mixtures, see McLachlan and Peel (2000).

Since F ∗j is the mixture of the distributions F jt , t =
1, ..., T , then Lj = F ∗jej is the mixture of the distributions
Ljt = F jt e

j , t = 1, ..., T . This, in turn, means that L =∑N
j=1 L

j is the mixture of the distributions Lt =
∑N
j=1 L

j
t ,

t = 1, ..., T .
On the other hand, the cumulative distribution func-

tion of an equally weighted mixture is the average of the
cumulative distribution function of its components, so that

P (L ≤ x) =
1

T

T∑
t=1

P (Lt ≤ x) (A.1)

for any 0 < x <
∑N
j=1 e

j , and therefore

u = P (L ≤ η) =
1

T

T∑
t=1

P (Lt ≤ η) =
1

T

T∑
t=1

ut (A.2)

�
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Jiménez, G., Menćıa, J., 2009. Modelling the distribution of credit
losses with observable and latent factors. Journal of Empirical
Finance 16 (2), 235–253.

Jokipii, T., Milne, A., 2008. The cyclical behaviour of european bank
capital buffers. Journal of Banking & Finance 32 (8), 1440–1451.

Kashyap, A. K., Stein, J. C., 2004. Cyclical implications of the Basel
II capital standards. Economic Perspectives-Federal Reserve Bank
Of Chicago 28 (1), 18–33.

Koopman, S., Lucas, A., Klaassen, P., 2005. Empirical credit cy-
cles and capital buffer formation. Journal of Banking & Finance
29 (12), 3159–3179.

McLachlan, G., Peel, D., 2000. Finite mixture models. Wiley-
Interscience.

Pesaran, M., Schuermann, T., Treutler, B., Weiner, S., 2006. Macroe-
conomic dynamics and credit risk: a global perspective. Journal
of Money, Credit, and Banking 38 (5), 1211–1261.

Peura, S., Jokivuolle, E., 2004. Simulation based stress tests of banks’
regulatory capital adequacy. Journal of Banking & Finance 28 (8),
1801–1824.

Repullo, R., 2013. Cyclical adjustment of capital requirements: A
simple framework. Journal of Financial Intermediation 22 (4),
608–626.

Repullo, R., Saurina, J., Trucharte, C., 2010. Mitigating the pro-
cyclicality of Basel II. Economic Policy 25 (64), 659–702.
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