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D. F. Torres27,19, T. Toyama6, A. Treves18, M. Uellenbeck5, P. Vogler11, R. M. Wagner6, Q. Weitzel11, F. Zandanel15,
R. Zanin23 (The MAGIC Collaboration), and S. Buson24

(Affiliations can be found after the references)

Received ... ; accepted ...

ABSTRACT

Motivated by the Costamante & Ghisellini (2002) predictions we investigated if the blazar 1ES 1727+502 (z = 0.055) is emitting very high energy
(VHE, E>100 GeV)γ rays. We observed the BL Lac object 1ES 1727+502 in stereoscopic mode with the two MAGIC telescopes during 14 nights
between May 6th and June 10th 2011, for a total effective observing time of 12.6 hours. For the study of the multiwavelength spectral energy
distribution (SED) we use simultaneous opticalR-band data from the KVA telescope, archival UV/optical and X-ray observations by instruments
UVOT and XRT on board of theSwift satellite and high energy (HE, 0.1 GeV - 100 GeV)γ–ray data from theFermi-LAT instrument. We detect,
for the first time, VHEγ–ray emission from 1ES 1727+502 at a statistical significance of 5.5σ. The integral flux above 150 GeV is estimated to
be (2.1± 0.4)% of the Crab Nebula flux and the de-absorbed VHE spectrum has a photon index of (2.7± 0.5). No significant short-term variability
was found in any of the wavebands presented here. We model theSED using a one-zone synchrotron self-Compton model obtaining parameters
typical for this class of sources.

Key words. BL Lac objects: individual(1ES 1727+502) – galaxies: active – gamma rays

1. Introduction

Since the detection of the first extragalactic VHEγ–ray source,
Mrk 421 in 1992 by the Whipple Observatory (Punch et al.
1992), the extragalactic VHE sky turned out to be densely pop-
ulated. Currently, around 50 extragalactic sources1 are known,
most of them blazars, i.e. Active Galactic Nuclei (AGN) witha
relativistic jet pointed towards the Earth. Blazars can be further
divided into BL Lacertae objects (BL Lacs) and Flat Spectrum
Radio Quasars (FSRQs). The former class constitutes the vast
majority of blazars detected so far in the VHEγ–ray regime.

1 http://tevcat.uchicago.edu/

Their spectral energy distributions (SEDs) are characterized by
two broad peaks, located in the radio - IR - optical - UV - X-
ray regime and the HE - VHEγ–ray bands respectively. BL
Lacs are further divided into high frequency peaked BL Lacs
(HBL) and low frequency peaked BL Lacs (LBL, Padovani &
Giommi 1995). Their emission is generally believed to be caused
by a population of relativistic electrons, trapped in a region with
magnetic field, that emit synchrotron photons, forming the low-
energy peak. Those photons are then up-scattered to higher en-
ergies by the same population of electrons, through the inverse
Compton process to form the second bump (SSC, Synchrotron
Self Compton scenario).

1
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Imaging atmospheric Cherenkov telescopes carry on pointed
observations in search for extragalactic sources and do notper-
form scans of the entire sky due to their limited field of view
(∼ 3.5◦). The selection of promising candidates for VHE emis-
sion is thus of fundamental importance. The BL Lac object 1ES
1727+502 (discuss in this paper) is the latest in a long list of
MAGIC discoveries of objects selected from X-ray catalogues
(e.g. for 1ES 1727+502 Costamante & Ghisellini 2002, but for
other sources also Donato et al. 2001). Among those are 1ES
1218+30.4 (Albert et al. 2006a), PG 1553+113 (Albert et al.
2007a), 1ES 1741+196 (Berger et al. 2011) and 1ES 0033+595
(Mariotti et al. 2011). Also many of the sources, whose discover-
ies have been triggered by an optical high state (Mrk180, Albert
et al. 2006a; 1ES 1011+496, Albert et al. 2007b; B3 2247+381,
Aleksić et al. 2012a; 1ES 1215+303, Aleksić et al. 2012b) are
listed in the above mentioned catalogues.

The BL Lac 1ES 1727+502 (z = 0.055, de Vaucouleurs et al.
1991) was observed with the Whipple 10 mγ–ray telescope, in
March-April 1995 and April-May 1996, for a total of 4.6 hours,
but no signal from this source was detected. Upper limits above
300 GeV were reported for both data sets at the level of 1.08×
10−11 erg cm−2 s−1 (8.6% Crab), and 1.58 × 10−11 erg cm−2 s−1

(15% Crab), respectively (Horan et al. 2004). It has also been
a target studied with the single telescope MAGIC-I (Albert et
al. 2008a), before starting stereoscopic observations with two
MAGIC telescopes (Aleksić et al. 2012c). It was observed be-
tween May 2006 and May 2007 for∼ 6.1 hours, with zenith
angles from 21◦ to 36◦. An upper limit on the integral flux of
3.6× 10−11 cm−2 s−1 above 140 GeV (11.8% of the Crab Nebula
flux above 140 GeV) was calculated. These observations were
merged with the ones from 20 other pre-selected blazars ob-
served between 2004 and 2009, and analysed with a stacking
method (Aleksić et al. 2011). The combined dataset with 394.1
hours exposure time resulted in a detection of VHEγ rays with a
statistical significance of 4.9σ, thus indicating that at least some
of those blazars are VHEγ–ray emitters. In June 2010, a high
optical flux of 1ES 1727+502 triggered target of opportunity ob-
servations with the MAGIC telescopes. Unfortunately, datawere
unusable due to adverse atmospheric conditions.

The hard spectrum in the HE band (spectral index 2.0 in the
Fermi-LAT first source catalogue, Abdo et al. 2010), combined
with the better sensitivity achieved by the MAGIC telescopes
with respect to the one of 2006 and 2007 observations, motivated
renewed MAGIC observations in 2011, which are described in
the following sections. In the secondFermi-LAT catalog (Nolan
et al. 2012) the object 1ES 1727+502 (2FGL J1728.2+5015)
confirmed a hard spectrum with spectral index of 1.8.

2. MAGIC observations and results

2.1. Observations and data analysis

The VHEγ–ray observations were performed with the MAGIC
telescopes located on the Canary Island of La Palma (28.8◦

N, 17.8◦ W at 2200 m.a.s.l). The two 17 m telescopes use the
imaging atmospheric Cherenkov technique, with a sensitivity of
(0.76± 0.03)% of the Crab Nebula flux2. The energy threshold
can be as low as 50 GeV, a characteristic making the MAGIC
telescopes well-suited for discovering and studying extragalac-
tic VHE γ–ray sources.

The BL Lac object 1ES 1727+502 was observed with the
two MAGIC telescopes, using a hardware stereo trigger, be-

2 In 50 h of effective time in the medium energy range> 290 GeV,
see Aleksić et al. (2012c) for details.
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Fig. 1. Distribution of the squared angular distance (θ2) between
the source position and the reconstructedγ–ray direction for
ON-source events (black points) and normalized OFF-source
events (grey shaded area). The dashed line corresponds to the
predefined region selected for the calculation of the significance
of the detection. The respective statistics for ON and normalized
OFF events are given in the figure.

tween May 6th and June 10th 2011. During 14 nights 20.2 hours
of data were collected. After a quality selection based on the
event rate, excluding runs taken during adverse atmospheric con-
ditions or with technical problems, the final data sample amounts
to 14.0 hours. The effective time of this observation, corrected
for the dead time of the trigger and readout systems is 12.6 hours.
Parts of the data were taken under moderate moonlight and twi-
light conditions and were analysed together with the dark data
(Britzger et al. 2009). The source was observed at zenith angles
between 22◦ and 50◦.

All the data were taken in the false-source tracking mode
(wobble, Fomin et al. 1994), in which the telescopes were alter-
nated every 20 minutes between two sky positions at 0.4◦ offset
from the source.

The data were analysed using the standard MAGIC analysis
framework MARS as described in Moralejo et al. (2009) with
additional adaptations incorporating the stereoscopic observa-
tions (Lombardi et al. 2011). The images were cleaned using
timing information as described in Aliu et al. (2009) with abso-
lute cleaning levels of 6 photoelectrons (so-called “core pixels”)
and 3 photoelectrons (“boundary pixels”) for the first telescope
and 9 photoelectrons and 4.5 photoelectrons for the second tele-
scope. The images were parametrised in each telescope sepa-
rately following the prescription of Hillas (1985).

We reconstructed the shower arrival direction with the ran-
dom forest regression method (RF DISP method, Aleksić et al.
2010) which was extended using stereoscopic information such
as the height of the shower maximum and the impact distance of
the shower on the ground (Lombardi et al. 2011).

For the gamma-hadron separation the random forest method
was used (Albert et al. 2008b). In the stereoscopic analysisim-
age parameters of both telescopes are used as well as the shower
impact point and the shower height maximum. We additionally
rejected events whose reconstructed source position in each tele-
scope differs by more than 0.05 degree2. A detailed description
of the stereoscopic MAGIC analysis can be found in Aleksić et
al. (2012c).
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2.2. Results

In the distribution of the squared angular distance between
the catalogue position of 1ES 1727+502 and the reconstructed
source position in the MAGIC data, the so-calledθ2 plot shown
in Fig. 1, we find an excess (Nex) of (73.8±15.0) events above
the normalized background (No f f ) of (125.2±5.0) events in
the energy range above 150 GeV. This corresponds to a sig-
nificance of 5.5σ calculated with formula 17 of Li & Ma
(1983), marking this observation as the first detection of 1ES
1727+502 in the VHEγ–ray regime. The integral flux above
150 GeV is (2.1± 0.4)% of the Crab Nebula flux. The fitted po-
sition of the excess is consistent with the catalogue coordinates
(RA: 17.47184◦, Dec: 50.21956◦ as in Ma et al. 1998) within
(0.032± 0.015stat ± 0.025sys)◦, and thus compatible within the
expected statistical and systematic errors (Aleksić et al. 2012c).
Comparing the extension of the excess to the point spread func-
tion of MAGIC (∼ 0.1◦, Aleksić et al. 2012b), the source appears
to be point-like.

In order to take into account the effects of the finite energy
resolution of the instrument, we unfolded the spectrum using the
Forward Unfolding algorithm (described in Albert et al. 2007c).
In the same procedure, the flux was corrected for the absorption
due to the extragalactic background light pair-productionusing
the model developed by Domı́nguez et al. (2011). The obtained
differential flux can be described by a power law function dF/dE
= f0(E/300 GeV)−Γ with the following values of the parameters:
flux normalizationf0 = (9.6± 2.5)× 10−12 cm−2 s−1 TeV−1 and
spectral indexΓ = (2.7 ± 0.5). We estimate a 10% additional
systematic uncertainty in the measured flux compared to Aleksić
et al. (2012c) due to the inclusion of moonlight and large zenith
angle conditions in our data.

In Fig. 2 we present the VHEγ–ray light curve between
200 GeV and 2 TeV. In order to have a uniform distribution of
days with observations in the bins and due to the weakness of
the signal, a 14 day binning is applied starting from 2011 May
4. The resulting light curve has five observation nights in the first
and last bin and four in the second bin. The emission is compati-
ble with a constant flux of (2.6±0.8)×10−12cm−2 s−1. The rela-
tively low probability of a constant flux (0.6%, corresponding to
a 2.5σ rejection) might indicate variability below our detection
threshold. The sparse binning and additional systematic errors
due to moonlight and larger zenith angles can indeed fully ex-
plain this effect.

3. Multiwavelength properties

3.1. Optical observations and results

1ES 1727+502 has been observed continually in the opticalR-
band as part of the Tuorla blazar monitoring program3 for almost
ten years, starting from 2002. The observations were carried out
with the 1 m Tuorla telescope and 35 cm KVA telescope in La
Palma. The brightness of the object was inferred from calibration
stars in the same CCD-frames as 1ES 1727+502 using differen-
tial photometry and comparison star magnitudes from Fiorucci
& Tosti (1996). The magnitudes are converted to fluxes using the
standard formula and values from Bessell (1979).

1ES 1727+502 has a bright host galaxy, contributing> 50%
to the flux in the opticalR-band (Nilsson et al. 2007). To derive
theνFν in the optical band, this contribution is subtracted from
the measured flux and in addition the brightness was corrected
for galactic absorption byR=0.079 mag (Schlegel et al. 1998).

3 http://users.utu.fi/kani/
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Fig. 2. MAGIC light curve in the energy range from 200 GeV to
2 TeV. The Crab Nebula flux (Aleksić et al. 2012c) scaled to 5%
is shown for comparison (dashed line). The points correspond to
the 14 days binned flux of 1ES 1727+502, and the error bars rep-
resent the statistical error only. The line represents the average
flux during the entire observing period. The probability of acon-
stant flux is 0.6% and the reducedχ2 with the number of degrees
of freedomndo f of the fit assuming a constant flux is 10.12/2.

The averageνFν during the MAGIC observations corresponds to
(4.93± 0.2)× 10−12 erg cm−2 s−1.

Overall, the source showed mainly quiescent behaviour (as
shown in Fig. 3) with the exception of an increased R-band
flux starting in March-April 2010, with a peak value of 2.85±
0.05 mJy on 2010 May 31, which exceeded the trigger criteria
(>50% above the long-term average) for MAGIC observations.
However, as discussed in the introduction, the adverse atmo-
spheric conditions forced us to discard the MAGIC data. The
source had almost returned to its quiescent flux, 2.0 − 2.2 mJy,
in September 2010 and remained in this state also during the
MAGIC observations performed in 2011.

3.2. Analysis and results of the Swift archival data

The Swift Gamma-Ray Burst observatory, launched in
November 2004 (Gehrels et al. 2004), is equipped with
three telescopes, the Burst Alert Telescope (BAT; Barthelmy
et al. 2005), which covers the 15−150keV range, the X-ray
telescope (XRT; Burrows et al. 2005) covering the 0.3−10 keV
energy band, and the UV/Optical Telescope (UVOT; Roming
et al. 2005) covering the 1800−6000Å wavelength range.
Unfortunately, there are no simultaneousSwift observations dur-
ing the MAGIC observing window. We have thus used archival
data from April 5th and May 1st 2010. The data have been
processed with standard procedures using the publicly available
tools of the HEASoft package distributed by HEASARC.

The results fromSwift/XRT are summarized in Table 1. The
data have been fitted with a simple power law, in the range
between 0.5−10 keV. The flux is stable within∼ 30% during
this period.Swift/UVOT observations were performed during the
same dates but only one of the observations, on April 5th, 2010
(MJD 55291.96182), contains all filters (V, B, U, W1, M2, W2).
We therefore used only this dataset for the compilation of the
SED. The host galaxy contribution in theV andB bands was
extrapolated from theR-band values from Nilsson et al. (2007)
using the galaxy colours atz = 0 from Fukugita et al. (1995).
The the host galaxy contribution in theU and ultraviolet bands is
negligible. All the observed magnitudes have been corrected for
Galactic extinction E(B-V) = 0.029 mag (Schlegel et al. 1998),

3
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Fig. 3. 10 years light curve in the opticalR-band from the Tuorla blazar monitoring program. The contribution of the host galaxy
(1.25± 0.06 mJy) has not been subtracted. Vertical lines indicate beginning and end of the MAGIC observing window in 2011. See
text for details.

Band Flux [10−12 erg cm−2 s−1]
V 5.4± 0.7
B 6.0±0.7
U 6.7±0.4

W1 6.0±0.3
M2 6.3±0.3
W2 7.2±0.3

Table 2. Results ofSwift/UVOT observations from 2010 April
5.

R = 0.079,V = 0.098,B = 0.127,U = 0.160 (taken from NED4),
and for the UV dataW1 = 0.185,M2 = 0.272 andW2 = 0.243
using the curve from Fitzpatrick & Massa (1999) and the cen-
tral wavelengths from Poole et al. (2008). Final magnitudeshave
been converted intoνFν and are summarized in Table 2.

These archivalSwift/UVOT data were taken on 2010 April
5 when the optical flux was already increasing but before it
reached the highest value, on 2010 May 31. Unfortunately there
were no simultaneous observation with the KVA telescope but
the R-band SED point has a value of the flux, 4.93 ± 0.2 ×
10−12 erg cm−2 s−1, comparable to the spectral points obtained
from Swift/UVOT data (see Table 2). Consequently, the archival
Swift/UVOT can be regarded as representative of the baseline
optical-UV flux and be included in the compilation of the multi-
wavelength SED.

3.3. Fermi-LAT data analysis and results

1ES 1727+502 has been observed with the pair conversion Large
Area Telescope (LAT) aboardFermi operating in the energy
range from 20 MeV up to energies beyond 300 GeV (Atwood
et al. 2009, Abdo et al. 2012). In survey mode, theFermi-LAT
scans the entire sky every three hours. The data sample used
for this analysis covers observations from August 5th, 2008to
August 5th, 2011 and was analysed with the standard analy-
sis tool gtlike, part of theFermi ScienceTools software pack-
age (version 09-27-01) available from theFermi Science Support
Center (FSSC). Only events belonging to the Pass7-V6 Source
class and located within 10◦ of 1ES 1727+502 were selected.

4 http://ned.ipac.caltech.edu/

Moreover, to reduce the contamination from the Earth-limbγ
rays produced by cosmic rays interacting with the upper atmo-
sphere, the data were restricted to a maximal zenith angle of100◦

and time periods when the spacecraft rocking angle exceeded
52◦ were excluded. To extract the source spectral information
we used the standard background models publicly available at
the FSSC website5. The background template separately mod-
els the Galactic diffuse emission and an isotropic diffuse emis-
sion, resulting from extragalactic isotropic emission andresidual
instrumental background. The normalization of these two tem-
plates were left free in the subsequent spectral fitting. Sources
from the 2FGL catalogue (Nolan et al. 2012) located within 15◦

of 1ES 1727+502 were incorporated in the model of the region
by setting their spectral models and the initial parametersfor the
modelling to those reported in the 2FGL catalogue. In the fit-
ting procedure the parameters of sources located within 10◦ ra-
dius centred on the source of interest were allowed to vary freely
while parameters of sources located within the 10◦-15◦ annulus
were fixed. The model of the region around the source was for-
ward folded with the post-launch instrument response functions
P7SOURCE V6 and an unbinned maximum likelihood analy-
sis was performed against the flight dataset between 300 MeV
– 300 GeV to derive the sources flux. The uncertainties here re-
ported in the LAT flux measurements are statistical only, sys-
tematic uncertainty in the LAT flux can be derived from the sys-
tematic uncertainty on the effective area which is estimated to be
10% at 100 MeV, 5% at 560 MeV and 10% at 10 GeV and above
(Abdo et al. 2009).
Since the source is not always significantly detected, flux upper
limits at 95% confidence level were calculated for each time bin
where the test statistic (TS, it is 2 times the difference of the
log(likelihood) with and without the source, see Mattox et al.
1996) value for the source was TS<4 or the number of predicted
photonsNpred < 3. The light curve, from August 5th, 2008 to
July 20th 2011, is presented in Fig. 4. Possible variations in the
source emission have been tested following the same likelihood
method described in the secondFermi catalogue (Nolan et al.
2012). The result here obtained are consistent with a constant
flux (TSvar=6 for 11 degrees of freedom), albeit a trend towards

5 http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.h
tml

4
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Observation date (MJD) Observation time [ks] Flux (2− 10 keV) [10−12 erg cm−2 s−1] photon index χ2
red(ndo f )

55291.69584 2181.82 8.9±0.6 2.1±0.1 1.28(30)
55291.96182 1457.44 7.6±0.7 2.3±0.1 0.62(21)
55317.53682 1689.39 6.2±0.8 2.2± 0.1 1.14(17)

Table 1. Results ofSwift/XRT observations: observation date in MJD, exposure time, integral flux in the energy range 2− 10 keV,
photon index of a simple power law fit function, reducedχ2 with the number of degrees of freedomndo f .
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Fig. 4. Light curve with a binning of three months of theFermi–
LAT data between 1 GeV and 300 GeV. The downward pointing
arrows correspond to a 95% upper limit. The vertical lines in-
dicate beginning and end of the MAGIC observing window in
2011. The emission is consistent with a constant flux, albeita
trend towards a higher flux in the last bin, partially coincident
with the MAGIC observations, is evident.

a higher flux in the last bin, partially coincident with the MAGIC
observations, is evident. We also present in Fig. 5 the spectrum
obtained from three months of observations centred around the
MAGIC observing period. Compared to the average flux, in the
energy range from 300 MeV to 300 GeV, measured in three years
of observations (3.5±0.5×10−9 ph cm−2s−1), the flux measured
in the three months around the MAGIC observations is higher
(7.2 ± 1.9 × 10−9 ph cm−2s−1), while the spectral indices are
similar (1.90±0.08 and 2.0±0.2 respectively). When performing
the fit for the light curve and SED bins, the spectral indices of
the sources were frozen to the best-fit values obtained from the
time-independent analysis.

3.4. Multiwavelength spectral energy distribution

The quasi-simultaneous multiwavelength data described inthe
previous section have been used for the compilation of the SED,
which has been modelled with a one-zone SSC model (Maraschi
& Tavecchio 2003). In this scenario, a blob of radiusR popu-
lated by relativistic electrons and filled with a tangled magnetic
field of intensityB, is moving down the jet with a Doppler fac-
tor δ. The electrons emit synchrotron radiation, producing the
low-energy peak in the SED. Theγ rays are produced by the
same electron population up-scattering the synchrotron photons,
resulting in the second peak in the SED.

The electron spectrum is assumed to be described byN(γ) =
Kγ−n1(1 + γ/γb)n1−n2. The parameter values that give a good
match between the SSC model and the SED data are: the Lorentz
factorsγmin = 100, γb = 3 × 104, γmax = 6 × 105; the slopes
n1 = 2, n2 = 3.5; and the electron densityK = 8 × 103 cm−3.
The parameters that describe the astrophysical environment are

Fig. 5. Multiwavelength spectral energy distribution fitted with
a one zone synchrotron Self Compton model (Maraschi &
Tavecchio 2003). MAGIC observations, (red butterfly) have
been corrected for the extragalactic background light absorp-
tion using the model of Domı́nguez et al. (2011). The data used
for the fit (red triangles) are: optical from KVA, archival UV
and optical fromSwift/UVOT, archival X-ray fromSwift/XRT,
HE γ rays from Fermi-LAT (triangles, three months centred
around the MAGIC observing period) and VHEγ rays from
MAGIC. We also show the 3 year LAT data (light blue tri-
angles) and archival data (grey) from the ASI/ASDC archive
(http://tools.asdc.asi.it/).

the magnetic fieldB = 0.1 G, the radiusR = 7× 1015 cm and the
Doppler factorδ = 15 of the emitting region. These values are
compatible with the values obtained with the sample analyzed in
Tavecchio et al. 2010.

4. Discussion

The HBL 1ES 1727+502 shows little variability in the optical
R-band, is bright in the X-ray band, has a hard spectrum in the
HE γ–ray band and, as shown in this paper, is visible in the
VHE γ–ray range. The discovery of this source as VHEγ-ray
emitter demonstrates the importance of combining data at differ-
ent wavelengths, namely radio, optical, X-ray, and the recently
openedFermi–LAT energy range, to help identify potential VHE
γ-ray emitters. The MAGIC detection indeed confirms the pre-
diction made by Costamante & Ghisellini (2002) and Donato et
al. (2001) more than ten years ago, using X-ray, optical and radio
data. Of the 33 sources in the list they compiled, 21 have been
already detected. They predicted a flux of 0.7 × 10−12 cm−2 s−1
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above 300 GeV and we observed a flux a factor of two higher
(1.6× 10−12 cm−2 s−1).

Furthermore it is also interesting to compare this result with
the excess seen in the stacked AGN sample observed by MAGIC
in mono mode (Aleksić et al. 2011). The spectral index mea-
sured for 1ES 1727+502 in the MAGIC energy range is compat-
ible with the average spectral index of the stacked AGN sample:
(2.7±0.5) compared to (3.2±0.5). Finally, when compared to the
sample of all blazars detected in VHEγ-rays, its spectral index
has the value of a typical BL Lac, while the flux is one of the
lower fluxes detected so far (Becerra et al. 2012; Becerra et al.
2013).

We have interpreted the emission with a single-zone SSC
model and find that the model parameters are compatible with
those obtained for other sources of the HBL class. We inves-
tigated the multiwavelength variability of the source. During
MAGIC observations the source was in a quiescent state in the
optical band, and theFermi–LAT data suggest (though not sig-
nificantly) a flux enhancement during our observations com-
pared to the three year averaged spectrum. We thus conclude
that a study of the variability of this source, complementedwith
simultaneous multiwavelength observations, should be thefocus
of future observations. It will indeed help us in understanding
not only the behaviour of this particularγ-ray emitter, but also
the general features characterizing the HBL class of blazars.
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8 University of Łódź, PL-90236 Lodz, Poland
9 Depto. de Astrofı́sica, Universidad de La Laguna, E-38206 La

Laguna, Spain
10 Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen,

Germany
11 ETH Zurich, CH-8093 Zurich, Switzerland
12 Universität Würzburg, D-97074 Würzburg, Germany
13 Centro de Investigaciones Energéticas, Medioambientales y
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