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Algebras of differentiable functions on Riemannian manifolds

Isabel Garrido, Jesús A. Jaramillo and Yenny C. Rangel

Abstract

For an infinite-dimensional Riemannian manifold M we denote by C1
b (M) the space of all real

bounded functions of class C1 on M with bounded derivative. In this paper we shall see how the
natural structure of normed algebra on C1

b (M) characterizes the Riemannian structure of M , for
the special case of the so-called uniformly bumpable manifolds. For that we need, among other
things, to extend the classical Myers–Steenrod theorem on the equivalence between metric and
Riemannian isometries, to the setting of infinite-dimensional Riemannian manifolds.

1. Introduction

There is a large number of results in the literature asserting that the topological, metric or
differentiable structure of a given space X can be characterized in terms of a suitable algebraic
or topological–algebraic structure on the space C(X) of continuous real functions on X, or
on a certain subfamily of C(X). We should mention, as fundamental prototypes, the classical
Banach–Stone theorem from which the topology of a compact space X is determined by the
linear metric structure of C(X) (endowed with the sup-norm), and also the classical results
of Gelfand–Kolmogorof and Kaplansky asserting, respectively, that the topology of a compact
spaceX is also determined by the algebra structure or by the lattice structure of C(X). We refer
to [3] and references therein for further information about different extensions, generalizations
and variants of these results. In this paper, we are interested in the theorem of Myers–Nakai
asserting that the Riemannian structure of a (finite-dimensional) manifold M is determined by
the natural Banach algebra structure on the the space C1

b (M) of all bounded C1 functions on
M with bounded derivative. This was proved by Myers [9] in the case that M is compact, and
later on by Nakai [11] in the general case. Our aim is to give an extension of this result to the
setting of infinite-dimensional Riemannian manifolds. The proofs given by Myers and Nakai
rely in a strong way on the local compactness of the manifold, and so we have to use different
techniques in the infinite-dimensional case. Our approach is to concentrate on the purely metric
structure of the manifold. On the one hand, we extend to the infinite-dimensional setting the
theorem of Myers and Steenrod [10] about the equivalence between metric and Riemannian
isometries on a manifold. On the other hand, we use the techniques developed in [4], for the
case of Lipschitz functions, in order to obtain that the Banach algebra structure of C1

b (M)
determines isometrically the geodesic distance of M for a large class of infinite-dimensional
Riemannian manifolds M , which includes all separable, connected and complete manifolds.
Combining both results we obtain our desired extension of the Myers–Nakai theorem.

2. The Banach algebra C1
b (M)

Throughout (M, g) denotes an infinite-dimensional Riemannian manifold, that is, a C∞

manifold M modeled on some real infinite-dimensional Hilbert space H (see, for example,
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[7] for details). For each point x ∈M , we have that TxM denotes the tangent space of M at
x, and 0x the corresponding null vector in TxM . If f : M → R is a real-valued C1 function on
M , then we identify, in the usual way, the differential df(x) with the gradient ∇f(x) by means
of the scalar product 〈·, ·〉x = gx(·, ·) on TxM . That is, for every v ∈ TxM , we have

df(x)(v) = 〈∇f(x), v〉x = gx(∇f(x), v).

Now, let C1
b (M) be the algebra of all bounded C1 functions f on M that have bounded

derivative, that is, ‖∇f‖∞ := supx∈M ‖∇f(x)‖x <∞. In this way, it is not difficult to check
(see [1]) that C1

b (M) is a Banach space endowed with the norm as follows:

‖f‖C1
b

= sup{‖f‖∞, ‖∇f‖∞}.
Moreover, since ‖f · g‖C1

b
� 2 ‖f‖C1

b
· ‖g‖C1

b
, it implies that C1

b (M) is in fact a Banach algebra
with the norm 2 ‖ · ‖C1

b
.

Note, that if M is connected, then it is, in particular, piecewise C1 path connected. In this
way for each x, y ∈M we can define the geodesic distance dist(x, y), as the infimum of the
lengths of all piecewise C1 paths in M from x to y, where the length of a piecewise C1 path
γ : [a, b] →M is given by

�(γ) =
∫ b

a

‖γ ′(t)‖γ(t) dt.

Moreover, it is well known that this geodesic distance induces the original topology on M , and
hence M is, in particular, a metrizable topological space (see, for example, [7]). Throughout
we shall always assume that all manifolds are connected. Then we say that M is a complete
manifold when M , endowed with the geodesic distance, is a complete metric space.

On the other hand, since every f ∈ C1
b (M) has bounded derivative, from the mean-value

theorem it follows that f is a Lipschitz function with respect to the geodesic distance.
Conversely, if f ∈ C1(M) is Lipschitz, then f belongs to C1

b (M). In fact (see, for example,
[1]), we have that ‖∇f‖∞ = Lip (f), where Lip (f) denotes the Lipschitz constant of f , that
is, we have

Lip (f) = inf{L � 0 : |f(x) − f(y)| � L · dist(x, y) for all x, y ∈M}
= sup

{ |f(x) − f(y)|
dist(x, y)

: x, y ∈M, x 	= y

}
.

3. The Structure Space of C1
b (M)

In this section we shall construct the structure space associated to the algebra C1
b (M) in an

analogous way, as it is done by Isbell in [6] for general algebras of continuous functions, or in
[4] for general lattices of continuous functions. First of all, recall that C1

b (M) is a unital algebra
separating points and closed sets of M , and this implies, in particular, that M is endowed with
the weak topology given by C1

b (M). Moreover, C1
b (M) is also closed under bounded inversion,

that is, if f ∈ C1
b (M) and f � 1, then 1/f ∈ C1

b (M).
As usual, we say that ϕ : C1

b (M) → R is an algebra homomorphism whenever it satisfies the
following conditions:

(1) ϕ(λf + μg) = λϕ(f) + μϕ(g);
(2) ϕ(f · g) = ϕ(f) · ϕ(g),

for all f, g ∈ C1
b (M) and for all λ, μ ∈ R. Note that an algebra homomorphism ϕ is nonzero

if, and only if, ϕ(1) = 1. Furthermore, every algebra homomorphism ϕ is positive, that is,
ϕ(f) � 0 whenever f � 0. Indeed, when f and 1/f are in C1

b (M), then ϕ(f · (1/f)) = 1 implies
that ϕ(f) 	= 0 and ϕ(1/f) = 1/(ϕ(f)). Thus, if we assume that ϕ is not positive, there exists
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f � 0 in C1
b (M) with ϕ(f) < 0. The function g = f − ϕ(f) � −ϕ(f) > 0 satisfies g ∈ C1

b (M),
and also 1/g ∈ C1

b (M) and ϕ(g) = 0, which is a contradiction.
We define the structure space H(C1

b (M)) as the set of all nonzero algebra homomorphisms
ϕ : C1

b (M) → R, considered as a topological subspace of the product R
C1

b (M). It is not difficult
to see thatH(C1

b (M)) is closed in R
C1

b (M). Moreover, since every function in C1
b (M) is bounded,

it follows that H(C1
b (M)) is in particular a compact space.

Now, consider the natural map δ : M → H(C1
b (M)) given by δ(x) = δx, where δx is the

point evaluation homomorphism, that is, δx(f) = f(x) for every f ∈ C1
b (M). Clearly, δ is a

continuous map. On the other hand, the subspace δ(M) is dense in H(C1
b (M)). Indeed, given

ϕ ∈ H(C1
b (M)), f1, . . . , fn ∈ C1

b (M), and ε > 0, there exists some x ∈M such that |δx(fi) −
ϕ(fi)| < ε for all i = 1, . . . , n. Otherwise, the function g =

∑n
i=1(fi − ϕ(fi))2 ∈ C1

b (M) would
satisfy g � ε and ϕ(g) = 0, and this is impossible since ϕ is positive.

Finally, from the fact that C1
b (M) separates points and closed sets of M , we can derive that

δ is a topological embedding, and therefore H(C1
b (M)) can be considered as a compactification

of M . In addition, this compactification has the property that each f ∈ C1
b (M) admits a

continuous extension f̂ to H(C1
b (M)), namely by defining f̂(ϕ) = ϕ(f) for all ϕ ∈ H(C1

b (M)).
Note that this extension f̂ coincides on H(C1

b (M)) with the corresponding projection map
πf : R

C1
b (M) → R.

Next we see that, for a special class of Riemannian manifolds M , those which are complete
and uniformly bumpable, the points in M can be topologically distinguished into H(C1

b (M)).
The notion of uniformly bumpable manifolds was introduced by Azagra, Ferrera and López-
Mesas [1], and it is defined as follows.

Definition 1. A Riemannian manifold M is said to be uniformly bumpable provided there
exist numbers R > 1 and r > 0 such that for every x ∈M and every δ ∈ (0, r) there exists a
C1 (bump) function b : M → [0, 1] such that the following conditions hold:

(1) b(x) = 1;
(2) b(y) = 0 if dist(x, y) � δ;
(3) ‖∇b‖∞ � R

δ .

We note that this is not a restrictive definition. In fact, as it is proved in [2], every separable
Riemannian manifold is uniformly bumpable. On the other hand, we know of no example of a
manifold failing to be uniformly bumpable.

Proposition 2. Let M be a complete and uniformly bumpable Riemannian manifold.
Then ϕ ∈ H(C1

b (M)) has a countable neighborhood basis in H(C1
b (M)) if, and only if, ϕ ∈M .

Proof. First assume that ϕ ∈ H(C1
b (M)) \M has a countable neighborhood basis. Since M

is dense in H(C1
b (M)), it implies that there exists a sequence (xn) in M converging to ϕ. From

the completeness of M it follows that (xn) has no dist-Cauchy subsequence, and therefore there
exist ε > 0 and a subsequence (xnk

) of (xn) such that dist(xnk
, xnj

) � ε for k 	= j. On the other
hand, since M is uniformly bumpable, there exists R > 1 such that, for some 0 < δ < ε/2, we
can construct a sequence (bk)k of C1 bump functions satisfying, for each k ∈ N, the following
conditions:

(1) bk(xn2k
) = 1;

(2) bk(y) = 0 if dist(y, xn2k
) � δ;

(3) ‖∇bk‖∞ � R/δ.
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Now, taking f =
∑

k bk we have that f ∈ C1
b (M), that f(xn2k

) = 1 and that f(xn2k+1) = 0,
for every k. Therefore, the extended function f̂ defined on the whole space H(C1

b (M)) takes
the value 1 on clH(C1

b (M))A and the value 0 on clH(C1
b (M))B, where A = {xn2k

: k ∈ N} and
B = {xn2k+1 : k ∈ N}, and clH(C1

b (M)) denotes the closure into H(C1
b (M)). However, this is a

contradiction since ϕ ∈ clH(C1
b (M))A ∩ clH(C1

b (M))B.
Conversely, if ϕ ∈M , consider Bn the open ball in M with centre ϕ and radius 1/n. Then

the family {clH(C1
b (M))Bn} is easily seen to be a countable neighborhood basis, as required.

4. Isometries between Riemannian manifolds

According to a classical result due to Myers and Steenrod [10], the metric and the Riemannian
structures on any (finite-dimensional) Riemannian manifold are intimately related, that is,
metric isometries and Riemannian isometries coincide. In this section we extend this result to
the setting of infinite-dimensional manifolds.

Definition 3. A maph : M → N between two Riemannian manifolds M and N is said to
be a Riemannian isometry if it is a C1 diffeomorphism satisfying

〈dh(x)(v), dh(x)(w)〉h(x) = 〈v, w〉x
for every x ∈M and every v, w ∈ TxM .

In particular, when h : M → N is a Riemannian isometry, then, for every x ∈M , its
differential mapping dh(x) : TxM → Th(x)N is a linear isometry. Indeed, for every v ∈ TxM ,
we have that

‖dh(x)(v)‖2
h(x) = 〈dh(x)(v), dh(x)(v)〉h(x) = 〈v, v〉x = ‖v‖2

x.

From the above, it is clear that every Riemannian isometry preserves the length of piecewise
C1 paths, and then it is a metric isometry with respect to the respective geodesic distances.
Next, we are going to see that the converse is also true.

First we collect some basic facts about geodesics and the exponential map, which can be
seen in the book of Lang [7], and which are going to be useful in what follows. Recall that an
open subset U of a Riemannian manifold M is said to be convex if, for every x, y ∈ U , there
exists a unique (up to reparametrization) geodesic γ in U from x to y, and such that �(γ) =
dist(x, y). Note that if, in addition, the geodesic γ : [a, b] →M is arc-length parametrized,
then dist(γ(t), γ(t′)) = �(γ|[t,t′]) = |t− t′| for every t, t′ ∈ [a, b]. It is well known that every
Riemannian manifold is locally convex, that is, every point in M has a neighborhood basis
formed by convex subsets. In fact, a result due to Whitehead asserts that, for every x ∈M ,
there exists r > 0 such that if 0 < δ � r, then the open ball B(x, δ) in M with centre x and
radius δ is a convex subset, and B(x, δ) = expx(B(0x, δ)), where expx denotes as usual the
exponential map at the point x and B(0x, δ) is the corresponding open ball in TxM . Moreover,
these balls B(x, δ) in M have the following additional property: for every y, z ∈ B(x, δ) the
geodesic path from y to z is the unique piecewise C1 path joining these points whose length is
dist(y, z).

On the other hand, it is interesting to recall here that the exponential map expx satisfies the
following: for every ε > 0 there is r > 0 such that if 0 < δ < r, then

expx : B(0x, δ) → B(x, δ)

is a diffeomorphism and it is (1 + ε) bi-Lipschitz (that is, expx and exp−1
x are (1 + ε)-Lipschitz).

Moreover, recall that expx is a radial isometry, that is, ‖z‖x = dist(x, expx(z)) whenever z ∈
B(0x, δ).
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Using the above remarks we are going to establish the following lemmas.

Lemma 4. Let M be a Riemannian manifold and let Γ : [a, b] →M be a continuous path
such that

dist(Γ(t),Γ(t′)) = |t− t′|
for all t, t′ ∈ [a, b]. Then Γ is a geodesic.

Proof. For each c ∈ [a, b], let x = Γ(c) and let Ux = B(x, r) be the convex ball given by the
above-mentioned Whitehead’s result. We take ε > 0 such that Γ([c− ε, c+ ε] ∩ [a, b]) ⊂ Ux. If
[α, β] = [c− ε, c+ ε] ∩ [a, b], x1 = Γ(α) and x2 = Γ(β), then let γ : [0,dist(x1, x2)] →M be the
unique (arc-length parametrized) geodesic in Ux from x1 to x2. Since dist(x1, x2) = β − α, by
a simple translation, we can suppose that γ is also an isometry defined on the interval [α, β].

Now, for every y ∈ Γ([α, β]), let γ1 and γ2 be the corresponding geodesic curves contained in
Ux joining x1 with y, and y with x2, respectively. Then, it is clear that the union of γ1 and γ2

defines a piecewise C1 path whose length is the distance between x1 and x2, and therefore must
coincide with γ. Then the point y belongs to the set γ([α, β]). In conclusion, we have proved
that the set Γ([α, β]) is contained into γ([α, β]) and therefore we can consider the function
θ = γ−1 ◦ Γ : [α, β] → [α, β]. Since θ is an isometry such that θ(α) = α and θ(β) = β, it must
be the identity, and hence γ = Γ on [α, β].

Then Γ is locally a geodesic path and therefore it is a geodesic, as desired.

Remark 5. If in the above lemma we suppose that dist(Γ(t),Γ(t′)) = C · |t− t′|, for some
C > 0, then Γ is a geodesic parametrized proportionally to arc length.

Lemma 6. Let M be a Riemannian manifold and x ∈M . Then, we have

lim
(v,w)→(0x,0x)

dist(expx v, expx w)
‖v − w‖x

= 1.

Proof. The proof follows at once since, for every ε > 0, there exists δ > 0 such that the map
expx : B(0x, δ) → B(x, δ) is a diffeomorphism (1 + ε) bi-Lipschitz.

Next we give the announced Myers–Steenrod result. For the proof, we follow the lines of
Helgason [5] for the finite-dimensional case.

Theorem 7. Let h : M → N be a bijection between two Riemannian manifolds M and N
that preserves the corresponding geodesic distances. Then h is a Riemannian isometry.

Proof. Let x ∈M and y = h(x) ∈ N . Consider r > 0 such that B(x, r) and B(y, r) are
convex neighborhoods of x and y, respectively, and such that the corresponding exponential
maps expx : B(0x, r) → B(x, r) and expy : B(0y, r) → B(y, r) are diffeomorphisms of class C1.
Since h preserves the geodesic distances, it follows that h is a bijection from B(x, r) onto
B(y, r).

Now, for every v ∈ TxM with v 	= 0, consider the geodesic in B(x, r) with speed ‖v‖x, that is,
γ(t) = expx(tv), defined for −r/‖v‖x < t < r/‖v‖x. Then, the continuous path Γ(t) = h(γ(t))
is contained in B(y, r) and satisfies

dist(Γ(t),Γ(t′)) = dist(γ(t), γ(t′)) = ‖v‖x · |t− t′|
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when t and t′ belong to the interval (−r/‖v‖x, r/‖v‖x). Now, by Remark 5, it is clear that Γ
is a geodesic parametrized proportionally to arc length. In particular, Γ is differentiable.

For v ∈ TxM , with v 	= 0, let v′ ∈ TyN be the tangent vector to Γ at the point y. Note
that Γ is the geodesic in y with the tangent vector v′, and then Γ(t) = expy(tv′) when t ∈
(−r/‖v′‖y, r/‖v′‖y). Since h preserves distances, it follows that both geodesics γ and Γ have
the same speed, that is, ‖v‖x = ‖v′‖y.

In this way, if we put h′(0x) = 0y, and h′(v) = v′, then we have defined a function h′ : TxM →
TyN , such that ‖h′(v)‖y = ‖v‖x. Moreover, it is not difficult to check that h′ is also positively
homogeneous, that is, h′(λv) = λh′(v) for λ > 0.

In order to see that h′ is linear, we shall use the classical Mazur–Ulam theorem [8]. For that it
is enough to see that h′ is an isometry between Banach spaces, that is, ‖h′(v) − h′(w)‖y = ‖v −
w‖x for every v, w ∈ Tx(M). Indeed, let v, w ∈ Tx(M) and let λ > 0 be such that ‖λv‖x < r
and ‖λw‖x < r; then using Lemma 6, we have

2〈v, w〉x
‖v‖x‖w‖x

=
‖v‖2

x + ‖w‖2
x

‖v‖x‖w‖x
− ‖λv − λw‖2

x

‖λv‖x‖λw‖x

=
‖v‖2

x + ‖w‖2
x

‖v‖x‖w‖x
− lim

λ→0+

dist(expx λv, expx λw)2

‖λv‖x‖λw‖x
.

Since h′ preserves the right-hand side, for all v, w ∈ TxM , it follows that

〈h′(v), h′(w)〉y = 〈v, w〉x.
Then h′ preserves the scalar product, and therefore it is a linear isometry. Finally, taking into
account that on B(x, r) we have h = expy ◦h′ ◦ exp−1

x , and that h′ is a diffeomorphism between
TxM and TyN , we derive that h is differentiable at the point x, and in fact dh(x) = h′. We
finish doing the same for h−1.

5. A Myers–Nakai theorem

In this section we see how, for a large class of infinite-dimensional Riemannian manifoldsM , the
structure of normed algebra of C1

b (M) determines the Riemannian structure of M . In this way
we will prove a Banach–Stone type theorem in the context of infinite-dimensional Riemannian
manifolds, which provides an infinite-dimensional version of the corresponding result by Myers
[9] and Nakai [11].

First we are going to give a simple regularization lemma on Hilbert spaces.

Lemma 8. Let H be a Hilbert space and let r > 0. For every ε > 0, there exists a function
ψ : H → R such that the following conditions hold:

(1) ψ(0) = r;
(2) supp(ψ) ⊂ B(0, r);
(3) ‖ψ‖∞ � r;
(4) Lip (ψ) � 1 + ε;
(5) ψ ∈ C1

b (H);
(6) ‖x‖ � r − ψ(x) + ε, when x ∈ B(0, r).

Proof. Given ε > 0, consider a C∞ function θ : R → [0, r] such that the following properties
hold:

(i) θ = 0 on a neighborhood of the interval (−∞, 0];
(ii) θ = r on a neighborhood of the interval [r,+∞);
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(iii) |t− θ(t)| � ε, for every t ∈ [0, r];
(iv) |θ′(t)| � 1 + ε, for every t ∈ R.

Then it is enough to define ψ(x) = r − θ(‖x‖), for x ∈ H.

From our next result we deduce that if a composition operator from C1
b (N) to C1

b (M) is a
linear isometry, then it is induced by a metric isometry from M to N .

Theorem 9. Let M and N be Riemannian manifolds and let h : M → N be a map such
that the composition operator T : C1

b (N) → C1
b (M), given by T (f) = f ◦ h, is continuous. Then

h is ‖T‖-Lipschitz with respect to the corresponding geodesic distances.

Proof. First note that h must be continuous since M and N are endowed with the weak
topology given by C1

b (M) and C1
b (N), respectively (see Section 3). Now, in order to see that

h is in fact Lipschitz, let x1, x2 ∈M and ε > 0. Consider σ : [0, 1] →M a piecewise C1 path
in M from x1 to x2, with �(σ) � dist(x1, x2) + ε. Since h is continuous, it follows that σ̂ =
h ◦ σ : [0, 1] → N is a continuous path in N from h(x1) to h(x2). Thus, for every y ∈ σ̂([0, 1]),
let 0 < ry < 1 such that expy : B(0y, ry) → B(y, ry) is a diffeomorphism (1 + ε) bi-Lipschitz on
the corresponding convex open balls.

Next, for each t ∈ [0, 1], consider an open (in [0, 1]) interval It around t and such that
σ̂(It) ⊂ B(σ̂(t), rσ̂(t)). Using a connectedness argument we can extract from the open covering
{It}t∈[0,1] a simple chain connecting 0 and 1, that is, there exists a finite sequence It1 ,. . . ,
Itm

such that 0 = t1 < . . . < tm = 1, and Itj
∩ Itk

	= ∅ if, and only if, |j − k| � 1. Note that
It1 ∪ . . . ∪ Itm

= [0, 1]. It is easy to see that, for each i = 1, . . . , (m− 1), we can choose a point
si ∈ Iti

∩ Iti+1 , with ti < si < ti+1.
Now we apply Lemma 8 to each ry with the same ε/2m, and we get the corresponding

functions ψy ∈ C1
b (H). If we define the function fy = ψy ◦ exp−1

y on B(y, ry) and fy = 0 on
N \B(y, ry), then we have that the following conditions hold:

(1) fy(y) = ry;
(2) ‖fy‖∞ � ry � 1;
(3) Lip (fy) � (1 + ε)2;
(4) fy ∈ C1

b (N);
(5) dist(y, z) � fy(y) − fy(z) + (ε/2m), whenever z ∈ B(y, ry).

Moreover, from the continuity of the operator T , it follows that

Lip (fy ◦ h) � ‖fy ◦ h‖C1
b (M) = ‖T (fy)‖C1

b (M) � ‖T‖ · ‖fy‖C1
b (N) � ‖T‖ · (1 + ε)2.

Finally, with all the above ingredients, if we denote yi = h(σ(ti)) for i = 1, . . . ,m, then we
obtain that

dist(h(x1), h(x2)) �
m−1∑
i=1

{
dist(h(σ(ti)), h(σ(si))) + dist(h(σ(si)), h(σ(ti+1)))

}

�
m−1∑
i=1

{
fyi

(yi) − fyi
(h(σ(si))) + fyi+1(yi+1) − fyi+1(h(σ(si))) +

ε

m

}

�
m−1∑
i=1

{
Lip (fyi

◦ h)dist(σ(ti), σ(si))

+ Lip (fyi+1 ◦ h)dist(σ(ti+1), σ(si)) +
ε

m

}
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�
m−1∑
i=1

‖T‖(1 + ε)2
{

dist(σ(ti), σ(si)) + dist(σ(si), σ(ti+1))
}

+ ε

�
m−1∑
i=1

‖T‖(1 + ε)2 · �(σ|[ti,ti+1]) + ε

= ‖T‖(1 + ε)2 · �(σ) + ε � ‖T‖(1 + ε)2 · (dist(x1, x2) + ε) + ε,

and, therefore h is ‖T‖-Lipschitz.

We finish with the announced Myers–Nakai theorem in the infinite-dimensional setting.
Recall that two normed algebras (A, ‖ · ‖A) and (B, ‖ · ‖B) are said to be equivalent as normed
algebras whenever there exists an algebra isomorphism T : A→ B that is a norm-isometry,
that is, ‖T (a)‖B = ‖a‖A, for every a ∈ A.

Theorem 10. Let M and N be complete Riemannian manifolds that are uniformly
bumpable. Then M and N are equivalent as Riemannian manifolds if, and only if, C1

b (M)
and C1

b (N) are equivalent as normed algebras. Moreover, every normed algebra isomorphism
T : C1

b (N) → C1
b (M) is of the form T (f) = f ◦ h, where h : M → N is a Riemannian isometry.

Proof. First, if h : M → N is a Riemannian isometry, then it is easy to check that the
composition operator T : C1

b (N) → C1
b (M), defined by T (f) = f ◦ h, gives the equivalence

between the corresponding normed algebras C1
b (M) and C1

b (N).
Conversely, suppose T : C1

b (N) → C1
b (M) is an isometry between normed algebras. Then,

consider the function h : H(C1
b (M)) → H(C1

b (N)) between the structure spaces (see Section
3) given by h(ϕ) = ϕ ◦ T for every ϕ ∈ H(C1

b (M)). Then h is a bijection and in fact h is a
homeomorphism since πf ◦ h = πT (f), for every f ∈ C1

b (N), where πf and πT (f) denote the
projection maps on the corresponding product spaces.

Now, by applying Proposition 2, we obtain that a point ϕ ∈ H(C1
b (M)) has a countable

neighborhood basis in H(C1
b (M)) if, and only if, ϕ ∈M and the same holds in the complete

manifold N . Therefore the homeomorphism h takes M onto N .
Moreover, for every x ∈M and every f ∈ C1

b (N), we have that

T (f)(x) = δx(T (f)) = (δx ◦ T )(f) = h(δx)(f) = h(f(x)) = (h ◦ f)(x)

and then it follows that T (f) = h ◦ f . Now, from Theorem 9 we can deduce that h : M → N is
‖T‖-Lipschitz with respect to the geodesic distances. Since T is an isometry, then ‖T‖ = 1, and
hence h is 1-Lipschitz. Now making the same with h−1, we have that h−1 is also 1-Lipschitz, and
hence h is a metric isometry. Finally, from Theorem 7, we find that h is in fact a Riemannian
equivalence.
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