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Abstract 12 

Fungal ribotoxins are highly specific extracellular RNases which cleave a single 13 

phosphodiester bond at the ribosomal sarcin-ricin loop, inhibiting protein biosynthesis by 14 

interfering with elongation factors. Most ribotoxins show high degree of conservation, with 15 

similar sizes and amino acid sequence identities above 85%. Only two exceptions are 16 

known: Hirsutellin A and anisoplin, produced by the entomopathogenic fungi Hirsutella 17 

thompsonii and Metarhizium anisopliae, respectively. Both proteins are similar but smaller 18 

than the other known ribotoxins (130 vs 150 amino acids), displaying only about 25% 19 

sequence identity with them. They can be considered minimized natural versions of their 20 

larger counterparts, best represented by α-sarcin. The conserved α-sarcin active site residue 21 

Tyr48 has been replaced by the geometrically equivalent Asp, present in the minimized 22 

ribotoxins, to produce and characterize the corresponding mutant. As a control, the inverse 23 

anisoplin mutant (D43Y) has been also studied. The results show how the smaller versions 24 

of ribotoxins represent an optimum compromise among conformational freedom, stability, 25 

specificity, and active-site plasticity which allow these toxic proteins to accommodate the 26 

characteristic abilities of ribotoxins into a shorter amino acid sequence and more stable 27 

structure of intermediate size between that of other nontoxic fungal RNases and previously 28 

known larger ribotoxins 29 

Keywords: RNases; insecticidal; sarcin; hirsutellin; anisoplin 30 

Abbreviations: CD, circular dichroism; HtA, Hirsutellin A; PDB, Protein Data Bank; 31 

SEM, standard error of the mean; SRL, sarcin-ricin loop; WT, wild-type, Tm, melting 32 

temperature. 33 
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Fungal ribotoxins are a unique group of highly specific extracellular RNases [1, 2] initially 34 

discovered as antitumoral agents [3]. The toxicity of these ribotoxins relies on their ability 35 

to cleave a singular phosphodiester bond strategically located at a universally conserved 36 

sequence of the large rRNA [4], known as the sarcin-ricin loop (SRL). Therefore, 37 

ribosomes are their natural substrates. Cleavage of this single bond inhibits protein 38 

biosynthesis, interfering with the function of elongation factors [5-7] and leading to cell 39 

death by apoptosis [8]. Given the universal conservation of the SRL sequence, all known 40 

ribosomes are susceptible to ribotoxins action. However, these toxic RNases show different 41 

affinity against ribosomes from different origins and, above all, they first have to cross the 42 

plasmatic membrane to be able to cleave their substrate and exert their cytotoxic activity [9-43 

11]. This behavior explains why not all cells are equally targeted by these toxins. 44 

Intriguingly, they are especially active on transformed or virus-infected cells [3, 8, 12] due 45 

to an altered permeability of their membrane in combination with an enrichment in acidic 46 

phospholipids [8, 11, 13-15]. This feature has been lately related to the possibility of 47 

ribotoxins acting as natural insecticidal agents [16-18]. 48 

α-Sarcin, restrictocin, Aspf1, and hirsutellin A (HtA) are the most exhaustively 49 

characterized ribotoxins [10, 11, 19-26], but many others have been identified and partially 50 

characterized in different fungal species [27-35]. Most of them show a high degree of 51 

conservation, with similar sizes and amino acid sequence identities above 85% [1, 18, 33]. 52 

So far only two exceptions are known: HtA [23, 24, 32] and the recently discovered 53 

anisoplin [35], produced by the entomopathogenic fungi Hirsutella thompsonii and 54 

Metarhizium anisopliae, respectively. Both proteins are highly similar but smaller than the 55 

other known ribotoxins (130 residues vs 150), displaying only about 25% sequence identity 56 

with them [23, 24, 32, 35]. Therefore, they can be considered as minimized natural versions 57 

of their larger counterparts. This lower sequence identity and size do not however preclude 58 

the conservation of the elements of ordered secondary structure as well as the identity and 59 

geometric arrangement of the residues configuring the active site (Figure 1). This structural 60 

conservation can be even extended to the other non-toxic members of the larger fungal 61 

extracellular RNases family, such as RNase T1 and RNase U2, for example [36, 37]. In 62 

fact, comparison of all these RNases three-dimensional structures reveals the strict 63 

conservation of the active site residues forming their catalytic triad, His50, Glu96, and 64 

His137 in α-sarcin [38], for example, as well as the preservation of a highly hydrophobic 65 

residue at the position corresponding to α-sarcin’s Leu145 [39] (Figure 1). On the other 66 

hand, the presence of an Asp residue in HtA [40] and anisoplin [35] in a position equivalent 67 

to α-sarcin Tyr48 [41] must be highlighted as a novelty in the active site of this family of 68 

toxic RNases (Figure 1). This is a quite intriguing observation in the context that 69 

substitution of this Tyr48 by Phe rendered a α-sarcin variant which was catalytically 70 

incompetent, unable to inactivate the ribosome [41]. Interestingly, studies with HtA 71 

mutants D40N and D40N/E66Q demonstrated an important role for Asp40 in the activity of 72 
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HtA in establishing a new set of electrostatic interactions different from the one described 73 

for the already known larger ribotoxins [40]. 74 

In the work herein presented α-sarcin Tyr 48 has been replaced by an Asp residue to 75 

produce and characterize the corresponding Y48D mutant. As a control, the corresponding 76 

inverse anisoplin mutant (D43Y) has been also studied. The results shown reveal the key 77 

role of these residues not only in maintaining the correct electrostatic environment and 78 

active site plasticity in each type of ribotoxins but also in the preservation of their 79 

characteristic high thermostability. 80 

MATERIALS AND METHODS 81 

Mutant cDNA construction 82 

All materials and reagents were of molecular biology grade. Cloning procedures, PCR-83 

based oligonucleotide site-directed mutagenesis, and bacterial manipulations were carried 84 

out as previously described [11, 16, 41-43]. Mutagenesis constructions were performed 85 

using different sets of complementary mutagenic primers (Table S1). Mutations were 86 

confirmed by DNA sequencing at the corresponding Complutense University facility. The 87 

plasmids used as templates for mutagenesis, containing the cDNA sequence of either wild-88 

type α-sarcin or anisoplin, have already been described [35, 38, 42]. 89 

Protein production and purification 90 

Escherichia coli RB791 or BL21 (DE3) cells, the latter ones being previously 91 

cotransformed with a thioredoxin-producing plasmid (pT-Trx), and the corresponding wild-92 

type or mutant plasmids were used to produce and purify all proteins from the periplasmic 93 

soluble fraction, as previously described [35, 38, 42, 44-46]. The only exception was fungal 94 

wild-type α-sarcin which was isolated from Aspergillus giganteus MDH18894, its natural 95 

source, following the procedure reported before [11]. SDS-PAGE of proteins, Western 96 

blots, protein hydrolysis, and amino acid analysis were performed according to standard 97 

procedures, also as previously described [11, 42]. All four proteins studied were purified to 98 

homogeneity according to their SDS-PAGE behavior and amino acid analysis. 99 

Spectroscopic characterization 100 

Spectroscopic characterization was performed following well established procedures [11, 101 

22, 38, 41, 44, 47-51]. Absorbance measurements were carried out on a Shimadzu UV-102 

1800 at 200 nm/min scanning speed and room temperature. Amino acid analyses and the 103 

corresponding UV absorbance spectra were also used to calculate their extinction 104 

coefficients (Table 1). Circular dichroism (CD) spectra were obtained in a Jasco 715 105 

spectropolarimeter (Jasco, Easton, MD, USA), equipped with a thermostated cell holder 106 

and a Neslab-111 circulating water bath, at 50 nm/min scanning speed. Thermal 107 

denaturation profiles were recorded by measuring the temperature dependence of the 108 
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ellipticity at 220 nm in the 25 – 80ºC range using a rate of temperature increment of 30ºC 109 

per hour. Fluorescence emission spectra were recorded on an SLM Aminco 8000 110 

spectrofluorimeter at 25ºC using a slit width of 4 nm for both excitation and emission 111 

beams. The spectra were recorded for excitation at 275 and 295 nm and both were 112 

normalized by considering that Tyr emission above 380 nm is negligible. The Tyr 113 

contribution was calculated as the difference between the two normalized spectra. 114 

Thermostated cells with a path length of 0.2 and 1.0 cm for the excitation and emission 115 

beams, respectively, were used. All these experiments were performed in 50 mM sodium 116 

phosphate, pH 7.0. 117 

Ribonucleolytic activity assays 118 

The ribonucleolytic activity of ribotoxins on rabbit ribosomes was followed by detecting 119 

the release of a specific 400-nt rRNA fragment, known as the α-fragment, from the 120 

ribosomes of a cell-free rabbit reticulocyte lysate (Promega) as described [7, 21, 43, 52]. 121 

Visualization of this α-fragment was performed by ethidium bromide staining of 2.0% 122 

agarose gels after electrophoretic fractionation of the samples using denaturing conditions. 123 

The protein concentration needed to produce 50% of cleavage of the 28S rRNA (IC50 124 

value) was determined to evaluate proteins’ specific ribonucleolytic activity. 125 

The specific cleavage by ribotoxins of a 35-mer synthetic oligonucleotide 126 

mimicking the sequence and structure of the SRL was also analyzed as described before [7, 127 

43, 53]. The sequence of this oligo was 5’-128 

GGGAAUCCUGCUCAGUACGAGAGGAACCGCAGGUU -3’, where the cleavage site 129 

by α-sarcin appears underlined. Synthesis of this SRL-like RNA oligo was performed as 130 

previously described [7, 21]. Reaction products were run on a denaturing 19% (w/v) 131 

polyacrylamide gel and visualized by ethidium bromide staining. 132 

RESULTS 133 

Spectroscopic characterization 134 

Far-UV CD spectra of wild-type α-sarcin and the corresponding Y48D mutant showed 135 

some differences but were still similar enough as to consider that both proteins displayed a 136 

practically identical overall globular fold (Figure 2). Analysis using different software or 137 

online tools has been proven to be not very useful in the particular case of ribotoxins given 138 

their small size, their high degree of β-sheet content and, above all, the highly unusual 139 

contribution of aromatic side-chains within this wavelength range [50, 54-56]. However, 140 

the observed differences can be explained by minor local changes attributable to the 141 

proximity of Trp51, an amino acid residue showing a non-negligible contribution in the far-142 

UV wavelength region due to its involvement in a cation-π interaction with the ring of 143 

His82 (Figure 3) [43, 50]. This interaction would be disturbed in the Y48D mutant. In 144 

agreement with this hypothesis, Trp emission (Figure 4) was also shown to be more 145 
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heterogeneous, blue-shifted, and four-fold enhanced in the Y48D mutant (Table 1), as 146 

expected from an increased hydrophobic microenvironment around the side-chain of Trp51, 147 

upon disappearance of the mentioned cation-π interaction. In accordance with this 148 

observation, and with the reported existence of tyrosine to Trp51 non-radiative energy 149 

transfer in the wild-type protein [50], Tyr emission was also two-fold higher in the Y48D 150 

mutant (Figure 4, Table 1), in spite of being a protein species with one Tyr residue less. 151 

A similar situation took place when examining the far-UV CD features of wild-type 152 

anisoplin and its D43Y variant; however differences were larger (Figure 2). The spectrum 153 

of the wild-type protein corresponds to a protein with a high content of β-sheet, non-154 

ordered structures and aromatic amino acid residues [26, 35, 55, 57], and the observed 155 

changes can be attributed to the local contribution of the introduction of the new Tyr 156 

residue within the active site of the protein (Figure 2). A global conformational change 157 

cannot be however dismissed. Analysis of the fluorescence emission of wild-type anisoplin 158 

upon excitation at 275 nm revealed the existence of a contribution centered at 320 nm 159 

(Figure 5) which should not be attributable to Tyr residues because they barely emit around 160 

this wavelength. This emission would rather be an indication of the already reported 161 

different microenvironment surrounding anisoplin Trp residues [35]. This emission 162 

disappears in the D43Y mutant, together with the appearance of a 4 nm red-shift of the Trp 163 

spectra (from 333 to 337 nm, Figure 5). This set of results, including the far-UV CD 164 

spectra, is therefore consistent with a relaxation of anisoplin conformational global fold 165 

which exposes Trp side-chains to a less apolar environment. On the other hand Tyr 166 

emission remains practically undetectable in spite of the introduction of a new Tyr residue 167 

in this mutant. 168 

Thermostability of both mutants 169 

All four proteins studied showed thermograms compatible with the existence of a well-170 

defined two-state thermal transition, confirming the adoption of a folded conformation 171 

(Figure S1). Both wild-type α-sarcin and anisoplin are thermostable proteins with Tm values 172 

of 52 [48, 54] and 61ºC [16], respectively (Table 1). Introduction of the Asp residue within 173 

the α-sarcin active-site resulted in a dramatic reduction of the Tm value to 39ºC (Table 1). 174 

Accordingly, the production yield of this mutant increased 15-fold when the E. coli cells 175 

harboring the corresponding plasmid were grown at 25ºC instead of the standard 176 

temperature of 37ºC (Table 1). This argument does not however justify the low yield 177 

obtained for wild-type anisoplin (Table 1) which is not easy to explain given the present 178 

knowledge in the ribotoxins’ field. It can be speculated that, in comparison to α-sarcin, 179 

wild-type anisoplin would be more effective against prokaryotic than mammalian 180 

ribosomes. This feature would be probably lost in the D43Y mutant after the introduction 181 

of the Tyr residue within its active site (Table 1). Interestingly, this reverse mutation in 182 

anisoplin introduced a dramatic stabilization of the protein, with a Tm value 14ºC higher 183 

than the wild-type protein (Table 1). In agreement with this observation, the fluorescence 184 
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emission spectra of this mutant in the presence or the absence of 6 M urea were practically 185 

indistinguishable (Figure 7) suggesting that the protein is still folded in the presence of high 186 

concentrations of this denaturing agent. 187 

Functional characterization 188 

Ribotoxins are highly specific RNases against intact ribosomes, and they retain this 189 

specificity when assayed against naked rRNA containing the SRL [1, 11, 21]. Therefore, 190 

two different types of specific enzymatic assays are usually performed to measure their 191 

enzymatic activity. The first, and most specific, is one that uses ribosomes within a rabbit 192 

cell-free reticulocyte lysate [21]. Their highly specific cleavage can be then visualized by 193 

detecting the release of a 400-nucleotide long rRNA fragment (the α-fragment) on a 194 

denaturing agarose gel stained with ethidium bromide. The second assay frequently used is 195 

based on the employment of short oligoribonucleotides mimicking the SRL sequence and 196 

structure. Ribotoxins cleave specifically these SRL-like oligos, producing only two smaller 197 

fragments which can be fractionated on a polyacrylamide gel [21, 58]. This cleavage is still 198 

specific but several orders of magnitude less efficient than that produced on intact 199 

ribosomes because it lacks important recognition determinants which are present at the 200 

intact full ribosomes [20, 48, 49, 59-61]. 201 

As thoroughly described before [1, 38, 42, 44, 51], wild-type α-sarcin was fully competent 202 

against rabbit ribosomes showing an IC50 value of about 80 nM (Fig. 6). On the other hand, 203 

α-sarcin Y48D was completely inactive by both criteria (Figure 6). This observation is in 204 

agreement with previous studies where the removal of the hydroxyl group in the phenol 205 

ring of Tyr48 rendered a catalytically inactive protein [41]. Tyr48 appears to be an essential 206 

residue of α-sarcin’s active site. On the other hand, wild-type anisoplin showed less activity 207 

than α-sarcin when assayed against intact ribosomes (IC50 = 930 nM), as described before 208 

[35], whereas the D43Y mutant was at least as active (IC50 = 440 nM) as its wild-type 209 

counterpart (Figure 7). However, this mutant also remained completely inactive when 210 

assayed against the SRL-like oligomer (Figure 7), a substrate which lacks many of the 211 

recognition regions needed for the specific catalytic action of ribotoxins. 212 

DISCUSSION 213 

The ribotoxins family has been thoroughly characterized over the past decades, focused 214 

especially in α-sarcin and restrictocin, which are structurally very similar to non-toxic 215 

ribonucleases (Figure 1). The discovery of smaller versions of these toxins, like HtA and 216 

anisoplin, has prompted a change in the idea that all ribotoxins share a highly similar 217 

structure. These "minimized" versions show identical specificity towards their substrate, the 218 

SRL at the ribosome, but they share little amino-acid identity and have lost some structural 219 

arrangements when compared to "canonical" ribotoxins like α-sarcin. In order to 220 

understand these changes and how they may affect the functionality of ribotoxins, we have 221 
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produced different variants of α-sarcin and anisoplin where a key residue has been 222 

interchanged. Particularly, Tyr48 in α-sarcin, which is essential for the catalytic activity of 223 

α-sarcin [41] has been substituted for Asp, present in the smaller ribotoxins HtA and 224 

anisoplin. Moreover, anisoplin Asp 3 has been also replaced for Tyr, to mimic α-sarcin 225 

Tyr48. According to previous data, the native conformation of α-sarcin is preserved upon 226 

conservative changes like the Y48F mutation [41]. In this new study the changes introduced 227 

are more dramatic, involving charge changes that most likely will disturb the local 228 

electrostatic arrangement, which is critical for the activity of the proteins studied [62-64]. 229 

It has been reported how substitution of α-sarcin Trp51 by Phe results in 230 

pronounced changes in the far-UV CD spectrum of the protein [50], highly resembling the 231 

spectrum obtained now for the Y48D mutant (Figure 2A). This is explained because α-232 

sarcin Trp51 displays a non-negligible contribution in the far-UV wavelength region due to 233 

its involvement in a cation-π interaction with the ring of His82 (Figure 3) [43, 50]. As a 234 

consequence of this interaction, Trp51 fluorescence emission is also practically 235 

undetectable in the wild-type protein [50]. The far-UV CD spectrum of the Y48D α-sarcin 236 

mutant suggests that this interaction is disturbed. In agreement with this hypothesis, Trp 237 

emission was more heterogeneous (Figure 4) and four-fold enhanced in the Y48D mutant 238 

(Table 1), suggesting that the disappearance of the cation-π interaction would increase the 239 

hydrophobicity of the microenvironment around the side-chain of Trp51. This 240 

interpretation agrees with a very similar observation, reported before, for another mutant 241 

where His82 was the residue replaced (by Gln) making impossible the establishment of the 242 

mentioned cation-π interaction [43]. Therefore, the far-UV CD small differences and Trp 243 

emission changes observed can be explained by the local perturbation produced by the 244 

removal of an aromatic moiety (Tyr48) in the spatial proximity of Trp51 (Figure 3) together 245 

with the introduction of an additional negative charge. 246 

The spectroscopic characterization of α-sarcin Y48D also revealed a 2-fold increase 247 

in the Tyr emission (Figure 4, Table 1). In the wild-type protein, Tyr48 fluorescence 248 

emission is completely quenched, and there is a Tyr to Trp51 non-radiative energy transfer 249 

[41, 50]. By substituting Tyr for Asp the local configuration of Trp51 is altered, impeding 250 

the energy transfer and therefore, increasing the fluorescence emission. 251 

Detailed analysis of the spectroscopic features of the other mutant protein studied, 252 

anisoplin D43Y, leads to different conclusions. First of all, the fluorescence emission of the 253 

5 Tyr residues is barely detected, even in the wild-type protein (Figure 5). This emission 254 

still goes undetected after the mutation, even though the change performed introduces a 255 

new Tyr residue. On the other hand, the Trp population becomes more homogeneous and 256 

solvent-exposed, at least in terms of their fluorescence emission behavior, as shown by the 257 

red-shift in the spectrum (Figure 5). The far-UV CD changes observed (Figure 2) also point 258 

towards this direction. The small size of the protein, altogether with its high content in β-259 

sheet structure and non-ordered loops, results in a spectrum which is highly susceptible to 260 
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changes in the environment of its quite abundant Trp residues (Table 1). Overall, the results 261 

obtained from the spectroscopic characterization of anisoplin D43Y suggest the induction 262 

of local changes within the active site of the protein, as shown for the α-sarcin mutant, but 263 

also a relaxation of the global protein fold which results in the mentioned homogenization 264 

of the Trp residues microenvironment. 265 

Replacement of Tyr48 by the negatively charged side-chain of an Asp residue 266 

seems to strongly destabilize α-sarcin. In α-sarcin, Glu140 displays unusual backbone 267 

torsional angles forming a salt bridge with Lys11 in the N-terminal β-hairpin (Figure 8) 268 

[63]. This interaction, together with a well-defined network of hydrogen bonds, helps to 269 

maintain the orientation of loop 5 [38, 51] and defines the required optimum hydrophobic 270 

environment for enzymatic activity. Furthermore, His50, another key residue for activity 271 

[38], also appears in the spatial vicinity of the mutated residue (Figure 3), whereas the 272 

network of interactions involving Tyr106, Lys114 and Y48 is also essential for catalysis 273 

(Figure 8) [43]. These interactions would be disrupted in the Y48D mutant. It appears that 274 

the presence of an aromatic residue (Y48) within the active center would be critical for 275 

maintaining the local interactions that render a high thermostable and specific RNase. This 276 

idea is supported by the functional studies, which show that the α-sarcin Y48D mutant 277 

completely loses its activity against rRNA specific substrates, such as ribosomes or a SRL-278 

like oligomer (Figure 6). 279 

A very different picture emerges, however, when a minimized ribotoxin such as 280 

anisoplin is studied. Replacement of Asp43 by Tyr yielded an extremely heat resistant 281 

variant (Table 1), which agrees with the loss of thermostability of α-sarcin Y48D mutant. 282 

This extremely resistant protein did not display any ribonucleolytic activity when assayed 283 

against the specific naked rRNA represented by the SRL-like substrate (Figure 7). This Asp 284 

43 residue must be very important in an additional set of interactions that only appears in 285 

minimized ribotoxins, just as suggested before for HtA while characterizing different 286 

mutations of this Asp (D40N, D40N/E66Q) [40]. On the other hand, the now studied 287 

anisoplin D43Y mutant was fully active when assayed against intact ribosomes, suggesting 288 

that the conservation of not yet determined interactions other than those ones involved in 289 

the specific recognition of the SRL sequence seem to be extremely important for substrate 290 

recognition. This set of results further supports the proposal that the active site of these 291 

minimized ribotoxins such as anisoplin or HtA would show a higher degree of plasticity 292 

than their known larger counterparts [16], being able to accommodate electrostatic and 293 

structural changes not suitable for the other previously characterized larger ribotoxins. 294 

Ribotoxins are considered natural engineered proteins evolved from the non-toxic 295 

ribonucleases [65]. The newly characterized "minimized" ribotoxins, like HtA or anisoplin, 296 

represent a compromise among conformational freedom, stability, specificity and active site 297 

plasticity that allows these proteins to accommodate the characteristic abilities of ribotoxins 298 

into a shorter amino acid sequence. These smaller versions of ribotoxins may present new 299 
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and yet unexplored structural arrangements, being our study one of the first in this 300 

direction. 301 
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Table 1. Purification yield, expressed as milligrams of protein isolated per one liter of 531 

original culture grown at 37ºC, and spectroscopic parameters of the wild-type and mutant 532 

proteins studied. Relative fluorescence emission yields (QTrp and QTyr) are referred to the 533 

values of the wild-type proteins. Tm values are also shown. 534 

Protein 
Purification 

yielda) 
E0.1% b) Number 

of Tyr 
Number 
of Trp QTrp  QTyr  Tm (ºC) 

α-Sarcin 
WT 

7.0 1.34 8 2 1.00 1.00 52 

α-Sarcin 
Y48D 

0.1c) 1.24 7 2 4.08 2.35 39 

Anisoplin 
WT 

0.5 1.62 5 3 1.00 - 61 

Anisoplin 
D43Y 

6.2 1.44 6 3 0.92 - 75 

a) Expressed as mg per liter of original bacterial culture. 535 

b)E0.1% (280 nm, 1.0 cm). 536 

c)This yield increased to 1.5 mg when cells were grown at 25ºC in accordance with the 537 

highly diminished Tm value of this mutant. 538 
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 540 

Figure 1: Representation of the three-dimensional structure and active center 541 

geometric arrangement of representative fungal RNases. (A) Diagrams showing the 542 

three-dimensional structure of ribotoxins α-sarcin (PDB ID: 1DE3) [63] and HtA (PDB ID: 543 

2KAA) [26], and two non-toxic fungal extracellular RNases from the same family: RNases 544 

T1 (9RNT) [36, 66] and U2 (1RTU) [37, 67, 68]. (B) Geometric arrangement of the active 545 

site residues of these same four RNases. The catalytic triad made of two His and one Glu 546 

residues is conserved in all proteins shown while a fourth residue, the equivalent to α-sarcin 547 

Leu145, maintains its highly hydrophobic character (Phe or Leu). The position 548 

corresponding to α-sarcin Tyr48 is also conserved except for HtA and anisoplin (not 549 

shown) where the equivalent position is occupied by an Asp residue (D40, in red). 550 

Diagrams were generated using the PyMol software [69]. 551 
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 553 

Figure 2. Far-UV CD spectra of the ribotoxins studied. Wild-type α-sarcin (A) and 554 

anisoplin (B) ribotoxins (black lines) and their corresponding Y48D (A) and D43Y (B) 555 

mutant variants (blue lines). Results are shown as mean residue weight ellipticity ([θ]MRW) 556 

values expressed in units of degree x cm2 x dmol-1. 557 
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 559 

Figure 3. Diagram showing the relative spatial positions of Tyr48, His50, Trp51, and 560 

His82 residues in α-sarcin. There is a cation-π interaction between Trp51 and His82 [50, 561 

62, 63]. Diagram was generated using the PyMol software [69] and the corresponding PDB 562 

coordinates (PDB ID: 1DE3). 563 
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 565 

Figure 4. Fluorescence emission spectra of wild-type α-sarcin and its Y48D mutant. 566 

All spectra were recorded at identical protein concentrations. Spectra were recorded at 567 

excitation wavelengths of 275 nm (continuous black line) and 295 nm (continuous blue 568 

line). These two spectra were normalized at wavelengths above 380 nm to obtain the 569 

Tryptophan contribution (dashed red line). Tyrosine contribution (dashed green line) was 570 

calculated by subtracting the Trp only contribution (dashed red line) from that spectrum 571 

obtained after excitation at 275 nm (continuous black line). Fluorescence emission units 572 

were arbitrary, and referred to the maximum value of wild-type α-sarcin upon excitation at 573 

275 nm. The positions of the two maxima corresponding to both spectra of the wild-type 574 

and Y48D proteins upon excitation at 295 nm are indicated with a vertical black line. 575 

  576 
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 577 

 578 

Figure 5. Fluorescence emission spectra of wild-type anisoplin and its D43Y mutant. 579 

(Upper panel) All spectra were recorded at identical protein concentrations. Spectra were 580 

recorded at excitation wavelengths of 275 nm (continuous black line) and 295 nm 581 

(continuous blue line). These two spectra were normalized at wavelengths above 380 nm to 582 

obtain the Tryptophan contribution (dashed red line). Tyrosine contribution (dashed green 583 

line) was calculated by subtracting the Trp only contribution (dashed red line) from that 584 

spectrum obtained after excitation at 275 nm (continuous black line). Fluorescence 585 

emission units were arbitrary, and referred to the maximum value of wild-type α-sarcin 586 

upon excitation at 275 nm. The positions of the two maxima corresponding to both spectra 587 

of the wild-type and D43Y proteins upon excitation at 295 nm are indicated with a vertical 588 

black line. (Lower panel) Fluorescence emission spectra of the anisoplin D43Y mutant, 589 

upon excitation at 275 nm, in the absence (black line) or in the presence of 6 M urea (red 590 

line).  591 
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 592 

Figure 6. Specific ribonucleolytic activity of wild-type α-sarcin and its Y48D mutant. 593 

(Upper panel) Ribosome cleaving activity assay performed using a rabbit cell-free 594 

reticulocytes lysate. A control in the absence of enzyme is also shown (C-). Protein 595 

concentrations shown are 20, 50, and 100 nM. The highly specific ribonucleolytic activity 596 

of the ribotoxins is shown by the release of the 400-nt α-fragment (α) from the 28S rRNA 597 

of eukaryotic ribosomes. Positions of bands corresponding to 28S, 18S, and 5S rRNA are 598 

also indicated. The graph shows the quantitation of two independent experiments with error 599 

bars representing ±SEM values. (Lower panel) Activity assay on a 35-mer oligonucleotide 600 

mimicking the SRL. A control in the absence of enzyme is also shown (C-). Protein 601 

concentrations shown are 100, 200, and 500 nM. The 21-mer and 14-mer oligonucleotides 602 

resulting from the specific cleavage of a single phosphodiester bond, as well as the intact 603 

35-mer oligo are indicated.  604 
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 605 

Figure 7. Specific ribonucleolytic activity of wild-type anisoplin and its D43Y mutant. 606 

(Upper panel) Ribosome cleaving activity assay performed using a rabbit cell-free 607 

reticulocytes lysate. A control in the absence of enzyme is also shown (C-). Protein 608 

concentrations shown are 2.5, 25, and 250 nM. The highly specific ribonucleolytic activity 609 

of the ribotoxins is shown by the release of the 400-nt α-fragment (α) from the 28S rRNA 610 

of eukaryotic ribosomes. Positions of bands corresponding to 28S, 18S, and 5S rRNA are 611 

also indicated. The graph shows the quantitation of two independent experiments with error 612 

bars representing ±SEM values. (Lower panel) Activity assay on a 35-mer oligonucleotide 613 

mimicking the SRL. A control in the absence of enzyme is also shown (C-). Protein 614 

concentrations shown are 10, 50, and 250 nM. The 21-mer and 14-mer oligonucleotides 615 

resulting from the specific cleavage of a single phosphodiester bond, as well as the intact 616 

35-mer oligo are indicated.  617 
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Figure 8. Diagrams showing the relative spatial positions of different amino acid 619 

residues in α-sarcin: (A) Lys11, Glu140, and His137; (B) Tyr48, Tyr106 and Lys114. 620 

Diagrams were generated using the PyMol software [69] and the corresponding PDB 621 

coordinates (PDB ID: 1DE3). 622 
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