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Abstract

Multiple orthogonality is considered in the realm of a Gauss–Borel factorization problem for a semi-infinite
moment matrix. Perfect combinations of weights and a finite Borel measure are constructed in terms of M-Nikishin
systems. These perfect combinations ensure that the problem of mixed multiple orthogonality has a unique solution,
that can be obtained from the solution of a Gauss–Borel factorization problem for a semi-infinite matrix, which
plays the role of a moment matrix. This leads to sequences of multiple orthogonal polynomials, their duals and
second kind functions. It also gives the corresponding linear forms that are bi-orthogonal to the dual linear forms.
Expressions for these objects in terms of determinants from the moment matrix are given, recursion relations are
found, which imply a multi-diagonal Jacobi type matrix with snake shape, and results like the ABC theorem or
the Christoffel–Darboux formula are re-derived in this context (using the factorization problem and the generalized
Hankel symmetry of the moment matrix). The connection between this description of multiple orthogonality
and the multi-component 2D Toda hierarchy, which can be also understood and studied through a Gauss–Borel
factorization problem, is discussed. Deformations of the weights, natural for M-Nikishin systems, are considered
and the correspondence with solutions to the integrable hierarchy, represented as a collection of Lax equations,
is explored. Corresponding Lax and Zakharov–Shabat matrices as well as wave functions and their adjoints are
determined. The construction of discrete flows is discussed in terms of Miwa transformations which involve Darboux
transformations for the multiple orthogonality conditions. The bilinear equations are derived and the τ -function
representation of the multiple orthogonality is given.
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1 Introduction

The topic of multiple orthogonality of polynomials is very close to that of simultaneous rational approximation (si-
multaneous Padé aproximants) of systems of Cauchy transforms of measures. The history of simultaneous rational
approximation starts in 1873 with the well known article [22] in which Ch. Hermite proved the transcendence of the
Euler number e. Later, around the years 1934-35, K. Mahler delivered at the University of Groningen several lectures
[27] where he settled down the foundations of this theory. Meanwhile, two of Malher’s students, J. Coates and H. Jager,
made important contributions in this respect (see [13] and [23]). In the case of Cauchy transforms, the simultaneous
rational approximation definition may be written in terms of multiple orthogonality of polynomials as follows. Given
an interval ∆ ⊂ R of the real line, let M(∆) denote all the finite Borel measures which have support, supp(·) with
infinitely many points in ∆, where they do not change sign. Fix µ ∈ M(∆), and let us consider a system of weights
~w = (w1, . . . , wp) on ∆, with p ∈ N. (In this paper a“weight” on an interval ∆ is meant to be a real integrable function
defined on ∆ which does not change its sign on ∆.) Fix a multi-index ~ν = (ν1, . . . , νp) ∈ Zp+, Z+ = {0, 1, 2, . . .}, and
denote |~ν| = ν1 + · · · + νp. There exist polynomials, A1, . . . , Ap, not all identically equal to zero which satisfy the
following orthogonality relations∫

∆

xj
p∑
a=1

Aa(x)wa(x)dµ(x) = 0, degAa ≤ νa − 1, j = 0, . . . , |~ν| − 2. (1)

Analogously, there exists a polynomial B not identically equal to zero, such that∫
∆

xjB(x)wb(x)dµ(x) = 0, degB ≤ |~ν|, j = 0, . . . , νb − 1, b = 1, . . . , p. (2)
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The resulting polynomials are said to be of type I and type II, respectively, with respect to the combination (µ, ~w, ~ν)
of the measure µ, the systems of weights ~w and the multi-index ~ν. When p = 1 both definitions coincide with that of
the standard orthogonal polynomials on the real line. The existence of a system of polynomials (A1, . . . , Ap) and a
polynomial B defined from (1) and (2) respectively, are ensured because in both cases finding the coefficients of the
polynomials is equivalent to solving a system of |~ν| linear homogeneous equations with |~ν| + 1 unknown coefficients.
From the theory of orthogonal polynomials we know that when p = 1 each polynomial A1 ≡ B has exactly degree |~ν| =
ν1; unfortunately if p > 1 that is not true in general. For instance, let us take a system of weights ~w = (w1, w1, . . . , w1),
in this case the solution vector space has dimension bigger than one, and we can find two solutions which are linearly
independent. Hence, there is at least an a ∈ {1, . . . , p} such that degAa < νa − 1 and degB < |~ν|. Given a measure
µ ∈M(∆) and a system of weights ~w on ∆ a multi-index ~ν is called type I or type II normal if degAa must equal to
νa − 1, a = 1, . . . , p, or degB must equal to |~ν| − 1, respectively. When for a pair (µ, ~w) all the multi-indices are type
I or type II normal, then the pair is called type I perfect or type II perfect, respectively. The concepts of normality
and perfectness were introduced by Malher (see Malher’s, Coates’ and Jager’s articles cited above).

Multiple orthogonal of polynomials have been employed in several proofs of irrationality of numbers. For example,
in [10], F. Beukers shows that Apery’s proof (see [8]) of the irrationality of ζ(3) can be placed in the context of
a combination of type I and type II multiple orthogonality, which is called mixed type multiple orthogonality of
polynomials. More recently, mixed type approximation has appeared in random matrix and non-intersecting Brownian
motion theories (see, for example, [11], [14] and [25]). A formalization of this kind of orthogonality was initiated by
V. N. Sorokin [36]. He studied a simultaneous rational approximation construction which is closely connected with
multiple orthogonal polynomials of mixed type. Surprisingly, in [21] a Riemann–Hilbert problem was found for the
theory of orthogonal polynomials, and later [39] this result was largely extended to type I and II multiple orthogonality.
In [14] mixed type multiple orthogonality was analyzed from this perspective.

In order to introduce multiple orthogonal polynomials of mixed type we need two systems of weights ~w1 =
(w1,1, . . . , w1,p1) and ~w2 = (w2,1, . . . , w2,p2) where p1, p2 ∈ N, (as we said a set of functions which do not change
their sign in ∆), and two multi-indices ~ν1 = (ν1,1, . . . , ν1,p1) ∈ Zp1

+ and ~ν2 = (ν2,1, . . . , ν2,p2) ∈ Zp2

+ with |~ν1| = |~ν2|+ 1.
There exist polynomials A1, . . . , Ap1

, not all identically zero, such that degAs < ν1,s which satisfy the following
relations ∫

∆

p1∑
a=1

Aa(x)w1,a(x)w2,b(x)xjdµ(x) = 0, j = 0, . . . , ν2,b − 1, b = 1, . . . , p2. (3)

They are called mixed multiple-orthogonal polynomials with respect to the combination (µ, ~w1, ~w2, ~ν1, ~ν2) of the
measure µ, the systems of weights ~w1 and ~w2 and the multi-indices ~ν1 and ~ν2. It is easy to show that finding the
polynomials A1, . . . , Ap1 is equivalent to solving a system of |~ν2| homogeneous linear equations for the |~ν1| unknown
coefficients of the polynomials. Since |~ν1| = |~ν2| + 1 the system always has a nontrivial solution. The matrix of
this system of equations is the so called moment matrix, and the study of its Gauss–Borel factorization will be the
cornerstone of this paper. Observe that when p1 = 1 we are in the type II case and if p2 = 1 in type I case. Hence
in general we can find a solution of (3) where there is an a ∈ {1, . . . , p1} such that degAa < ν1,a − 1. When given a
combination (µ, ~w1, ~w2) of a measure µ ∈ M(∆) and systems of weights ~w1 and ~w2 on ∆ if for each pair of multi-
indices (~ν1, ~ν2) the conditions (3) determine that degAa = ν1,a − 1, a = 1, . . . , p1, then we say that the combination
(µ, ~w1, ~w2) is perfect. The concept of perfectness will be rigorously introduced in Definition 2.

The seminal paper of M. Sato [33], and further developments performed by the Kyoto school through the use of
the bilinear equation and the τ -function formalism [16]-[18], settled the basis for the Lie group theoretical description
of integrable hierarchies, in this direction we have the relevant contribution by M. Mulase [30] in which the factor-
ization problems, dressing procedure, and linear systems were the key for integrability. In this dressing setting the
multicomponent integrable hierarchies of Toda type were analyzed in depth by K. Ueno and T. Takasaki [37]. See
also the papers [9] and [24] on the multi-component KP hierarchy and [28] on the multi-component Toda lattice
hierarchy. In a series of papers M. Adler and P. van Moerbeke showed how the Gauss–Borel factorization problem
appears in the theory of the 2D Toda hierarchy and what they called the discrete KP hierarchy [1]-[5]. In these
papers it becomes clear –from a group-theoretical setup– why standard orthogonality of polynomials and integrability
of nonlinear equations of Toda type where so close. In fact, the Gauss–Borel factorization of the moment matrix
may be understood as the Gauss–Borel factorization of the initial condition for the integrable hierarchy. To see the
connection between the work of Mulase and that of Adler and van Moerbeke see [19]. Later on, in the recent paper
[6], it is shown that the multiple orthogonal construction described in previous paragraphs was linked with the multi-
component KP hierarchy. In fact, for a given set of weights (~w1, ~w2) and degrees (~ν1, ~ν2) the authors constructed a
finite matrix that plays the role of the moment matrix and, using the Riemann-Hilbert problem of [14], where able to
show that determinants constructed from the moment matrix were τ -functions solving the bilinear equation for the
multi-component KP hierarchy. However, there is no mention in that paper to any Gauss–Borel factorization in spite
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of being the multicomponent integrable hierarchies connected with different factorization problems of these type. For
further developments on the Gauss–Borel factorization and multi-component 2D Toda hierarchy see [7] and [29].

This motivated our initial research in relation with this paper; i.e., the construction of an appropriate Gauss–
Borel factorization in the group of semi-infinite matrices leading to multiple orthogonality and integrability in a
simultaneous manner. The main advantage of this approach lies in the application of different techniques based on the
factorization problem used frequently in the theory of integrable systems. The key finding of this paper is, therefore,
the characterization of a semi-infinite moment matrix whose Gauss–Borel factorization leads directly to multiple
orthogonality. This makes sense when factorization can be performed, which is the case for perfect combinations
(µ, ~w1, ~w2), which allows us to consider some sets of multiple orthogonal polynomials (called ladders) very much
in the same manner as in the (non multiple) orthogonal polynomial setting. The Gauss–Borel factorization of this
moment matrix leads, when one takes into account the Hankel type symmetry of the moment matrix, to results like:
1. Recursion relations, 2. ABC theorems and 3. Christoffel–Darboux formulas. The first two are new results while
the third is not new, as it was derived from the Riemann–Hilbert problem in [14]. However, our derivation of the
Christoffel–Darboux formula is based exclusively on the Gauss–Borel factorization, and its uniqueness and existence
for the multiple orthogonality problem are the only requirements. Thus, it is sufficient to have a perfect combination
(µ, ~w1, ~w2), and there are examples of this type which do not have a well defined Riemann–Hilbert problem in the
spirit of [14].

When we seek for the appropriate integrable hierarchy linked with multiple orthogonality we are lead to the
multicomponent 2D Toda lattice hierarchy which extends the construction of the multicomponent KP hierarchy
considered by M. J. Bergvelt and A. P. E. ten Kroode in [9]; not to the multicomponent 2D Toda lattice hierarchy as
described in [37] or [28]. In the spirit of this last mentioned articles, and complementing the continuous flows of the
integrable hierarchy, we also introduce discrete flows, that could be viewed as Darboux transformations, and which
correspond to Miwa transformations implying the addition of a zero/pole to the set of weights. Moreover, the Hankel
type symmetry is related to an invariance under a number of flows, and to string equations. Bilinear equations can be
derived from the Gauss–Borel factorization problem and moreover the τ -function representation is available leading
to a bridge to the results of [6] in which no semi-infinite matrix or Gauss–Borel factorization was used.

This paper is divided into three sections, §1 is this introduction which contains §1.1 in where we review the
application of the LU factorization of the moment matrix to the theory of orthogonal polynomials in the real line.
Next, §2 is devoted to the presentation of the moment matrix and the discussion of the Gauss–Borel factorization. In
this form we obtain perfect systems in terms of Nikishin systems, determinantal expressions for the multiple orthogonal
polynomials, their duals and second type functions, bi-orthogonality for the associated linear forms, recursion relations,
ABC type theorems and the Christoffel–Darboux formula. Flows and the integrable hierarchy are studied in §3 in
which an integrable hierarchy a la Bergvelt-ten Kroode is linked with the multiple orthogonality problem. We not
only derive from the Gauss–Borel factorization the Lax and Zakarov–Shabat equations, but also we introduce discrete
integrable flows, described by Miwa shifts, or Darboux transformations, and also construct an appropriate bilinear
equation. Finally, we find the τ functions corresponding to the multiple orthogonality and link them to those of [6].
At the end of the paper, we have added two appendices: the first one collects the more technical proofs of the results
in this paper. In Appendix B we consider discrete flows for the case of a measure µ with unbounded support suppµ.

1.1 The Gauss–Borel factorization of the moment matrix and orthogonal polynomials

Here we discuss how the LU factorization of the standard moment matrix g = (
∫
xi+jdµ) of a constant sign finite

Borel measure µ leads to traditional results in the theory of orthogonal polynomials, namely recursion relation and
Christoffel–Darboux formula. In spite that these results are well established we repeat them here because in their
derivation is encoded the set of arguments we will use in the multiple orthogonality setting. In the forthcoming
exposition it will become clear the LU factorization approach is just a compact way of using the orthogonality
relations.

The moment matrix can be written as the following Grammian matrix

g =

∫
χ(x)χ(x)>dµ(x)

in terms of the monomial string χ(x) := (1, x, x2, . . . )>.
The Borel–Gauss factorization of g is

g = S−1S̄, S =

 1 0 0 ···
S1,0 1 0 ···
S2,0 S2,1 1 ···

...
...

...
. . .

 , S̄−1 =


S̄′0,0 S̄

′
0,1 S̄

′
0,2 ···

0 S̄′1,1 S̄
′
1,2 ···

0 0 S̄′2,2 ···
...

...
...

. . .

 .
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The reader should notice that

• It makes sense whenever the truncated moment matrix g[l] = (gi,j)0≤i,j<l is an invertible matrix for any l =
1, 2, . . . . If the factorization exists it is unique.

• Although the truncated matrices g[l] are invertible it can be shown that g itself is not invertible.

• The matrix product of S−1 with S̄ involves only finite sums, but if we reverse the order of the factors we get
series (with an infinite number of summands).

Given the factors S and S̄ we consider the following polynomial strings, the semi-infinite vectors,

P := Sχ = (P0, P1, . . . )
>, P̄ := (S̄−1)>χ = (P̄0, P̄1, . . . )

>.

The families of polynomials {Pl}∞l=0 and {P̄k}∞k=0 are biorthogonal:∫
P (x)P̄ (x)>dµ(x) =

∫
Sχ(x)χ(x)>S̄−1dµ(x) = S

∫
χ(x)χ(x)>dµ(x)S̄−1

= I⇒
∫
Pl(x)P̄k(x)dµ(x) = δl,k.

In this simple proof relies the basic connection between orthogonality and the LU factorization, which we consider as
the very same thing dressed in different manners. From the above orthogonality we conclude that∫

Pl(x)xjdµ(x) = 0, j = 0, . . . , l − 1,∫
P̄l(x)xjdµ(x) = 0, j = 0, . . . , l − 1,

(4)

and we also have that Pl(x) and P̄l are l-th degree polynomials where Pl is monic and P̄l satisfies
∫
xlP̄l(x)dµ(x) = 1,

i.e. we have type II and type I normalizations. Given that the moment matrix is symmetric, g = g> and the
uniqueness of the LU factorization we deduce that S̄ = H(S−1)>, with H = diag(h0, h1, . . . ); i.e., g = S−1H(S−1)>

and the factorization is a Cholesky factorization (but this does not extend to the multiple orthogonal case). Therefore
P̄l = h−1

l Pl so that
∫
Pl(x)Pk(x)dµ(x) = hlδl,k, and {Pl}∞l=0 is a family of monic orthogonal polynomials with respect

to the measure µ.
Considering the orthogonality relations as a linear system for the coefficients of the polynomials one concludes that

polynomials and their duals can be expressed as

Pl = χ(l) −
(
gl,0 gl,1 · · · gl,l−1

)
(g[l])−1χ[l]

= S̄l,l
(
0 0 · · · 0 1

)
(g[l+1])−1χ[l+1]

=
1

det g[l]
det


g0,0 g0,1 · · · g0,l−1 1
g1,0 g1,1 · · · g1,l−1 x

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 xl−1

gl,0 gl,1 · · · gl,l−1 xl

 , l ≥ 1,

and similar expressions for the dual polynomials. We are now ready to get the recursion relations for orthogonal
polynomials:

• First, we notice that the moment matrix g is a Hankel matrix, gi+1,j = gi,j+1, which in terms of the shift matrix

Λ :=

 0 1 0 0 ...
0 0 1 0 ...

0 0 0 1
.
.
.

...
...

...
.
.
.

.
.
.

 can be written as Λg = gΛ>.1

• Second, we observe the eigen-value property Λχ(x) = xχ(x).

1From this symmetry property it follows, by contradiction, that the moment matrix is not invertible; i.e. the assumption of the existence
of g−1 leads to g−1Λ = Λ>g−1, and therefore the first row and column of g−1 are identically zero, so that g−1 is not invertible.
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• Third, we introduce the LU factorization to get ΛS−1S̄ = S−1S̄Λ> ⇒ SΛS−1 = S̄Λ>S̄−1 =: J . From this last

relation we deduce that the matrix J =


a0 1 0 0 ...
b1 a1 1 0 ...

0 b2 a2 1
.
.
.

...
...

.
.
.

.
.
.

.
.
.

 is a tridiagonal matrix, i.e. a Jacobi matrix.

• Finally, we notice that the polynomial strings are eigenvectors of the Jacobi matrix: JP (x) = SΛS−1Sχ(x) =
SΛχ(x) = Sxχ(x) = xP (x); i.e., the recursion relations xPk(x) = Pk+1(x) + akPk(x) + bkPk−1(x), k > 0, hold.

We now consider the Aitken–Berg–Collar (ABC) theorem (here we follow the nomenclature used [35]) for orthogonal
polynomials. First we introduce the Christoffel–Darboux kernel and therefore we consider

H[l] = R{0 . . . , xl−1}, H =
{ ∑

0≤l�∞

clx
l, cl ∈ R

}
, (H[l])⊥ =

{ ∑
l≤k�∞

clP
l(x), cl ∈ R

}
and the resolution of the identity H = H[l] ⊕ (H[l])⊥, with the corresponding orthogonal projector π(l) such that
ker π(l) = (H[l])⊥ and Ran π(l) = H[l]. Then, the Christoffel–Darboux is defined as

K [l](x, y) :=

l−1∑
k=0

Pk(y)P̄k(x) =

l−1∑
k=0

h−1
k Pk(y)Pk(x),

which, according to the bi-orthogonality property, gives the following integral representation of the projection operator

(π(l)f)(y) =

∫
K [l](x, y)f(x)dµ(x), ∀f ∈ H,

Any semi-infinite vector v can be written in block form as follows

v =

(
v[l]

v[≥l]

)

v[l] is the finite vector formed with the first l coefficients of v and v[≥l] the semi-infinite vector formed with the
remaining coefficients. This decomposition induces the following block structure for any semi-infinite matrix.

g =

(
g[l] g[l,≥l]

g[≥l,l] g[≥l]

)
.

Given a factorizable moment matrix g we have

g[l] = (S[l])−1S̄[l], (S−1)[l] = (S[l])−1, (S̄−1)[≥l] = (S̄[≥l])−1.

The Christoffel–Darboux kernel is related to the moment matrix in the following way

K [l](x, y) = (χ[l](x))>(g[l])−1χ[l](y)

which is a consequence of the following identities

K [l](x, y) = (Π[l]P̄ (x))>(Π[l]P (y))

= χ>(x)S̄−1Π[l]Sχ(y)

= χ>(x)(Π[l]S̄−1Π[l])(Π[l]SΠ[l])χ(y)

= (χ[l](x))>(g[l])−1χ[l](y).

The relations

(g[l])−1Λ[l] − (Λ[l])>(g[l])−1 = (g[l])−1
(
g[l,≥l](Λ[l,≥l])> − Λ[l,≥l]g[≥l,l]

)
(g[l])−1

follow from the block equation

Λ[l]g[l] + Λ[l,≥l]g[≥l,l] = g[l](Λ[l])> + g[l,≥l](Λ[l,≥l])>.
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We also have

Λ[l]χ[l](x) = xχ[l](x)− Λ[l,≥l]χ[≥l](x), Λ[l,≥l] = el−1e
>
0 ,

where {ei}∞i=0 is the canonical linear basis of H. With all these at hand we deduce

(χ[l](x))>
(
(g[l])−1Λ[l] − (Λ[l])>(g[l])−1

)
χ[l](y) = (χ[l](x))>(g[l])−1

(
g[l,≥l](Λ[l,≥l])> − Λ[l,≥l]g[≥l,l])(g[l])−1χ[l](y)

so that,

(x− y)K [l](x, y) =
(

(χ[≥l](x))> − (χ[l](x))>(g[l])−1g[l,≥l]
)
e0e
>
l−1(g[l])−1χ[l](y)

− (χ[l](x))>(g[l])−1el−1e
>
0

(
χ[≥l](y)− g[≥l,l](g[l])−1χ[l](y)

)
.

That using the determinantal expressions for the polynomials presented before leads to the Christoffel–Darboux formula

(x− y)K [l](x, y) = h−1
l−1(Pl(x)Pl−1(y)− Pl−1(x)Pl(y)).

2 Multiple orthogonal polynomials and Gauss–Borel factorization

2.1 The moment matrix

In this section we define the moment matrix in terms of a measure µ ∈ M(∆) and two systems of weights ~w1

and ~w2 on ∆ ⊂ R, as well as corresponding compositions (the order matters) ~n1 = (n1,1, . . . , n1,p1
) ∈ Np1 and

~n2 = (n2,1, . . . , n2,p2
) ∈ Np2 [38]. We will consider multi-indices of positive integers ~n = (n1, . . . , np), where p ∈ N and

na ∈ Z+, a = 1, . . . , p and define |~n| := n1 + · · · + np. Following [9, 38] we observe that any i ∈ Z+ := {0, 1, 2, . . . }
determines unique non-negative integers q(i), a(i), r(i), such that the composition

i = q(i)|~n|+ n1 + · · ·+ na(i)−1 + r(i), 0 ≤ r(i) < na(i), (5)

holds. Hence, given i there is a unique k(i) with

k(i) = q(i)na(i) + r(i), 0 ≤ r(i) < na(i). (6)

Let us introduce the function integer part function [·] : R+ → Z+, [x] = max{y ∈ Z+, y ≤ x}. Combining (5) and (6)
we can obtain a formula which expresses explicitly the dependence between the quantities i, k and a

i =

[
k

na

]
(|~n| − na) + n1 + · · ·+ na−1 + k. (7)

Let R∞ denote the vector space of all sequences with elements in R. An element λ ∈ R∞ may be interpreted as a
column semi-infinity vector as follows

λ = (λ(0), λ(1), . . . )>, λ(j) ∈ R, j = 0, 1, . . . .

We consider the set {ej}j≥0 ⊂ R∞ with

ej = (

j︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 0, . . . )>.

Here (·)> denotes the transposition function on vectors and matrices. Analogously, we denote by (Rp)∞ the set
of all sequences of vectors with p components and observe that each sequence which belongs to (Rp)∞ can also be
understood as semi-infinity column vector: given the vector sequence (~v0, ~v1, . . . ) with ~vj = (vj,1, . . . , vj,p)

> we have
the corresponding sequence in R∞ given by (v0,1 . . . , v0,p, v1,1, . . . , v1,p, . . . ); i.e., R∞ ∼= (Rp)∞. Therefore, we consider
also the set {ea(k)}a=1,...,p

k=0,1,...
⊂ (Rp)∞ where for each pair (a, k) ∈ {1, . . . , p} × Z+ ea(k) = ei(k,a) and the function

i(a, k) ∈ Z+ satisfies the equality (7).
Now, we are ready to introduce the monomial strings

χa :=

∞∑
k=0

ea(k)zk, χ(l)
a =

{
zk(l), a = a(l),

0, a 6= a(l),
χ∗a : = z−1χa(z−1). (8)
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These vectors may be understood as sequences of monomials according to the composition ~n introduced previously.
We also define the following weighted monomial string

ξ :=

p∑
a=1

χawa, ξ(l) = wa(l)z
k(l), (9)

which is a sequence of weighted monomials for each given composition ~n. Sometimes, when we what to stress the
dependence in the composition we write χ~n,a, χ~n and ξ~n. Given the weighted monomials ξ~n1

and ξ~n2
, associated to

the compositions ~n1 and ~n2, we introduce the moment matrix in the following manner

Definition 1. The moment matrix is given by

g~n1,~n2
:=

∫
ξ~n1

(x)ξ~n2
(x)>dµ(x). (10)

In terms of the canonical basis {Ei,j} of the linear space of semi-infinite matrices and for each pair (i, j) ∈ Z2
+

we consider the binary permutations or transpositions πi,j = Ei,j + Ej,i. Observe that π2
i,j = I and therefore π−1

i,j =
πi,j . Given two transpositions πi,j and πk,l the permutation endomorphism corresponding to its product is well
defined πi,jπk,l = πk,lπi,j . Taking a sequence of pairs I = {(is, js)}s∈Z+

, is, js ∈ Z+, we introduce the permutation
endomorphism πI as the infinite product πI =

∏
s∈Z+

πis,js , with πIπ
>
I = π>I πI = I. Given two compositions, ~n′, ~n,

there exists a permutation π~n′,~n such that ξ~n′ = π~n′,~nξ~n through a permutation semi-infinite matrix as just described.
The change in the compositions is modeled as follows

Proposition 1. Given two set of weights ~w` = (w`,1, . . . , w`,p`) and compositions ~n` and ~n′`, ` = 1, 2, there exist
permutation matrices π~n′`,~n` such that

g~n′1,~n′2 = π~n′1,~n1
g~n1,~n2

π>~n′2,~n2
. (11)

Proof. For any set of weights ~w = w1, . . . , wp and two compositions ~n and ~n′ we have that the corresponding vectors
of weighted monomials are connected,

ξ~n′ = π~n′,~nξ~n

trough a permutation semi-infinite matrix; i.e, π>~n′,~n = π−1
~n′,~n. Therefore, the announced result follows.

For the sake of notation simplicity and when the context is clear enough we will drop the subindex indicating the
two compositions and just write g for the moment matrix. Let us discuss in more detail the block Hankel structure
of the moment matrix. For each pair (i, j) ∈ Z2

+ there exists a unique combination of three others pairs (q1, q2) ∈ Z2
+,

(a1, a2) ∈ {1, . . . , p1} × {1, . . . , p2} and (r1, r2) ∈ {0, . . . , n1,a1
− 1} × {0, . . . , n2,a2

− 1}, such that

i = q1|~n1|+ n1,1 + . . .+ n1,a1−1 + r1 and j = q2|~n2|+ n2,1 + . . .+ n2,a2−1 + r2.

Hence taking k` = q`n`,a` + r`, ` = 1, 2, the coefficients gi,j ∈ R of the moment matrix g = (gi,j) have the following
explicit form

gi,j =

∫
xk1+k2w1,a1

(x)w2,a2
(x)dµ(x). (12)

Observe that pairs (k1, a1) and (k2, a2) are univocally determined by i and j respectively.
Before we continue with the study of this moment matrix it is necessary to introduce some auxiliary objects

associated with the vector space R∞. First, we have the unity matrix I =
∑∞
k=0 eke

>
k and the shift matrix Λ :=∑∞

k=0 eke
>
k+1. We also define the projections Π[l] :=

∑l−1
k=0 eke

>
k , and with the help of the set {ea(k)}a=1,...,p

k=0,1,...
we

construct the projections Πa :=
∑∞
k=0 ea(k)ea(k)> with

∑p
a=1 Πa = I, and

P1 := diag(In1
, 0n2

, . . . , 0np), P2 := diag(0n1
, In2

, . . . , 0np), . . . Pp := diag(0n1
, 0n2

, . . . , Inp), (13)

where Ins is the ns × ns identity matrix. Finally we introduce the notation

x~n := xn1P1 + · · ·+ xnpPp = diag(xn1In1 , . . . , x
npInp) : R→ R|~n|×|~n|. (14)
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For a better insight of the moment matrix let us introduce the following n1,a × n2,b matrices

ma,b(x) = w1,a(x)w2,b(x)


1 x · · · xn2,b−1

x x2 · · · xn2,b

...
...

...
xn1,a−1 xn1,a · · · xn1,a+n2,b−2

 ,
a = 1, . . . , p1,

b = 1, . . . , p2,
(15)

in terms of which we build up the following |~n1| × |~n2|-matrix

m :=


m1,1 m1,2 · · · m1,p2

m2,1 m2,2 · · · m2,p2

...
...

...
mp1,1 mp1,2 · · · mp1,p2

 : R→ R|~n1|×|~n2|. (16)

Then, the moment matrix g has the following block structure

g := (Gi,j)i,j≥0 ∈ R∞×∞, Gi,j :=

∫
xi~n1m(x)xj~n2dµ(x) ∈ R|~n1|×|~n2|. (17)

Fix now a number l ∈ N and consider the pair (l, l + 1). There exists a unique combination of pairs (q1, q2) ∈ Z2
+,

(a1, a2) ∈ {1, . . . , p1} × {1, . . . , p2} and (r1, r2) ∈ {0, . . . , n1,a1
− 1} × {0, . . . , n2,a2

− 1}, such that

l = q1|~n1|+ n1,1 + · · ·+ n1,a1−1 + r1 and l + 1 = q2|~n2|+ n2,1 + · · ·+ n2,a2−1 + r2.

Given the compositions ~n1 and ~n2 we introduce the degree multi-indices ~ν1 ∈ Zp1

+ and ~ν2 ∈ Zp2

+ [9] where for each
` = 1, 2, we have

~ν` = (ν`,1, . . . , ν`,a`−1, ν`,a` , ν`,a`+1, . . . , ν`,p`)

= ((q` + 1)n`,1, . . . , (q` + 1)n`,a`−1, q`n`,a` + r`, q`n`,a`+1, . . . , q`n`,p`),
(18)

which satisfy

k`(i+ 1) = ν`,a`(i)(i), |~ν`(i)| = i+ 1, ~ν`(i+ l|~n`|) = ~ν`(i) + l~n`, (19)

and consider the l × (l + 1) block matrix Γl from g

Γl =


g0,0 g0,1 · · · g0,l

g1,0 g1,1 · · · g1,l

...
...

...
gl−1,0 gl−1,1 · · · gl−1,l

 . (20)

Let us study the homogeneous system Γlxl+1 = 0l, where xl+1 ∈ Rl+1 and 0l+1 is the null vector in Rl+1. Taking into
account Γl’s structure (12), we see that such equation is exactly the expression of the orthogonality relations (3). We

can see now that for each l ∈ N the existence of a system of mixed multiple orthogonal polynomials
(
A

(l)
1 , . . . , A

(l)
p1

)
is ensured; that is because Γl in (20) is a l × (l + 1) matrix, and the homogeneous matrix equation Γlxl+1 = 0l,
which is satisfied by the coefficients of the polynomials corresponds to a system of l homogeneous linear equations

for l + 1 unknown coefficients. Thus, the system always has a non-trivial solution. Obviously,
(
A

(l)
1 , . . . , A

(l)
p1

)
is not

univocally determined by the matrix equation Γlxl+1 = 0l or equivalently by the orthogonality relations (3), because
its solution space has at least dimension 1. Hence, the appropriate question to consider is the uniqueness question
without counting constant factors, or equivalently if the solution space has exactly dimension 1. In terms of Γl the
question becomes: Does Γl have rank l? In order to have a positive answer it is sufficient to ensure that the l × l
square matrix

g[l] :=


g0,0 g0,1 · · · g0,l−1

g1,0 g1,1 · · · g1,l−1

...
...

...
gl−1,0 gl−1,1 · · · gl−1,l−1

 , l ≥ 1, (21)

is invertible, where g[l] results from Γl after removing its last column. It is easy to prove that such condition is
equivalent to require that all possible solutions of (3) satisfy degAp1

= ν1,p1
− 1. Obviously this requirement is

ensured when the polynomials
(
A

(l)
1 , . . . , A

(l)
p1

)
fulfill degAj = ν1,j − 1, j = 1, . . . , p1.
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2.2 Perfect combinations and Nikishin systems

We introduce the concept of a perfect combination.

Definition 2. A combination (µ, ~w1, ~w2) of a measure µ ∈ M(∆) and two systems of weights ~w1 and ~w2 on ∆ ⊂ R
is said to be perfect if for each pair of multi-indices (~ν1, ~ν2), with |~ν1| = |~ν2|+ 1 the orthogonality relations (3) imply
that degAa = ν1,a − 1, a = 1, . . . , p1.

For a perfect combination (µ, ~w1,~,w2) and any given l ∈ Z+ the solution space of the equation Γlxl+1 = 0l is one-
dimensional. Then, we can determine a unique system of mixed type orthogonal polynomials

(
A1, . . . , Ap1

)
satisfying

(3) requiring for a1 ∈ {1, . . . p1} that Aa1
monic. Following [14] we say that we have a type II normalization and

denote the corresponding system of polynomials by A
(II,a1)
a , j = 1, . . . , p1. Alternatively, we can proceed as follows,

since the system of weights is perfect from (3) we deduce that∫
xν2,b2

p1∑
a=1

Aa(x)w1,a(x)w2,b2(x)dµ(x) 6= 0.

Then, we can determine a unique system of mixed type of multi-orthogonal polynomials (A
(I,b2)
1 , . . . , A

(I,b2)
p2 ) imposing

that ∫
xν2,b2

p1∑
a=1

A(I,b2)
a (x)w1,a(x)w2,b(x)dµ(x) = 1,

which is a type I normalization. We will use the notation A
(II,a1)
[~ν1;~ν2],a and A

(I,b2)
[~ν1;~ν2],a to denote these multiple orthogonal

polynomials with type II and I normalizations, respectively.
A known illustration of perfect combinations (µ, ~w1, ~w2) can be constructed with an arbitrary positive finite Borel

measure µ and systems of weights formed with exponentials:

(eγ1x, . . . , eγpx), γi 6= γj , i 6= j, i, j = 1, . . . , p, (22)

or by binomial functions

((1− z)α1 , . . . , (1− z)αp), αi − αj 6∈ Z, i 6= j, i, j = 1, . . . , p. (23)

or combining both classes, see [31]. Recently a wide class of systems of weights where proven to be perfect [20];
these systems of functions, now called Nikishin systems, were introduced by E.M. Nikishin [31] and initially named
MT-systems (after Markov and Tchebycheff).

Given a closed interval ∆ let
◦
∆ be the interior set of ∆. Let us take two intervals ∆α and ∆β whose interior sets

are disjoint, i.e.
◦
∆α ∩

◦
∆β = ∅. Set two measures µα ∈M(∆α) and µβ ∈M(∆β) such that the measure 〈µα, µβ〉 with

the following differential form

d〈µα, µβ〉(x) =

∫
dµβ(t)

x− t
dµα(x) = µ̂β(x)dµα(x),

is a finite measure, that implies that 〈µα, µβ〉 ∈ M(∆α). The function µ̂β denotes the Cauchy transform corresponding

to µβ . Let us consider then a system of p intervals ∆1, . . . ,∆p such that
◦
∆j ∩

◦
∆j+1 = ∅, j ∈ {1, . . . , p − 1}. Take p

measures µj ∈ M(∆j), which for each j = 1, . . . , p − 1, the measure 〈µj , σj+1〉 belongs to M(∆j). So the system of
measures (ξ0, . . . , ξp) where

ζ1 = µ1, ζ2 = 〈µ1, µ2〉, ζ3 = 〈µ1, 〈µ2, µ3〉〉 = 〈µ1, µ2, µ3〉, . . . , ζp = 〈µ1, . . . , µp〉,

is the Nikishin system of measures generated by the system (σ1, . . . , σm). So we denote (ζ1, . . . , ζp) = N (σ1, . . . , σp) .
Actually, in [20] the authors shown perfectness for combinations of Nikishin systems where intervals ∆1, . . . ,∆p are

bounded and for each j ∈ {1, . . . , p−1} the intervals ∆j and ∆j+1 are disjoint. The same authors have communicated
to us that they were able to prove a generalization of this result to unbounded intervals such that ∆j ∩ ∆j+1 6= ∅.
Consequently, in what follows we assume such generalization.
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As we have seen, general Nikishin systems have an intricate structure; therefore, in order to make easy the reader
we focus on a “simple” class of Nikishin systems which we call M-Nikishin systems. Set the interval ∆1 = [0, 1] and
let M0(∆1) ⊂M(∆1) denote the set of measures in M(∆1) such that if σ ∈M0(∆1) then, the function

σ̃(x) :=

∫
∆1

dσ(t)

1− tx
satisfies lim

x→1
x∈
◦
∆1

∣∣∣∣∫
∆1

dσ(t)

1− tx

∣∣∣∣ = lim
x→1
x∈
◦
∆1

∫
∆1

|dσ(t)|
1− tx

< +∞, where
◦
∆1 = (0, 1). (24)

The constraint (24) guarantees that the function σ̃ is a weight in compact intervals in (−∞, 1]. As (1− tx) does not
vanish for (t, x) ∈ ∆1× (C\ [1,+∞)) we deduce that 1/(1− tx) is a continuous function in x for t ∈ ∆1. Therefore, we
conclude that σ̃ is a holomorphic function on C \ (1,+∞), having a continuation as continuous function in 1. Taking
into account that σ̃ does not vanish in C \ (1,+∞) and that it takes real values on R \ (1,+∞) = (−∞, 1], we deduce
that it is a continuous weight on (−∞, 1]. Observe that

σ̃(x) =

∫
∆1

dσ(t)

1− tx
=

∫
[1,+∞)

ζdσ(1/ζ)

x− ζ
=

∫
[1,+∞)

dµ(ζ)

x− ζ
, (25)

is the Cauchy transform of another measure µ ∈M([1,+∞)), such that |µ̂(1)| = |σ̃(1)| < +∞.
Given two measures σα ∈M0(∆1), σβ ∈M0(∆1) we define a third one as follows (using the differential notation)

d[σα, σβ ](x) = σ̃β(x)dσα(x), σ̃β(x) =

∫
∆1

dσβ(ζ)

1− xζ
.

As σ̃β is a continuous weight on ∆1 we conclude that [σα, σβ ] ∈M0(∆1). If we take a system of measures (σ1, . . . , σp)
such that σj ∈M0(∆1), j = 1, . . . , p, we say that (s1, . . . , sp) =MN (σ1, . . . , σp), where

s1 = σ1, s2 = [σ1, σ2], s3 = [σ1, [σ2, σ3]] = [σ1, σ2, σ3], . . . sp = [σ1, σ2, . . . , σp] (26)

is the M-Nikishin system of measures generated by (σ1, . . . , σp), with corresponding M-Nikishin system of functions

given by ~w = (w1, . . . , wp) = (s̃1, . . . , s̃p) =MN̂ (σ1, . . . , σp).
Notice that si ∈ M0(∆1) which implies that for each arbitrary compact subinterval of (−∞, 1] the system of

functions ~w conforms a system of continuous weights. M-Nikihsin systems are included in the class of Nikishin
systems. Taking into account the identity (25) we see that the M-Nikishin system defined in (26) can be written as a
classical Nikishin system. Let us take a system (µ1, . . . , µp) where

µ1 = σ1, dµ2(x) = xdσ2(1/x), µ3 = σ3, . . . , µ2[p/2]−1 = σ2[p/2]−1, dµ2[p/2](x) = xσ2[p/2](1/x),

and if p is odd µp = σp. Notice then

s1 = ζ1 = σ1, s2 = ζ2 = 〈µ1, µ2〉, . . . sp = ζp = 〈µ1, µ2, . . . , µp〉.

Hence (s1, . . . , sp) = MN (σ1, . . . , σp) = N (µ1, . . . , µp) = (ζ1, . . . , ζp). Fixing two M-Nikishin systems of functions
~w`(x) = (s̃`,1(x), . . . s̃`,p(x)) whose elements are weights on ∆0 = [−1, 1], and a measure µ ∈ M(∆0) we have at our
disposal the perfect combination (µ, ~w1, ~w2). We can also obtain a perfect combination (µ, ~w1, ~w2) choosing ~w1 and
~w2 between two different of the classes mentioned in (22) and (23) (not necessarily the same).

Proposition 2. The Taylor series at ζ = 0 corresponding to the functions s̃j(ζ) and fj(ζ) := log s̃j(ζ) converge
uniformly to s̃j and fj respectively on ∆1, i.e.

s̃j(x) =

∞∑
i=0

λi,jx
i = e

∑∞
i=0 ti,jx

i

, x ∈ ∆0, j = 1, . . . , p. (27)

where λi,j and ti,j are constants.

Proof. For each j ∈ {1, . . . , p}, s̃j is a holomorphic function on the open unitary disc centered on the origin. That
implies that

s̃j(x) =

∞∑
i=0

λi,jx
i = e

∑∞
i=0 ti,jx

i

, x ∈ {|ζ| < 1} , j = 1, . . . , p.

Notice that ∣∣∣∣∣
∞∑
i=0

λi,j

∣∣∣∣∣ = lim
x→1

x∈[0,1)

∣∣∣∣∣
∞∑
i=0

λi,jx
i

∣∣∣∣∣ = lim
x→1

x∈
◦
∆1

∣∣∣∣∫ dsj(t)

1− xt

∣∣∣∣ < +∞,

So the first equality in (27) is proved. The second one comes immediately from the fact that the functions s̃j do
not vanish on ∆0. That implies that

∑∞
i=0 ti,jx

i are also bounded and therefore continuous. Hence we can proceed
analogously as in the first equality.
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2.2.1 The inverse problem

Given the series

wj(x) =

∞∑
i=0

λi,jx
i = e

∑∞
i=0 ti,jx

i

, x ∈ ∆0, j = 1, . . . , p, (28)

we consider the problem of finding conditions over {λi,j} such that the set of series {wj}pj=1 form a M-Nikishin system
of functions. The reader should notice that λi,j = Si(ti,0, ti,1, . . . , ti,j) where Si is the i-th elementary Schur polyno-
mial. Elementary Schur polynomials Sj(t1, . . . , tj) are defined by the following generating relation exp(

∑∞
j=1 tjz

j) =∑∞
j=0 Sj(t1, t2, . . . , tj)z

j , and therefore Sj =
∑j
p=1

∑
j1+···+jp=j tj1 · · · tjp . Given a partition ~n = (n1, . . . , nr) ∈ Zr+ we

have the Schur function s~n(t) = det(Sni−i+j(t))1≤i,j≤r. For more on the relation of these Schur functions and those
in [26], see [32].

In order to state sufficient conditions in this direction we need some preliminary definitions and results.

Definition 3. Given a sequence C = {ci}∞i=0 ⊂ R its Hausdorff moment problem consists in finding a measure
σ ∈M(∆) such that

ci =

∫
ζidσ(ζ), i ∈ Z+.

Moreover, if we further impose the constraint σ ∈M0(∆) we say that we have a restricted Hausdorff moment problem.

Here we have made a variation in the classical definition of a Hausdorff problem, where the solutions are positive
measures. In our Hausdorff problem we look for measures in a wider class where they do not change their sign.
Obviously, since M0(∆) ⊂ M(∆) each solution of a restricted Hausdorff problem is also a solution of a Hausdorff
problem. In the pages 8 and 9 in [34] J. A. Shohat and J. D. Tamarkin study Hausdorff problems and give a sufficient
and necessary condition over the sequences to have solution. Using this result we deduce the following Lemma.

Lemma 1. The Hausdorff moment problem for a sequence C = {ci}∞i=0 ⊂ R has a solution if and only if

n∑
i=0

(
n

i

)
(−1)ici+k ≥ 0 ∀(n, k) ∈ Z2

+ or

n∑
i=0

(
n

i

)
(−1)ici+k ≤ 0 ∀(n, k) ∈ Z2

+. (29)

When (29) holds a necessary and sufficient condition that ensures solution for the restricted Hausdorff moment problem
of C is ∣∣∣ ∞∑

i=0

ci

∣∣∣ < +∞. (30)

Proof. Theorem 1.5 in [34] states that the first set of inequalities in (29) is a necessary and sufficient condition to have
a positive measure σ solving the classical Hausdorff problem. Following their proof it is not hard to conclude that
adding the second set of inequalities leads to a solution inM(∆). Let us take a measure σ ∈M(∆) and observe that∫ dσ(t)

1−xt is a holomorphic function on C̄ \ [1,+∞), then if C is its moment sequence we deduce∫
∆

dσ(t)

1− xt
=

∞∑
i=0

cix
i, x ∈ {|ζ| < 1} .

Thus, since all the ci’s have the same sign, by Lebesgue’s dominated convergence Theorem we have

lim
x→1
x∈[0,1)

∣∣∣ ∫
∆

dσ(t)

1− xt

∣∣∣ = lim
x→1
x∈[0,1)

∣∣∣ ∞∑
i=0

xici

∣∣∣ =
∣∣∣ ∞∑
i=0

ci

∣∣∣.
Thus σ ∈M0(∆) if and only if (30) takes place.

Given the series

wj(x) =

∞∑
i=0

λi,j,1x
i, x ∈ ∆1, j = 1, . . . , p, (31)
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we introduce a set of semi-infinite matrices Θk and semi-infinite vectors θj,k, j = k, . . . , p, k = 1, . . . , p in the following
recursive way. First, we define

Θ1 :=


λ0,1,1 λ1,1,1 λ2,1,1 · · ·
λ1,1,1 λ2,1,1 λ3,1,1 · · ·
λ2,1,1 λ3,1,1 λ4,1,1 · · ·

...
...

...
. . .

 , θj,1 :=


λ0,j,1

λ1,j,1

λ2,j,1

...

 , j = 1, . . . , p.

Then, we seek solutions θj,2 :=

 λ0,j,2

λ1,j,2

λ2,j,2

...

 of Θ1θj,2 = θj,1, for j = 2, . . . , p, and if these solutions exist we define

Θ2 :=

 λ0,2,2 λ1,2,2 λ2,2,2 ···
λ1,2,2 λ2,2,2 λ3,2,2 ···
λ2,2,2 λ3,2,2 λ4,2,2 ···

...
...

...
. . .

. Then, we look for θj,3 =

 λ0,j,3

λ1,j,3

λ2,j,3

...

 which solves Θ2θj,3 = θj,2, for j = 3, . . . , p, and

when such solutions exist we introduce Θ3 =

 λ0,3,3 λ1,3,3 λ2,3,3 ···
λ1,3,3 λ2,3,3 λ3,3,3 ···
λ2,3,3 λ3,3,3 λ4,3,3 ···

...
...

...

. In this way we get for k ∈ {1, . . . , p} the matrices

Θk and vectors θj,k, j = k, . . . , p, linked by Θkθj,k+1 = θj,k with expressions

Θk+1 =


λ0,k+1,k+1 λ1,k+1,k+1 λ2,k+1,k+1 · · ·
λ1,k+1,k+1 λ2,k+1,k+1 λ3,k+1,k+1 · · ·
λ2,k+1,k+1 λ3,k+1,k+1 λ4,k+1,k+1 · · ·

...
...

...
. . .

 , θj,k+1 =


λ0,j,k+1

λ1,j,k+1

λ2,j,k+1

...

 .

Here we understand Θkθj,k+1 = θj,k as

∞∑
i=0

λl+i,k,kλi,j,k+1 = λl,j,k, l ∈ Z+.

We now consider the sequences

Ck,k := {λi,k,k}∞i=0, Cj,k := {λi,j,k}∞i=0, j = k, . . . , p, k = 1, . . . , p. (32)

Later, we will prove that none of the semi-infinite Hankel matrices Θk, k = 1, . . . , p, are invertible. Hence such
infinite linear systems are either undetermined or incompatible. In this last case we say that the systems of sequences
(Ck,k, . . . , Cp,k), k = 1, . . . , p, do not exist.

First we need the following preliminary

Lemma 2. The series

w(x) =
∞∑
i=0

λix
i, x ∈ ∆0,

converges uniformly on ∆0 to a function σ̃(x) =
∫

dσ(t)/(1 − tx) corresponding to a measure σ ∈ M0(∆1) on ∆0 if
and only if the restricted Hausdorff moment problem corresponding to the sequence {λi : i ∈ Z+} has a solution.

Proof. Let us assume that the restricted Hausdorff moment problem of a sequence {λi : i ∈ Z+} has a solution. That
means that there exists a measure σ ∈M0(∆) such that

λi =

∫
∆1

tidσ(t), i ∈ Z+, lim
x→1
x∈[0,1)

∣∣∣∣∫
∆1

dσ(t)

1− tx

∣∣∣∣ =

∣∣∣∣∣
∞∑
i=0

λi

∣∣∣∣∣ < +∞.

Since |λixi| ≤ |λi|, |x| ≤ 1 and
∑∞
i=0 |λi| < +∞, by Weirestrass’ Theorem

∑∞
i=0 λix

i converges uniformly on ∆0. This
proves the if implication in the Lemma 2. On the other hand

lim
x→1

x∈[0,1)

∣∣∣∣∫
∆

dσ(t)

1− tx

∣∣∣∣ = lim
x→1

x∈[0,1)

∣∣∣∣∣
∞∑
i=0

λix
i

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
i=0

λi

∣∣∣∣∣
because

∣∣∑∞
i=0 λix

i
∣∣ must be continuous on ∆0. λi coincides with the i-th moment corresponding to the measure σ

which completes the proof.
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Theorem 1. The system of weights {w1,j}pj=1, as in (31), converges uniformly in ∆0 to an M-Nikishin system of
functions {ŝj}pj=1 if and only if for each k = 1, . . . , p−1, there exists a system of sequences (Ck,k, . . . , Cp,k) as in (32),
such that their restricted Hausdorff moment problems have solutions.

Proof. The proof of this Theorem goes as follows. From Lemma 2 we have that for each j = 1, . . . , p,

wj,1(x) =

∞∑
i=0

λi,j,1x
i, x ∈ ∆0,

converges in ∆0 to a function s̃j(x) =
∫

dsj(t)/(1− tx) if and only if the restricted Hausdorff moment problem corre-
sponding to {λi,j,1 : i ∈ Z+} has a solution. We assume that wj,1 converges uniformly on ∆0 to the function s̃j corre-
sponding to the sj ∈ M(∆1). In order to prove the necessity in Theorem’s statement we suppose that (s1, . . . , sp) =
MN (σ1, . . . , σp) is an M-Nikishin system of measures as it was defined in the §2.2. Fixed k ∈ {1, . . . , p} we define
another M-Nikishin system (sk,k, . . . , sk,p) =MN (σk, . . . , σp). Let us observe that (s1,1, . . . , s1,p) = (s1, . . . , sp).

By construction for each k ∈ {1, . . . , p}, we have that dsk,j = s̃k+1,jdsk,k, j = k, . . . , p. When j = k we understand
s̃k+1,k ≡ 1. Fixed j ∈ {k + 1, . . . , p}, s̃k+1,j is a holomorphic function on C̄ \ (−∞, 1); hence, its Taylor’s series

wj,k+1(t) =

∞∑
i=0

λi,j,k+1t
i, t ∈ ∆1 ⊂ ∆0

converges uniformly to s̃k+1,j on ∆1. Then, for each x ∈ ∆1

s̃k,j(x) =

∞∑
l=0

λl,j,kx
l =

∫
R
s̃k+1,j(t)

dsk,k(t)

1− tx
=

∫
R

∞∑
i=0

λi,j,k+1t
i dsk,k(ζ)

1− tx
=

=

∞∑
l=0

∞∑
i=0

λi,j,k+1

∫
R
ti+ldsk,k(t) =

∞∑
l=0

∞∑
i=0

λi,j,k+1λl+i,k,kx
l,

which proves one implication of the equivalence. The other implication comes immediately from Lemma 2.

We remark from the statements of Lemma 1 that the conditions in Theorem 1 are equivalent to the inequalities in
(29). Hence, by continuity criteria, such conditions are stable under perturbations of the coefficients λi,1,1, i ∈ Z+. We
will come to this later in §3, when we consider deformations of the weights leading to the multicomponent 2D Toda
flows in the precise form discussed in this section.

2.3 The Gauss–Borel factorization and multiple orthogonal polynomials

Given a perfect combination (µ, ~w1, ~w2) we consider [2]

Definition 4. The Gauss–Borel factorization (also known as LU factorization) of a semi-infinite moment matrix g,
determined by (µ, ~w1, ~w2), is the problem of finding the solution of

g = S−1S̄, S =


1 0 0 · · ·
S1,0 1 0 · · ·
S2,0 S2,1 1 · · ·

...
...

...
. . .

 , S̄−1 =


S̄′0,0 S̄′0,1 S̄′0,2 · · ·

0 S̄′1,1 S̄′1,2 · · ·
0 0 S̄′2,2 · · ·
...

...
...

. . .

 , Si,j , S̄
′
i,j ∈ R. (33)

In terms of these matrices we construct the polynomials

A(l)
a :=

∑′

i
Sl,ix

k1(i), (34)

where the sum
∑′

is taken for a fixed a = 1, . . . , p1 over those i such that a = a1(i) and i ≤ l. We also construct the
dual polynomials

Ā
(l)
b :=

∑′

j
xk2(j)S̄′j,l, (35)

where the sum
∑′

is taken for a given b over those j such that b = a2(j) and j ≤ l.
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This factorization makes sense whenever all the principal minors of g do not vanish, i.e., if det g[l] 6= 0 l = 1, 2, . . . ,
and in our case it is true because (µ, ~w1, ~w2) is a perfect combination. It can be shown that the following sets

G− :=
{
S =

 1 0 0 ···
S1,0 1 0 ···
S2,0 S2,1 1

...
...

...
. . .

 , Si,j ∈ R
}
, G+ :=

{
S̄ =


S̄0,0 S̄0,1 S̄0,2 ···

0 S̄1,1 S̄1,2 ···
0 0 S̄2,2 ···
...

...
...

. . .

 , S̄i,j ∈ R, S̄i,i 6= 0
}

are groups. Indeed, the multiplication of two arbitrary semi-infinite matrices is, in general, not well defined as it
involves, for each coefficient of the product, a series; however if the two matrices lie on G−, the mentioned series
collapses into a finite sum, and the same holds for G+. Moreover, the inverse of a matrix in S ∈ G− can be found
to be in G− in a recursive way: first we express S = I +

∑
i>0 Si(Λ

>)i with Si = diag(Si(0), Si(1), . . . ) a diagonal

matrix, then we assume S−1 = I +
∑
i>0 S̃i(Λ

>)i to have the same form, and finally we find that the diagonal matrix

unknown coefficients S̃i are expressed in terms of S0, . . . , Si in a unique way; the same holds in G+. Given, two
elements S ∈ G− and S̄ ∈ G+ the coefficients of the product SS̄ are finite sums. However, this is not the case for S̄S,
where the coefficients are series. Therefore, given an LU factorizable element g = S−1S̄ we can not ensure that g has
an inverse, observe that in spite of the existence of S and S̄−1, the existence of S̄−1S = g−1 is not ensured as this
product involves the evaluation of series instead of finite sums.

With the use of the coefficients of the matrices S and S̄ we construct multiple orthogonal polynomials of mixed
type with normalizations of type I and II

Proposition 3. We have the following identifications

A(l)
a = A

(II,a1(l))
[~ν1(l);~ν2(l−1)],a, Ā

(l)
b = A

(I,a1(l))
[~ν2(l);~ν1(l−1)],b,

in terms of multiple orthogonal polynomials of mixed type with two normalizations I and II, respectively.

Proof. From the LU factorization we deduce

l∑
i=0

Sl,igi,j = 0, j = 0, 1, . . . , l − 1, Sii := 1. (36)

With the aid of (18) and (34) we express (36) as follows∫ ( p1∑
a=1

A(l)
a (x)w1,a(x)

)
w2,b(x)xkdµ(x) = 0, degA(l)

a ≤ ν1,a(l)− 1, (37)

0 ≤ k ≤ ν2,b(l − 1)− 1.

We recognize these equations as those defining a set of multiple orthogonal polynomials of mixed type as discussed

in [14]. This fact leads to A[~ν1;~ν2],a := A
(l)
a where ~ν1 = ~ν1(l) and ~ν2 = ~ν2(l − 1). Observe that for a given l each

polynomial A[~ν1;~ν2],a has at much ν1,a(l) coefficients, and therefore we have |~ν1(l)| = l + 1 unknowns, while we have
|~ν2(l − 1)| = l equations. Moreover, from the normalization condition Sii = 1 we get that the polynomial A[~ν1;~ν2],a1(l)

is monic with degA[~ν1;~ν2],a1(l) = ν1,a1(l)(l)− 1 = k1(l+ 1)− 1, so that we are dealing with a type II normalization and

therefore we can write A
(l)
a = A

(II,a1(l))
[~ν1;~ν2],a .

Dual equations to (36) are

l∑
j=0

gi,jS̄
′
j,l = 0, i = 0, 1, . . . , l − 1, (38)

l∑
j=0

gl,jS̄
′
j,l = 1. (39)

Now, using again (18) and (35), (38) becomes∫ ( p2∑
b=1

Ā
(l)
b (x)w2,b(x)

)
w1,a(x)xkdµ(x) = 0, deg Ā

(l)
b ≤ ν2,b(l)− 1, (40)

0 ≤ k ≤ ν1,a(l − 1)− 1,
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while (39) reads ∫
R

( p2∑
b=1

Ā
(l)
b (x)w2,b(x)

)
w1,a1(l)(x)xk1(l)dµ(x) = 1, (41)

where using (19) we obtain

k1(l) = ν1,a1(l)(l − 1). (42)

As above we are dealing with multiple orthogonal polynomials and therefore Ā
(l)
b = Ā[~ν2;~ν1],b, with ~ν1 = ~ν1(l− 1) and

~ν2 = ~ν2(l), which now happens to have a normalization of type I and consequently we write Ā
(l)
b = Ā

(I,a1(l))
[~ν2;~ν1],b.

Given a definite sign finite Borel measure the corresponding set of monic orthogonal polynomials {pl}∞l=0, deg pl = l,
can be viewed as a ladder of polynomials, in which to get up to a given degree one needs to ascend l steps in the
ladder. For multiple orthogonality the situation is different as we have, instead of a chain, a multi-dimensional lattice of
degrees. Let us consider a perfect combination (µ, ~w1, ~w2) and the corresponding set of multiple orthogonal polynomials
{A[~ν1;~ν2],a}p1

a=1, with degree vectors such that |~ν1| = |~ν2| + 1. There always exists compositions ~n1, ~n2 and an integer

l with |~ν1| = l + 1 and |~ν2| = l such that the polynomials {A(l)
a }p1

a=1 coincides with {A[~ν1;~ν2],a}p1

a=1. Therefore, the

set of sets of multiple orthogonal polynomials
{
{A(k)

a }p1

a=1, k = 0, . . . , l
}

, can be understood as a ladder leading to the
desired set of multiple orthogonal polynomials {A[~ν1;~ν2],a}p1

a=1 after ascending l steps in the ladder, very much in same
style as in standard orthogonality (non multiple) setting. The ladder can be identified with the compositions (~n1, ~n2).
However, by no means there is always a unique ladder to achieve this, in general there are several compositions that
do the job. A particular ladder, which we refer to as the simplest [~ν1;~ν2] ladder, is given by the choice ~n1 = ~ν1 and
~n2 = ~ν2 +~e2,p2

. Many of the expressions that will be derived later on in this paper for multiple orthogonal polynomials
and second kind functions only depend on the integers (~ν1, ~ν2) and not on the particular ladder chosen, and therefore
compositions, one uses to reach to it.

2.4 Linear forms and multiple bi-orthogonality

We introduce linear forms associated with multiple orthogonal polynomials as follows

Definition 5. Strings of linear forms and dual linear forms associated with multiple ortogonal polynomials and their
duals are defined by

Q :=

Q
(0)

Q(1)

...

 = Sξ1, Q̄ :=

Q̄
(0)

Q̄(1)

...

 = (S̄−1)>ξ2, (43)

It can be immediately checked that

Proposition 4. The linear forms and their duals, introduced in Definition 5, are given by

Q(l)(x) :=

p1∑
a=1

A(l)
a (x)w1,a(x), Q̄(l)(x) :=

p2∑
b=1

Ā
(l)
b (x)w2,b(x). (44)

Sometimes we use the alternative notation Q(l) = Q[~ν1;~ν2] and Q̄(l) = Q̄[~ν2;~ν1]. It is also trivial to check the following

Proposition 5. The orthogonality relations∫
Q(l)(x)w2,b(x)xkdµ(x) = 0, 0 ≤ k ≤ ν2,b(l − 1)− 1, b = 1, . . . , p2,∫
Q̄(l)(x)w1,a(x)xkdµ(x) = 0, 0 ≤ k ≤ ν1,a(l − 1)− 1, a = 1, . . . , p1,

(45)

are fulfilled.

Moreover, we have that these linear forms are bi-orthogonal
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Proposition 6. The following multiple bi-orthogonality relations among linear forms and their duals∫
Q(l)(x)Q̄(k)(x)dµ(x) = δl,k, l, k ≥ 0, (46)

hold.

Proof. Observe that∫
R

Q(x)Q̄(x)>dµ(x) =

∫
Sξ1(x)ξ2(x)>S̄−1dµ(x) from (43)

= S
(∫

ξ1(x)ξ2(x)>dµ(x)
)
S̄−1

= SgS̄−1 from (10)

= I. from (33)

Definition 6. Denote by ξ
[l]
i , i = 1, 2 the truncated vector formed with the first l components of ξi.

We are ready to give different expressions for these linear forms and their duals

Proposition 7. The linear forms can be expressed in terms of the moment matrix in the following different ways

Q(l) = ξ
(l)
1 −

(
gl,0 gl,1 · · · gl,l−1

)
(g[l])−1ξ

[l]
1

= S̄l,l
(
0 0 · · · 0 1

)
(g[l+1])−1ξ

[l+1]
1

=
1

det g[l]
det



g0,0 g0,1 · · · g0,l−1 ξ
(0)
1

g1,0 g1,1 · · · g1,l−1 ξ
(1)
1

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 ξ
(l−1)
1

gl,0 gl,1 · · · gl,l−1 ξ
(l)
1


, l ≥ 1, (47)

and the dual linear forms as

Q̄(l) = (S̄l,l)
−1
(
ξ

(l)
2 − (ξ

[l]
2 )>(g[l])−1


g0,l

g1,l

...
gl−1,l

)

= (ξ
[l+1]
2 )>(g[l+1])−1


0
0
...
0
1



=
1

det g[l+1]
det


g0,0 g0,1 · · · g0,l−1 g0,l

g1,0 g1,1 · · · g1,l−1 g1,l

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 gl−1,l

ξ
(0)
2 ξ

(1)
2 · · · ξ

(l−1)
2 ξ

(l)
2

 , l ≥ 0. (48)

Proof. See Appendix A.

As a consequence we get different expressions for the multiple orthogonal polynomials and their duals
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Corollary 1. The multiple orthogonal polynomials and their duals have the following alternative expressions

A(l)
a = χ

(l)
1,a −

(
gl,0 gl,1 · · · gl,l−1

)
(g[l])−1χ

[l]
1,a

= S̄l,l
(
0 0 . . . 0 1

)
(g[l+1])−1χ

[l+1]
1,a

=
1

det g[l]
det



g0,0 g0,1 · · · g0,l−1 χ
(0)
1,a

g1,0 g1,1 · · · g1,l−1 χ
(1)
1,a

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 χ
(l−1)
1,a

gl,0 gl,1 · · · gl,l−1 χ
(l)
1,a,


, l ≥ 1. (49)

and

Ā
(l)
b = (S̄l,l)

−1
(
χ

(l)
2,b − (χ

[l]
2,b)
>(g[l])−1


g0,l

g1,l

...
gl−1,l

) (50)

= (χ
[l+1]
2,b )>(g[l+1])−1


0
0
...
0
1



=
1

det g[l+1]
det



g0,0 g0,1 · · · g0,l−1 g0,l

g1,0 g1,1 · · · g1,l−1 g1,l

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 gl−1,l

χ
(0)
2,b χ

(1)
2,b . . . χ

(l−1)
2,b χ

(l)
2,b

 , l ≥ 0. (51)

Observe that (208), Appendix A, implies

S̄l,l =
det g[l+1]

det g[l]
. (52)

2.5 Functions of the second kind

The Cauchy transforms of the linear forms (44) play a crucial role in the Riemann–Hilbert problem associated with
the multiple orthogonal polynomials of mixed type [14]. Following the approach of Adler and van Moerbeke we will
show that these Cauchy transforms are also related to the LU factorization considered in this paper.

Observe that the construction of multiple orthogonal polynomials performed so far is synthesized in the following
strings of multiple orthogonal polynomials and their duals

Aa :=


A

(0)
a

A
(1)
a

...

 = Sχ1,a, Āb :=


Ā

(0)
b

Ā
(1)
b
...

 = (S̄−1)>χ2,b, a = 1, . . . , p1, b = 1, . . . , p2. (53)

In order to complete these formulae and in terms of χ∗ as in (8) we consider

Definition 7. Let us introduce the following formal semi-infinite vectors

Cb =


C

(0)
b

C
(1)
b
...

 = S̄χ∗2,b(z), C̄a =


C̄

(0)
a

C̄
(1)
a

...

 = (S−1)>χ∗1,a(z), b = 1, . . . , p2, a = 1, . . . , p1, (54)

that we call strings of second kind functions.
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These objects are actually Cauchy transforms of the linear forms Q(l), l ∈ Z+, whenever the series converge and
outside the support of the measures involved. Notice that fixed z ∈ C the entries in each string C̄a and Cb are series
not necessarily convergent. In the non-convergent case we obviously understand the definition only formally. For

each l ∈ Z+ we denote by D̄
(l)
a and D

(l)
b on C the domains where the series C̄

(l)
a and C

(l)
b are uniform convergent,

respectively, and we understand them as their corresponding limits. From properties of Taylor’s series, we know that

uniform convergence of these series hops only on D̄
(l)
a and D

(l)
b when they are the biggest open disks around z = ∞

which do not contain the respectively supports, supp(w2,adµ) and supp(w2,bdµ). Outside the sets D̄
(l)
a and D

(l)
b the

series diverges at every point. Hence to have non-empty sets in D̄
(l)
a and D

(l)
b the corresponding supports supp(w2,adµ)

and supp(w2,bdµ) must be bounded.

Proposition 8. For each l ∈ Z+ the second kind functions can be expressed as follows

C
(l)
b (z) =

∫
Q(l)(x)w2,b(x)

z − x
dµ(x), z ∈ D(l)

b \ supp(w1,bdµ(x)),

C̄(l)
a (z) =

∫
Q̄(l)(x)w1,a(x)

z − x
dµ(x), z ∈ D̄(l)

a \ supp(w2,adµ(x)).

(55)

Proof. The Gauss–Borel factorization leads to

C
(l)
b (z) =

∞∑
n=0

l∑
k=0

Slkgkn(Π2,bχ
∗
2(z))n

=

∞∑
n=0

∫ l∑
k=0

Slkx
k1(k)w1,a1(k)(x)w2,b(x)

xn

zn+1
dµ(x) use (12)

=

∞∑
n=0

1

zn+1

∫
xnQ(l)(x)w2,b(x)dµ(x). use (44)

When D
(l)
b \supp(w2,bdµ) = ∅ the proof is trivial. Given a non empty compact set K ⊂ D(l)

b \supp(w2,bdµ) 6= ∅ and re-

calling the closed character of supp(w2,bdµ), we have that the distance between them d
(l)
b (K) := distance(K, supp(w2,bdµ)) >

0 is positive and that sup{|z| : z ∈ K} =: MK < +∞. Taking into account that the series

C
(l)
b (z) =

∞∑
n=0

1

zn+1

∫
xnQ(l)(x)w2,b(x)dµ(x)

converges uniformly on K we can ensure

lim
n→∞

sup
|z|∈K

{∣∣∣∣ 1

zn+1

∫
xnQ(l)(x)w2,b(x)dµ(x)

∣∣∣∣} = 0. (56)

Hence, we have the bound∣∣∣∣∣
n∑
i=0

1

zi+1

∫
xiQ(l)(x)w2,b(x)dµ(x)−

∫
Q(l)(x)w2,b(x)

1

z − x
dµ(x)

∣∣∣∣∣ =

∣∣∣∣z 1

zn+1

∫
xnQ(l)(x)w2,b(x)

dµ(x)

z − x

∣∣∣∣ ≤
≤ MK

d
(l)
b (K)

sup
|z|∈K

{∣∣∣∣ 1

zn+1

∫
xnQ(l)(x)w2,b(x)dµ(x)

∣∣∣∣} ,∀z ∈ K. (57)

Taking into account (56) we deduce from (57) the first equality for any compact set K. Therefore, we get the first
claim of the Proposition; the second equality can be proved analogously.

Given l ≥ 1 and a = 1, · · · , p the + (−) associated integer is the smallest (largest) integer l+a (l−a) such that
l+a ≥ l (l−a ≤ l ) and a(l+a) = a (a(l−a) = a). It can be shown that

l−a :=


q(l)|~n|+

∑a
i=1 ni − 1, a < a(l),

l, a = a(l),

q(l)|~n| −
∑p
i=a+1 ni − 1, a > a(l − 1),

l+a :=


(q(l) + 1)|~n|+

∑a−1
i=1 ni, a < a(l),

l, a = a(l),

(q(l) + 1)|~n| −
∑p
i=a ni, a > a(l).

(58)
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To give a determinantal expression for these second kind formal series we need

Definition 8. We introduce

Γ
(l)
k,a :=

∞∑
k′=l+a

gk′,kz
−k1(k′)−1δa1(k′),a, Γ̄

(l)
k,b :=

∞∑
k′=l̄+b

gk,k′z
−k2(k′)−1δa2(k′),b. (59)

Here l+a is the + associated integer within the ~n1 composition, while l̄+b is the + associated integer for the ~n2

composition.

With these definitions we can state

Proposition 9. The following determinantal expressions for the functions of the second kind hold

C
(l)
b =

1

det g[l]
det



g0,0 g0,1 · · · g0,l−1 Γ̄
(l)
0,b

g1,0 g1,1 · · · g1,l−1 Γ̄
(l)
1,b

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 Γ̄
(l)
l−1,b

gl,0 gl,1 · · · gl,l−1 Γ̄
(l)
l,b ,


, l ≥ 1, (60)

C̄(l)
a =

1

det g[l+1]
det



g0,0 g0,1 · · · g0,l−1 g0,l

g1,0 g1,1 · · · g1,l−1 g1,l

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 gl−1,l

Γ
(l)
0,a Γ

(l)
1,a · · · Γ

(l)
l−1,a Γ

(l)
l,a

 , l ≥ 1. (61)

Proof. See Appendix A.

Following [20] we consider the Markov–Stieltjes functions and polynomials of the second type.

Definition 9. The Markov–Stieltjes functions are defined by

µ̂a,b(z) :=

∫
w1,a(x)w2,b(x)

z − x
dµ(x), (62)

in terms of which we define

H
(l)
b (z) :=

p1∑
a=1

A(l)
a (z)µ̂a,b(z)− C(l)

b (z),

H̄(l)
a (z) :=

p2∑
b=1

µ̂a,b(z)Ā
(l)
b (z)− C̄(l)

a (z).

(63)

Proposition 10. The functions H
(l)
b and H̄

(l)
a are polynomials in z.

Proof. The reader should notice that the functions H
(l)
b and H̄

(l)
a are

H
(l)
b (z) =

∫ p1∑
a=1

w1,a(x)
A

(l)
a (z)−A(l)

a (x)

z − x
w2,b(x)dµ(x), H̄(l)

a (z) =

∫ p2∑
b=1

w1,a(x)
Ā

(l)
b (z)− Ā(l)

b (x)

z − x
w2,b(x)dµ(x),

and as z = x is a zero of the polynomials A
(l)
a (z)−A(l)

a (x) and Ā
(l)
b (z)− Ā(l)

b (x) from the above formulae we conclude
that they are indeed polynomials in z.
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2.6 Recursion relations

The moment matrix has a Hankel type symmetry that implies the recursion relations and the Christoffel–Darboux
formula. We consider the shift operators defined by

Λa :=

∞∑
k=0

ea(k)ea(k + 1)>. (64)

notice that

• Λa leaves invariant the subspaces Πa′R∞, for a′ = 1, . . . , p, and Πa′Λa = ΛaΠa′ .

• The set of semi-infinite matrices {Λja}a=1,...,p
j=1,2,...

is commutative.

• We have the eigenvalue property

Λaχa′ = δa,a′zχa. (65)

Definition 10. We define the following multiple shift matrices

Υ1 :=

p1∑
a=1

Λ1,a, Υ2 :=

p2∑
b=1

Λ2,b, (66)

and we also introduce the integers

N1,a := |~n1| − n1,a + 1 =
∑

a′=1,...,p1

a′ 6=a

n1,a′ + 1, a = 1, . . . , p1, N1 := max
a=1,...,p1

N1,a,

N2,b := |~n2| − n2,b + 1 =
∑

b′=1,...,p2

b′ 6=b

n2,b′ + 1, b = 1, . . . , p2, N2 := max
b=1,...,p2

N2,b.

A careful but straightforward computation leads to

Proposition 11. We have the following structure for Υ1 and Υ2

Υ1 = D1,0Λ +D1,1ΛN1,1 + · · ·+D1,p1
ΛN1,p1 , Υ2 = D2,0Λ +D2,1ΛN2,1 + · · ·+D2,p2

ΛN2,p2 .

where D1,a, a = 1, . . . , p1, and D2,b, b = 1, . . . , p2, are the following semi-infinite diagonal matrices:

D1,a = diag(D1,a(0), D1,a(1), . . . ), D1,a(n) :=

{
1, n = k|~n1|+

∑a
a′=1 n1,a′ − 1, k ∈ Z+,

0, n 6= k|~n1|+
∑a
a′=1 n1,a′ − 1, k ∈ Z+,

D1,0 = I−
p1∑
a=1

D1,a,

D2,b = diag(D2,b(0), D2,b(1), . . . ), D2,b(n) :=

{
1, n = k|~n2|+

∑b
b′=1 n2,b′ − 1, k ∈ Z+,

0, n 6= k|~n2|+
∑b
b′=1 n2,b′ − 1, k ∈ Z+,

D2,0 = I−
p1∑
b=1

D2,b.

In terms of these shift matrices we can describe the particular Hankel symmetries for the moment matrix

Proposition 12. The moment matrix g satisfies the Hankel type symmetry

Υ1g = gΥ>2 . (67)

Proof. With the use of (19) and (12) we get

Λ1,agΠ2,b = Π1,agΛ>2,b, (68)

and summing up in a = 1, . . . , p1 and b = 1, . . . , p2 we get the desired result.

Observe that from (67) we deduce that in spite of being all the truncated moment matrices g[l], l = 1, 2, . . .
invertible, the moment matrix g = liml→∞ g[l]is not invertible. Suppose that the inverse g−1 = (g̃i,j)1,j=0,1,... of g
exists so that (67) implies g−1Υ1 = Υ>2 g

−1, and therefore g̃i,0 = g̃0,j = 0 for all i, j = 0, 1, . . . , which is contradictory
with the invertibility of g.
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Proposition 13. From the symmetry of the moment matrix one derives

SΥ1S
−1 = S̄Υ>2 S̄

−1. (69)

Proof. If we introduce (33) into (67) we get

Υ1S
−1S̄ = S−1S̄Υ>2 ⇒ SΥ1S

−1 = S̄Υ>2 S̄
−1.

Definition 11. We define the matrices

J := J+ + J−, J+ := (SΥ1S
−1)+, J− := (S̄Υ>2 S̄

−1)−,

where the sub-indices + and −denotes the upper triangular and strictly lower triangular projections.

Thus, J+ is an upper triangular matrix and J− a strictly lower triangular matrix. Moreover, from the string
equation (69) we have the alternative expressions

J = SΥ1S
−1 = S̄Υ>2 S̄

−1.

We now analyze the structure of J+ := (SD1,0ΛS−1)+ + (SD1,1ΛN1,1S−1)+ + · · · + (SD1,p1
ΛN1,p1S−1)+. It is clear

that we need to evaluate expressions of the form SEi,jS
−1 with i = κ1(k, a) − 1 and j = κ1(k + 1, a − 1) being

κ1(k, a) := k|~n1|+
∑a
a′=1 n1,a′ . Given the form of S, see (33), we have

(SEi,jS
−1)+ = Ei,j +

∑
l,l∈Li,j

sl,l′El,l′ , Li,j := {(l, l′) ∈ Z2
+|l < i, l′ < j, l′ ≥ l},

for some numbers sl,l′ ∈ R depending on the coefficients of S and on i, j; this matrix has zeroes everywhere but on a
region of it that can be represented as a right triangle with hypotenuse lying on the main diagonal, this hypotenuse
has its opposite vertex precisely on the (i, j) position. Therefore

J+ = (SD1,0ΛS−1)+ +

p1∑
a=1

∞∑
k=0

(
Eκ1(k,a)−1,κ1(k+1,a−1) +

∑
l,l′∈L1,k,a

sl,l′El,l′

)
, L1,k,a := Lκ1(k,a)−1,κ1(k+1,a−1)

We see that J+ can be schematically represented as a staircase, the ~n1-staircase, descending over the main diagonal
with steps –which are built with right triangles with hypotenuse lying on the main diagonal and opposite vertex
(and therefore corner of the step) located at the (κ1(k, a)− 1, κ1(k + 1, a− 1)) position of the matrix– having width
and height given by the integers in the composition ~n1. For example, the j-th step has width n1, jp1

−[ jp1
] and height

n1, j+1
p1
−[ j+1

p1
]. A similar description holds for J>− but replacing the composition ~n1 by ~n2. Therefore, the matrix J

is a generalized Jacobi matrix and, in contrast with the non multiple case, now is multi-diagonal (having in general
more than three diagonals) and has a diagonal band of length N1 + N2 + 1. Moreover, this band has a number of
zeroes on it, according to the ~n1-stair on the upper part and to the ~n2-stair in the lower part, we refer to this as a
double (~n1, ~n2)-staircase shape. To illustrate this snake shape let us write for the case ~n1 = (4, 3, 2) and ~n2 = (3, 2)
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the corresponding truncated, l = 27, Jacobi type matrix

J [27] =



∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ∗ ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗



, (70)

where ∗ denotes a non-necessarily null real number. We can write

J = JN1
ΛN1 + · · ·+ J1Λ + J0 + J−1Λ> + · · ·+ J−N2

(Λ>)N2 , (71)

where Ji = diag(Ji(0), Ji(1), . . . ). For convenience we extend the notation with Jr(s) = 0 whenever r+s < 0 or s < 0.
We introduce

Definition 12. The semi-infinite vectors cb and c̄a are given by

cb := S̄e2,b(0), b = 1, . . . , p2,

c̄a := (S−1)>e1,a(0), a = 1, . . . , p1.
(72)

It is not difficult to show that

cb =

n2,1+···+n2,b−1∑
l=0

S̄l,n2,1+···+n2,b−1el, c̄a =

n1,1+···+n1,a−1∑
l=0

(S−1)n1,1+···+n1,a−1,lel. (73)

The semi-infinite matrices J and J> have the following important property

Proposition 14. The following equations are fulfilled

JAa(z) = zAa(z), J>Āb(z) = zĀb(z),

JCb(z) = zCb(z)− cb, J>C̄a(z) = zCa(z)− c̄a.
(74)

Proof. From (53) and (54)

JAa(z) = SΥ1S
−1Sχ1,a(z) = zSχ1,a = zAa(z),

JCb(z) = S̄Υ>2 S̄
−1S̄χ∗2,b(z) = S̄(zχ∗2,b(z)− eb(0)) = zCb(z)− cb,

where we have taken into account that Υ>2 χ
∗
2,b(z) = zχ∗2,b(z)− eb(0). For J> we proceed similarly:

J>Āb(z) = (S̄−1)>Υ2S̄
>(S̄−1)>χ2,b(z) = z(S̄−1)>χ2,a = zĀb(z),

J>C̄a(z) = (S−1)>Υ>1 S
>(S−1)>χ∗1,a(z) = (S−1)>(zχ∗1,a(z)− ea(0)) = zC̄a(z)− c̄a.
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Theorem 2. The multiple orthogonal polynomials and their associated second kind functions fulfill the following
recursion relations

zA(l)
a (z) = J−N2(l)A(l−N2)

a (z) + · · ·+ JN1
(l)A(l+N1)

a (z),

zC
(l)
b (z)− c(l)b = J−N2

(l)C
(l−N2)
b (z) + · · ·+ JN1

(l)C
(l+N1)
b (z),

(75)

while the dual relations are

zĀ
(l)
b (z) = J−N2(l +N2)Ā

(l+N2)
b (z) + · · ·+ JN1(l −N1)Ā

(l−N1)
b (z),

zC̄(l)
a (z)− c̄a = J−N2

(l +N2)C̄(l+N2)
a (z) + · · ·+ JN1

(l −N1)C̄(l−N1)
a (z).

(76)

We see that given integers (~ν1, ~ν2) there are several recursion relations associated with A[~ν1;~ν2],a. In fact they are as
many as different ladders exists leading to this set of degrees. For the simplest ladder, i.e. ~n1 = ~ν1 and ~n2 = ~ν2 +~e2,p2

,
we get the longest recursion, in the sense that we have more polynomials contributing in the recursion relation,
as smaller are the integers in the compositions shorter is the recursion. Observe also that the multiple orthogonal
polynomials involved in each case are different.

Attending to (70) we get that the recursion relations corresponding to l = 8 an l = 14 are of the form

zA(8)
a (z) = ∗A(4)

a (z) + · · ·+ ∗A(15)
a (z) +A(16)

a (z), a = 1, 2, 3,

zA(14)
a (z) = ∗A(12)

a (z) + · · ·+ ∗A(18)
a (z), a = 1, 2, 3.

We see that the first recursion has 13 terms while the second one only 7 terms.
In order to identify these polynomials with mops of the form A[~ν1;~ν2,a] we use following the table of degrees for the

compositions ~n1 = (4, 3, 2) and ~n2 = (3, 2) is

l 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

~ν1(l) (4,0,0) (4,1,0) (4,2,0) (4,3,0) (4,3,1) (4,3,2) (5,3,2) (6,3,2) (7,3,2) (8,3,2) (8,4,2) (8,5,2) (8,6,2) (8,6,3) (8,6,4)
~ν2(l − 1) (2,0) (3,0) (3,1) (3,2) (4,2) (5,2) (6,2) (6,3) (6,4) (7,4) (8,4) (9,4) (9,5) (9,6) (10,6)

2.7 Christoffel–Darboux type formulae

From (53) and (54) we can infer the value of the following series constructed in terms of multiple orthogonal polynomials
and corresponding functions of the second kind.

Proposition 15. The following relations hold

∞∑
l=0

C̄(l)
a (z)A

(l)
a′ (z

′) =
δa,a′

z − z′
, |z′| < |z|,

∞∑
l=0

C
(l)
b (z)Ā

(l)
b′ (z′) =

δb,b′

z − z′
, |z′| < |z|,

∞∑
l=0

C̄(l)
a (z)C

(l)
b (z′) = − µ̂a,b(z)− µ̂a,b(z

′)

z − z′
, |z|, |z′| > Ra,b,

(77)

where Ra,b is the radius of any origin centered disk containing supp(w1,awa,bdµ).

Proof. See Appendix A.

2.7.1 Projection operators and the Christoffel–Darboux kernel

To introduce the Christoffel–Darboux kernel we need

Definition 13. We will use the following spans

H[l]
1 = R{ξ(0)

1 , . . . , ξ
(l−1)
1 }, H[l]

2 = R{ξ(0)
2 , . . . , ξ

(l−1)
2 }, (78)

and their limits

H1 =
{ ∑

0≤l�∞

clξ
(l)
1 , cl ∈ R

}
, H2 =

{ ∑
0≤l�∞

clξ
(l)
2 , cl ∈ R

}
. (79)

24



The corresponding splittings

H1 = H[l]
1 ⊕ (H[l]

1 )⊥, H2 = H[l]
2 ⊕ (H[l]

2 )⊥, (80)

induce the associated orthogonal projections

π
(l)
1 : H1 → H[l]

1 , π
(l)
2 : H2 → H[l]

2 . (81)

In the previous definition l�∞ means that in the series there are only a finite number of nonzero contributions.
It is easy to realize that

Proposition 16. We have the following characterization of the previous linear subspaces

H[l]
1 = R{Q(0), . . . , Q(l−1)}, H[l]

2 = R{Q̄(0), . . . , Q̄(l−1)},

(H[l]
1 )⊥ =

{ ∑
l≤j�∞

cjQ
(j), cj ∈ R

}
, (H[l]

2 )⊥ =
{ ∑
l≤j�∞

cjQ̄
(j), cj ∈ R

}
,

(82)

and

H1 =
{ ∑

0≤l�∞

clQ
(l), cl ∈ R

}
, H2 =

{ ∑
0≤l�∞

clQ̄
(l), cl ∈ R

}
. (83)

Definition 14. The Christoffel–Darboux kernel is

K [l](x, y) :=

l−1∑
k=0

Q(k)(y)Q̄(k)(x). (84)

This is the kernel of the integral representation of the projections introduced in Definition 13.

Proposition 17. The integral representation

(π
(l)
1 f)(y) =

∫
K [l](x, y)f(x)dµ(x), ∀f ∈ H1,

(π
(l)
2 f)(y) =

∫
K [l](y, x)f(x)dµ(x), ∀f ∈ H2,

(85)

holds.

Proof. It follows from the bi-orthogonality condition (46).

This Christoffel–Darboux kernel has the reproducing property

Proposition 18. The kernel K [l](x, y) fulfills

K [l](x, y) =

∫
K [l](x, v)K [l](v, y)dµ(v). (86)

Proof. From

f(y) =

∫
K [l](x, y)f(x)dµ(x), ∀f ∈ H[l]

1 ,

f(y) =

∫
K [l](y, x)f(x)dµ(x), ∀f ∈ H[l]

2 ,

and K [l](x, y) ∈ H[l]
1 as a function of y and K [l](x, y) ∈ H[l]

2 as a function of x we conclude the reproducing property.
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2.7.2 The ABC type theorem

We also have an ABC (Aitken–Berg–Collar) type theorem —here we follow [35]— for the Christoffel–Darboux kernel

Definition 15. The partial Christoffel–Darboux kernels are defined by

K
[l]
b,a(x, y) :=

l−1∑
k=0

Ā
(k)
b (x)A(k)

a (y). (87)

Observe that

K [l](x, y) =
∑

a=1,...,p1
b=1,...,p2

K
[l]
b,a(x, y)w1,a(y)w2,b(x). (88)

We introduce the notation

Definition 16. Any semi-infinite vector v can be written in block form as follows

v =

(
v[l]

v[≥l]

)
, (89)

where v[l] is the finite vector formed with the first l coefficients of v and v[≥l] the semi-infinite vector formed with the
remaining coefficients. This decomposition induces the following block structure for any semi-infinite matrix.

g =

(
g[l] g[l,≥l]

g[≥l,l] g[≥l]

)
. (90)

From (33) we get

Proposition 19. Given a moment matrix g satisfying (33) we have

g[l] = (S[l])−1S̄[l], (91)

and (S−1)[l] = (S[l])−1, (S̄−1)[≥l] = (S̄[≥l])−1.

Proof. Use the block structure of g, S and S̄.

Then, we are able to conclude the following result

Theorem 3. The Christoffel–Darboux kernel is related to the moment matrix in the following way

K
[l]
b,a(x, y) = (χ

[l]
2,b(x))>(g[l])−1χ

[l]
1,a(y). (92)

Proof. The ABC theorem is a consequence of the following chain of identities

K
[l]
b,a(x, y) = (Π[l]Āb(x))>(Π[l]Aa(y)) the sum is over the first l components

= χ>2,b(x)S̄−1Π[l]Sχ1,a(y) see (43)

= χ>2,b(x)(Π[l]S̄−1Π[l])(Π[l]SΠ[l])χ1,a(y) lower and upper form of S and S̄

= (χ
[l]
2,b(x))>(S̄[l])−1S[l]χ

[l]
1,a(y)

= (χ
[l]
2,b(x))>(g[l])−1χ

[l]
1,a(y) LU factorization (33).

We immediately deduce the

Corollary 2. For the Christoffel–Darboux kernel we have

K [l](x, y) = (ξ
[l]
2 (x))>(g[l])−1ξ

[l]
1 (y). (93)
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2.7.3 Christoffel–Darboux formula

In this subsection we derive a Christoffel–Darboux type formula from the symmetry property (67) of the moment
matrix g. We need some preliminary lemmas

Lemma 3. The relations

(g[l])−1Υ
[l]
1 − (Υ

[l]
2 )>(g[l])−1 = (g[l])−1

(
g[l,≥l](Υ

[l,≥l]
2 )> −Υ

[l,≥l]
1 g[≥l,l]

)
(g[l])−1, (94)

hold true.

Proof. The first block of (67) is

Υ
[l]
1 g

[l] + Υ
[l,≥l]
1 g[≥l,l] = g[l](Υ

[l]
2 )> + g[l,≥l](Υ

[l,≥l]
2 )>,

from where the result follows immediately.

Lemma 4. We have

Υ
[l]
` ξ

[l]
` (x) = xξ

[l]
` (x)−Υ

[l,≥l]
` ξ

[≥l]
` (x), ` = 1, 2. (95)

Proof. It follows from the block decomposition of Definitions 16 and the eigen-value property of Υ`.

After a careful computation from Definition 10 we get

Lemma 5. If we assume that l ≥ max(|~n1|, |~n2|) we can write

Υ
[l,≥l]
1 =

p1∑
a=1

e(l−1)−ae
>
l+a−l, Υ

[l,≥l]
2 =

p2∑
b=1

e
(l−1)−b

e>l̄+b−l. (96)

Here l±a is the ± associated integer within the ~n1 composition, while l̄±b is the ± associated integer for the ~n2

composition.

Finally, to derive a Christoffel–Darboux type formula we need the following objects

Definition 17. Associated polynomials are given by

A
(l)
+a,a′(y) := χ

(l+a)
1,a′ (y)−

(
gl+a,0 gl+a,1 · · · gl+a,l−1

)
(g[l])−1χ

[l]
1,a′(y),

Ā
(l)
−a,b′(x) := (χ

[l+1]
2,b′ (x))>(g[l+1])−1el−a ,

A
(l)
−b,a′(y) := e>l̄−b(g

[l+1])−1χ
[l+1]
1,a′ (y),

Ā
(l)
+b,b′(x) :=

(
χ

(l̄+b)
2,b′ (x)− (χ

[l]
2,b′(x))>(g[l])−1


g0,l̄+b

g1,l̄+b
...

gl−1,l̄+b

),
(97)

with the corresponding linear forms given by

Q
(l)
+a :=

p1∑
a′=1

A
(l)
+a,a′w1,a′ , Q̄

(l)
−a :=

p2∑
b′=1

Ā
(l)
−a,b′w2,b′ , a = 1, . . . , p1,

Q
(l)
−b :=

p1∑
a′=1

A
(l)
−b,a′w1,a′ , Q̄

(l)
+b :=

p2∑
b′=1

Ā
(l)
+b,b′w2,b′ , b = 1, . . . , p2.

(98)

Then, we can show that

Theorem 4. Whenever l ≥ max(|~n1|, |~n2|) the following Christoffel–Darboux type formulae

(x− y)K
[l]
a′,b′(x, y) =

p2∑
b=1

Ā
(l)
+b,b′(x)A

(l−1)
−b,a′(y)−

p1∑
a=1

Ā
(l−1)
−a,b′(x)A

(l)
+a,a′(y),

(x− y)K [l](x, y) =

p2∑
b=1

Q̄
(l)
+b(x)Q

(l−1)
−b (y)−

p1∑
a=1

Q̄
(l−1)
−a (x)Q

(l)
+a(y),

hold.
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Proof. From Lemma 3 we deduce

(χ
[l]
2,b′(x))>

(
(g[l])−1Υ

[l]
1 −(Υ

[l]
2 )>(g[l])−1

)
χ

[l]
1,a′(y) = (χ

[l]
2,b′(x))>(g[l])−1

(
g[l,≥l](Υ

[l,≥l]
2 )>−Υ

[l,≥l]
1 g[≥l,l])(g[l])−1χ

[l]
1,a′(y),

so that, recalling Theorem 3, we get

(y − x)K
[l]
b′,a′(x, y) =(χ

[l]
2,b′(x))>(g[l])−1

(
g[l,≥l](Υ

[l,≥l]
2 )> −Υ

[l,≥l]
1 g[≥l,l])(g[l])−1χ

[l]
1,a′(y)

+ (χ
[l]
2,b′(x))>(g[l])−1Υ

[l,≥l]
1 χ

[≥l]
1,a′(y)− (Υ

[l,≥l]
2 χ

[≥l]
2,b′ (x))>(g[l])−1(χ

[l]
1,a′(y)),

(99)

or

(x− y)K
(l−1)
b′,a′ (x, y) =

(
(χ

[≥l]
2,b′ (x))> − (χ

[l]
2,b′(x))>(g[l])−1g[l,≥l]

)
(Υ

[l,≥l]
2 )>(g[l])−1χ

[l]
1,a′(y)

− (χ
[l]
2,b′(x))>(g[l])−1Υ

[l,≥l]
1

(
χ

[≥l]
1,a′(y)− g[≥l,l](g[l])−1χ

[l]
1,a′(y)

)
.

Finally, from Lemma 5 we conclude

Υ
[l,≥l]
1 χ

[≥l]
1,a′(y) =

p1∑
a=1

e(l−1)−aχ
(l+a)
1,a′ (y),

Υ
[l,≥l]
1 g[≥l,l] =

p1∑
a=1

e(l−1)−a

(
gl+a,0 gl+a,1 · · · gl+a,l−1

)
,

(χ
[≥l]
2,b′ (x))>(Υ

[l,≥l]
2 )> =

p2∑
b=1

χ
(l̄+b)
2,b′ (x)e>

(l−1)−b
,

g[l,≥l](Υ
[l,≥l]
2 )> =

p2∑
b=1


g0,l̄+b

g1,l̄+b
...

gl−1,l̄+b

 e>
(l−1)−b

,

and consequently

(x− y)K
[l]
b′,a′(x, y) =

p2∑
b=1

(
χ

(l̄+b)
2,b′ (x)− (χ

[l]
2,b′(x))>(g[l])−1


g0,l̄+b

g1,l̄+b
...

gl−1,l̄+b

)e>(l−1)−b
(g[l])−1χ

[l]
1,a′(y)

−
p1∑
a=1

(χ
[l]
2,b′(x))>(g[l])−1e(l−1)−a

(
χ

(l+a)
1,a′ (y)−

(
gl+a,0 gl+a,1 · · · gl+a,l−1

)
(g[l])−1χ

[l]
1,a′(y)

)
.

(100)

Recalling Definition 17 we get the announced result.

The associated linear forms are identified with linear forms of multiple orthogonal polynomials as follows

Proposition 20. We have the formulae

Q
(l)
+a = Q

(II,a)
[~ν1(l−1)+~e1,a;~ν2(l−1)], Q

(l)
−b = Q

(I,b)
[~ν1(l);~ν2(l)−~e2,b], Q̄

(l)
+b = Q̄

(II,b)
[~ν2(l−1)+~e2,b;~ν1(l−1)], Q̄

(l)
−a = Q

(I,a)
[~ν2(l);~ν1(l)−~e1,a].

(101)

Proof. See Appendix A.

Proposition 20 allows us to give the following form of the Christoffel–Darboux formula stated in Theorem 4
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Proposition 21. For l ≥ max(|~n1|, |~n2|) the following

(x− y)K [l](x, y) =

p2∑
b=1

Q̄
(II,b)
[~ν2(l−1)+~e2,b;~ν1(l−1)](x)Q

(I,b)
[~ν1(l−1);~ν2(l−1)−~e2,b](y)

−
p1∑
a=1

Q̄
(I,a)
[~ν2(l−1);~ν1(l−1)−~e1,a](x)Q

(II,a)
[~ν1(l−1)+~e1,a;~ν2(l−1)](y).

(102)

(x− y)K
[l]
b′,a′(x, y) =

p2∑
b=1

Ā
(II,b)
[~ν2(l−1)+~e2,b;~ν1(l−1)],b′(x)A

(I,b)
[~ν1(l−1);~ν2(l−1)−~e2,b],a′(y)

−
p1∑
a=1

Ā
(I,a)
[~ν2(l−1);~ν1(l−1)−~e1,a],b′(x)A

(II,a)
[~ν1(l−1)+~e1,a;~ν2(l−1)],a′(y).

(103)

holds.

Relation (102) is precisely the Christoffel–Darboux formula derived in [14], the difference here is that derivation
is based on the Gauss–Borel factorization problem for the moment matrix; i.e. only on algebraic arguments, and
not in the Riemann–Hilbert problem found in [14], and hence the conditions on the weights are not so restrictive.
However, the reader should notice that the Christoffel–Darboux kernel does not depend on the ladder determined by
the composition vectors ~n1, ~n2, but only on the degree vectors ~ν1(l − 1) and ~ν2(l − 1). This was noticed in [15] for
type I multiple orthogonality.

Proposition 22. The associated polynomials introduced in Definition 17 have the following determinantal expressions

A
(l)
+a,a′ =

1

det g[l]
det



g0,0 g0,1 · · · g0,l−1 χ
(0)
1,a′

g1,0 g1,1 · · · g1,l−1 χ
(1)
1,a′

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 χ
(l−1)
1,a′

gl+a,0 gl+a,1 · · · gl+a,l−1 χ
(l+a)
1,a′


, (104)

Ā
(l)
−a,b′(x) =

(−1)l+l−a

det g[l+1]
det



g0,0 · · · g0,l−1 g0,l

...
...

...
gl−a−1,0 · · · gl−a−1,l−1 gl−a−1,l

gl−a+1,0 · · · gl−a+1,l−1 gl−a+1,l

...
...

...
gl−1,0 · · · gl−1,l−1 gl−1,l

χ
(0)
2,b′ · · · χ

(l−1)
2,b′ χ

(l)
2,b′


, (105)

A
(l)
−b,a′ =

(−1)l+l̄−b

det g[l+1]
det


g0,0 · · · g0,l̄−b−1 g0,l̄−b+1 · · · g0,l−1 χ

(0)
1,a′

...
...

...
...

...

gl−1,0 · · · gl−1,l̄−b−1 gl−1,l̄−b+1 · · · gl−1,l−1 χ
(l−1)
1,a′

gl,0 · · · gl,l̄−b−1 gl,l̄−b+1 · · · gl,l−1 χ
(l)
1,a′

 , (106)

Ā
(l)
+b,b′ =

1

det g[l]
det



g0,0 g0,1 · · · g0,l−1 g0,l̄+b

g1,0 g1,1 · · · g1,l−1 g1,l̄+b

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 gl−1,l̄+b

χ
(0)
2,b′ χ

(1)
2,b′ · · · χ

(l−1)
2,b′ χ

(l̄+b)
2,b′


. (107)
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3 Connection with the multi-component 2D Toda Lattice hierarchy

In this section we introduce deformations of the Gauss–Borel factorization problem that give the connection with the
theory of the integrable hierarchies of 2D Toda lattice type, in the multi-component flavor case. First, we introduce
the continuous flows and then the discrete ones. Let us stress that both flows could be considered simultaneously but
we consider them separately for the sake of simplicity and clearness in the exposition.

3.1 Continuous deformations of the moment matrix

Definition 18. The deformed moment matrix is given by

g~n1,~n2
(t) := W0,~n1

(t)gW̄0,~n2
(t)−1, (108)

where we use the following semi-infinite matrices

W0,~n1
(t) :=

p1∑
a=1

exp
( ∞∑
j=1

tj,aΛj1,a

)
∈ G+, W̄0,~n2

(t) :=

p2∑
b=1

exp
( ∞∑
j=1

t̄j,b(Λ
>
2,b)

j
)
∈ G−

depending on t = (tj,a, t̄j,b)j,a,b with tj,a, t̄j,b ∈ R, j = 1, 2, . . . , a = 1, . . . , p1 and b = 1, . . . , p2.

As in the previous section and when the context is clear enough we will drop the subscripts associated with the
compositions ~n1 and ~n2. The reader should notice that the following semi-infinite matrices are well defined

(W0,~n1
(t)−1)> =

p1∑
a=1

exp
(
−
∞∑
j=1

tj,a(Λ>1,a)j
)
∈ G−, (W̄0,~n2

(t)−1)> =

p2∑
b=1

exp
(
−
∞∑
j=1

t̄j,bΛ
j
2,b

)
∈ G+.

This deformation preserves the structure that characterizes g as a moment matrix, in fact we have

Theorem 5. The matrix g(t) is a moment matrix with new “deformed weights” given by

w1,a(x, t) = Ea(x, t)w1,a(x), Ea := exp
( ∞∑
j=1

tj,ax
j
)
,

w2,b(x, t) = Ēb(x, t)
−1w2,b(x), Ēb := exp

( ∞∑
j=1

t̄j,bx
j
)
.

(109)

Proof. Observe that

W0(t) =
∑
j≥0

p1∑
a=1

σ
(a)
j (t)Λj1,a, W̄0(t)−1 =

∑
j≥0

p2∑
b=1

(Λ>2,b)
j σ̄

(b)
j (t),

where σ
(a)
j is the j-th elementary Schur polynomial in the variables tja and σ̄

(j)
b is also an elementary Schur polynomial

but now in the variables −t̄j,b. To prove (109) we first discuss the action of Λ1,a and Λ>2,b on g explicitly. Recalling
(12) it is straightforward to see that

(Λ1,agΛ>2,b)i,j =

∫
xk1(i)+1w1,a1(i)(x)w2,a2(j)(x)xk2(j)+1δa1(i),aδa2(j),bdµ(x),

and consequently the following expression holds

(W0gW̄
−1
0 )i,j =

p1∑
a=1

p2∑
b=1

∫
xk1(i)

(∑
l≥0

σ
(a)
l xl

)
w1,a1(i)(x)w2,a2(j)(x)

( ∑
m≥0

σ̄(b)
m xm

)
xk2(j)δa1(i),aδa2(j),bdµ(x),

that leads directly to (109).
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That the sign definition of the weights is preserved under deformations is ensured by the fact that all times t
are real. Let us comment that these deformations could be also be considered as evolutions, and from hereon we
indistinctly talk about deformation/evolution. If the initial measures have bounded support then there is no problem
with the exponential behavior at ∞ of the E factors; however, for unbounded situations a discussion is needed for
each case.

The Gauss–Borel factorization problem

g~n1,~n2
(t) = S(t)−1S̄(t), S(t) ∈ G−, S̄(t) ∈ G+, (110)

with S(t) lower triangular and S̄(t) upper triangular, will give the connection with integrable systems of Toda type.
Let us assume that the weights in (~w1, ~w2) are of the form (28) and that conform an M-Nikishin, then Theo-

rem 1 indicates that for small values of the times the new weights are also in the M-Nikishin class, ensuring that
(~w1(t), ~w2(t), µ) is a perfect system and therefore the Gauss–Borel factorization makes sense.

3.2 Lax equations and the integrable hierarchy

Let us introduce the Lax machinery associated with the Gauss–Borel factorization that will lead to a multi-component
2D Toda lattice hierarchy as described in [28]:

Definition 19. Associated with the deformed Gauss–Borel factorization we consider

1. Wave semi-infinite matrices

W (t) := S(t)W0(t), W̄ (t) := S̄(t)W̄0(t). (111)

2. Wave

Ψa(z, t) := W (t)χ1,a(z), Ψ̄b(z, t) := W̄ (t)χ∗2,b(z), (112)

and adjoint wave semi-infinite vector functions2

Ψ∗a(z, t) := (W (t)−1)>χ∗1,a(z), Ψ̄∗b(z, t) := (W̄ (t)−1)>χ2,b(z). (113)

3. Lax semi-infinite matrices

La(t) := S(t)Λ1,aS(t)−1, L̄b(t) := S̄(t)Λ>2,bS̄(t)−1. (114)

4. Zakharov–Shabat semi-infinite matrices

Bj,a := (Lja)+, B̄j,b := (L̄jb)−, (115)

where the subindex + indicates the projection in the upper triangular matrices while the subindex − the projection
in the strictly lower triangular matrices.

Observe that

LaΨa′ = δa,a′zΨa′ , L̄>b Ψ̄∗b′ = δb,b′z
−1Ψ̄∗b′ . (116)

We also mention that the matrices S and S̄ correspond to the Sato operators (also known as gauge operators) of the
integrable hierarchy we are deling with. Some times [9] the operators La are referred as resolvents and the Lax name
is reserved only for a convenient linear combination of the resolvents.

The reader should notice that as S(t) ∈ G− and W0(t) ∈ G+ the product W (t) = S(t)W0(t) is well defined as
its coefficients are finite sums instead of series, for (W̄ (t)−1)> = (S̄(t)−1)>(W̄0(t))−1)> we can apply the previous
argument and therefore the product is well defined. However, (W (t)−1)> = (S(t)−1)>(W0(t)−1)> is a product of
elements which involves series instead of finite sum and its existence is not in principle ensured. The situation is

2In this point the reader should notice that there are two differences between this definition of wave functions (also known as Baker–
Akheizer functions) and the one common in the literature, see for example [4]. Our modifications are motivated by two facts, i) we prefer
Ψ̄∗b to be a polynomial in z and not in z−1, up to plane-wave factors, ii) we choose to have a direct connection between wave functions
and Cauchy transforms of polynomials, with no z−1 factors multiplying the Cauchy transforms when identified with wave functions. If we
denote by small ψ the wave functions corresponding to the scheme of for example [4] then we should have the following correspondence

Ψ
(l)
a (z)↔ ψ

(l)
a (z), z(Ψ∗a)(l)(z)↔ (ψ∗a)(l)(z), z−1Ψ̄

(l)
b (z−1)↔ ψ̄

(l)
b (z) and (Ψ̄∗b )(l)(z−1)↔ (ψ̄∗b )(l)(z).
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reproduced with W̄ (t) = S̄(t)W̄0(t), and the existence of the product is not guaranteed. However, we notice that
the simultaneous consideration of the factorization problems (110) and (33) leads S(t)−1S̄(t) = W0(t)S−1S̄W̄0(t)−1

that shows two products involving series, namely W0(t)S−1 and S̄W̄0(t)−1, but they are well defined if we assume the
existence of both LU factorizations. From hereon we give for granted the existence of W̄ and W−1, and as we will see
they indeed involve series, which in the convergent situation lead to Cauchy transforms.

Proposition 23. For the wave functions we have

Ψ(k)
a (z, t) = A(k)

a (z, t)Ea(z, t), (Ψ̄∗b)
(k)(z, t) = Ā

(k)
b (z, t)Ēb(z, t)

−1, (117)

where A
(k)
a (x, t), Ā

(k)
b (x, t) are the multiple orthogonal polynomials and dual polynomials (in the x variable) correspond-

ing to (109). The evolved linear forms, associated with weights (109), are

Q(k)(x, t) :=

p1∑
a=1

A(k)
a (x, t)w1,a(x, t) =

p1∑
a=1

Ψ(k)
a (x, t)w1,a(x), (118)

Q̄(k)(x, t) :=

p2∑
b=1

(Ā∗b)
(k)(x, t)w2,b(x, t) =

p2∑
b=1

(Ψ̄∗b)
(k)(x, t)w2,b(x), (119)

which are bi-orthogonal polynomials of mixed type for each t∫
Q(l)(t, x)Q̄(k)(t, x)dµ(x) = δl,k, l, k ≥ 0, (120)

and

Ψ̄
(k)
b (z, t) =

∫
Q(k)(x, t)

z − x
w2,b(x)dµ(x), (Ψ∗a)(k)(z, t) =

∫
Q̄(k)(x, t)

z − x
w1,a(x)dµ(x). (121)

Proof. From the definitions (112) and (113), and the factorization problem Wg = W̄ we conclude

Ψ̄b = W̄χ∗2,b = S(W0g)χ∗2,b, Ψ∗a = (W−1)>χ∗1,a = (S̄−1)>(gW̄−1
0 )>χ∗1,a. (122)

We get, in terms of the linear forms, the following identities

Ψ̄
(k)
b (z, t) =

∫
Q(k)(x, t)

z − x
w2,b(x)dµ(x), (Ψ∗a)(k)(z, t) =

∫
Q̄(k)(x, t)

z − x
w1,a(x)dµ(x),

where the Cauchy transforms are understood as before.3

We must stress in this point that these functions are not the evolved second kind functions of the linear forms

C̄
(k)
b (z, t) :=

∫
Q(k)(x, t)

z − x
w2,b(x, t)dµ(x), (Ca)(k)(z, t) :=

∫
Q̄(k)(x, t)

z − x
w1,a(x, t)dµ(x). (123)

Theorem 6. For j, j′ = 1, 2, . . . , a, a′ = 1, . . . , p1 and b, b′ = 1, . . . , p2 the following differential relations hold

3The reader should notice that there is a difference in this semi-infinite context, appropriate for the construction of multiple orthogonal
polynomials, and the bi-infinite case which is the one considered in [37]. In the present context we do not have expressions, as we do have
in the bi-infinite situation, of the form

Ψ̄
(k)
b (z, t) = (P0 + P1z

−1 + · · · ) exp
(∑
j>0

t̄j,bz
j
)
,

(Ψ∗a)(k)(z, t) = (Q0 +Q1z
−1 + · · · ) exp

(
−
∑
j>0

tj,az
j
)
.

The reason for this issue is rooted into non-invertibility of Λa. Indeed, for the semi-infinite case, we have

(Λ>a )jχ∗a =
[
zjχ∗a

]
− =⇒ exp

( ∞∑
j=1

cj(Λ
>
a )j

)
χ∗a = [exp

( ∞∑
j=1

cjz
j
)
χ∗a]−

where the subindex − stands for the negative powers in z in the Laurent expansion; while in the bi-infinite case we drop the − subindex
in the previous formulae.
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1. Auxiliary linear systems for the wave matrices

∂W

∂tj,a
= Bj,aW,

∂W

∂t̄j,b
= B̄j,bW,

∂W̄

∂tj,a
= Bj,aW̄ ,

∂W̄

∂t̄j,b
= B̄j,bW̄ . (124)

2. Linear systems for the wave and adjoint wave semi-infinite matrices

∂Ψa′

∂tj,a
= Bj,aΨa′ ,

∂Ψa′

∂t̄j,b
= B̄j,bΨa′ ,

∂Ψ̄b′

∂tj,a
= Bj,aΨ̄b′ ,

∂Ψ̄b′

∂t̄j,b
= B̄j,bΨ̄b′ , (125)

∂Ψ∗a′

∂tj,a
= −B>j,aΨ∗a′ ,

∂Ψ∗a′

∂t̄j,b
= −B̄>j,bΨ∗a′ ,

∂Ψ̄∗b′

∂tj,a
= −B>j,aΨ̄∗b′ ,

∂Ψ̄∗b′

∂t̄j,b
= −B̄>j,bΨ̄∗b′ . (126)

3. Linear systems for multiple orthogonal polynomials and their duals

∂Aa′

∂tj,a
= (Bj,a − δa,a′xj)Aa′ ,

∂Aa′

∂t̄j,b
= (B̄j,b)Aa′ ,

∂Āb′

∂tj,a
= −B>j,aĀb′ ,

∂Āb′

∂t̄j,b
= (−B̄>j,b + δb,b′x

j)Āb′ . (127)

4. Lax equations

∂La′

∂tj,a
= [Bj,a, La′ ],

∂La′

∂t̄j,b
= [B̄j,b, La′ ],

∂L̄b′

∂tj,a
= [Bj,a, L̄b′ ],

∂L̄b′

∂t̄j,b
= [B̄j,b, L̄b′ ]. (128)

5. Zakharov–Shabat equations

∂Bj,a
∂tj′,a′

− ∂Bj′,a′

∂tj,a
+ [Bj,a, Bj′,a′ ] = 0, (129)

∂B̄j,b
∂t̄j′,b′

− ∂B̄j′,b′

∂t̄j,b
+ [B̄j,b, B̄j′,b′ ] = 0, (130)

∂Bj,a
∂t̄j′,b′

− ∂B̄j′,b′

∂tj,a
+ [Bj,a, B̄j′,b′ ] = 0. (131)

Proof. To prove (124) we proceed as follows. In the first place we compute

∂W0

∂tj,a
= Λj1,aW0,

∂W̄0

∂t̄j,b
= (Λ>2,b)

jW̄0,

and in the second place we observe that

∂W

∂tj,a
=
( ∂S

∂tj,a
S−1 + Lja

)
W,

∂W̄

∂tj,a
=
( ∂S̄

∂tj,a
S−1

)
W̄ , (132)

∂W

∂t̄j,b
=
( ∂S

∂t̄j,b
S−1

)
W,

∂W̄

∂t̄j,b
=
( ∂S̄

∂t̄j,b
S̄−1 + L̄jb

)
W̄ . (133)

Now, using the factorization problem we get

∂S

∂tj,a
S−1 + Lja =

∂S̄

∂tj,a
S̄−1,

∂S̄

∂t̄j,b
S̄−1 + L̄jb =

∂S

∂t̄j,b
S−1,

which, taking the + part (upper triangular) and the − part (strictly lower triangular) imply

∂S

∂tj,a
S−1 = −(Lja)−,

∂S̄

∂tj,a
S̄−1 = (Lja)+,

∂S̄

∂t̄j,b
S̄−1 = −(L̄jb)+,

∂S

∂t̄j,b
S−1 = (L̄jb)−, (134)

so using (134) into (132) and (133) with the definitions (115) we obtain (124). The linear system (125) is obtained by
inserting (112) into (124).
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To obtain the Lax equations (128) we take derivatives of (114)

∂La′

∂tj,a
=
[ ∂S
∂tj,a

S−1, La′
]

= [Bj,a, La′ ],
∂L̄b′

∂tj,a
=
[ ∂S̄
∂tj,a

S̄−1, L̄b′
]

= [Bj,a, L̄b′ ],

∂La′

∂t̄j,b
=
[ ∂S
∂t̄j,b

S−1, La′
]

= [B̄j,b, La′ ],
∂L̄b′

∂t̄j,b
=
[ ∂S̄
∂t̄j,b

S̄−1, L̄b′
]

= [B̄j,b, L̄b′ ].

Finally, (129) are obtained as compatibility conditions for (124).

All these equations provide us with different descriptions of a multi-component integrable hierarchy of the 2D Toda
lattice hierarchy type that rules the flows of the multiple orthogonal polynomials with respect to deformed weights.
This integrable hierarchy is the Toda type extension of the multi-component KP hierarchy considered in [9].

3.3 Darboux–Miwa discrete flows

We complete the previously considered continuous flows with discrete flows, which we introduce through an iterated
application of Darboux transformations [5].

Definition 20. Given sequences of complex numbers

λa := {λa(n)}n∈Z ⊂ C, a = 1, . . . , p1, λ̄b := {λ̄b(n)}n∈Z ⊂ C, b = 1, . . . , p2, (135)

(where λ̄ is not intended to denote the complex conjugate of λ) and two vectors, (s1, . . . , sp1) ∈ Zp1 and (s̄1, . . . , s̄p2) ∈
Zp2 , we construct the following semi-infinite matrices

D0 :=

p1∑
a=1

D0,a, D0,a :=


∏sa
n=1(Λ1,a − λa(n)Π1,a), sa > 0,

Π1,a, sa = 0,∏|sa|
n=1(Λ1,a − λa(−n)Π1,a)−1, sa < 0,

D̄−1
0 :=

p2∑
b=1

(
D̄−1

0

)
b

(
D̄−1

0

)
b

:=


∏s̄b
n=1(Λ>2,b − λ̄b(n)Π2,b), s̄b > 0,

Π2,b, s̄b = 0,∏|s̄b|
n=1(Λ>2,b − λ̄b(−n)Π2,b)

−1, s̄b < 0,

(136)

where s := {sa, s̄b}a=1,...,p1
b=1,...,p2

denotes the set of discrete times, in terms of which we define the deformed moment matrix

g(s) = D0(s)gD̄0(s)−1. (137)

Proposition 24. The moment matrix g(s) has the same form as the moment matrix g but with new weights

w1,a(s, x) = Da(x, sa)w1,a(x), Da :=


∏sa
n=1(x− λa(n)), sa > 0,

1, sa = 0,∏|sa|
n=1(x− λa(−n))−1, sa < 0,

w2,b(s, x) = D̄b(x, s̄b)
−1w2,b(x), D̄−1

b :=


∏s̄b
n=1(x− λ̄b(n)), s̄b > 0,

1, s̄b = 0,∏|s̄b|
n=1(x− λ̄b(−n))−1, s̄b < 0,

(138)

Thus, the proposed discrete evolution introduces new zeroes and poles in the weights at the points defined by
sequences of λ’s. For example, in the a-th direction, the sa flow in the positive direction, sa → sa + 1, introduces a
new zero at the point λa(sa + 1), while if we move in the negative direction, sa → sa − 1, it introduces a simple pole
at λa(sa − 1). Let us stress that for the time being we have not ensured the reality and positiveness/negativeness of
the evolved weights, this will be considered later on.

3.3.1 Miwa transformations

Here we show that the discrete flows just introduced can be reproduced with the aid of Miwa shifts in the continuous
variables.

Definition 21. We consider two types of Miwa transformations:
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1. We introduce the following time shifts

t→ t∓ [z−1]a :=
{
tj,a′ ∓ δa′,a

1

jzj
, t̄j,b′

}
j=1,2,...,
a′=1,...,p1,
b′=1,...,p2

, (139)

2. Dual time shifts are

t→ t± [z−1]b :=
{
tj,a′ , t̄j,b′ ± δb′,b

1

jzj

}
j=1,2,...,
a′=1,...,p1,
b′=1,...,p2

. (140)

Proposition 25. The Miwa transformations produce the following effect on the weights

w1,a′(x, t∓ [z−1]a, s) =
(

1− x

z

)±δa,a′
w1,a′(x, t, s), w2,b′(x, t∓ [z−1]a, s) = w2,b′(x, t, s), (141)

w1,a′(x, t± [z−1]b, s) = w1,a′(x, t, s), w2,b′(x, t± [z−1]b, s) =
(

1− x

z

)±δb,b′
w2,b′(x, t, s). (142)

Proof. When we consider what happens to the evolutionary factors under these shifts we find

exp
(∑

j

tj,a′x
j
)
→ exp

(∑
j

(
tj,a′ ∓ δa′,a

xj

jzj

))
=
(

1− x

z

)∓δa′,a
exp

(∑
j

tj,a′x
j
)
, (143)

and therefore the weights transform according to

w1,a′(x, t, s)→
(

1− x

z

)±δa,a′
w1,a′(x, t, s), (144)

which is like the Darboux transformations considered previously. For the dual Miwa shifts we consider what happens
to the evolutionary factors under these shifts

exp
(
−
∑
j,b′

t̄j,b′x
j
)
→ exp

(
−
∑
j,b′

(
t̄j,b′ ± δb′,b

xj

jzj

))
=
(

1− x

z

)±1

exp
(
−
∑
j,b′

t̄j,b′x
j
)
, (145)

and the transformation for the weights is

w2,b′(x, t, s)→
(

1− x

z

)±δb,b′
w2,a′(x, t, s). (146)

Thus, a comparison of (138), (141) and (142) leads to

Proposition 26. Miwa transformations and discrete flows can be identified as follows

caw1,a(x, t, sa) =


w1,a(x, t−

∑sa
n=1

[
λa(n)−1

]
a
), sa > 0,

w1,a(x, t), sa = 0,

w1,a(x, t+
∑|sa|
n=1

[
λa(−n)−1

]
a
), sa < 0,

ca :=


∏sa
n=1(−λa(n))−1, sa > 0

1, sa = 0∏|sa|
n=1(−λa(−n)), sa < 0,

c̄bw2,b(x, t, s̄b) =


w2,b(x, t+

∑s̄b
n=1

[
λ̄b(n)−1

]
b
, x), s̄b > 0,

w2,b(x, t), s̄b = 0,

w2,b(x, t−
∑|s̄b|
n=1

[
λ̄b(−n)−1

]
b
), s̄b < 0,

c̄b :=


∏s̄b
n=1(−λ̄b(n))−1, s̄b > 0

1, s̄b = 0∏|s̄b|
n=1(−λ̄b(−n)), s̄b < 0.

(147)

As a conclusion, the discrete flows and Miwa shifts in the continuous flows are the very same thing, and therefore
we could work with continuous flows and Miwa transformations or with continuous/discrete flows. This discussion
justifies the Miwa part in the name we gave to these discrete flows.
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3.3.2 Bounded from below measures

Of course, in order to preserve the link with multiple orthogonal polynomials, these discrete flows must preserve the
reality, regularity and sign constance of the weights, which generically is not the case. When the support of the
weights is bounded from below, i.e. there are finite real numbers Ka and Kb, such that supp(w1,adµ) ⊂ [Ka,∞) and
supp(w2,bdµ) ⊂ [K̄b,∞), a possible solution is to place all the new zeroes and poles in the real line but outside the
corresponding support, λa(n) < inf(supp(w1,adµ)) and λ̄b(n) < inf(supp(w2,bdµ)). A different approach, which will
be considered in Appendix B, is to arrange the zeroes in complex conjugate pairs.

To analyze the consequence of the discrete flows on the integrable hierarchy we introduce two sets of shifts operators:

Definition 22. 1. Let us consider the sets of shift operators {Ta}p1

a=1 and {T̄b}p2

b=1, where Ta stands for the shift
sa 7→ sa + 1 and T̄b stands for sb 7→ s̄b + 1. The rest of the variables {sa′ , s̄b′} will remain constant.

2. We introduce

qa := I−Π1,a(I + λa(sa + 1)) + Λ1,a,

q̄b := I−Π2,b(I + λ̄b(s̄b + 1)) + Λ>2,b.
(148)

3. We also define the operators

δa := SqaS
−1 = I− Ca(I + λa(sa + 1)) + La, δ̄b := S̄q̄bS̄

−1 = I− C̄b(I + λ̄b(s̄b + 1)) + L̄b, (149)

Ca := SΠ1,aS
−1, C̄b := S̄Π2,bS̄

−1.

Here the matrices δa and δ̄b are called lattice resolvents.

4. Finally the semi-infinite wave matrices

W := SD0, W̄ := S̄D̄0. (150)

Observe that

(TaD0)D−1
0 = qa, D̄−1

0 (TaD̄0) = I,
D̄0(T̄bD̄

−1
0 ) = q̄b, (T̄bD0)D−1

0 = I.
(151)

When we assume that the semi-infinite matrices δa and δ̄b are LU factorizable as in (33), i.e. all their principal minors
do not vanish, we can write

δa = δ−1
a,−δa,+, δ̄b = δ̄−1

b,−δ̄b,+, (152)

where δa,− and δ̄b,− are lower matrices as is S in (33), and δa,+ and δ̄b,+ are upper matrices as S̄ in (33). We now show
that when the deformed moment matrix g(s) is factorizable, and therefore the multiple orthogonality makes sense, the
following holds

Proposition 27. If the deformed moment matrix g(s) is factorizable for all values of s then so is δa and δ̄b with

δa,+ = (TaS̄)S̄−1, δa,− = (TaS)S−1,

δ̄b,+ = (T̄bS̄)S̄−1, δ̄b,+ = (T̄bS)S−1.
(153)

Proof. When we apply the discrete shifts to the Gauss–Borel factorization problem g(s) = S−1(s)S̄(s) we get

Ta(S−1)Ta(S̄) = Tag(s) = (TaD0)D−1
0 g(s) = qag(s) ⇒ ((TaS)S−1)−1(TaS̄)S̄−1 = δa,

T̄b(S
−1)T̄b(S̄) = T̄bg(s) = g(s)D̄0(TbD̄

−1
0 ) = g(s)q̄b ⇒ ((T̄bS)S−1)−1((T̄bS̄)S̄−1 = δ̄b,

and the desired result follows.

Therefore, we can consider the following

Definition 23. The semi-infinite matrices ωa and ω̄b are given by

ωa := δa,−δa = δa,+, ω̄b := δ̄b,− = δ̄b,+δ̄
−1
b , (154)
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and show that

Proposition 28. 1. The following auxiliary linear systems

TaW = ωaW, TaW̄ = ωaW̄ ,

T̄bW = ω̄bW, T̄bW̄ = ω̄bW̄ ,
(155)

are satisfied.

2. The Lax matrices fulfill the following relations

TaLa′ = ωaLa′ω
−1
a , TaL̄b = ωaL̄bω

−1
a ,

T̄bLa = ω̄bLaω̄
−1
b , T̄bL̄b′ = ω̄bL̄b′ ω̄

−1
b .

(156)

3. The following discrete Zakharov–Shabat compatibility conditions hold

(Taωa′)ωa = (Ta′ωa)ωa′ , (Taω̄b)ωa = (T̄bωa)ω̄b, (T̄bω̄b′)ω̄b = (T̄b′ ω̄b)ω̄b′ . (157)

4. When the discrete and continous flows are considered simultaneously, the following equations

Ta′Bj,a = (∂j,aωa′)ω
−1
a′ + ωa′Bj,aω

−1
a′ , T̄bBj,a = (∂j,aω̄b)ω̄

−1
b + ω̄bBj,aω̄

−1
b ,

TaB̄j,b = (∂̄j,bωa)ω−1
a + ωaB̄j,bω

−1
a , T̄b′B̄j,b = (∂̄j,bω̄b′)ω̄

−1
b′ + ω̄b′B̄j,bω̄

−1
b′ ,

(158)

are obtained.

Proof. We compute

TaW = (TaS)(TaD0) = (TaS)S−1SqaS
−1SD0 = δa,−δaW = δa,+W,

TaW̄ = (TaS̄)D̄0 = (TaS̄)S̄−1S̄D̄0 = δa,+W̄ ,

T̄bW = (T̄bS)D0 = (T̄bS)S−1SD0 = δ̄b,−W,

T̄bW̄ = (T̄bS̄)(TbD̄0) = (TbS̄)S̄−1S̄q̄−1
b S̄−1S̄D̄0 = δ̄b,+δ̄

−1
b W̄ = δ̄b,−W̄ ,

from where we deduce (155), which in turn imply (156) and (157).

The simultaneous consideration of continuous and discrete flows leads to the replacement W0 →W0D0 and W̄0 →
W̄0D̄0, and the corresponding modification of the weight’s flows is achieved by the multiplication of the continuous
and discrete evolutionary factors, in this context we also have (158). These discrete flows could be understood as a
sequence of Darboux transformations of LU and UL types in the terminology of [5], which motivates the Darboux
part in name we give to these discrete flows. In fact, we have that the lattice resolvents satisfy

δa = δ−1
a,−δa,+ ⇒ Taδa = ωaδaω

−1
a = δa,+δ

−1
a,−δa,+δ

−1
a,+ = δa,+δ

−1
a,−,

δ̄b = δ̄−1
b,−δ̄b,+ ⇒ T̄bδ̄b = ω̄bδ̄bω̄

−1
b = δ̄b,−δ̄

−1
b,−δ̄b,+δ̄

−1
b,− = δ̄b,+δ̄

−1
b,−,

which amounts to the typical permutation of the LU factorization to the UL factorization. When there is only
one component we have δ = L + λ and δ̄ = λ̄ + L̄ and the shift corresponds to the classical LU or UL Darboux
transformations.

If A
(k)
a (x, s), Ā

(k)
b (x, s) are the multiple orthogonal polynomials and dual polynomials in the x variable correspond-

ing to the discrete evolution of the weights (138) respectively we have the discrete version of Proposition 23

Proposition 29. The wave and adjoint wave functions (150) are

Ψ(k)
a (z, s) = A(k)

a (z, s)Da(z, sa) (Ψ̄∗b)
(k)(z, s) = Ā

(k)
b (z, s)D̄b(z, s̄b)

−1, (159)

and the the linear forms

Q(k)(x, s) =

p1∑
a=1

A(k)
a (x, s)w1,a(x, s), Q̄(k)(x, s) =

p2∑
b=1

(Āb)
(k)(x, s)w2,b(x, s), (160)
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associated with the weights w1,a(x, s), w2,b(x, s), can be expressed as

Q(k)(x, s) :=

p1∑
a=1

Ψ(k)
a (x, s)w1,a(x), Q̄(k)(x, s) :=

p2∑
b=1

(Ψ̄∗b)
(k)(x, s)w2,b(x), (161)

in terms of which we have the equations

Ψ̄
(k)
b (z, s) =

∫
Q(k)(x, s)

z − x
w2,b(x)dµ(x), (Ψ∗a)(k)(z, s) =

∫
Q̄(k)(x, s)

z − x
w1,a(x)dµ(x). (162)

Here the Cauchy transforms must be interpreted in exactly the same terms as in Proposition 8. Observe that (162)
do not correspond to the functions of the second kind

C̄
(k)
b (z, s) :=

∫
Q(k)(x, s)

z − x
w2,b(x, s)dµ(x), C(k)

a (z, s) :=

∫
Q̄(k)(x, s)

z − x
w1,a(x, s)dµ(x). (163)

Notice also that from (149)-(152), relations that hold true for any g and not only for the moment matrix, we get

Lemma 6. We have that

ωa = ωa,0Λ|~n1|−n1,a+1 + ωa,1Λ|~n1|−n1,a + · · ·+ ωa,|~n1|−n1,a+1,

ω̄b = ω̄b,0(Λ>)|~n2|−n2,b+1 + ω̄b,1(Λ>)|~n2|−n2,b + · · ·+ ω̄b,|~n2|−n2,b+1,

ω>a = ρa,0(Λ>)|~n1|−n1,a+1 + ρa,1(Λ>)|~n1|−n1,a + · · ·+ ρa,|~n1|−n1,a+1,

ω̄>b = ρ̄b,0Λ|~n2|−n2,b+1 + ρ̄b,1Λ|~n2|−n2,b + · · ·+ ρb,|~n2|−n2,b+1,

(164)

for some diagonal semi-infinite matrices

ωa,j = diag(ωa,j(0), ωa,j(1), . . . ),

ω̄b,j = diag(ω̄b,j(0), ω̄b,j(1), . . . ),

ρa,j = diag(ρa,j(0), ρa,j(1), . . . ),

ρ̄b,j = diag(ρ̄b,j(0), ρ̄b,j(1), . . . ),

(165)

with

ρa,j(k) := ωa,j(k − |~n1|+ n1,a − 1 + j),

ρ̄b,j(k) := ω̄b,j(k + |~n2| − n2,b + 1− j).
(166)

that with

Definition 24. We define

γa,a′(s, x) := (1− δa,a′(1 + λa(sa + 1)− x)),

γb,b′(s, x) := (1− δb,b′(1 + λ̄b(s̄b + 1)− x)),
(167)

leads to

Proposition 30. The following equations

(Ta′A
(k)
a )γa,a′ = ωa′,0(k)A

(k+|~n1|−n1,a′+1)
a + · · ·+ ωa′,|~n1|−n1,a′+1(k)A(k)

a ,

T̄b′A
(k)
a = ω̄b′,0(k)A

(k−|~n2|+n2,b′−1)
a + · · ·+ ω̄b′,|~n2|−n2,b′+1(k)A(k)

a .
(168)

ρa′,0(k)(Ta′Ā
(k−|~n1|+n1,a′−1)

b ) + · · ·+ ρa′,|~n1|−n1,a′+1(k)(Ta′Ā
(k)
b ) = Ā

(k)
b ,(

ρ̄b′,0(k)(T̄b′Ā
(k+|~n2|−n2,b′+1)

b ) + · · ·+ ρ̄b′,|~n2|−n2,b′+1(k)(T̄b′Ā
(k)
b )
)
γ̄b,b′ = Ā

(k)
b ,

(169)

are fulfilled.

Proof. For (168) recall the discrete auxiliary systems for W , while for (169) just consider that

ω>a Ta((W̄−1)>) = (W̄−1)>, ω̄>b T̄b((W̄
−1)>) = (W̄−1)>.

Notice that relations (168) and (169) are among multiple orthogonal polynomials in the same ladder but with
different weights, they link the polynomials for the weights w1,a, w2,b with those with Ta′w1,a, Ta′w2,b or T̄b′w1,a, T̄b′w2,b.
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3.4 Symmetries, recursion relations and string equations

We now return to the discussion of the symmetry of the moment matrix that we started in §2.6 but with evolved
weights and the use of Lax matrices. The first observation is the following

Proposition 31. The j-th power of the evolved Jacobi type matrix introduced in §2.6 is related with Lax matrices
through what we call a string equation:

Jj =

p1∑
a=1

Lja =

p2∑
b=1

L̄jb, j = 1, 2, . . . , (170)

and the multiple orthogonal polynomials are eigen-vectors:

JjAa′ = xjAa′ , (Jj)>Āb′ = xjĀb′ , (171)

for a′ = 1, . . . , p1 and b′ = 1, . . . , p2.

Proof. Using (68) it can be proven by induction on j that for any j ≥ 1 the following equation holds

Λj1,agΠ2,b = Π1,ag(Λ>2,b)
j , (172)

so that

LjaC̄b = CaL̄
j
b. (173)

Summing over a, b we deduce (170). Moreover (171) is obtained as follows

JjAa′ = S

p1∑
a=1

Λj1,aS
−1Sχ1,a′ = xjAa′ , (174)

(Jj)>Āa′ = (S̄−1)>
p2∑
b=1

Λj2,aS̄
>(S̄−1)>χ2,b′ = xjĀb′ . (175)

We are ready to show that the symmetry (68) induces a corresponding invariance on Lax matrices and multiple
orthogonal polynomials

Proposition 32. The following relations hold for j = 1, 2, . . .( p1∑
a=1

∂

∂tj,a
+

p2∑
b=1

∂

∂t̄j,b

)
La′ = 0,

( p1∑
a=1

∂

∂tj,a
+

p2∑
b=1

∂

∂t̄j,b

)
L̄b′ = 0, (176)

( p1∑
a=1

∂

∂tj,a
+

p2∑
b=1

∂

∂t̄j,b

)
Aa′ = 0,

( p1∑
a=1

∂

∂tj,a
+

p2∑
b=1

∂

∂t̄j,b

)
Āb′ = 0. (177)

Proof. See Appendix A.

3.5 Bilinear equations and τ-functions

The proof of the bilinear identity needs three lemmas. For the first one, let W~n1,~n2
, W̄~n1,~n2

be the wave matrices
associated with the moment matrix g~n1,~n2

; so that, W~n1,~n2
g~n1,~n2

= W̄~n1,~n2
. Then, we have

Lemma 7. The wave matrices associated with different compositions and times satisfy

W~n1,~n2
(t, s)π>~n′1,~n1

W~n′1,~n
′
2
(t′, s′)−1 = W̄~n1,~n2

(t, s)π>~n′2,~n2
W̄~n′1,~n

′
2
(t′, s′)−1, (178)

Proof. We consider simultaneously the following equations

W~n1,~n2
(t, s)g = W̄~n1,~n2

(t, s),

W~n′1,~n
′
2
(t′, s′)π~n′1,~n1

gπ>~n′2,~n2
= W̄~n′1,~n

′
2
(t′, s′),

where g = g~n1,~n2
, and we get

W~n1,~n2
(t, s)−1W̄~n1,~n2

(t, s) = π>~n′1,~n1
W~n′1,~n

′
2
(t′, s′)−1W̄~n′1,~n

′
2
(t′, s′)π~n′2,~n2

= g,

and the result becomes evident.
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For the second one, let (·)−1 denote the coefficient in z−1 in the Laurent expansión around z = ∞ (place where
the Cauchy transforms make sense).

Lemma 8. For the vectors χa the following formulae hold

( p∑
a=1

χa(χ∗a)>
)
−1

=
( p∑
a=1

χ∗aχ
>
a

)
−1

= I,

and therefore

Lemma 9. For any couple of semi-infinite matrices U and V we have

UV =
( p1∑
a=1

(Uχ1,a)
(
V >χ∗1,a

)>)
−1

(179)

=
( p2∑
b=1

(Uχ∗2,b)
(
V >χ2,b

)>)
−1
, (180)

Proof. It follows easily from Lemma 8:( p1∑
a=1

(Uχ1,a)
(
V >χ∗1,a

)>)
−1

= U
( p1∑
a=1

χ1,a(χ∗1,a)>
)
−1
V = UV,

( p2∑
b=1

(Uχ∗2,b)
(
V >χ2,b

)>)
−1

= U
( p2∑
b=1

χ∗2,bχ
>
2,b

)
−1
V = UV.

We have the following

Theorem 7. 1. The wave functions and their companions satisfy

p1∑
a=1

∮
∞

Ψ
(k)
~n1,~n2,a

(z, t, s)(Ψ∗~n′1,~n′2,a)(l)(z, t′, s′)dz =

p2∑
b=1

∮
∞

Ψ̄
(k)
~n1,~n2,b

(z, t, s)(Ψ̄∗~n′1,~n′2,b)
(l)(z, t′, s′)dz.

2. Multiple orthogonal polynomials, their duals and the corresponding second kind functions are linked by

p1∑
a=1

∮
∞
A

(k)
~n1,~n2,a

(z, t, s)C̄
(l)
~n′1,~n

′
2,a

(z, t′, s′)Ea(z)dz =

p2∑
b=1

∮
∞
C

(k)
~n1,~n2,b

(z, t, s)Ā
(l)
~n′1,~n

′
2,b

(z, t′, s′)Ēb(z)dz, (181)

where

Ea := (EaDa)(z, t, s)((EaDa)(z, t′, s′))−1, Ēb := (ĒbD̄b)(z, t, s)((ĒbD̄b)(z, t
′, s′))−1.

Proof. 1. If we set in (179) U = W~n1,~n2
(t, s) and V = π>~n′1,~n1

W~n′1,~n
′
2
(t′, s′)−1 and in (180) we put U = W̄~n1,~n2

(t, s)

and V = π>~n′2,~n2
W̄~n′1,~n

′
2
(t′, s′)−1 attending to (178), recalling that Ψ~n1,~n2,a = W~n1,~n2

χ~n1,a, Ψ̄~n1,~n2,b = W̄~n1,~n2
χ∗~n2,b

and observing that Ψ∗~n′1,~n′2,a
= (W−1

~n′1,~n
′
2
)>π~n′1,~n1

χ∗~n1,a
and Ψ̄∗~n′1,~n′2,b

= (W̄−1
~n′1,~n

′
2
)>π~n′2,~n2

χ~n2,b we get the stated

bilinear equation for the wave functions.4

2. We can write

W~n1,~n2
(t, s)π>~n′1,~n1

W~n′1,~n
′
2
(t′, s′)−1 = (S~n1,~n2

(t, s)W0,~n1
(t, s)π>~n′1,~n1

(W0,~n′1
(t′, s′))−1π~n′1,~n1

)π>~n′1,~n1
S~n′1,~n′2(t′, s′)−1,

which strongly suggests to consider in (179)

U = S~n1,~n2
(t, s)W0,~n1

(t, s)π>~n′1,~n1
(W0,~n′1

(t′, s′))−1π~n′1,~n1
, V = π>~n′1,~n1

S~n′1,~n′2(t′, s′)−1.

4The reader familiarized with Toda bilinear equations should notice that in the right hand term we are working at z = ∞ instead of,
as customary, at z = 0; the reason is that for the definition of Āb we have used χ2 instead of χ∗2, in order to get polynomials in z, while

normally one gets polynomials in z−1. See footnote 2. Moreover, due to the redefinition of the wave functions there is no dz
2πiz

factor
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Analogously

W̄~n1,~n2
(t, s)π>~n′1,~n1

W̄~n′1,~n
′
2
(t′, s′)−1 = (S̄~n1,~n2

(t, s)W̄0,~n1
(t, s)π>~n′1,~n1

(W̄0,~n′1
(t′, s′))−1π~n′1,~n1

)π>~n′1,~n1
S̄~n′1,~n′2(t′, s′)−1,

suggest to set in (180)

U = S̄~n1,~n2
(t, s)W̄0,~n2

(t, s)π>~n′2,~n2
(W̄0,~n′2

(t′, s′))−1π~n′2,~n2
, V = π>~n′2,~n2

S̄~n′1,~n′2(t′, s′)−1.

The application of (179),(180) and (178) gives the alternative bilinear relations (181) where we have used the
evolved Cauchy transforms (123) and introduce the evolutionary factors

Ea := (EaDa)(z, t, s)((EaDa)(z, t′, s′))−1,

Ēb := (ĒbD̄b)(z, t, s)((ĒbD̄b)(z, t
′, s′))−1.

The factors involved in this definition were introduced in (109) and (138), so that we assume the discrete flows
within the bounded from below support scenario, while if we consider the two-step discrete flows the replacement of
the D-factors by the D ′- factors (220) is required.

It can be shown that for certain weights, for which we can use the Fubini and Cauchy theorems, and when one
only considers a finite number of continuous flows that the r.h.s and l.hs. in this bilinear relations are proportional to∫
RQ

(k)
~n1,~n2

(x, t)Q̄
(l)
~n′1,~n

′
2
(x, t′)dµ(x). This is a direct consequence of

Proposition 33. We have the following identity∫
R
Q~n1,~n2

(x, t, s)Q̄>~n′1,~n′2(x, t′, s′)dµ(x) = W~n1,~n2
(t, s)π>~n′1,~n1

(W~n′1,~n
′
2
(t′, s′))−1 (182)

= W̄~n1,~n2
(t, s)π>~n′2,~n2

(W̄~n′1,~n
′
2
(t′, s′))−1. (183)

Proof. See Appendix A.

Now, we will perform a full characterization of the τ -functions associated with the multiple orthogonal polynomials
defined in this paper.

Definition 25. Let us define the following matrices

g
[l+1]
+a : =


g0,0 g0,1 · · · g0,l−1 g0,l

g1,0 g1,1 · · · g1,l−1 g1,l

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 gl−1,l

gl+a,0 gl+a,1 · · · gl+a,l−1 gl+a,l

 ḡ
[l+1]
+b : =


g0,0 g0,1 · · · g0,l−1 g0,l̄+b

g1,0 g1,1 · · · g1,l−1 g1,l̄+b

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 gl−1,l̄+b

gl,0 gl,1 · · · gl,l−1 gl,l̄+b

 . (184)

The matrix g
[l+1]
+a is obtained from g[l+1] replacing the last row (operation denoted by a dashed line) by

(gl+a,0, gl+a,1, . . . , gl+a,l−1, gl+a,l),

and ḡ
[l+1]
+b is obtained from g[l+1] replacing the last column by (g0,l̄+b , g1,l̄+b , . . . , gl−1,l̄+b , gl,l̄+b)

>. It is clear that if

a1(l) = a then g
[l+1]
+a = g[l+1] and if a2(l) = b then ḡ

[l+1]
+b = g[l+1].

The minors of the these matrices (184) will be denoted as M
[l+1]
i,j = M̄

[l+1]
i,j for g[l+1], M

[l+1]
+a,i,j for g

[l+1]
+a and M̄

[l+1]
+b,i,j

for ḡ
[l+1]
+b . Now we introduce the following determinants that are cofactors of the previously defined matrices

Definition 26. The τ -functions are defined as follows

τ
(l)
+a,−a′ := (−1)l+l−a′M

[l+1]
+a,l−a′ ,l

, τ
(l)
−b,−a := (−1)l̄−b+l−aM

[l+1]

l−a,l̄−b
, (185)

τ̄
(l)
+b,−b′ := (−1)l+l̄−b′ M̄

[l+1]

+b,l,l̄−b′
, τ̄

(l)
−a,−b := (−1)l−a+l̄−bM̄

[l+1]

l−a,l̄−b
. (186)

Moreover,
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1. If a1(l) = a then we denote τ
(l)
−a′ := τ

(l)
+a,−a′ and τ̄

(l)
−b := τ̄

(l)
−a,−b.

2. If a2(l) = b then we denote τ
(l)
−a := τ

(l)
−b,−a and τ̄

(l)
−b′ := τ̄

(l)
+b,−b′ .

3. We also introduce τ (l) = τ̄ (l) := det g[l] and

τ
(l+1)
+a := det g

[l+1]
+a , τ̄

(l+1)
+b := det ḡ

[l+1]
+b .

If a1(l) = a then τ
(l+1)
+a = τ (l+1), and if a2(l) = b then τ̄

(l+1)
+b = τ (l+1).

Given a perfect combination (µ, ~w1, ~w2) and the corresponding set of multiple orthogonal polynomials {A[~ν1;~ν2],a}p1

a=1,
with degree vectors such that |~ν1| = |~ν2| + 1, there exists a (~n1, ~n2) ladder and an integer l with |~ν1| = l + 1 and

|~ν2| = l such that the polynomials {A(l)
a }p1

a=1 coincide with {A[~ν1;~ν2],a}p1

a=1. The final result does not depend upon the
particular (~n1, ~n2) ladder we choose to get up to the given degrees in the ladder; however, the τ -functions do indeed
depend on the ladder chosen through a global sign. A simple sign-fixing rule is to choose the ladder ~n1 = ~ν1 and
~n2 = ~ν2 + ~ep2

. We define

τ[~ν1;~ν2] := τ
(l)
~ν1,~ν2

, l = |~ν1| − 1 = |~ν2|,

and we deduce

Proposition 34. Given degree vectors (~ν1, ~ν2) such that |~ν1| = |~ν2|+ 1, a composition with ~n1 = ~ν1 and ~n2 = ~ν2 +~ep2

and l = |~ν1| − 1 = |~ν2|, we have the following identities

τ
(l)
+a,−a′ = ε1,1(a, a′)τ[~ν1−~e1,a′+~e1,a;~ν2], τ̄

(l)
+b,−b′ = ε2,2(b, b′)τ[~ν1;~ν2−~e2,b′+~e2,b],

τ
(l)
−b,−a = τ̄

(l)
−a,−b = ε2,1(b, a)τ[~ν1+~e1,p1−~e1,a;~ν2+~e2,p2−~e2,b],

where

ε1,1(a, a′) := (−1)
∑a
j=1 ν1,j+

∑a′
j=1 ν1,j+δa,p1−1, a′ < a

ε1,1(a, a′) := (−1)
∑a
j=1 ν1,j+

∑a′
j=1 ν1,j+δa′,p1 , a′ > a

ε2,2(b, b′) := (−1)
∑b
j=1 ν2,j+

∑b′
j=1 ν2,j−1, b′ < b

ε2,2(b, b′) := (−1)
∑b
j=1 ν2,j+

∑b′
j=1 ν2,j , b′ > b

ε2,1(b, a) := (−1)
∑b
j=1 ν2,j+

∑a
j=1 ν1,j+δb,p2 ,

ε1,1(a, a) := 1 = ε2,2(b, b).

In particular

τ
(l)
−a = ε1,1(p1, a)τ[~ν1+~e1,p1

−~e1,a;~ν2], τ̄
(l)
−b = ε2,2(p2, b)τ[~ν1;~ν2+~e2,p2

−~e2,b],

τ
(l+1)
+a = ε1,1(a, p1)τ[~ν1+~e1,a;~ν2+~e2,p2

], τ̄
(l+1)
+b = ε2,2(b, p2)τ[~ν1+~e1,p1

;~ν2+~e2,b].

We now proceed to give the τ -function representation of multiple orthogonal polynomials, their duals, second
kind functions and bilinear equations. The τ -functions allow for compact expressions for the multiple orthogonal
polynomials:

Proposition 35. The mixed multiple orthogonal polynomials A
(l)
a , A

(l)
+a′,a and A

(l)
−b,a have the following τ -function

representation

A(l)
a (z) = A

(II,a1(l))
[~ν1(l);~ν2(l−1)],a = zν1,a(l)−1 τ

(l)
−a(t− [z−1]a)

τ (l)(t)
, l ≥ 1, (187)

A
(l)
+a′,a(z) = A

(II,a′)
[~ν1(l−1)+~e1,a′ ;~ν2(l−1)],a = zν1,a(l−1)+δa,a′−1

τ
(l)
+a′,−a(t− [z−1]a)

τ (l)(t)
, l ≥ 1, (188)

A
(l)
−b,a(z) = A

(I,b)
[~ν1(l);~ν2(l)−~e2,b],a = zν1,a(l)−1

τ
(l)
−b,−a(t− [z−1]a)

τ (l+1)(t)
, l ≥ 1. (189)
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The dual polynomials Ā
(l)
b , Ā

(l)
+b′,b, and Ā

(l)
−a,b have the following τ -function representation

Ā
(l)
b (z) = Ā

(I,a2(b))
[~ν2(l);~ν1(l−1)],b = zν2,b(l)−1

τ̄
(l)
−b(t+ [z−1]b)

τ (l+1)(t)
, l ≥ 1, (190)

Ā
(l)
+b′,b(z) = Ā

(II,b′)
[~ν2(l−1)+~e2,b′ ;~ν1(l−1)],b = zν2,b(l−1)+δb,b′−1

τ̄
(l)
+b′,−b(t+ [z−1]b)

τ (l)(t)
, l ≥ 1, (191)

Ā
(l)
−a,b(z) = Ā

(I,a)
[~ν2(l);~ν1(l)−~e1,a],b = zν2,b(l)−1

τ̄
(l)
−a,−b(t+ [z−1]b)

τ (l+1)(t)
, l ≥ 1. (192)

Proof. See Appendix A

Observe that in the simple ladder defined above (~ν1, ~ν2 + ~e2,p2) with l = |~ν2| = |~ν1| − 1 we have

~ν1(l) = ~ν1, ~ν2(l − 1) = ~ν2,

~ν1(l − 1) = ~ν1 − ~e1,p1
, ~ν2(l) = ~ν2 + ~e2,p2

.

From Proposition 35 we get

A
(II,p1)
[~ν1;~ν2],a(z) = ε1,1(p1, a)zν1,a−1

τ[~ν1+~e1,p1−~e1,aa;~ν2](t− [z−1]a)

τ[~ν1;~ν2](t)
,

A
(II,a′)
[~ν1−~e1,p1

+~e1,a′ ;~ν2],a(z) = ε1,1(a′, a)zν1,a−δa,p1+δa,a′−1
τ[~ν1−~e1,a+~e1,a′ ;~ν2](t− [z−1]a)

τ[~ν1;~ν2](t)
,

A
(I,b)
[~ν1;~ν2+~e2,p2−~e2,b],a

(z) = ε2,1(b, a)zν1,a−1
τ[~ν1+~e1,p1

−~e1,a;~ν2+~e2,p2
−~e2,b](t− [z−1]a)

τ[~ν1+~e1,p1 ;~ν2+~e2,p2 ](t)
,

(193)

Ā
(I,p2)
[~ν2+~e2,p2

;~ν1−~ep1
],b(z) = ε2,2(p2, b)z

ν2,b+δb,p2
−1
τ[~ν1;~ν2+~e2,p2

−~e2,b](t+ [z−1]b)

τ[~ν1+~e1,p1
;~ν2+~e2,p2

](t)
,

Ā
(II,b′)
[~ν2+~e2,b′ ;~ν1−~e1,p1 ],b = ε2,2(b, b′)zν2,b+δb′,b−1

τ[~ν1;~ν2−~e2,b+~e2,b′ ](t+ [z−1]b)

τ[~ν1;~ν2](t)
,

Ā
(I,a)
[~ν2+~e2,p2

;~ν1−~e1,a],b = ε2,1(b, a)zν2,b+δb,p2
−1
τ[~ν1+~e1,p1

−~e1,a;~ν2+~e2,p2
−~e2,b](t+ [z−1]b)

τ[~ν1+~e1,p1
;~ν2+~e2,p2

](t)
.

(194)

We now present the τ -representation of the Cauchy transforms of the linear forms.

Proposition 36. The Cauchy transforms have the following τ -function representation

C̄(l)
a = z−ν1,a(l−1)−1 τ

(l+1)
+a (t+ [z−1]a)

τ (l+1)(t)
, (195)

C
(l)
b = z−ν2,b(l−1)−1

τ̄
(l+1)
+b (t− [z−1]b)

τ (l)(t)
. (196)

Proof. See Appendix A

We have the representation

C
(I,p2)
[~ν2+~e2,p2 ;~ν1−~e1,p1 ],a(z) = ε1,1(a, p1)z−ν1,a−1+δa,p1

τ[~ν1+~e1,a;~ν2+~e2,p2
](t+ [z−1]a)

τ[~ν1+~e1,p1 ;~ν2+~e2,p2 ](t)
,

C
(II,p1)
[~ν1;~ν2],b(z) = ε2,2(b, p2)z−ν2,b−1

τ[~ν1+~e1,p1 ;~ν2+~e2,b](t− [z−1]b)

τ[~ν1;~ν2](t)
.

Finally, we consider the τ -function representation of the bilinear equation
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Proposition 37. The τ functions fulfill the following bilinear relation

p1∑
a=1

∮
z=∞

zν1,a(k)−ν′1,a(l−1)−2τ
(k)
~n1,~n2,−a(t− [z−1]a)τ

(l+1)
~n′1,~n

′
2,+a

(t′ + [z−1]a)Ea(z)dz

=

p2∑
b=1

∮
z=∞

zν
′
2,b(l)−ν2,b(k−1)−2τ̄

(k+1)
~n1,~n2,+b

(t− [z−1]b)τ̄
(l)
~n′1,~n

′
2,−b

(t′ + [z−1]b)Ēb(z)dz. (197)

Proof. Just consider (181) together with (187), (190), (195) and (196).

This bilinear relation can also be written as follows

p1∑
a=1

ε11(p1, a)ε′11(p1, a)

∮
z=∞

zν1,a−ν′1,a−δa,p1
−2τ[~ν1+~e1,p1−~e1,a;~ν2](t− [z−1]a)τ

(l+1)
~ν′1+~e1,a;~ν′2+~e2,p2

(t′ + [z−1]a)Ea(z)dz

=

p2∑
b=1

ε22(p2, b)ε
′
22(p2, b)

∮
z=∞

zν
′
2,b+δb,p2

−ν2,b−2τ[~ν1+~e1,p1
;~ν2+~e2,b](t− [z−1]b)τ~ν′1;~ν′2+~e2,p2

−~e2,b](t
′ + [z−1]b)Ēb(z)dz.

(198)

That with the identification m∗ = ~ν1 + ~e1,p1
, n∗ = ~ν2, m = ~ν′1 and n = ~ν′2 + ~e2,p2

, up to signs, is the bilinear relation
(41) in [6].
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Appendices

A Proofs

Proof Proposition 7 The orthogonality relations can be recast into two alternative forms

(
Sl,0 Sl,1 · · · Sl,l−1

)


g0,0 g0,1 · · · g0,l−1

g1,0 g1,1 · · · g1,l−1

...
...

...
gl−1,0 gl−1,1 · · · gl−1,l−1

 = −
(
gl,0 gl,1 · · · gl,l−1

)
, l ≥ 1, (199)

(
Sl,0 Sl,1 · · · Sl,l−1 Sl,l

)

g0,0 g0,1 · · · g0,l

g1,0 g1,1 · · · g1,l

...
...

...
gl,0 gl,1 · · · gl,l

 =
(
0 0 · · · 0 S̄l,l

)︸ ︷︷ ︸
l + 1 components

, l ≥ 0. (200)

From (43) we get

Q(l) =

l∑
k=0

Sl,kξ
(k)
1

= ξ
(l)
1 −

(
gl,0 gl,1 · · · gl,l−1

)
(g[l])−1ξ

[l]
1 use (199) (201)

= S̄l,l
(
0 0 · · · 0 1

)
(g[l+1])−1ξ

[l+1]
1 . use (200) (202)
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Cramer’s method solves (199) as follows

Sl,i =
1

det g[l]

l−1∑
j=0

gl,j(−1)i+j+1M
(l)
i,j =

(−1)i+lM
(l+1)
i,l

det g[l]
, (203)

where M
(l)
i,j is the (i, j)-minor of the truncated moment matrix g[l] defined in (21). Therefore,

Q(l) =
1

det g[l]

l∑
i=0

(−1)i+lM
(l+1)
i,l ξ

(i)
1

=
1

det g[l]
det



g0,0 g0,1 · · · g0,l−1 ξ
(0)
1

g1,0 g1,1 · · · g1,l−1 ξ
(1)
1

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 ξ
(l−1)
1

gl,0 gl,1 · · · gl,l−1 ξ
(l)
1


, l ≥ 1.

The orthogonality relations for the dual system can be written also in two alternative forms
g0,0 g0,1 · · · g0,l−1

g1,0 g1,1 · · · g1,l−1

...
...

...
gl−1,0 gl−1,1 · · · gl−1,l−1




S̄′0,l
S̄′1,l

...
S̄l−1,l

 = −(S̄l,l)
−1


g0,l

g1,l

...
gl−1,l

 , l ≥ 1, (204)


g0,0 g0,1 . . . g0,l

g1,0 g1,1 . . . g1,l

...
...

...
gl,0 gl,1 . . . gl,l



S̄′0,l
S̄′1,l

...
S̄′l,l

 =


0
0
...
0
1

 , l ≥ 0. (205)

As before, (43) leads to the following expressions for the dual linear forms

Q̄(l) =

l∑
k=0

S̄′k,lξ
(k)
2

= (S̄l,l)
−1
(
ξ

(l)
2 − (ξ

[l]
2 )>(g[l])−1


g0,l

g1,l

...
gl−1,l

) use (204) (206)

= (ξ
[l+1]
2 )>(g[l+1])−1


0
0
...
0
1

 . use (205) (207)

From (205) we obtain

S̄′j,l =
(
g[l+1]−1)

j,l
=

(−1)l+jM
(l+1)
l,j

det(g[l+1])
, j = 0, . . . , l, (208)

45



and consequently

Q̄(l) =

l∑
j=0

S̄′j,lξ
(j)
2 =

1

det g[l+1]

l∑
j=0

(−1)l+jM
(l+1)
l,j ξ

(j)
2

=
1

det g[l+1]
det


g0,0 g0,1 · · · g0,l−1 g0,l

g1,0 g1,1 · · · g1,l−1 g1,l

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 gl−1,l

ξ
(0)
2 ξ

(1)
2 · · · ξ

(l−1)
2 ξ

(l)
2

 , l ≥ 0.

Proof Proposition 9 We have

C
(l)
b =

1

det g[l]

l∑
k=0

(−1)k+lM
(l+1)
k,l

∞∑
k2=ν2,b(l−1)

z−k2−1

∫
xk1(k)w1,a1(k)(x)w2,b(x)xk2dµ(x),

which according to (20) recasts into

C
(l)
b =

1

det g[l]

l∑
k=0

(−1)k+lM
(l+1)
k,l Γ̄

(l)
k,b,

=
1

det g[l]
det



g0,0 g0,1 · · · g0,l−1 Γ̄
(l)
0,b

g1,0 g1,1 · · · g1,l−1 Γ̄
(l)
0,b

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 Γ̄
(l)
l−1,b

gl,0 gl,1 · · · gl,l−1 Γ̄
(l)
l,b ,


, l ≥ 1. (209)

We also obtain

C̄(l)
a =

1

det g[l+1]

l∑
k=0

(−1)l+kM
(l+1)
l,k

∞∑
k1=ν1,a(l−1)

z−k1−1

∫
xk1w1,a(x)w2,a2(k)x

k2(k)dµ(x),

which can be written as (20)

C̄(l)
a =

1

det g[l+1]

l∑
k=0

(−1)k+lM
(l+1)
l,k Γ

(l)
k ,

=
1

det g[l+1]
det



g0,0 g0,1 · · · g0,l−1 g0,l

g1,0 g1,1 · · · g1,l−1 g1,l

...
...

...
...

gl−1,0 gl−1,1 · · · gl−1,l−1 gl−1,l

Γ
(l)
0,a Γ

(l)
1,a · · · Γ

(l)
l−1,a Γ

(l)
l,a

 , l ≥ 1. (210)

Proof Proposition 15 From (53) and (54) we deduce that

(C̄a(z))>Aa′(z
′) = (χ∗1,a(z))>χ1,a′(z

′) =
δa,a′

z − z′
, |z′| < |z|,

(Cb(z))
>Āa′(z

′) = (χ∗2,b(z))
>χ2,b′(z

′) =
δb,b′

z − z′
, |z′| < |z|,

(C̄a(z))>Cb(z
′) = (χ∗1,a(z))>gχ∗2,b(z

′).
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The two first relations imply the corresponding equations in the Proposition. For the third we observe that from (10)
we get

(χ∗1,a(z))>gχ∗2,b′(z
′) =

∫
(χ∗1,a(z))>ξ1(x)(ξ2(x))>χ∗2,b′(z

′)dµ(x)

=

∫
(χ∗1,a(z))>χ1,a(x)(χ2,b(x))>χ∗2,b′(z

′)w1,a(x)w2,b(x)dµ(x)

=

∫
1

(z − x)(z′ − x)
w1,a(x)w2,b(x)dµ(x)

= − 1

z − z′

∫ ( 1

z − x
− 1

z′ − x

)
w1,a(x)w2,b(x)dµ(x).

Proof Proposition 20 Using Definition 17 for the linear forms Q
(l)
+a and multiplying by (ξ

[l]
2 (x))> we have

Q
(l)
+a(x)(ξ

[l]
2 (x))> = ξ

(l+a)
1 (x)(ξ

[l]
2 (x))> −

(
gl+a,0 gl+a,1 · · · gl+a,l−1

)
(g[l])−1ξ

[l]
1 (x)(ξ

[l]
2 (x))>,

integrating both sides we get∫
Q

(l)
+a(x)(ξ

[l]
2 (x))>dµ(x) =

∫
ξ

(l+a)
1 (x)(ξ

[l]
2 (x))>dµ(x)

−
(
gl+a,0 · · · gl+a,l−1

)
(g[l])−1

∫
ξ

[l]
1 (x)(ξ

[l]
2 (x))>dµ(x)

=

∫
ξ

(l+a)
1 (x)(ξ

[l]
2 (x))>dµ(x)−

(
gl+a,0 gl+a,1 · · · gl+a,l−1

)
(g[l])−1g[l]

=
(
gl+a,0 gl+a,1 · · · gl+a,l−1

)
−
(
gl+a,0 gl+a,1 · · · gl+a,l−1

)
= 0,

that written componentwise gives the following orthogonality relations∫
R
Q

(l)
+a(x)w2,a2(k)(x)xk2(k)dµ(x), k = 0, . . . , l − 1,

or equivalently∫
R
Q

(l)
+a(x)w2,b(x)xkdµ(x) = 0, 0 ≤ k ≤ ν2,b(l − 1)− 1, b = 1, . . . , p2.

Notice that, A
(l)
+a,a is monic and degA

(l)
+a,a(x) = k1(l+a) but A

(l)
+a,a′ with a 6= a′ satisfy degA

(l)
+a,a′ ≤ k1((l − 1)−a′).

This means that the set of polynomials A
(l)
+a,a′(x) have degrees determined by ~ν1(l − 1) + ~e1,a and a normalization

with respect to the a-th component of type II; i.e, Q
(l)
+a = Q

(II,a)
[~ν1(l−1)+~e1,a;~ν2(l−1)].

In a similar way, the associated linear forms Q
(l)
−b(x) solve a mixed multiple orthogonal problem that can be obtained

as follows. From Definition 17 and multiplying by (ξ
[l]
2 (x))> we get

Q
(l)
−b(x)(ξ

[l+1]
2 (x))> = e>l̄−b(g

[l+1])−1ξ
[l+1]
1 (x)(ξ

[l+1]
2 (x))>,

integrating both sides∫
R
Q

(l)
−b(x)(ξ

[l+1]
2 (x))>dµ(x) = e>l̄−b(g

[l+1])−1

∫
R
ξ

[l+1]
1 (x)(ξ

[l+1]
2 (x))>dµ(x) = e>l̄−b ,

and written componentwise ∫
R
Q

(l)
−b(x)xk2(k)w2,a2(k)(x)dµ(x) = δk,l̄−b , k = 0, · · · , l,

that is equivalent to∫
R
Q

(l)
−b(x)w2,b(x)xkdµ(x) = δk,l̄−b , 0 ≤ k ≤ ν2,b(l)− 1, b = 1, . . . , p2.
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Hence, the set A
(l)
−b,a′ is a type I normalized to the b-th component solution for a mixed multiple orthogonality problem;

the degrees satisfy degA
(l)
−b,a′ ≤ l−a′ . Moreover, the fact that the last orthogonality condition in the b-th component

is missing gives the identification Q
(l)
−b = Q

(I,b)
[~ν1(l);~ν2(l)−~e2,b].

Using Definition 17 and multiplying by ξ
[l]
1 (x) we have

Q̄
(l)
+b(x)ξ

[l]
1 (x) =

(
ξ

[l]
1 (x)ξ

(l̄+b)
2 (x)− ξ[l]

1 (x)(ξ
[l]
2 (x))>(g[l])−1


g0,l̄+b

g1,l̄+b
...

gl−1,l̄+b

),
and integrating both sides

∫
R
Q̄

(l)
+b(x)ξ1(x)[l]dµ(x) =

(∫
ξ

[l]
1 (x)ξ

(l̄+b)
2 (x)dµ(x)−

∫
ξ

[l]
1 (x)(ξ

[l]
2 (x))>dµ(x)(g[l])−1


g0,l̄+b

g1,l̄+b
...

gl−1,l̄+b

)

=
(∫

ξ
[l]
1 (x)ξ

(l̄+b)
2 (x)dµ(x)− (g[l])(g[l])−1


g0,l̄+b

g1,l̄+b
...

gl−1,l̄+b

)

=


g0,l̄+b

g1,l̄+b
...

gl−1,l̄+b

−


g0,l̄+b

g1,l̄+b
...

gl−1,l̄+b


= 0,

that componentwise leads to the following orthogonality relations∫
R
Q̄

(l)
+b(x)w1,a1(k)(x)xk1(k)dµ(x) = 0, k = 0, . . . , l − 1,

or alternatively∫
Q̄

(l)
+b(x)w1,a(x)xkdµ(x) = 0, 0 ≤ k ≤ ν1,a(l − 1)− 1, a = 1, . . . , p1.

Notice that, Ā
(l)
+b,b is monic and deg Ā

(l)
+b,b = k2(l̄+b) but Ā

(l)
+b,b′ with b 6= b′ satisfy degA

(l)
+b,b′ ≤ k1((l − 1)−b′). This

means that the polynomials Ā
(l)
+b,b′ have degrees determined by ~ν2(l − 1) + ~e2,b and a normalization with respect to

the b-th component of type II; i.e, Q̄
(l)
+b = Q̄

(II,b)
[~ν2(l−1)+~e2,b;~ν1(l−1)].

Finally, we obtain the orthogonality relations for the linear forms Q̄
(l)
−a(x). From the definition we get

ξ
[l+1]
1 (x)Q̄

(l)
−a(x) = ξ

[l+1]
1 (x)(ξ

[l+1]
2 (x))>(g[l+1])−1el−a ,

and integrating both sides∫
R
ξ

[l+1]
1 (x)Q̄

(l)
−a(x)dµ(x) =

(∫
R
ξ

[l+1]
1 (x)(ξ

[l+1]
2 (x))>dµ(x)

)
(g[l+1])−1el−a = el−a ,

and componentwise that means∫
R
Q̄

(l)
−a(x)xk1(k)w1,a1(k)(x)dµ(x) = δk,l−a , k = 0, · · · , l,

or equivalently∫
R
Q̄

(l)
−a(x)xkw1,a(x)dµ(x) = δk,l−a , 0 ≤ k ≤ ν1,a(l)− 1, a = 1, . . . , p1,

so the set Ā
(l)
−a,b′ is a type I normalized to the a-th component solution for a mixed multiple orthogonality problem.

The degrees satisfy degA
(l)
−a,b′ ≤ l−b′ ; and therefore we conclude that Q̄

(l)
−b = Q

(I,b)
[~ν2(l);~ν1(l)−~e1,a].
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Proof of Proposition 32 Taking + and − parts in (170) we obtain

p1∑
a=1

Lja =

p1∑
a=1

(Lja)+ +

p1∑
a=1

(Lja)− =

p1∑
a=1

(Lja)+ +

p2∑
b=1

(L̄jb)− =

p1∑
a=1

Bj,a +

p2∑
b=1

B̄j,b =

p2∑
b=1

L̄jb.

Using Lax equations and observing that LaLa′ = La′La and L̄bL̄b′ = L̄b′L̄b we have the following symmetries for
the Lax operators

( p1∑
a=1

∂

∂tj,a
+

p2∑
b=1

∂

∂t̄j,b

)
La′ =

[ p1∑
a=1

Bj,a +

p2∑
b=1

B̄j,b, La′
]

=

p1∑
a=1

[Lja, La′ ] = 0,

( p1∑
a=1

∂

∂tj,a
+

p2∑
b=1

∂

∂t̄j,b

)
L̄b′ =

[ p1∑
a=1

Bj,a +

p2∑
b=1

B̄j,b, L̄b′
]

=

p2∑
b=1

[L̄jb, L̄b′ ] = 0.

From (127) we conclude that the multiple orthogonal polynomials and their duals are also invariant

( p1∑
a=1

∂

∂tj,a
+

p2∑
b=1

∂

∂t̄j,b

)
Aa′ =

( p1∑
a=1

Bj,a +

p2∑
b=1

B̄j,b − xj
)
Aa′ =

(
Jj − xj

)
Aa′ = 0,

( p1∑
a=1

∂

∂tj,a
+

p2∑
b=1

∂

∂t̄j,b

)
Āb′ = −

( p1∑
a=1

Bj,a +

p2∑
b=1

B̄j,b − xj
)>

Āb′ = −
(
Jj − xj

)>
Āa′ = 0.

Proof of Proposition 33 We just follow the following chain of identities

W~n1,~n2
(t, s)π>~n′1,~n1

(W~n′1,~n
′
2
(t′, s′))−1 = W~n1,~n2

(t, s)π>~n′1,~n1
g~n′1,~n′2(W̄~n′1,~n

′
2
(t′, s′))−1

= S~n1,~n2
(t, s)W0,~n1

(t, s)π>~n′1,~n1

(∫
ξ~n′1(x)ξ>~n′2(x)dµ(x)

)
(W0,~n′2

(t′, s′))−1(S̄~n′1,~n′2(t′, s′))−1

= S~n1,~n2
(t, s)W0,~n1

(t, s)
(∫

ξ~n1
(x)ξ>~n′2(x)dµ(x)

)
(W0,~n′2

(t′, s′))−1(S̄~n′1,~n′2(t′, s′))−1

= S~n1,~n2
(t, s)

(∫
ξ~n1

(x, t, s)ξ>~n′2(x, t′, s′)dµ(x)
)

(S̄~n′1,~n′2(t′, s′))−1

=

∫
(S~n1,~n2

(t, s)(ξ~n1
(x, t, s))(S̄>~n′1,~n′2(t′, s′))−1ξ~n′2(x, t′, s′))>dµ(x)

=

∫
R
Q~n1,~n2

(x, t, s)Q̄>~n′1,~n′2(x, t′, s′)dµ(x),

where ξ~n1
(x, t, s) and ξ~n′2(x, t′, s′) represent the vectors of weighted monomials but with evolved weights.

Proof of Proposition 35 To find the τ -function of the multiple orthogonal representation we first need two lemmas

Lemma 10. Let R(j) be the j-th row of τ (l)(t) and R
(j)
z the j-th row of τ (l)(t− [z−1]a), then

R(j)
z = R(j) − δa1(j),az

−1R(j′), (211)

where j′ = j+ 1 if r1(j) < n1,a−1, but j′ = j+ (|~n1|−n1,a) + 1 if r1(j) = n1,a−1. This is also valid for τ
(l)
−a , τ

(l)
+a,−a′

and for τ
(l)
−b,−a′ .

Let now be C(j) the j-th column of τ̄ (l) and C
(j)
z the j-th column of τ̄ (l)(t+ [z−1]b), then

C(j)
z = C(j) − δa2(j),bz

−1C(j′), (212)

where j′ = j + 1 if r2(l) < n2,b − 1 but j′ = j + (|~n2| − n2,b) + 1 if r2(j) = n2,b − 1. This is also valid for τ̄
(l)
−b, τ̄

(l)
+b,−b′

and for τ̄
(l)
−a,−b′ .

Proof. It follows directly from (141) and (142).
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Let us recall the skew multi-linear character of determinants and the consequent formulation in terms of wedge
products of covectors. Observe that

Lemma 11. Given a set of covectors {r1, . . . , rn} it can be shown that

n∧
j=1

(zrj − rj+1) =

n+1∑
j=1

(−1)n+1−jzj−1 r1 ∧ r2 ∧ · · · ∧ r̂j ∧ · · · ∧ rn+1, (213)

where the notation r̂j means that we have erased the covector rj in the wedge product r1 ∧ · · · ∧ rn+1.

Proof. It can be done directly by induction.

The proof of Proposition 35 relies on Lemma 10, Lemma 11, Corollary 1 and Proposition 22. First let’s focus on

(187); it is clear that zν1,a(l)−1τ
(l)
−a(t− [z−1]a) expands in z according to (211) for τ

(l)
−a and to (213). Now n = k1(l−a)

and the covectors rj should be taken equal to those rows R(j) with a1(j) = a. Observe that there are only k1(l−a)(=
ν1,a(l)− 1) rows which are non-trivially transformed. In this form we get the identification of (49) with (187), where

the terms corresponding to the wedge with one covector deleted corresponds to the minors M
[l+1]
j,l . Now, looking to

(188) and (189) we expand again in z and use the same technique based on (211) for τ
(l)
+a,−a′ and τ

(l)
−b,−a and (213).

These allow to link (104) to (188) and (106) to (189).

To prove (190) we proceed similarly. Looking at (212) for τ̄
(l)
−b observe that there are only k2(l̄−b)(= ν2,b(l) − 1)

columns which are non-trivially transformed. Now, recalling (50) and using (213) but with rj being the columns C(j),
such that a2(j) = b, and n = k2(l̄−b), we get the desired result. Finally for (191) and (192) we expand around z to
see the equivalence between (107) and (191) and the equivalence between (105) and (192).

Proof of Proposition 36 We need the following two lemmas:

Lemma 12. Let R(j) be the j-th row of g
[l+1]
+a and R

(j)
z the j-th row of g

[l+1]
+a (t+ [z−1]a), we get

R(j)
z = R(j) + δa1(j),a

∞∑
j′=1

z−k1(j′)R(j+j′)δa1(j+j′),a. (214)

Let C(j) be the j-th column of ḡ
[l+1]
+b and C

(j)
z the j-th column of ḡ

[l+1]
+b (t− [z−1]b), then (142) gives

C(j)
z = C(j) + δa2(j),b

∞∑
j′=1

z−k2(j′)C(j+j′)δa2(j+j′),b. (215)

Proof. For the first equality insert the expansion(
1− x

z

)−1

=

∞∑
k=0

xk

zk

into (142). The other equation is proven similarly.

Lemma 13. The following identity

n∧
j=1

( ∞∑
i=0

rj+iz
−i
)

= r1 ∧ · · · ∧ rn−1 ∧
( ∞∑
i=0

rn+iz
−i
)

(216)

holds.

Proof. Use induction in n.

Finally Proposition 36 is proven using (210) and (209).
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B Discrete flows associated with binary Darboux transformations

When the supports of the measures are not bounded from below, (in which case the new “weights” (138) do not have
in general a definite sign and therefore should not be considered as such), there is an alternative form of constructing
discrete flows which preserve the positiveness/negativeness of the measures. The construction is based in the previous
one, but now the shift is the composition of two consecutive shifts associated with the pair λa(n) and λa(n+ 1), being
complex numbers conjugate to each other; i.e., we consider

Definition 27. We define a deformed moment matrix

g(s) = D′0(s)g(D̄′0(s))−1. (217)

with

D′0 :=

p1∑
a=1

D′0,a,

D′0,a :=


∏sa
n=1

(
|λa(n)|2Π1,a − 2 Re(λa(n))Λ1,a + Λ2

1,a

)
, sa > 0,

Π1,a, sa = 0,∏|sa|
n=1

(
|λa(−n)|2Π1,a − 2 Re(λa(−n))Λ1,a + Λ2

1,a

)−1
, sa < 0,

(218)

(D̄′0)−1 :=

p2∑
b=1

(
(D̄0(s)′)−1

)
b
,

(
(D̄0(s)′)−1

)
b

:=


∏s̄b
n=1(|λ̄b(n)|2Π2,b − 2 Re(λ̄b(n))Λ>2,b) + (Λ>2,b)

2)
)

s̄b > 0,

Π2,b, s̄b = 0,

(
∏s̄b
n=1

(
|λ̄b(−n)|2Π2,b − 2 Re(λ̄b(−n))Λ>2,b) + (Λ>2,b)

2
)−1

, s̄b < 0.

(219)

Proposition 38. The previously defined deformed moment matrix corresponds to a moment matrix with the following
positive/negative evolved weights

w1,a(s, x) = D ′a(x, sa)w1,a(x), D ′a :=


∏sa
n=1 |x− λa(n)|2, sa > 0,

1, sa = 0,∏|sa|
n=1 |x− λa(−n)|−2, sa < 0,

w2,b(s, x) = D̄ ′b(x, s̄b)
−1w2,b(x), (D̄ ′b)

−1 :=


∏s̄b
n=1 |x− λ̄b(n)|2, s̄b > 0,

1, s̄b = 0,∏|s̄b|
n=1 |x− λ̄b(−n)|−2, s̄b < 0.

(220)

Proceeding as in the previous case

Definition 28. We introduce

q′a := I−Π1,a(I− |λa(sa + 1)|2)− 2 Re(λa(sa + 1))Λ1,a + Λ2
1,a,

q̄′b := I−Π2,b(I− |λ̄b(s̄b + 1)|2)− 2 Re(λ̄b(s̄b + 1))(Λ>2,b) + (Λ>2,b)
2,

(221)

and

δ′a := I− Ca(I− |λa(sa + 1)|2)− 2 Re(λa(sa + 1))La + L2
a,

δ̄′b := I− C̄b(I− |λ̄b(s̄b + 1)|2)− 2 Re(λ̄b(s̄b + 1))L̄b + L̄2
b .

(222)

The wave and adjoint wave functions now have the form

Ψ(k)
a (z, s) = A(k)

a (z, s)D ′a(z, sa), (Ψ̄∗b)
(k)(z, s) = Ā

(k)
b (z, s)D̄ ′b(z, s̄b)

−1, (223)

and the expressions (161)-(162) still hold.
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If we introduce ω′a and ω̄′b as in (154) but replacing δ by δ′, the equations (155)-(158) hold true by replacement of
ω by ω′. Now, the form ω′ differs from (164) as now we have

ω′a = ω′a,0Λ2(|~n1|−n1,a+1) + · · ·+ ω′a,2(|~n1|−n1,a+1),

ω̄′b = ω̄′b,0(Λ>)2(|~n2|−n2,b+1) + · · ·+ ω̄′b,2(|~n2|−n2,b+1).
(224)

With the definition of

γ′a,a′(s, x) := (1− δa,a′(1− |x− λa(sa + 1)|2),

γ′b,b′(s, x) := (1− δb,b′(1− |x− λ̄b(s̄b + 1)|2),
(225)

we have that

Proposition 39. The present setting (168) and (169) are replaced by (Ta′A
(k)
a )γ′a,a′ = ω′a′,0A

(k+2(|~n1|−n1,a+1))
a + · · ·+ ωa′,2(|~n1|−n1,a+1)(k)A(k)

a ,

T̄b′A
(k)
a = ω̄′b,0(k)A

(k−2(|~n2|−n2,b′+1))
a + · · ·+ ω̄′b,2(|~n2|−n2,b′+1)A

(k)
a ,

(226)

 ρ′a′,0(Ta′Ā
(k−2(|~n1|−n1,a′+1))

b ) + · · ·+ ρ′a′,2(|~n1|−n1,a′+1)(k)(Ta′Ā
(k)
b ) = Ā

(k)
b ,(

ρ̄′b′,0(k)(T̄b′Ā
(k+2(|~n2|−n2,b′+1)

b ) + · · ·+ ρ̄′b′,2(|~n2|−n2,b′+1)(T̄b′Ā
(k)
b )
)
γ̄′b,b′ = Ā

(k)
b .

(227)
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