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Abstract: The retina is part of the central nervous system (CNS), and therefore, in 
Alzheimer’s disease (AD), retinal and optic nerve degeneration could take place. 
This degeneration leads to neurofunctional changes that can be detected early and 
followed up throughout the evolution of the disease. As opposed to other CNS 
structures, the eye is easily accessible for in vivo observation. Retinal organization 
allows for the identification of its different neurons, and in consequence, detection 
of minimal changes taking place during neurodegeneration is possible. Functional 
vision studies performed on AD patients in recent years have shown how visual 
acuity, contrast sensitivity, color vision, and visual integration vary with the progres-
sion of neurodegeneration. The development of optical coherence tomography in 
ophthalmology has meant a breakthrough in retinal exploratory techniques, allow-
ing the obtention of high-resolution images using light. This technique enables reti-
nal analysis in the earliest stages of AD, being considered as a biomarker of neuronal 
damage. Given AD’s high prevalence and its expected increase, it is important to 
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perform easy tests that cause minimal discomfort to the patients at a low cost while 
offering abundant information on the stage of the disease.
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INTRODUCTION

Alzheimer’s disease (AD) is recognized by the World Health Organization as a 
global public health priority. AD is the single principal cause of dementia, between 
50 and 75%, and is primarily a condition of aging, roughly doubling in prevalence 
every 5  years after age 65 (1). The incidence of AD increases with age, and 
the prevalence is growing as a result of the aging of the population (2); however, 
there are no disease-modifying therapies currently available, and none have been 
successful in late-stage clinical trials (3).

Late-onset AD is likely to be driven by a complex interplay between 
genetic  and environmental factors, implicating inflammatory, cholesterol 
metabolism and endosomal-vesicle recycling pathway (4) and the presence of 
the APOE+4 allele (5). In addition, AD is frequently associated with vascular 
dysfunctions and inflammation (6). In particular, it is now recognized to play 
a key role in AD pathogenesis the microglial activation in response to amyloid 
deposition (7).

The basis of AD has not been fully elucidated. However, the progressive accumula-
tion of β-amyloid (Aβ) plaques and abnormal forms of phosphorylated tau (tau 
tangles) within and outside of neurons and neuroinflammation, both of which could 
lead to neuronal loss and synaptic dysfunction (8), are considered to be the neuro-
pathological hallmarks (9–11).

The “amyloid cascade hypothesis” (12) is based on the progressive 
deposition of fibrillar Aβ as diffuse plaques, which activates an inflammatory 
response, altered ion homeostasis, oxidative stress, and altered kinase/
phosphatase activity, leading to the formation of NFTs and widespread synap-
tic dysfunction and neuronal death (13). Recently, it has been demonstrated 
that an Aβ plaque environment can accelerate the templated spread of tau 
pathology (14, 15).

Hyperphosphorylation of tau has numerous pathogenic effects. It reduces tau’s 
affinity for microtubules and increases its possibility to aggregate and fibrillize 
(16). This impact leads to weakening of microtubules with consequent axonal 
transport failure and neurodegeneration (15).

In the past decade, remarkable advances have been made in disease-
specific biomarkers based on the detection of amyloid or neurodegeneration. 
With the knowledge that the pathological changes occur years previous to 
symptoms, the arrival of biomarkers of Aβ and tau pathology, and nuclear 
imaging measures of atrophy, diagnostic criteria have evolved to allow for the 
diagnosis to be made both earlier and with increased molecular specificity.

These biomarkers not only enable the diagnosis of AD in the stage of 
dementia but also beforehand, in the prodromal stages of AD. However, these 
biomarkers are not applicable as population-wide screening tools because 
they are invasive, not easily applicable and expensive.
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EYE AND BRAIN: SYMBIOTIC RELATIONSHIP

Over the last few decades, in neurodegenerative diseases of the central nervous sys-
tem (CNS), the importance of ophthalmic examination has reportedly increased. It 
is not surprising that the retina, as an extension of the CNS, is impaired in patients 
with CNS degeneration (17). The eye has unique physical structures and is host to 
specialized immune responses similar to those in the brain and spinal cord (18–20). 
In fact, abnormal results were found in AD patients in test exploring visual process-
ing/visual pathways and also in those examining the retina (17).

The neuroinflammatory changes could be detected using a routinely diag-
nostic technique used in ophthalmology, the optical coherence tomography 
(OCT). OCT allows to see the anatomic detail of pathological changes in the 
retina and optic nerve. Changes in OCT measurements have been used to study 
the course of neurodegenerative diseases such AD (21–25), suggesting that the 
data compiled may be useful as a biomarker in diagnosing and treating neuro-
degenerative disease.

The retina is made up of specialized neuron layers that are interconnected via 
synapses (photoreceptors, bipolar cells, horizontal cells, amacrine cells, inter-
plexiform cells and ganglion cells) (18, 26). In the eye, the light that enters is 
captured by the photoreceptor cells in the outer retina, initiating a cascade of 
neural signals that finally reach the retinal ganglion cells (RGCs), whose axons 
form the optic nerve. These axons project to the lateral geniculate nucleus in the 
thalamus and to the superior colliculus in the midbrain, whose information is 
then transmitted to specialized visual processing centers in the brain that provide 
a perception of the world.

The first study, showing postmortem anomalies in the optic nerve of patients 
with AD, demonstrated not only widespread axonal degeneration but also a reduc-
tion in the number of RGC and the thickness of nerve fiber layer (NFL), with a 25% 
decrease of ganglion cell layer (GCL) (27–29). More recent OCT studies also found 
a decrease in the thickness of inner retinal layers (NFL and GCL) (30–41).

The presence of Aβ plaques in GCL could explain the RGC degeneration in the 
AD course (19, 27, 42). In fact, it has been demonstrated that most of the Aβ 
plaques deposited in the retina are located in the GCL (43, 44). Deposits of Aβ 
trigger a neurotoxic effect in the RGC, inducing apoptosis (45). This apoptosis is 
dose- and time-dependent (45). Some pieces of evidence showed that Aβ expres-
sion is greater in the central retina than in the periphery of the eye of an AD mouse 
model (46). As in the brain, Aβ deposits in the retina have the classical plaque 
structure, forming clusters along the blood vessels (47). Aβ accumulations were 
located inside and around melanopsin retinal ganglion cells (mRGC) and more 
evident in the superior quadrant of the retina (47).

In the last few years, it was found that mRGCs also showed a significant loss in 
postmortem AD retinas (47). These cells represent the 1–2% subpopulation of 
RGC that are intrinsically photosensitive (47, 48). The mRGC send ambient light 
information to the hypothalamus nucleus via the retinohypothalamic tract (48), 
regulating circadian rhythms, pupil size, sleep alertness, and pineal melatonin 
synthesis (49–51). This mRGC loss could contribute to circadian dysfunction in 
AD (47). Indeed, its presence in the early stages of AD of circadian dysfunction 
was postulated as the worst prognostic value in AD (47).
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All these retinal changes could be responsible, in part, for the visual deficit that 
occurs in AD patients. The acetylcholine decrease is also characteristic of this 
disease,  and therefore contributes to the visual deficit that occurs in AD patients 
because acetylcholine is essential for the correct visual process of healthy retinas (52).

VISUAL FUNCTIONAL TESTS IN THE EXPLORATION OF AD

Aging affects visual function because light transmission diminishes inside the eye, 
whereas the scattering of light increases. With age, there is not only a decrease in 
the density of photoreceptors in the retina, but there is also less efficiency in pho-
totransduction and photopigment regeneration (53). In addition to aging, visual 
processing is affected in AD patients. The brain’s visual areas are involved in AD 
pathology (in the dorsal and ventral regions), worsening the perception of move-
ment; angular and color discrimination; and form and face identification (54–60). 
There are several tests such as the visual acuity test, and the contrast sensitivity 
and color vision test to explore this visual processing in the ophthalmology 
practice.

Visual acuity

Visual acuity (VA) is a measure of the spatial resolution of the visual system to 
detect and discriminate an object. In patients with AD, it is very important to 
choose the correct VA test. It was demonstrated that VA tests present better values 
if the letters are isolated (61).

Contrast sensitivity and color vision

The contrast sensitivity (CS) test assesses the capacity of the visual system to dis-
tinguish an object from the background in which it is placed. The CS test allows 
us to ascertain the integration of the information of the ganglion cells receptor 
field and their cortical processes. CS is measured by a threshold curve in which 
the spatial frequencies examined are depicted. Color vision is an illusion created 
by the interactions of the neurons in our brain. It is intimately linked to the per-
ception of form where color facilitates detecting borders of objects (62). Parvo- 
and magnocellular ganglion cells are located in the GCL and lead to two different 
visual pathways that identify color and contrast (63). Parvocellular ganglion cells 
are smaller and more numerous than other retina ganglion cells, with smaller 
receptor fields located in the macular retinal area. They give rise to the parvocel-
lular visual pathway, specialized in pattern identification and color; and it is most 
sensitive to high spatial frequency (51). The magnocellular pathway originates in 
magnocellular retina ganglion cells, which are larger and more numerous, and 
have larger receptor fields that are more sensitive to low spatial frequencies (63). 
There is a third type of ganglion cell that is called koniocellular, which receives 
information from short wave cones. Koniocellular cells are also sensitive to blue–
yellow tones (64, 65). CS is a really important visual function. Even several stud-
ies showed that a CS loss is the best predictor of the ability of elders to perform 
daily life activities (66, 67).
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Visual fields

The visual field (VF) refers to the total space in which objects can be seen in the 
side (peripheral) vision as your eyes are focused on a central point. The fovea, 
where the cone photoreceptor density is at its highest, is the area of greatest 
sensitivity. The visual sensitivity comes down further from the fovea. Traditional 
perimetry is carried out under photopic conditions, and therefore, rod photore-
ceptors do not contribute to the visual field (68). The normal visual field extends 
to approximately 60° nasally, 90° temporally, 60° superiorly and 70° inferiorly. In 
the area of the optic nerve head, temporal part of the VF, exists a blind spot that 
indicates an area with no photoreceptors (69).

Visual integration

Identifying a visual stimulus requires not only physical input analysis but also the 
contact between the neuronal representations of the stimulus and the memories 
that the perceivers have accumulated through their life experiences with the 
objects. Object identification arises from the dynamic interaction between a sen-
sorial/physical process (upstream processing) and a cognitive process (down-
stream processing). Spatial frequency is an important physical property of the 
image. The extraction of visual sensory characteristics follows a course to a fine 
processing scheme where the low spatial frequency represents the overall infor-
mation about the shape and orientation of the stimulus, while the high spatial 
frequency corresponds to the configuration information and fine details 
(70–75).

OPHTHALMOLOGICAL METHODS FOR RETINAL ANALYSIS

Over the past decade OCT has evolved as one of the most important tests in oph-
thalmic practice. It is a non-invasive imaging technique that provides high-
resolution, cross-sectional images of the retina.

Optical coherence tomography

OCT was first demonstrated for cross-sectional retinal imaging in 1991 by a 
Massachusetts Institute of Technology (MIT) team (76). OCT synthesizes cross-
sectional images from a series of laterally adjacent depth-scans giving a non-
invasive clinical tool to evaluate the structural anatomy and the evaluation of the 
integrity of the retina.

Optical coherence tomography angiography

Optical coherence tomography angiography (OCTA) is a promising new method 
for visualizing the retinal vasculature and choroidal vascular layers. A key advan-
tage of OCTA over traditional fluorescein angiography is that it provides depth-
resolved information without contrast. The basis of OCTA is to repeatedly scan a 
region and then examine the resultant images for changes. Stationary tissue 
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structures will show little change, whereas moving structures, such as blood flow-
ing through vessels, can show changes between images. Contrast is generated 
based on the difference between moving cells in the vasculature and the static 
surrounding tissue. This imaging technique can be performed in patients for 
whom fluorescein angiography or indocyanine green angiography may not be 
indicated (77). OCTA is clinically used as an en face imaging modality, which is 
generated by summarizing the flow information within the depth range encom-
passed by the current scheme. This scheme subdivides the retinal circulation into 
two plexuses and choroidal circulation into two slabs. Angiograms, which are 
similar to fluorescein angiography or indocyanine green angiography, are also 
produced (78).

FUNCTIONAL CHANGES IN AD

Nowadays, it is known that, in AD, in addition to altering brain structures, the 
involvement of the different regions of the visual system also occurs, with a mani-
festation of distinct symptoms and signs that can be detected by clinical history 
and ophthalmological studies.

VA has proven to be a controversial test in AD. Studies have not found an 
alteration in AD patients (79–86), and others have found VA loss and linked them 
to visual hallucinations (87, 88) (Table 1). Moreover, these alterations of VA are 

TABLE 1	 Eye changes in AD patients

References

Visual alterations

Visual acuity 87, 88

Contrast sensitivity 82, 84, 85, 90–102, 103, 104

Visual field 105–109

Color vision 58, 84, 93, 110, 113–116

Visual integration 93, 117

Structural alterations

Retinal Aβ deposition 19, 27, 42–47

Optic nerve 27–29

Macular thickness

    Inner retinal layers 30–41, 138, 140–145

    Outer retinal layers 135

Peripapillary thickness 21, 24, 30–38, 120–127

Retinal vascularization 148–150

Choroid thickness 125, 148, 151–153

AD: Alzheimer’s disease; Aβ: beta-amyloid
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related to difficulties in writing and reading (89). On the other hand, recent stud-
ies have found that CS testing is a more sensitive tool than VA testing to identify 
the subclinical impairment of visual function (90, 91). CS precedes the develop-
ment of dementia at 10 years of the longitudinal follow-up in a well-phenotyped, 
prospective, community-based cohort (90, 91). It has been shown that the CS 
function is affected in AD patients. The impairment ranges from a reduction in all 
spatial frequencies (85, 92–99) to a greater decline in high (92, 93, 98, 100) or 
low spatial frequencies (82, 84, 101, 102). Such discrepancies in the affected fre-
quencies could be due to differences among the CS test used as well as the patients 
included in the studies (17, 66). Recent works show that CS is the main manifes-
tation during the initial disease stage. There is a progressive impairment through-
out the disease course (93, 103, 104) (Table 1). CS impairment in AD has 
consequences for cognitive abilities and daily functions, given that the most 
affected spatial frequencies are the higher frequencies corresponding to macular 
function (17). The presence of reduced CS years before the clinical onset of 
dementia suggests that this association is not simply a consequence of later stage 
dementia. Furthermore, reduced CS can precede the clinical onset of cortical or 
subcortical dementia neurodegeneration (90).

Visual field test requires significant cooperation from the patient. Therefore, 
the reports of VF and AD are scarce, and most are case reports (17, 68). However, 
it has been observed that decreased VF sensitivity correlated with cognitive 
impairment. A large prospective study of threshold VF perimetry in patients with 
probable AD demonstrated that the most common VF abnormality was bilateral 
inferior constriction of the VF in an arcuate-like pattern (105, 106). AD patients 
underwent a diffuse sensitivity loss and defects that involved the central field. In 
39% of AD patients, the density of plaques and tangles was greater in the cuneal 
compared with lingual gyri, supporting the theory that cortical disease is respon-
sible for the VF loss (105). Recent findings show that the side of the homonymous 
defect is predicted by lateralized occipital atrophy (107–109) (Table 1).

Another manifestation of AD is the fluctuations in color perception, which are 
mainly errors in color recognition due to the involvement of the parvocellular 
pathway (110).

In the color perception, some studies using the Farnsworth test and Ishihara 
test found no differences between AD patients and control group (96, 111, 112). 
On the other hand, some tritan-axis defects were found, showing a correlation 
with the cognitive decline (58, 84, 93, 113, 114). The discrepancy in the results 
of both studies may be due to the fact that each study used a different color vision 
method. A recent investigation showed that the Ishihara color vision test could 
discriminate between AD and vascular dementia (115). The Ishihara test may 
involve dorsal cortical pathways that extend from the occipital to the parietal 
lobes. In the Ishihara test, the patients have to identify a number occulted in a 
pattern made up of small color forms with different tones. AD patients usually 
present simultagnosia caused by an occipitoparietal dysfunction, and therefore, 
they cannot recognize the pattern that is presented in the Ishihara test. The prob-
lem does not lie in the color sense, but in the inability to reconstruct the pattern 
(115). Using the Farnsworth-Munsell 100 hue test, a significantly decreased color 
discrimination was found in AD. In addition, the number of color discrimination 
errors was inversely related to Mini-Mental State Examination scores (MMSE) 
(110). Some studies using the Farnsworth color testing methods, not influenced 
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by dorsal stream dysfunction, suggest that AD patients tend to have tritan color 
defects (58, 93) while others have found a protanomaly (116) (Table 1).

The perception digital test (PDT) is a sensitive method in mild AD patients 
developed for evaluating their visual-perception disorders (117). The test is 
designed to assess the visual recognition of familiar situations. PDT has a signifi-
cant correlation with the cognitive decline of the AD patient, indicating that 
patients with mild AD have significantly more failures in PDT than controls 
(93, 117) (Table 1).

STRUCTURAL CHANGES IN AD

The retinal nerve fiber layer (RNFL), RGC and inner retinal layers are considered 
indirect biomarkers of the CNS, allowing the prediction of brain pathology in 
patients suffering from different neurological diseases (118, 119). Many studies 
focus on the thickness of segmented peripapillary RNFL (superior, inferior, nasal, 
and temporal) in patients with AD comparing them with controls. Some works 
showed a decrease in the peripapillary RNFL thickness in all areas (30, 31, 34, 
36–38). However, others authors found that the peripapillary RNFL thinning 
occurred in the inferior and superior regions (35, 39, 40), while other works dem-
onstrated that peripapillary RNFL thinning appeared only in the superior region 
(120–124). Some studies reported thinning in the RNFL associated with a pro-
gressive cognitive decline (21, 24, 123, 125, 126) (Table 1). The variance in peri-
papillary RNFL thickness reported in AD might be due to differences in disease 
progression among patients studied since patients with greater peripapillary 
region alteration were those with a more advanced stage of AD. In any case, thin-
ner peripapillary RNFL indicates fewer RGCs in AD, which confirmed the differ-
ences in OCT measurements in AD patients (127). The loss of RGCs is matched 
with the pathologic cascade hypothesis in AD, which affects both the cerebral 
neuron and the RGCs in the retina (36). This whole peripapillary RNFL contro-
versy is the result of studies based on small size samples and important method-
ological heterogeneity (37, 128–130). In line with this hypothesis, pattern 
electroretinography showed a decrease in their wave response, suggesting that 
RGCs are directly involved in AD (38, 92, 131–133).

Some authors did not show any statistical significance with respect to the mac-
ular outer retinal thickness analysis between the neurodegenerative disease and 
control groups (134). However, other studies in the context of early AD observed 
a loss in the outer nuclear layer that could suggest retrograde transsynaptic degen-
eration (135). In AD, most of the studies have been done with OCT, and they have 
focused on the inner retinal layers, whereas less attention has been devoted to the 
outer retinal layers. The discrepancy in results could be due to technical variabil-
ity, examination time and OCT interpretation (129, 136, 137). By using human 
postmortem tissue in the eyes of severe AD patients with confirmed neuropathol-
ogy, different patterns of thinning in the superior-nasal and superior-temporal 
regions of the retina relative to the optic nerve have been found. Also, they found 
a gradient of thickness reduction whereby thinning was greatest for the inner lay-
ers of the retina, followed by the outer layers of the retina (138). This thickness 
profile matches the distribution of the retinal Aβ deposits in the mid- and 
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far-periphery of the superior quadrants of these tissues as previously demon-
strated (19, 28, 29, 47, 139).

In the last few years, some studies focusing on the analysis of patients with 
mild cognitive impairment (MCI) found a thinning in the macular inner layers 
(140). By contrast, a macular volume increase was found in MCI compared with 
controls in others works (141). This finding could be explained as a possible 
inflammation and gliosis prior to neurodegeneration.

CHANGES IN THE EARLY AD AND THEIR PROGNOSTIC 
VALUE IN THE DETECTION AND FOLLOW-UP

In the most incipient AD stages, the macular RNFL thickness and total macular 
volume measured by OCT have better prognostic values in mild AD patients than 
in healthy subjects. The thickness of the inner superior macula seems to have the 
highest diagnostic value in early AD neurodegeneration. Possibly, the macular 
area is the first affected area of the retina, which may be due to the large number 
of ganglion cells in this retinal area (21, 24). Other studies have primarily assessed 
retinal thickness changes in the macula to explain the visual symptoms experi-
enced by AD patients (138). The earliest detectable structural retinal change 
associated with AD is suggested to be a decrease in macular RNFL volume, and it 
is related to neocortical Aβ accumulation in the very early AD (135). In healthy 
eyes, the macular region of the retina is physiologically very active, and this hyper-
excitation might be diminishing in the preclinical stage of AD (28). In support of 
this theory, postmortem histological studies have found pathological alteration of 
RGC in the macular region in AD patients (28, 47). In a meta-analysis of 17 stud-
ies comparing AD patients with healthy controls and in five studies comparing 
individuals with MCI with controls, there were significant decreases in the thick-
ness of the macular region in all four quadrants compared to controls, thus 
suggesting that the degenerative process affects the entire macular region (130). 
Another work, using a multivariate regression model show the existence of spe-
cific areas of thickening, interspersed with areas of thinning in the macula of AD 
and MCI patients. This finding supports the idea that inner retinal layers may be 
suffering dynamic changes during the course of AD progression (142). The retinal 
thickening in MCI was attributed to gliosis preceding neuronal loss and atrophy 
of the axonal projections in the RNFL (143). This theory has been supported by 
histopathology work, suggesting that gliosis precedes human AD pathology in the 
brain (144, 145). However, other studies in OCT suggested that the outer retinal 
thickness did not show any statistical significance between the neurodegenerative 
disease groups and controls (134). Other authors consider that many other find-
ings have been described such as a reduction in macular volume, RGC layer thick-
ness, choroid thickness and some vascular alteration. These results might be 
promising biomarkers for dementia staging and AD progression (146, 147).

In recent years, thanks to the development of the OCTA, several studies 
analyzed the retinal vascularization and the choroid. Most of the studies, pub-
lished in moderate AD, have found a loss of the retinal vascular density in the 
macular area with slower blood flow and an increase in the foveal avascular 
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Figure 1  Areas under the ROC curves of the psychophysical tests (A–D) and macular OCT (E–F) 
in discriminating between mild AD patients and control subjects. (A) Visual acuity (dec), 
(B) contrast sensitivity, (C) Rue 28-hue color test, (D) perception digital test, (E) fovea and 
macular volume, and (F) inner macular quadrants. Modified from (A–D) Salobrar-Garcia et al., 
2015 (93) and (E–F) Garcia-Martin et al., 2014 (21).
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zone (148–150). All these parameters presented a correlation with the disease 
stage (148). In the same way, a thinning of the choroid, measured by OCT, was 
also found (125, 148, 151–153) (Table 1).

All these changes could be explained as a consequence of the amyloid angiopa-
thy, which occurs in AD, in which amyloid deposits formed in the walls of the 
blood vessels. This process resulted in an ocular vascular occlusion and the dimin-
ishing of blood flow (120, 148, 149, 154).

It is possible that retinal AD biomarkers can only be obtained after having 
integrated various of the already cited biomarkers, which include both neuroreti-
nal (such as RFNL, GCL, macular thickness) and retinovascular parameters (ves-
sel morphology among others), in a composite biomarker (128).

The analysis of the ophthalmological tests prognostic value of AD showed that 
VA, CS, color perception, and visual integration (93) have a significant predictive 
value in early AD disease (Figure 1). The CS is the best predictive test in the diag-
nosis of the AD with an aROC between 0.857 and 0.755 (93), while the aROC 
curves of the OCT showed the best prognostic value is found in the macular area 
with values of r = 0.821 (21) (Figure 1). The focus must be centered on these tests 
to see the visual changes in the AD disease.

CONCLUSION

In conclusion, several alterations have been shown in the visual perception and 
the retinal structure in the eyes of AD patients, even in the earliest stages. The VA, 
CS, color perception, and visual integration tests, as well as macular OCT, have 
been altered in the early stages. When the disease progresses in the eyes of moder-
ate AD patients, retina alteration reaches the peripapillary area, showing the pro-
gression of neurodegeneration in the eye.
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