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Phase Diagrams of "Simple" Fluids with Extreme Pair Potentials
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It is shown that strongly reducing the range of the attractions of a simple Quid will transform
its phase diagram from the usual type, with a fluid-fluid critical point and a Ruid-fluid-solid triple
point, into its Quid-solid mirror image, with a solid-solid critical point and a solid-solid-fluid triple
point. This scenario could be of relevance to the phase behavior of colloidal dispersions.

PACS numbers: 82.70.Dd, 81.30.Dz

Colloidal dispersions [1,2] are chemically complex sys-
tems whose equilibrium phase behavior can nevertheless
be understood in terms of the physical concepts originally
coined for the study of simple fluids [3]. Indeed, once the
solvent-mediated interactions between the colloidal par-
ticles are described in terms of an effective pair potential,
the determination of the phase diagram of a complex col-
loidal dispersion is, in principle, not more difficult than
for a simple fluid. If we consider, in particular, a disper-
sion of sterically stabilized spherical colloidal particles to
which nonadsorbing polymer is added, the resulting effec-
tive pair potential between the colloidal particles is usu-

ally thought to consist of a steep short-ranged repulsion
due to particle exclusion and a much weaker attraction
due to polymer depletion [1,2]. Such a potential is again
not unlike that of an ordinary simple fluid like argon [3],
except that here the relative range of the attraction ver-

sus the range of the repulsion is controlled by the radius
of gyration of the added polymer relative to the radius
of the colloidal particles and hence can be varied consid-

erably. This then raises the question of general interest
of how the phase diagram of a "simple" fluid (including
now also the colloids) is modified when the relative range
of the attraction versus repulsion is strongly modified. In
the present work we address this question by calculating
theoretically the phase diagram for a whole family of pair
potentials including cases with long-, intermediate-, and
short-ranged attractions.

The family of continuous pair potentials, V(r) with
r = ~r~ the interparticle distance, considered here will be
given the following general form, V(r) = eP(r/o) with
x = r/cr and

where e fixes the temperature scale (k~T/e denoting the
reduced temperature T, k~ being Boltzmann's constant)
while r = a. is the zero of V(r) and cr will be used to fix
the density scale (po 3 being the reduced number density

p). The remaining dimensionless parameters (a, b, c) of
(1) are seen to determine the steepness of the repulsion

(a), the range of the attraction (b), and the well depth
(c). In what follows we will consider a constant well
depth, P(xp) = —1 with xo denoting the position of the
minimum of P(x), viz. g (xo) = 0. This condition wiii,
for given a and b, fix c = c(a, b) The fa. mily of potentials
(1) considered here can thus be parametrized by (a, b) or,
equivalently, by the position x = xo of the minimum of
P(x) and the value x = xi for which P(x) has dropped
to 1'Fo of its value at the minimum, viz. P(xp) = —1 and

P(xi) = —0.01 with xi ) xo & 1. Since this is easier
to visualize we will henceforth parametrize the potential
P(x) by (xo, xi). We will be particularly interested in
a sequence of potentials with decreasing xq —xg values,
2:q —xo being taken here as a measure of the range of the
attractions.

To construct the phase diagrams corresponding to (1)
we will compute the Helmholtz free energy (F) per par-
ticle, F/X = f(p, T) with p being the number density
of the N particles and T the temperature. From f we

can obtain the chemical potential p = O(pf)/Op and the
pressure p = Of/Ov, w—ith v = 1/p. We will consider
both fluid and solid phases. For the solid phases we will

restrict ourselves to perfect face centered cubic crystals,
avoiding hereby any additional complications due to pos-
sible structural phase transitions. Below a critical tem-
perature, the free energy of the fluid will, as usual, de-

velop a van der Waals loop with respect to (w. r.t.) v

and the fluid-fluid (Fi-F2) coexistences can then be lo-

cated by performing a double-tangent construction on
this loop, since the points of tangency correspond to
phases of equal pressure and equal chemical potential.
More unexpectedly, we will find that, in complete sym-

metry with the fluid, the free energy of the solid devel-

ops also a van der %'aals loop for temperatures below

a second critical temperature, corresponding to a much

higher critical density. The resulting isostructural solid-

solid (Si-S2) coexistences can again be found by per-
forming a double-tangent construction on the loop of the
free energy of the solid. Finally, the solid-fiuid (SF)-
coexistences are found by performing a double-tangent
construction between the free energies of the solid and
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the fluid. Not every coexistence found in this way will

correspond to a thermodynamic stable situation. To dis-
tinguish the stable and metastable situations one must
finally construct, with the help of the fr""-energy curves
and the double tangents, a convex envelope to the free
energy. Only those double tangents belonging to this
convex envelope will correspond to stable situations.

To obtain the free energy we will use, for both the fluid
and the solid, a variational procedure based on the Gibbs-
Bogoliubov inequality [3]. This inequality expresses the
fact that the free energy is a convex functional of the
pair potential and therefore f is always bounded from
above by a variational free energy consisting of the free
energy of a reference system plus the average, over the
reference system, of the difference in energy between the
original and the reference system [3). Our estimate for

f will then be given by the minimum, w.r.t. the refer-
ence system, of the above variational free energy, for a
suitably chosen reference system. The double Yukawa
form of (1) is justified here, not so much by the fact
that the repulsion between colloidal particles is usually
described [1,2] in terms of a Yukawa potential but in-
stead because it leads, for the chosen reference systems,
to analytic expressions for the above variational free en-

ergy of both the fluid and the solid. This greatly facil-
itates the large number of minimizations which are re-
quired to construct a complete phase diagram. For the
fluid phases we have considered a reference system con-
sisting of hard spheres with the hard-sphere diameter as
variational parameter. Use of (1) reduces then the com-
putation of the average energy to that of the Laplace
transform of rg(r), with g(r) being the hard-sphere pair-
correlation function. Both this Laplace transform and
the hard-sphere free energy can be obtained in analytic
form within the Percus-Yevick approximation [3]. This
approach, which was used subsequently, is known to yield
a good description of, e.g. , the Lennard-Jones fluid [4].
For the reference system of the solid phase we have used
an Einstein solid, i.e., a system of identical particles har-
monically bound to the lattice sites of the solid, with
the common force constant of the oscillators as the vari-
ational parameter. The free energy of the Einstein solid
is known in analytic form while the use of (1) reduces
again the computation of the average energy to an ana-
lytic expression having the form of a lattice sum for the
Gaussian-averaged potential. This approach is known to
yield a good description of, e.g. , a solid with a Morse po-
tential [5]. Combining the two approaches we obtain an
accurate and simple to implement method which allows
us to follow the modifications of the phase diagrams gen-
erated by (1) when the parameters (xe,xi) are modified.
We have found three types of phase diagrams which cor-
respond to, say, attractions with a long, intermediate, or
short range. These changes seem to be monitored by the
value of xq, while the position of the minimum xo seems
to play only a secondary role. Notice that while xp can
be changed freely (x» 1), the value of xo is always

restricted by xi & xo & 1. We will thus focus our atten-
tion mainly on the values of xi, which will be considered
as a measure of the range of the attraction relative to
that of the repulsion. For large xi values (xi & 1.6)
we find the usual phase diagram of simple Quids with
weak long-range attractions (see Fig. 1). All the Si-Ss
transitions are metastable, while the I"q-Fq transitions
are stable for temperatures above a S Fi F-2 t-riple point
temperature up to the I"j-I"2 critical-point temperature.
This type of phase diagram corresponds to a Lennard-
Jones-like situation and this can in turn be used here to
estimate the accuracy of the above variational method.
Indeed, taking a = 14.3959 and b = 2.6978, which implies
c = 2.0516, the potential (1) nicely fits the Lennard-Jones
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FIG. 1. Phase diagram, in the pressure (p) snd tempera-
ture (T) snd in the temperature (T) snd density (p) plane
(in units such that 0' = e = A,n = 1) for s simple iluid with
the pair potential P(z) shown, as obtained from the varis-
tional method described in the main text. The case shown
here corresponds to s fit of (1) to s Lennsrd-Jones poten-
tial, viz. zq 2.62 and zo 1.12 (full dots). The result-
ing phase diagram agrees quantitatively with that of the true
Lennsrd-Jones potential [our data for the critical and triple
point (open dots) sre given in the main text]. This situation
is typical for sll potentials (1) with long-range attractions
(zg & 1.60).
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potential, viz. PL~(z) = 4(x ' —x ), because both
have xo = 2 / 1.12, and, g'(1) = —24, together with
P(1) = 0, P(zp) = —1. For this situation (zi 2.62)
we find for the triple point T~ ——0.66, pq

——0.82 and
for the critical point T, = 1.31, p, = 0.30, while the
standard results [3] for the Lennard-Jones potential are
T~ ——0.67, p~ ——0.86 and T, = 1.36, p, = 0.36 in units
where o = ejk~ = 1. For 1.05 ( xi ( 1.6 we find a sec-
ond type of phase diagram corresponding to what could
be termed intermediate-range attractions (see Fig 2. ).
Here, both the Si-S2 and Fi F2 co-existences are always
metastable and only the S Ftra-nsition survives lead-
ing to a simple phase diagram without critical or triple
points. In going from the previous to the present situ-
ation by reducing xq it is seen that the F~-F2 critical-
point temperature is lowered to a value below the S Fi-
F2 triple-point temperature resulting in a disappearance
of the high-density (liquid) fluid phase. This occurs be-

cause the Fq-Fq van der Waals loop partly glides above
the solid free-energy curve. The threshold value for the
liquid to exist appears to be x~ & 1.6, but this value
depends still weakly on xo. A similar disappearance of
the liquid phase has been found in theoretical, exper-
imental, and simulation studies performed for diferent
potentials elsewhere [6—10]. When xi is decreased still
further, the Fq-F2 critical-point temperature continues
to decrease while the S~-S2 critical point temperature
continues to rise which, ultimately, stabilizes the Si-Sq
transition resulting in a third type of phase diagram (see
Fig. 3) with a Si-S2 critical point and a Si-Sq Ftri-pie
point, not unlike the solid-Huid mirror image of the first

type. This situation prevails for systems with very short-

ranged attractions, such that xi ( 1.05, the influence of
xs on this second threshold being negligible. For a poten-
tial with xi - 1.019 and xo - 1.0025 we find T, = 2.13,
p, = 1.36 for the Si-Sq critical point and Tq = 1.84,
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FIG. 2. The same ss Fig. 1 but for a potential (1) with
x& 1.51 and xo 1.07, i.e., just below the threshold
(x q

—1.60) for the disappearance of the liquid phase. This sit-
uation is typical for sll potentials (1) with intermediate-rsnge
attractions (1.05 ( xx ( 1.60).

FIG. 3. The same as Fig. 1 but for s potential (1) with

x~ —1.019 and xo —1.0025, i.e., just beloved the threshold

(xq 1.05) for the appearance of an isostructursl solid-solid

transition. This situation is typical for sll potentials (1) with

short-range attractions (1 ( xi & 1.05). This phase diagram

is the so1id-Quid mirror image of that of Fig. 1.
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p, = 1.31 for the F-Sq-S2 triple point. An earlier re-
sult [11] for adhesive hard spheres did exhibit a van der
Waals loop in the solid free energy but the resulting Sq-
Sz transition was unstable. Very recently [12] a similar
Sq-S2 transition was also seen in a computer simulation
of hard spheres with a square-well attraction but the fluid
phase was not explicitly taken into account in these sim-
ulations yielding hereby only a partial phase diagram.
Here, instead, we have followed the modiflcations of the
complete phase diagram of a simple fluid described by
the continuous pair potential (1) when the range of the
attractions is strongly reduced.

In conclusion, a remarkable fluid-solid symmetry of the
phase diagram of simple fluids is found when one does
allow for potentials with extremely short-ranged attrac-
tions. When these attractions are due to depletion forces
their range can be experimentally controlled [1,2] and the
above scenario could become observable by studying the
phase behavior of colloidal dispersions.
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