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Abstract

Multiple orthogonality is considered in the realm of a Gauss—Borel factorization problem for a semi-infinite
moment matrix. Perfect combinations of weights and a finite Borel measure are constructed in terms of M-Nikishin
systems. These perfect combinations ensure that the problem of mixed multiple orthogonality has a unique solution,
that can be obtained from the solution of a Gauss—Borel factorization problem for a semi-infinite matrix, which
plays the role of a moment matrix. This leads to sequences of multiple orthogonal polynomials, their duals and
second kind functions. It also gives the corresponding linear forms that are bi-orthogonal to the dual linear forms.
Expressions for these objects in terms of determinants from the moment matrix are given, recursion relations are
found, which imply a multi-diagonal Jacobi type matrix with snake shape, and results like the ABC theorem or
the Christoffel-Darboux formula are re-derived in this context (using the factorization problem and the generalized
Hankel symmetry of the moment matrix). The connection between this description of multiple orthogonality
and the multi-component 2D Toda hierarchy, which can be also understood and studied through a Gauss—Borel
factorization problem, is discussed. Deformations of the weights, natural for M-Nikishin systems, are considered
and the correspondence with solutions to the integrable hierarchy, represented as a collection of Lax equations,
is explored. Corresponding Lax and Zakharov—Shabat matrices as well as wave functions and their adjoints are
determined. The construction of discrete flows is discussed in terms of Miwa transformations which involve Darboux
transformations for the multiple orthogonality conditions. The bilinear equations are derived and the 7-function
representation of the multiple orthogonality is given.
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1 Introduction

The topic of multiple orthogonality of polynomials is very close to that of simultaneous rational approximation (si-
multaneous Padé aproximants) of systems of Cauchy transforms of measures. The history of simultaneous rational
approximation starts in 1873 with the well known article [22] in which Ch. Hermite proved the transcendence of the
Euler number e. Later, around the years 1934-35, K. Mahler delivered at the University of Groningen several lectures
[27] where he settled down the foundations of this theory. Meanwhile, two of Malher’s students, J. Coates and H. Jager,
made important contributions in this respect (see [I3] and [23]). In the case of Cauchy transforms, the simultaneous
rational approximation definition may be written in terms of multiple orthogonality of polynomials as follows. Given
an interval A C R of the real line, let M(A) denote all the finite Borel measures which have support, supp(-) with
infinitely many points in A, where they do not change sign. Fix u € M(A), and let us consider a system of weights

W= (wy,...,wp) on A, with p € N. (In this paper a“weight” on an interval A is meant to be a real integrable function
defined on A which does not change its sign on A.) Fix a multi-index 7/ = (v1,...,1,,) € Z%, Zy = {0,1,2,...}, and
denote || = v4 + --- + v,,. There exist polynomials, A;,...,A,, not all identically equal to zero which satisfy the

following orthogonality relations
o
/ a’ ZAa(x)wa(x)du(x) =0, deg A, <wv, —1, J=0,....7] -2 (1)
A a=1

Analogously, there exists a polynomial B not identically equal to zero, such that

/ 2/ B(z)wy(z)dp(z) = 0, deg B < |7], j=0,....,5—1, b=1,...,p. (2)
A



The resulting polynomials are said to be of type I and type II, respectively, with respect to the combination (u, @, )
of the measure u, the systems of weights @ and the multi-index . When p = 1 both definitions coincide with that of
the standard orthogonal polynomials on the real line. The existence of a system of polynomials (A1,...,4,) and a
polynomial B defined from and respectively, are ensured because in both cases finding the coefficients of the
polynomials is equivalent to solving a system of |7] linear homogeneous equations with |7] + 1 unknown coefficients.
From the theory of orthogonal polynomials we know that when p = 1 each polynomial A; = B has exactly degree |7| =
v1; unfortunately if p > 1 that is not true in general. For instance, let us take a system of weights @ = (w1, w1, ..., w1),
in this case the solution vector space has dimension bigger than one, and we can find two solutions which are linearly
independent. Hence, there is at least an a € {1,...,p} such that deg A, < v, — 1 and deg B < |7/|. Given a measure
1€ M(A) and a system of weights @ on A a multi-index 7/ is called type I or type II normal if deg A, must equal to
ve—1,a=1,...,p, or deg B must equal to || — 1, respectively. When for a pair (u, @) all the multi-indices are type
I or type II normal, then the pair is called type I perfect or type II perfect, respectively. The concepts of normality
and perfectness were introduced by Malher (see Malher’s, Coates’ and Jager’s articles cited above).

Multiple orthogonal of polynomials have been employed in several proofs of irrationality of numbers. For example,
in [10], F. Beukers shows that Apery’s proof (see [8]) of the irrationality of ((3) can be placed in the context of
a combination of type I and type II multiple orthogonality, which is called mixed type multiple orthogonality of
polynomials. More recently, mixed type approximation has appeared in random matrix and non-intersecting Brownian
motion theories (see, for example, [I1], [I4] and [25]). A formalization of this kind of orthogonality was initiated by
V. N. Sorokin [36]. He studied a simultaneous rational approximation construction which is closely connected with
multiple orthogonal polynomials of mixed type. Surprisingly, in [2I] a Riemann-Hilbert problem was found for the
theory of orthogonal polynomials, and later [39] this result was largely extended to type I and II multiple orthogonality.
In [14] mixed type multiple orthogonality was analyzed from this perspective.

In order to introduce multiple orthogonal polynomials of mixed type we need two systems of weights w; =
(w11, ,w1p,) and Wy = (we1,...,wsp,) where p1,p2 € N, (as we said a set of functions which do not change
their sign in A), and two multi-indices #h = (11,1,...,V1,p,) € Zg_l and Py = (Vo,1,...,V2,,) € Z’f with |04 ] = |F2| + 1.
There exist polynomials Aq,..., Ay, not all identically zero, such that deg A, < v; , which satisfy the following
relations

p1
/ ZAa(-r)wl,a(w)w2,b(‘r)x]dlj’(m) 207 .7 = 07"'7V2,b - 13 b= 17"'>p2' (3)
Aa*l

They are called mixed multiple-orthogonal polynomials with respect to the combination (u,w,ws, o4, %) of the
measure 4, the systems of weights w; and Wy and the multi-indices 7y and 5. It is easy to show that finding the
polynomials A4, ..., Ap, is equivalent to solving a system of || homogeneous linear equations for the |7 | unknown
coefficients of the polynomials. Since |Pj| = |i2| + 1 the system always has a nontrivial solution. The matrix of
this system of equations is the so called moment matrix, and the study of its Gauss—Borel factorization will be the
cornerstone of this paper. Observe that when p; = 1 we are in the type II case and if po» = 1 in type I case. Hence
in general we can find a solution of where there is an a € {1,...,p1} such that deg A, < v1,, — 1. When given a
combination (u,w,ws) of a measure p € M(A) and systems of weights @y and @ on A if for each pair of multi-
indices (#71, 72) the conditions determine that deg A, = v1o — 1, a =1,...,p1, then we say that the combination
(w, W1, Wa) is perfect. The concept of perfectness will be rigorously introduced in Definition

The seminal paper of M. Sato [33], and further developments performed by the Kyoto school through the use of
the bilinear equation and the T-function formalism [16]-[18], settled the basis for the Lie group theoretical description
of integrable hierarchies, in this direction we have the relevant contribution by M. Mulase [30] in which the factor-
ization problems, dressing procedure, and linear systems were the key for integrability. In this dressing setting the
multicomponent integrable hierarchies of Toda type were analyzed in depth by K. Ueno and T. Takasaki [37]. See
also the papers [9] and [24] on the multi-component KP hierarchy and [28] on the multi-component Toda lattice
hierarchy. In a series of papers M. Adler and P. van Moerbeke showed how the Gauss—Borel factorization problem
appears in the theory of the 2D Toda hierarchy and what they called the discrete KP hierarchy [1]-[5]. In these
papers it becomes clear —from a group-theoretical setup— why standard orthogonality of polynomials and integrability
of nonlinear equations of Toda type where so close. In fact, the Gauss—Borel factorization of the moment matrix
may be understood as the Gauss—Borel factorization of the initial condition for the integrable hierarchy. To see the
connection between the work of Mulase and that of Adler and van Moerbeke see [19]. Later on, in the recent paper
[6], it is shown that the multiple orthogonal construction described in previous paragraphs was linked with the multi-
component KP hierarchy. In fact, for a given set of weights (@, ws) and degrees (71, 72) the authors constructed a
finite matrix that plays the role of the moment matrix and, using the Riemann-Hilbert problem of [14], where able to
show that determinants constructed from the moment matrix were 7-functions solving the bilinear equation for the
multi-component KP hierarchy. However, there is no mention in that paper to any Gauss—Borel factorization in spite



of being the multicomponent integrable hierarchies connected with different factorization problems of these type. For
further developments on the Gauss—Borel factorization and multi-component 2D Toda hierarchy see [7] and [29].

This motivated our initial research in relation with this paper; i.e., the construction of an appropriate Gauss—
Borel factorization in the group of semi-infinite matrices leading to multiple orthogonality and integrability in a
simultaneous manner. The main advantage of this approach lies in the application of different techniques based on the
factorization problem used frequently in the theory of integrable systems. The key finding of this paper is, therefore,
the characterization of a semi-infinite moment matrix whose Gauss—Borel factorization leads directly to multiple
orthogonality. This makes sense when factorization can be performed, which is the case for perfect combinations
(w4, W1, Ws), which allows us to consider some sets of multiple orthogonal polynomials (called ladders) very much
in the same manner as in the (non multiple) orthogonal polynomial setting. The Gauss—Borel factorization of this
moment matrix leads, when one takes into account the Hankel type symmetry of the moment matrix, to results like:
1. Recursion relations, 2. ABC theorems and 3. Christoffel-Darboux formulas. The first two are new results while
the third is not new, as it was derived from the Riemann—Hilbert problem in [I4]. However, our derivation of the
Christoffel-Darboux formula is based exclusively on the Gauss—Borel factorization, and its uniqueness and existence
for the multiple orthogonality problem are the only requirements. Thus, it is sufficient to have a perfect combination
(w4, W1, Ws), and there are examples of this type which do not have a well defined Riemann-Hilbert problem in the
spirit of [14].

When we seek for the appropriate integrable hierarchy linked with multiple orthogonality we are lead to the
multicomponent 2D Toda lattice hierarchy which extends the construction of the multicomponent KP hierarchy
considered by M. J. Bergvelt and A. P. E. ten Kroode in [9]; not to the multicomponent 2D Toda lattice hierarchy as
described in [37] or [28]. In the spirit of this last mentioned articles, and complementing the continuous flows of the
integrable hierarchy, we also introduce discrete flows, that could be viewed as Darboux transformations, and which
correspond to Miwa transformations implying the addition of a zero/pole to the set of weights. Moreover, the Hankel
type symmetry is related to an invariance under a number of flows, and to string equations. Bilinear equations can be
derived from the Gauss—Borel factorization problem and moreover the 7-function representation is available leading
to a bridge to the results of [6] in which no semi-infinite matrix or Gauss—Borel factorization was used.

This paper is divided into three sections, §1 is this introduction which contains §I.1] in where we review the
application of the LU factorization of the moment matrix to the theory of orthogonal polynomials in the real line.
Next, §2 is devoted to the presentation of the moment matrix and the discussion of the Gauss—Borel factorization. In
this form we obtain perfect systems in terms of Nikishin systems, determinantal expressions for the multiple orthogonal
polynomials, their duals and second type functions, bi-orthogonality for the associated linear forms, recursion relations,
ABC type theorems and the Christoffel-Darboux formula. Flows and the integrable hierarchy are studied in §3 in
which an integrable hierarchy a la Bergvelt-ten Kroode is linked with the multiple orthogonality problem. We not
only derive from the Gauss—Borel factorization the Lax and Zakarov—Shabat equations, but also we introduce discrete
integrable flows, described by Miwa shifts, or Darboux transformations, and also construct an appropriate bilinear
equation. Finally, we find the 7 functions corresponding to the multiple orthogonality and link them to those of [6].
At the end of the paper, we have added two appendices: the first one collects the more technical proofs of the results
in this paper. In Appendix [B] we consider discrete flows for the case of a measure p with unbounded support supp p.

1.1 The Gauss—Borel factorization of the moment matrix and orthogonal polynomials

Here we discuss how the LU factorization of the standard moment matrix g = ([ 2"™/du) of a constant sign finite
Borel measure p leads to traditional results in the theory of orthogonal polynomials, namely recursion relation and
Christoffel-Darboux formula. In spite that these results are well established we repeat them here because in their
derivation is encoded the set of arguments we will use in the multiple orthogonality setting. In the forthcoming
exposition it will become clear the LU factorization approach is just a compact way of using the orthogonality
relations.

The moment matrix can be written as the following Grammian matrix

g= / x(@)x () dpa(z)

in terms of the monomial string x(z) := (1,z,22%,...)".

The Borel-Gauss factorization of g is

1 0O 0 - Sc/),o *?f/),l *?(/3,2
B Si,0 1 0 - _ 0 S7, 81, -

_ g1 _ So0 Soq 1 - -1 _ oy
g=2S715, S = | S20 S21 , ST=1] 0o o &,



The reader should notice that

e It makes sense whenever the truncated moment matrix gl = (9s,5)0<i,j<i is an invertible matrix for any [ =
1,2,.... If the factorization exists it is unique.

e Although the truncated matrices gl are invertible it can be shown that g itself is not invertible.

e The matrix product of S~ with S involves only finite sums, but if we reverse the order of the factors we get
series (with an infinite number of summands).

Given the factors S and S we consider the following polynomial strings, the semi-infinite vectors,
P = SX: (Po,Pl,...)T, p = (S_l)TX: (Po,Pl,...)T.

The families of polynomials {P,}7°, and {P}7°, are biorthogonal:
[ P@P@) duto) = [ Sx@x@T5 dute) = 8 [ xta)x(@)Tdu(@)5
=1= /Pl(x)Pk(x)d,u(x) = 0y k-

In this simple proof relies the basic connection between orthogonality and the LU factorization, which we consider as
the very same thing dressed in different manners. From the above orthogonality we conclude that

/Pl(m)xjd,u(a:)zO, j=0,...,01—1,
_ (4)
/Pl(x)x]du(:r):O, j=0,...,01—1,

and we also have that P;(z) and P, are I-th degree polynomials where P; is monic and P satisfies [ 2! Pj(z)du(z) =1,
i.e. we have type II and type I normalizations. Given that the moment matrix is symmetric, ¢ = ¢' and the
uniqueness of the LU factorization we deduce that S = H(S™!)T, with H = diag(hg, h1,...); i.e., g=STTH(S™!)T
and the factorization is a Cholesky factorization (but this does not extend to the multiple orthogonal case). Therefore
Py = h ' P, so that [ Py(z)Py(x)du(z) = hidy g, and {P}52, is a family of monic orthogonal polynomials with respect
to the measure pu.

Considering the orthogonality relations as a linear system for the coefficients of the polynomials one concludes that
polynomials and their duals can be expressed as

P=x"— (g0 g1 - Gui-1) (g™~
= S’H (0 0 --- 0 1) (g[l+1])71X[l+1]
90,0 goai 0 go,i-1 1
1 g1,0 gi,1 g1,i-1 z
= ——det : : : : , 1>1,
det gl¥ : : : O
gi—10 9i—11 - Ggi-11-1 | T
91,0 gi1 . gii-1 ‘ (El

and similar expressions for the dual polynomials. We are now ready to get the recursion relations for orthogonal
polynomials:

e First, we notice that the moment matrix g is a Hankel matrix, g;+1,; = gi j+1, Which in terms of the shift matrix

010 0 ...
001 0 ...

A:={o0001 " | can be written as Ag = gA T |!

e Second, we observe the eigen-value property Ax(x) = zx(z).

1From this symmetry property it follows, by contradiction, that the moment matrix is not invertible; i.e. the assumption of the existence
of g~ ! leads to g~ 'A = AT g~ 1, and therefore the first row and column of g—! are identically zero, so that g—! is not invertible.



e Third, we introduce the LU factorization to get AS™1S = S~1SAT = SAS~! = SATS™! =: J. From this last
a1 0 0 ..
bia; 1 0 ...

relation we deduce that the matrix J = | 0 b, a2 1 - | is a tridiagonal matrix, i.e. a Jacobi matrix.

e Finally, we notice that the polynomial strings are eigenvectors of the Jacobi matrix: JP(x) = SAS~1Sx(z) =
SAx(z) = Sxx(xz) = zP(x); i.e., the recursion relations xPy(z) = Pry1(z) + apPr(x) + bp Pr—1(x), k > 0, hold.

We now consider the Aitken—Berg—Collar (ABC) theorem (here we follow the nomenclature used [35]) for orthogonal
polynomials. First we introduce the Christoffel-Darboux kernel and therefore we consider

HU =R{0... 2!}, H= { Z arle € R}, (HIHL = { Z aPY(x),¢ € R}

0<l<K o0 I<k<koo

and the resolution of the identity H = H! & (H[l])J-, with the corresponding orthogonal projector 7Y such that
ker 7 = (H[1)L and Ran 7(V = . Then, the Christoffel Darboux is defined as

-1
K(z,y) ZPk (2) =Y ' Pely) Pi(a),
k=0

which, according to the bi-orthogonality property, gives the following integral representation of the projection operator

(O 1) (y / KU (2, y)f () dp(a), Vf e H,

Any semi-infinite vector v can be written in block form as follows

ol
R WY

vl is the finite vector formed with the first { coefficients of v and vZY the semi-infinite vector formed with the
remaining coefficients. This decomposition induces the following block structure for any semi-infinite matrix.

g (ot o
g[Zl,l] g[Zl]

Given a factorizable moment matrix g we have
] _ (S[l])flg[l]’ (571)[11 — (S[z])q, (gfl)[zl] — (g[zl])fl
The Christoffel-Darboux kernel is related to the moment matrix in the following way
E(z,y) = (M) " (") %)
which is a consequence of the following identities
KW (z,y) = (MU P(2)) T (11 P(y))

X (2)ST Sy (y)
x " ()@=t sty (y)

= (@) (g N ().

The relations
(M) ~EAH — (AT (gl)=1 = (g[l})—l(g[hzl] (AlL=INT A[lyzl]g[zul)(g[l])—l
follow from the block equation

Al gl | B0 gLl — gl (AUNT 4 20 AL



We also have
AN () = ay(2) — A2 2 (g, A2 — ¢ el
where {e;}52, is the canonical linear basis of 7{. With all these at hand we deduce
O @) T ()7 AT = (AT T () "1 x () = (M (@) T (o) 7 (g =T A=) T — Al gI20) (gl =1y (y)

so that,

(= KW, ) = (@) T = 6@ T () g ) eoel (o) XM (y)
= (@) T (o) e (XEw) — o= (") ) ).
That using the determinantal expressions for the polynomials presented before leads to the Christoffel-Darboux formula

(¢ =Kz, y) = b (Pi(2)Pi-1(y) — Pi-a(2)Pi(y)).

2 Multiple orthogonal polynomials and Gauss—Borel factorization

2.1 The moment matrix

In this section we define the moment matrix in terms of a measure p € M(A) and two systems of weights
and Wy on A C R, as well as corresponding compositions (the order matters) @; = (n1,1,...,71,p,) € NP* and
fig = (N21,...,N2,p,) € NP2 [38]. We will consider multi-indices of positive integers 7 = (n1, ...,n,), where p € N and
Ng € Zy, a =1,...,p and define |7I| := ny + --- + n,. Following [9, B8] we observe that any i € Zy := {0,1,2,...}
determines unique non-negative integers ¢(), a(i), (z), such that the composition

i=q(@)|R] +n1+ -+ ngey—1 + (i), 0 < 7(i) < Nag), (5)

holds. Hence, given ¢ there is a unique k() with
k(i) = q(i)nagi) + (i), 0 <7(1) < nas)- (6)
Let us introduce the function integer part function [] : Ry — Z, [2] = max{y € Z,y < z}. Combining (5] and ()

we can obtain a formula which expresses explicitly the dependence between the quantities i, k and a

k
i{n}(hﬂna)+n1+~~~+na_1+k. (7)

Let R*>® denote the vector space of all sequences with elements in R. An element A € R* may be interpreted as a
column semi-infinity vector as follows

A= A0 D T A0 e R, j=0,1,....
We consider the set {e;};>9 C R* with
/—’J%
e; = (0,0,...,0,1,0,0,...)".
Here ()7 denotes the transposition function on vectors and matrices. Analogously, we denote by (RP)> the set
of all sequences of vectors with p components and observe that each sequence which belongs to (RP)* can also be
understood as semi-infinity column vector: given the vector sequence (@i, o, . ..) with ¥; = (vj1,...,v;,)  Wwe have

the corresponding sequence in R* given by (Vo1 -..,00,p,V1,1,---sV1,p, - - - ); i.€., R® = (RP)*°. Therefore, we consider
also the set {eq(k)}a=1,..p C (RP)> where for each pair (a,k) € {1,...,p} X Zy ea(k) = €(1,q) and the function
k=0,1

i(a, k) € Z satisfies the éduality [@.
Now, we are ready to introduce the monomial strings

0, a # a(l),

~—

> zk(l), a = a(l), N _ _
Xa = Zea(k)zka Xz(zl) = { ( ) Xg t =% IXa(Z 1)' (8)
k=0



These vectors may be understood as sequences of monomials according to the composition 77 introduced previously.
We also define the following weighted monomial string

p
§:= ZXawm f(l =w (l)zk(l) (9)

which is a sequence of weighted monomials for each given composition 7i. Sometimes, when we what to stress the
dependence in the composition we write i q, X and &z. Given the weighted monomials &7, and &g,, associated to
the compositions 7y and 7is, we introduce the moment matrix in the following manner

Definition 1. The moment matrix is given by

gmm.‘/&l £ (2) T du(a). (10)

In terms of the canonical basis {E; ;} of the linear space of semi-infinite matrices and for each pair (i,7) € Z3
we consider the binary permutations or transpositions m; ; = Fj; ; + E; ;. Observe that 2 ; = I and therefore T, Jl =
m; ;. Given two transpositions m; ; and 7; the permutation endomorphism corresponding to its product is well
defined 7; jmy; = mpm; ;. Taking a sequence of pairs I = {(is, js)}sez, , is,js € Z4, we introduce the permutation
endomorphism 7 as the infinite product 7 = HSEZ+ i, j., with mym] = 7] 7 = 1. Given two compositions, ', 7,
there exists a permutation 75 7 such that &z = ma 7€z through a permutation semi-infinite matrix as just described.

The change in the compositions is modeled as follows

Proposition 1. Given two set of weights Wy, = (w¢1,...,wep,) and compositions 7y and iy, ¢ = 1,2, there exist
permutation matrices g, 7, such that

.
itr ity = Tty ity Yt iin Tl iy (11)

Proof. For any set of weights @ = wy, ..., w, and two compositions 77 and 7’ we have that the corresponding vectors
of weighted monomials are connected,

trough a permutation semi-infinite matrix; i.e, 7rg, q= ﬂg,lﬁ. Therefore, the announced result follows. O

For the sake of notation simplicity and when the context is clear enough we will drop the subindex indicating the
two compositions and just write g for the moment matrix. Let us discuss in more detail the block Hankel structure
of the moment matrix. For each pair (i,j) € Z2 there exists a unique combination of three others pairs (g1, ¢2) € Z2,
(a1,a2) € {1,...,p1} x{1,...,p2} and (r1,72) € {0,...,n1.4, — 1} x {0,...,n2,4, — 1}, such that

z':q1|ﬁ1|+n171+...+n1’a1_1+r1 and j:q2|ﬁ2\+n271+...+n27a2_1+r2.

Hence taking k¢ = qen,q, + 7¢, £ = 1,2, the coefficients g, ; € R of the moment matrix g = (g; ;) have the following
explicit form

mJ:/EMMmeuw@M@mmm. (12)

Observe that pairs (k1,a1) and (ke, az) are univocally determined by ¢ and j respectively.
Before we continue with the study of this moment matrix it is necessary to introduce some auxiliary objects
associated with the vector space R*°. First, we have the unity matrix I = ZZ’;O ekez and the shift matrix A :=

> reo€reny - We also define the projections .= Zﬁf;lo exey, and with the help of the set {e,(k )}a Lo we
0.1,
construct the projections I, := Y37 eq(k)eq (k)" with 3P _ I, =1, and
Py = diag(l,,, 0y, .-, 0n,), P = diag(OnU]Inz,...,Onp), P, = diag(Om,OnZ,...,an), (13)

where I, is the ng X ng identity matrix. Finally we introduce the notation

2" =™ Py + -+ 2™ By = diag(a™ L, ..., 2™, ) : R — R (14)



For a better insight of the moment matrix let us introduce the following n; , X ng, matrices

1 T e I"Z,b_l
2 na.p
T T " a=1,....,p1
Map(7) = wia(@)wap(@) | . . 7 ’ (15)
: : : b=1,...,po,
ghe=1l  phiae .. pNiatney—2
in terms of which we build up the following |71 | X |fia|-matrix
mi1 M1z o Mp,
m m PR m
me=| 272 | LR - RIBIXIR] (16)
Mpy,1 Mpy2 - Mpypy
Then, the moment matrix g has the following block structure
9= (Gyj)ij>0 € R®*™, Gij = /xiﬁlm(x)xjﬁzdﬂ(x) € RIMIxIfz|, (17)

Fix now a number [ € N and consider the pair (I,/+ 1). There exists a unique combination of pairs (g1, ¢2) € Z3,
(a1,a2) € {1,...,p1} x{1,...,p2} and (r1,72) € {0,...,n14, —1} x {0,...,n2,4, — 1}, such that

l=q|fi]|+ni1+ - +nig-1+r and [+1=gli]+ne1+ - +n2a,-1+re.

Given the compositions 77; and 7o we introduce the degree multi-indices 7/} € Zﬂl and 7y € Zf’f [9] where for each
¢ =1,2, we have

]75 = (Vf,la ceey VZ,G.[717 Vl,ag; Vf,anglv ceey Ve,p() (18)
=((qe+Dnga, ..., (@ + D)ngap—1,@ne,a, + 70, @eMt,a0415 - - - Qe ,p, ),
which satisfy
ke(i 4 1) = vga,0)(9), |7 (i)] =i+ 1, ve(i + Urie]) = V(i) + Uiy, (19)
and consider the [ x (I + 1) block matrix I'; from g
gdo,o gdo,1 s 90,1
g1,0 g1 cee g1,
I = . . ) (20)
gi—1,0 9i—11 " Ggi—1]

Let us study the homogeneous system I';jx; 1 = 0;, where ;1 € R+ and 0,1 is the null vector in R'*!. Taking into
account I')’s structure (12]), we see that such equation is exactly the expression of the orthogonality relations . We

can see now that for each | € N the existence of a system of mixed multiple orthogonal polynomials (Agl), cee AI(,ll)
is ensured; that is because I'; in is a I x (I + 1) matrix, and the homogeneous matrix equation I'jz;1; = 0y,
which is satisfied by the coefficients of the polynomials corresponds to a system of | homogeneous linear equations
for [ + 1 unknown coefficients. Thus, the system always has a non-trivial solution. Obviously, (Agl), ceey Az(,ll) ) is not
univocally determined by the matrix equation I';x; 11 = 0; or equivalently by the orthogonality relations , because
its solution space has at least dimension 1. Hence, the appropriate question to consider is the uniqueness question
without counting constant factors, or equivalently if the solution space has exactly dimension 1. In terms of I'; the
question becomes: Does I'; have rank [? In order to have a positive answer it is sufficient to ensure that the [ x [
square matrix

90,0 go,1 T go,1—1
91,0 91,1 g1,1—-1

gl = . . . , [>1, (21)
gi—10 91—11 - Ggi-1,-1

is invertible, where ¢g[! results from I'; after removing its last column. It is easy to prove that such condition is
equivalent to require that all possible solutions of satisfy deg A,, = v1,,, — 1. Obviously this requirement is

ensured when the polynomials (Agl), e A,()ll)) fulfill degA; =v1;—1,5=1,...,p1.



2.2 Perfect combinations and Nikishin systems

We introduce the concept of a perfect combination.

Definition 2. A combination (u, w1, W) of a measure p € M(A) and two systems of weights Wy and Wy on A C R
is said to be perfect if for each pair of multi-indices (Vy, ), with |F1| = |a| + 1 the orthogonality relations imply
that deg Ay =v1 o —1,a=1,...,p1.

For a perfect combination (u, w1, ws) and any given I € Z, the solution space of the equation I'ja;41 = 0; is one-
dimensional. Then, we can determine a unique system of mixed type orthogonal polynomials (Al, ey Apl) satisfying
(B) requiring for a; € {1,...p1} that A,, monic. Following [14] we say that we have a type II normalization and
denote the corresponding system of polynomials by A,(IH’al), j=1,...,p1. Alternatively, we can proceed as follows,

since the system of weights is perfect from we deduce that

/ 202 3" Ag(@)wn o (2)wa,p, () dp(x) # 0.

Then, we can determine a unique system of mixed type of multi-orthogonal polynomials (A:(LI’bQ)7 . ,A,(,I;bQ)) imposing

that

P1
a2 3 AL @y o @ sla)dn(o) = 1
a=1

(H7<11

which is a type I normalization. We will use the notation A[ﬁl,ﬁj ., and ALP) o denote these multiple orthogonal

[P1;02],a
polynomials with type IT and I normalizations, respectively.
A known illustration of perfect combinations (p, W, wWs) can be constructed with an arbitrary positive finite Borel

measure y and systems of weights formed with exponentials:

(eﬂ/lx?"'ae’h)x% 71#7]) Z#KL 27.7:177297 (22)
or by binomial functions
(T =2)", ..., (1= 2)%), a; —a; €7, 1# 7, ,j=1,...,p. (23)

or combining both classes, see [31]. Recently a wide class of systems of weights where proven to be perfect [20];
these systems of functions, now called Nikishin systems, were introduced by E.M. Nikishin [3I] and initially named
MT-systems (after Markov and Tchebycheff).

Given a closed interval A let A be the interior set of A. Let us take two intervals A, and Ag whose interior sets

are disjoint, i.e. A, NAg = 0. Set two measures i, € M(A,) and ug € M(Ag) such that the measure (fiq, ug) with
the following differential form

dpg(t =
Apassa)e) = [ L2 apo0) = fp(o)n (o),
is a finite measure, that implies that (uq, pg) € M(Ay). The function jig denotes the Cauchy transform corresponding

to pg. Let us consider then a system of p intervals Ay, ..., A, such that A; N A =0, 7€ {1,...,p—1}. Takep
measures p; € M(A;), which for each j =1,...,p — 1, the measure (u;,c;41) belongs to M(A;). So the system of
measures (&, . ..,§p) where

Cl = 1, §2: <,u1,,u2>, <3: <M1,<ILL2,,LL3>>:</L1,,M2,,U3>, ey Cp:<ula"'7p’p>7
is the Nikishin system of measures generated by the system (o1,...,0.,). So we denote ((1,...,¢p) =N (01,...,0p) -
Actually, in [20] the authors shown perfectness for combinations of Nikishin systems where intervals Aq,..., A, are
bounded and for each j € {1,...,p—1} the intervals A; and Aj; are disjoint. The same authors have communicated

to us that they were able to prove a generalization of this result to unbounded intervals such that A; N Aj;q # 0.
Consequently, in what follows we assume such generalization.
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As we have seen, general Nikishin systems have an intricate structure; therefore, in order to make easy the reader
we focus on a “simple” class of Nikishin systems which we call M-Nikishin systems. Set the interval A; = [0,1] and
let Mo(A1) C M(Aq) denote the set of measures in M(A;) such that if o € My(A;) then, the function

~ do(t do(t do(t °
o(z) :=/ do(t) satisfiles  lim / o(t) = lim/ [do(®)] < 400, where A;=(0,1). (24)
A, L=tz z=1|Ja, 1 —t2 =1 Jo, 1 -tz
rEA] TEAY

The constraint guarantees that the function & is a weight in compact intervals in (—oo,1]. As (1 — tx) does not
vanish for (¢,z) € Ay x (C\ [1,400)) we deduce that 1/(1 —tx) is a continuous function in z for ¢ € A;. Therefore, we
conclude that & is a holomorphic function on C\ (1, 4+00), having a continuation as continuous function in 1. Taking
into account that & does not vanish in C\ (1, +00) and that it takes real values on R\ (1, 400) = (—00, 1], we deduce
that it is a continuous weight on (—o0, 1]. Observe that

N do(t) _ Cdo(1/¢) _ dp(¢)
a(z) —/Al s _/[1,+oo> s /[1,+oo) e (25)

is the Cauchy transform of another measure p € M([1,400)), such that |f(1)| = |o7(1)] < 4o0.
Given two measures o, € Mo(A1),08 € Mo(A1) we define a third one as follows (using the differential notation)

~ - dos(¢
o, 05)(r) = F3(a)dow (a), ale) = [ $2
A, 1—ag
As 73 is a continuous weight on A; we conclude that [0, 0g] € Mo(A1). If we take a system of measures (o1,...,0p)
such that o; € My(A1),j =1,...,p, we say that (s1,...,sp) = MN(01,...,0,), where
s1 =01, so = [01,02], s3 = [o1,[02,03]] = [01, 02, 03], sp =[01,02,...,0p] (26)
is the M-Nikishin system of measures generated by (o1, ...,0,), with corresponding M-Nikishin system of functions

given by @ = (w1, ..., wp) = (51,...,8p) = MN(01,...,0p).

Notice that s; € Mo(A;1) which implies that for each arbitrary compact subinterval of (—oo,1] the system of
functions w conforms a system of continuous weights. M-Nikihsin systems are included in the class of Nikishin
systems. Taking into account the identity we see that the M-Nikishin system defined in can be written as a

classical Nikishin system. Let us take a system (g1, ..., u,) where
p1 =01, dus(z)=wxdoz(1/x), ps=o0s, ..., H2[p/2]—1 = O2[p/2]—1> sz[p/2](9C) = CL’Uz[p/z](l/flc)7
and if p is odd p, = 0. Notice then
51 = = o1, s2 = (2 = (u1, p2), 8p = Cp = (H1, 12, - fp)-
Hence (s1,...,8p) = MN(o1,...,0p) = N(p1,...,pp) = (1,...,¢p). Fixing two M-Nikishin systems of functions
We(z) = (Sp,1(x), ... 50p(x)) whose elements are weights on Ag = [—1,1], and a measure p € M(Ag) we have at our

disposal the perfect combination (u,w;,ws). We can also obtain a perfect combination (p,ws,ws) choosing @; and
Wa between two different of the classes mentioned in and (not necessarily the same).

Proposition 2. The Taylor series at {( = 0 corresponding to the functions 5;(¢) and f;(¢) = logs;(¢) converge
uniformly to s; and f; respectively on Ay, i.e.

(o)
gj(m) = Z A%]xi = eZq?iO ti,jml, x € AO) j = 1’ o, P. (27)
=0

where X\ ; and t; ; are constants.

Proof. For each j € {1,...,p}, 5; is a holomorphic function on the open unitary disc centered on the origin. That
implies that

o0
gj(m)ZZAi,jl‘i:ez’?ioti’jxl, $€{‘C| <1}7 j=1...,p.
=0

Notice that

> aus| =t (S| = i | [ 920
i=0 z€[0,1) 14=0 1631

So the first equality in is proved. The second one comes immediately from the fact that the functions s; do
not vanish on Ag. That implies that Z?io t; ;2" are also bounded and therefore continuous. Hence we can proceed
analogously as in the first equality. O
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2.2.1 The inverse problem

Given the series
o B
= Z )\i:sz = eE'i=0 bins® ) T e AO, .7 = 17 - Dy (28)

we consider the problem of finding conditions over {; ;} such that the set of series {w;}’_, form a M-Nikishin system
of functions. The reader should notice that A; ; = S;(t;0,%i1,...,t ;) where S; is the i-th elementary Schur polyno-

mial. Elementary Schur polynomials S (t1,. .. ,‘tj) are defined by the following generating relation exp(Z;‘;l tjzl) =
Z] 0Sj(t1,t2, ..., t;)27, and therefore S; = 2221 Zj1+~~-+jp:j tj, ---t;,. Given a partition 7 = (n1,...,n,) € Z we
have the Schur functlon s7(t) = det(Sy, —i+;(t))1<i j<r. For more on the relation of these Schur functions and those
in [26], see [32].

In order to state sufficient conditions in this direction we need some preliminary definitions and results.

Definition 3. Given a sequence C = {¢;}52, C R its Hausdorff moment problem consists in finding a measure

o € M(A) such that

:/dda(g), i€ Z,.

Moreover, if we further impose the constraint o € Mo(A) we say that we have a restricted Hausdorff moment problem.

Here we have made a variation in the classical definition of a Hausdorff problem, where the solutions are positive
measures. In our Hausdorff problem we look for measures in a wider class where they do not change their sign.
Obviously, since My(A) C M(A) each solution of a restricted Hausdorff problem is also a solution of a Hausdorff
problem. In the pages 8 and 9 in [34] J. A. Shohat and J. D. Tamarkin study Hausdorff problems and give a sufficient
and necessary condition over the sequences to have solution. Using this result we deduce the following Lemma.

Lemma 1. The Hausdorff moment problem for a sequence C = {¢;}32, C R has a solution if and only if
> (’Z) (=1)ciyk >0 Y(n, k) € 23 or > C‘) (=1)icipn <0 Y(n, k) € Z3. (29)
i=0 =0

When holds a necessary and sufficient condition that ensures solution for the restricted Hausdorff moment problem

of C is .

Proof. Theorem 1.5 in [34] states that the first set of inequalities in is a necessary and sufficient condition to have
a positive measure ¢ solving the classical Hausdorfl problem. Following their proof it is not hard to conclude that

adding the second set of inequalities leads to a solution in M(A). Let us take a measure o € M(A) and observe that
do(t)
1—xt

(30)

is a holomorphic function on C \ [1,40c0), then if C is its moment sequence we deduce

/1_xt ZCZ . ze{ld<1).

Thus, since all the ¢;’s have the same sign, by Lebesgue’s dominated convergence Theorem we have

xﬂl‘/lfcﬂt‘_mﬂl‘zxg ’ZCi.

z€[0,1) =0 =0

Thus o € My(A) if and only if takes place. O

Given the series

{E) = Z)\Z-_,jylxi, xT € Al, ] = ].,. .o Dy (31)
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we introduce a set of semi-infinite matrices ©) and semi-infinite vectors 0, j = k,...,p, k =1,...,p in the following
recursive way. First, we define

Ao, A Agnn e Aoj,1
)\1,1,1 /\2,1,1 >\3,1,1 ce )‘1,191 .
O := )‘2,1,1 >‘3,1,1 )\4,1,1 AR I ajvl = >\2,j,1 ’ J=1....p.
A0,j,2
) A1,j,2 . . . .
Then, we seek solutions ;2 := | X252 | of ©160;2 = 0,1, for j = 2,...,p, and if these solutions exist we define
A0,2,2 A1,2,2 Az,22 Xo,5,3
A1,2,2 A2,22 Az 22 o A1,5,3 A .
Oy 1= [ X222 X322 Ma22 - |, Then, we look for 63 = | A2;3 | which solves ©20;3 = 0,9, for j = 3,...,p, and

20,3,3 A1,3,3 A2,3,3 =
A1,3,3 A2,3,3 A3,3,3 -

when such solutions exist we introduce O3 = | A2,3.3 X333 Aa3,3 - |. In this way we get for k € {1,...,p} the matrices
Oy, and vectors 0;, j =k, ...,p, linked by ©40; 41 = 0, with expressions
A0 k+1k+1 ALkl k+1l  A2ktlk+l " A0,j k41
AL k+1,k+1 A2k+1k+1 A3 k+1k+1 ALjk+1
Okt = | Nokpthtt Ashrthdl Abiihsr o | Oiks1 = | Agjapa

Here we understand ©40; 41 = 0;1 as

o0
Z Alti ki1 = Mgk, | € Ly

i=0
We now consider the sequences

Ck:,kt = {Ai,k,k}?i07 Oj,k = {Ai,j,k}z'oi()a ] = ka s Dy k= 17 Ry (32)
Later, we will prove that none of the semi-infinite Hankel matrices ©f, &k = 1,...,p, are invertible. Hence such

infinite linear systems are either undetermined or incompatible. In this last case we say that the systems of sequences
(Ckkr---,Cpr), k=1,...,p, do not exist.
First we need the following preliminary

Lemma 2. The series

w(z) = Zx\imi, x € Ao,
i=0

converges uniformly on Ay to a function o(z) = [do(t)/(1 — tz) corresponding to a measure o € Mo(A1) on Ag if
and only if the restricted Hausdorff moment problem corresponding to the sequence {\; : i € Z4} has a solution.

Proof. Let us assume that the restricted Hausdorff moment problem of a sequence {)\; : ¢ € Z, } has a solution. That
means that there exists a measure o € My(A) such that

)\i:/ tido(t), i€y, lim / ot) | _ > N| < +o0
Ay Aphlac =t i=0

Since |\;z?| < |\, |z < 1 and > |Ai| < +oo, by Weirestrass’ Theorem Y ;- A\;z* converges uniformly on Ag. This
proves the if implication in the Lemma[2] On the other hand

. do(t) . > ; b
}clﬂ /A e }EIE} Z Nxtl = Z i
z€[0,1) z€[0,1) [i=0 =0

because |Z?io )\ixi| must be continuous on Ag. A; coincides with the i-th moment corresponding to the measure o
which completes the proof. O
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Theorem 1. The system of weights {wl,j}ﬁ":p as in , converges uniformly in Ag to an M-Nikishin system of
functions {s; }1;7:1 if and only if for each k =1,...,p—1, there exists a system of sequences (Ck,-..,Cp) as in ,

such that their restricted Hausdorff moment problems have solutions.

Proof. The proof of this Theorem goes as follows. From Lemma [2| we have that for each j =1,...,p,
wjl Z)\’jyr .Z‘EA(),

converges in Ag to a function $;(x) = [ds;(t)/(1 — tz) if and only if the restricted Hausdorff moment problem corre-
sponding to {A; ;1 : ¢ € Z,} has a solution. We assume that w; ; converges uniformly on Ag to the function §; corre-
sponding to the s; € M(A;). In order to prove the necessity in Theorem’s statement we suppose that (si,...,sy) =
MN (o4,...,0p) is an M-Nikishin system of measures as it was defined in the Fixed k € {1,...,p} we define
another M-Nikishin system (sj g, ..., Skp) = MN (0%, ...,0p). Let us observe that (s1,1,...,81) = (s1,...,5p).

By construction for each k € {1,...,p}, we have that dsj ; = sp41 ;dsk i, j =k,...,p. When 7 = k we understand
Sk+1k = 1. Fixed j € {k+1,...,p}, Sk41,; is a holomorphic function on C \ (—o0, 1); hence, its Taylor’s series

oo
wjk1(t) = Z Ai gkt te Ay C Ay

1=0

converges uniformly to Sgy1; on Aj. Then, for each z € A4

ds ds
8k, (2 Z/\I,J kT —/skﬂd( dsik(t) /ZAJ/C-&-ltZ kkt(C) _

=0

= Z Z Niji k1 / Hldsy (1) = Z Z N k1 Nk kT

1=0 =0 =0 i=0

which proves one implication of the equivalence. The other implication comes immediately from Lemma
O

We remark from the statements of Lemma [T that the conditions in Theorem [I] are equivalent to the inequalities in
(29). Hence, by continuity criteria, such conditions are stable under perturbations of the coefficients A; 1,1, 7 € Z4. We
will come to this later in §3, when we consider deformations of the weights leading to the multicomponent 2D Toda
flows in the precise form discussed in this section.

2.3 The Gauss—Borel factorization and multiple orthogonal polynomials

Given a perfect combination (u, W, wWs) we consider [2]

Definition 4. The Gauss—Borel factorization (also known as LU factorization) of a semi-infinite moment matriz g,
determined by (u, w1, W), is the problem of finding the solution of

1 0 0 - St S61 Sbe
L S0 1 0 --- - 0 S, S, -
g=S715, S = Soo Spq 1 | S7t=1 ¢ 0 Sy - , S”,S' (33)

In terms of these matrices we construct the polynomials

AD =37 5 k), (34)
where the sum Z/ is taken for a fived a = 1,...,p1 over those i such that a = a1(i) and i <1. We also construct the

dual polynomials
AP =y a 08, (35)

where the sum ' is taken for a given b over those j such that b= as(j) and j < 1.
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This factorization makes sense whenever all the principal minors of g do not vanish, i.e., if det g/ £01=1,2,.
and in our case it is true because (p, W, wWs) is a perfect combination. It can be shown that the following sets

1 0o 0 - 5'0,0 §0,1 30,2
S10 1 0 - _ 0 Si,1 81,2 _ _
G_ = {S = S2,0 S2,1 1 ,S@j S R}, G+ = {S = 0 0 Sz - 7Si,j € Rvsi,i 7é 0}

are groups. Indeed, the multiplication of two arbitrary semi-infinite matrices is, in general, not well defined as it
involves, for each coefficient of the product, a series; however if the two matrices lie on G_, the mentioned series
collapses into a finite sum, and the same holds for G,. Moreover, the inverse of a matrix in S € G_ can be found
to be in G_ in a recursive way: first we express S =1+ . (S (AT)i with S; = diag(S;(0), 5;(1),...) a diagonal

matrix, then we assume S~' =1+ 3. ,S;(AT)" to have the same form, and finally we find that the diagonal matrix

i>0
unknown coefficients S; are expressed in terms of Sp,...,S; in a unique way; the same holds in Gy. Given, two
elements S € G_ and S € G the coefficients of the product SS are finite sums. However, this is not the case for S5,
where the coefficients are series. Therefore, given an LU factorizable element g = S~1S we can not ensure that g has
an inverse, observe that in spite of the existence of S and S—!, the existence of S~1S = ¢! is not ensured as this
product involves the evaluation of series instead of finite sums.

With the use of the coefficients of the matrices S and S we construct multiple orthogonal polynomials of mixed
type with normalizations of type I and II

Proposition 3. We have the following identifications

(1) _ 4(Ia1(1)) ) (Ta1 (1))
Aa’ = A -1 Ay = A (-1

in terms of multiple orthogonal polynomials of mixed type with two normalizations 1 and 11, respectively.

Proof. From the LU factorization we deduce

1
> Siigi; =0, j=0,1,...,1—1, Sy = 1. (36)
With the aid of and we express as follows

/ (ZAU T)W1 q ))wg,b(m)xkdu(x) =0, deg A < vy 4(1) — 1, (37)
0<k<wp(l—1)— 1.

We recognize these equations as those defining a set of multiple orthogonal polynomials of mixed type as discussed
in [T4]. This fact leads to A, .m0 = AP where 7, = v1(l) and U = P2(l — 1). Observe that for a given ! each
polynomial A[z .5, has at much vy 4(I) coefficients, and therefore we have |7/ (1)| = [ + 1 unknowns, while we have
|72(I = 1)| = I equations. Moreover, from the normalization condition S;; = 1 we get that the polynomial A, .54, 1)
is monic with deg A[z,,7,],0, (1) = 1 al(l)(l) — 1=k (I+1)—1, so that we are dealing with a type II normalization and
A(Lar (1)

therefore we can write A((zl [71:72],a

Dual equations to are

1
Zgi,jgé‘,lzov i=0,1,...,1—1, (38)
j=0

1
> 9S =1 (39)
j=0
Now, using again and , becomes
/ (ZA( x)wa,p( ))wl)a(az)xkdu(x) =0, deg f_lél) <wp(l) — 1, (40)

0<k<umal—1)—1,
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while reads
P2 1
Aﬂiﬂ?mmwmwmmmﬁwwsz (41)
b=1

where using we obtain

k(D) = vy, —1). (42)
As above we are dealing with multiple orthogonal polynomials and therefore fll(]l) = 14_1[,72;171]’1,, with 71 = 4 (1 — 1) and
V5 = 5(1), which now happens to have a normalization of type I and consequently we write flgl) = AE;;;S)Z)) O

Given a definite sign finite Borel measure the corresponding set of monic orthogonal polynomials {p;}7°,, degp; = I,
can be viewed as a ladder of polynomials, in which to get up to a given degree one needs to ascend [ steps in the
ladder. For multiple orthogonality the situation is different as we have, instead of a chain, a multi-dimensional lattice of
degrees. Let us consider a perfect combination (u, w1, ws) and the corresponding set of multiple orthogonal polynomials
{ A7)0 fot 1, With degree vectors such that 71| = || + 1. There always exists compositions 71, 7z and an integer
I with |4] =1+ 1 and || = [ such that the polynomials {A&l)}ggl coincides with {A,,5,).0}hL,. Therefore, the

set of sets of multiple orthogonal polynomials {{Aék)}glzl, k=0,... ,Z}, can be understood as a ladder leading to the

desired set of multiple orthogonal polynomials {A[gl;ﬁz],a}{;;l after ascending [ steps in the ladder, very much in same
style as in standard orthogonality (non multiple) setting. The ladder can be identified with the compositions (71, 7is).
However, by no means there is always a unique ladder to achieve this, in general there are several compositions that
do the job. A particular ladder, which we refer to as the simplest [#/; 7] ladder, is given by the choice ©; = 7 and
iy = Uy + €3 p,. Many of the expressions that will be derived later on in this paper for multiple orthogonal polynomials
and second kind functions only depend on the integers (71, 7>) and not on the particular ladder chosen, and therefore
compositions, one uses to reach to it.

2.4 Linear forms and multiple bi-orthogonality

We introduce linear forms associated with multiple orthogonal polynomials as follows

Definition 5. Strings of linear forms and dual linear forms associated with multiple ortogonal polynomials and their
duals are defined by

QO QO
Q:=| Q| =s¢, Q:=[QV|=(E""e (43)

It can be immediately checked that

Proposition 4. The linear forms and their duals, introduced in Definition[5, are given by
B D2 1
Q@) =Y A (@)wna(w), QU () =Y A (w)wa (). (44)
b=1

Sometimes we use the alternative notation Q) = Qi) and QW = Q[gz;,yl]. It is also trivial to check the following

Proposition 5. The orthogonality relations

/Q(l)(x)wgb(a:)xkd,u(x) =0, 0<k<wmyp(l—-1)—1, b=1,...,ps,
(45)
[ @V @una@tan@) =0, 0 k<mal-D -1 a= L.,

are fulfilled.

Moreover, we have that these linear forms are bi-orthogonal

16



Proposition 6. The following multiple bi-orthogonality relations among linear forms and their duals

[ @ @@® @)duta) = o Lk >0,
hold.
Proof. Observe that
/R Q(2)0(x)  dpu(x) = / Se1(2)62(2) TS dpu(z) from
= 5( [ & @@ )5
= S5¢gS~1 from

=1L from

Definition 6. Denote by fy], i = 1,2 the truncated vector formed with the first | components of &;.

We are ready to give different expressions for these linear forms and their duals

(46)

Proposition 7. The linear forms can be expressed in terms of the moment matriz in the following different ways

Q(Z)Zd)—(gz,o g1 gii-1) (g~ tel!
=5,0 0 - 0 1) (Q[IH])_lfyH]
(0)
go,o 9go,1 go,1—1 1
(1)
) gi,0 91,1 g1,1—1 1
(I-1)
gi—1,0 9i—1,1 - gi—1,1—-1|S1
(®
g0 g1 gi1—1 1
and the dual linear forms as
90,1
_ - ! ! _ g1,
QU = (S () =T )
gi—1,1
0
0
1 — .
= (& T (g
0
1
go,o Yo - goju—1 | Go,
g10 911 - g11-1 | 911
1
= ———det : : : : [ >0.
l 1 . . . . b pu—
detgH ] 91—1,0 91—1,1 " gi—1,1-1|91—-1,1
R e R

Proof. See Appendix [A]

As a consequence we get different expressions for the multiple orthogonal polynomials and their duals

17
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Corollary 1. The multiple orthogonal polynomials and their duals have the following alternative expressions

l _1 [
AD =3 = (g0 g1 gumr) (@7,
= Si (0 0 ... 0 1) (g[l'i‘l])—lx[ll:;l]
goo Goa - Goi-1 X&?}l
910 G111 - gii-1 X1,C)L
1
:Wdet , [ >1. (49)
91-1,0 9i—1,1 *** Gi—1,1—1 X(ll;U
g0 g1 o gLi-1 xﬁ{)a,
and
9o,
_ _ g1,
l _ l 1 _ )
AP = S (& - 0T ) (50)
gi—1,1
0
0
I+1 — .
_ (XQ,Z ])T(g[z+1]) 1 :
0
1
go,o Ygoa - go,u—1 | Yo,
gro 91,1 - gii-1 | 91,
1 . . . .
=— " _det : : : : , [>0. (51)
detg[lH] 91—-1,0 91—1,1 " Gi—1,1-1(g1—-1,1
(0) (1) (1-1) 0]
26 Xop - Xop X2b

Observe that (208), Appendix implies

_ det g[l+1]
Si = det gl (52)

2.5 Functions of the second kind

The Cauchy transforms of the linear forms (44) play a crucial role in the Riemann—Hilbert problem associated with
the multiple orthogonal polynomials of mixed type [14]. Following the approach of Adler and van Moerbeke we will
show that these Cauchy transforms are also related to the LU factorization considered in this paper.

Observe that the construction of multiple orthogonal polynomials performed so far is synthesized in the following
strings of multiple orthogonal polynomials and their duals

At(zO) Al()O)
1 - 7(1 =_
Ay = Ag) :SXI,a7 oy = Al() ) = (S I)TX2,ba a=1,...,p1, b= 1,...,pa. (53)

In order to complete these formulae and in terms of x* as in we consider

Definition 7. Let us introduce the following formal semi-infinite vectors

0 ~(0
g o) I <
Cgb = Cb :SX;,b(Z)a Cg(l = Ca = (Sil)—rxia(z)a b= 1""7p27 a = 17"'7p17 (54)

that we call strings of second kind functions.

18



These objects are actually Cauchy transforms of the linear forms Q), [ € Z,, whenever the series converge and
outside the support of the measures involved. Notice that fixed z € C the entries in each string %, and %, are series
not necessarily convergent. In the non-convergent case we obviously understand the definition only formally. For
each [ € Z, we denote by D((zl) and D,(jl) on C the domains where the series C’t(ll) and C’él) are uniform convergent,
respectively, and we understand them as their correspondmg hmits. From properties of Taylor’s series, we know that

uniform convergence of these series hops only on D and D, () Wwhen they are the biggest open disks around zZ =00
which do not contain the respectively supports, supp(ws dp) and supp(ws pdp). Outside the sets D a ) and D, @ the
series diverges at every point. Hence to have non-empty sets in D,(ll) and Dlgl) the corresponding supports supp(wgﬂdu)
and supp(ws ,dp) must be bounded.

Proposition 8. For each | € Zy the second kind functions can be expressed as follows
l) w
e = [ EE2 g0, 2 e D\ supp(unadp(o).
QO (@) o @) o
CW(z) = /—Ladu(x), z € DY\ supp(wg du(z)).

zZ—X

Proof. The Gauss—Borel factorization leads to

(= Z Z Sirgren(M2,5X5(2))n

n=0 k=0

n

xr
= Z/Zszkxkl(k)w () (2)w2,p(2) —7 du(z) use

n=0

= Z ntl /an(l)(x)wa(x)dN(x)~ use ([44))
n=0

When Dél) \ supp(we pdu) = 0 the proof is trivial. Given a non empty compact set  C D[El) \ supp(wa pdu) # 0 and re-

calling the closed character of supp(ws pdp), we have that the distance between them dl()l) (K) := distance(kC, supp(wsz pdpu)) >
0 is positive and that sup{|z| : z € K} =: Mx < 4o0. Taking into account that the series

o Z o [ 4" QU @) duta)

converges uniformly on I we can ensure

lim sup {

n—o0 IZ‘EK:

} =0. (56)

[ @ @au)

Hence, we have the bound

(z)

Zitl z—x

' QW (z)wa p(x)dpu(z) — /Q(l)(x)wlb(x)zim — ‘Zznl+1 /an(l)(x)wu(x)du(m) -

an+1 /an(l)(w)wz,b(x)du(x)

} Yz e K. (57)

My
S e S
db (/C) |z|eK
Taking into account (56) we deduce from (57) the first equality for any compact set K. Therefore, we get the first

claim of the Proposition; the second equality can be proved analogously. O

Given I > 1 and @ = 1,--- ,p the + (—) associated integer is the smallest (largest) integer 1, (I_,) such that
lia 21 (l_a <1)and a(liy) =a (a(l-s) = a). It can be shown that

aal+ e ni—1,  a<a(l),
la:=1q1 a = Cl(l)a
a[i| = >0 i — 1, a>a(l—1),

(q() + D] + X0 ni, a < a(l),
) a:a(l)7
(¢(l) + V|| — z WM, a>a(l).

o~

l+a =

19



To give a determinantal expression for these second kind formal series we need
Definition 8. We introduce
o0 o0
l — Y = (1 _ N
Fl(i:)a = Z PR ICORLT P r’(ﬂ)b — Z Gz R TG (59)
K'=l}q K=l1p

Here 1,4 is the + associated integer within the 7y composition, while I,y is the + associated integer for the iy
composition.

With these definitions we can state

Proposition 9. The following determinantal expressions for the functions of the second kind hold

go,o Yoa1 - Ygo,i-1 f‘(()l,)l,
g1,0 911 - d1,1-1 fﬁl
Clgl) — @ det ) 1>1, (60)
91—1,0 91—1,1 " gi—1,1—-1 f‘l(QLb
gio g1 o gri-1 fEfZ,
go,o Yo - Goi-1 | Yo,
g10 911 - g10-1 | 911
~ 1 . . : :
(gl) B detg[lﬂ] et 91:1,0 917:1,1 9171:,171 glil,l ’ =t (61)
Fow i o T, | T
Proof. See Appendix [A] O

Following [20] we consider the Markov—Stieltjes functions and polynomials of the second type.

Definition 9. The Markov—Stieltjes functions are defined by

foa(e) = [ e g, (62)

z—x
in terms of which we define

H(2) = Z AD (2)frap(z) - CP(2),

Y (63)
AP (2) =Y frap(2) A (2) = CO(2),

b=1

Proposition 10. The functions Hél) and H(Sl) are polynomials in z.

Proof. The reader should notice that the functions H él) and ﬁél) are

n D) - 4D (x ) 2 10— A0 (4
1) = [ Yo 22 ape), BOE) = [ wna@ L0, @)aua),
a=1 b=1

zZ—x Z—X

and as z = z is a zero of the polynomials At(ll)(z) - Afll)(x) and flgl)(z) - f_ll()l)(ac) from the above formulae we conclude
that they are indeed polynomials in z. O
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2.6 Recursion relations

The moment matrix has a Hankel type symmetry that implies the recursion relations and the Christoffel-Darboux

formula. We consider the shift operators defined by

(oo}
Ao = ea(k)ea(k+1)". (64)
k=0
notice that
e A, leaves invariant the subspaces II,/R>, for '’ = 1,...,p, and I, A, = A Il .
e The set of semi-infinite matrices {AJ }4—1, ., is commutative.
i=1,2,...
e We have the eigenvalue property
AaXa’ = 6a,a’zXa- (65)
Definition 10. We define the following multiple shift matrices
p1 D2
Tl = ZALG, TQ = ZA2,b7 (66)
a=1 b=1
and we also introduce the integers
Nig =i —nia+1= Z ny e + 1, a=1,...,p1, Nip:= max Nig,
a=1,...,p1
a'=1,...,p1
a’'#a
Ng’b = ‘ﬁgl —?7,2,1,-%-1 = Z N2y + 1, b= 1,...,p2, Ny := max Ng’b.
b=1,...,p2
b'=1,...,p2
b'#b
A careful but straightforward computation leads to
Proposition 11. We have the following structure for Y1 and Yo
Y1 =DioA+ Dl,lANl'l ot Dl’plANl»m ) YTy = Dy oA+ D2,1AN2’1 R D2}p2AN2,p2_
where D1 4, a=1,...,p1, and Doy, b=1,...,pa, are the following semi-infinite diagonal matrices:
L, n=kKa |+ naw—1 keZy, L
DL = d1ag(D1 (0), Dl’ (].) .. ) Dl’ (TL) = N a’=1 ’ Dl,O =1I- DL
¢ “ Qe “ 0, n#kli|+>0_ne—1, keZ;, ; “
p1

. 1
Dg’b = dlag(Dg,b(O), Dgyb(1)7 e ), Dg’b(n) = {

, n=klig| + Y _ oy —1, keZy,
0, n#k|isl+ X0 _nop —1, keZy, —

Dyo=1- Dy

In terms of these shift matrices we can describe the particular Hankel symmetries for the moment matrix

Proposition 12. The moment matriz g satisfies the Hankel type symmetry
Tig = 9T2T~
Proof. With the use of and we get
A1,agllap = Hl,agA;ba

and summing upina=1,...,p; and b=1,...,ps we get the desired result.

(68)
O

Observe that from we deduce that in spite of being all the truncated moment matrices g, I = 1,2,.

invertible, the moment matrix g = lim;_, . ¢/"lis not invertible. Suppose that the inverse g~

V= (Gij)1,j=01,. of g

exists so that implies g~1Y; = TJ g~ !, and therefore g; o = go,; = 0 for all 4, j = 0, 1,..., which is contradictory

with the invertibility of g.
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Proposition 13. From the symmetry of the moment matriz one derives
ST St =87] 51 (69)
Proof. If we introduce into @ we get

1,518 =87187] = sr;5°t=857] 5L

Definition 11. We define the matrices
Ji=J+J, Jyi=(8T187Y)y, J_ = (87 57Y)_,
where the sub-indices + and —denotes the upper triangular and strictly lower triangular projections.

Thus, J4 is an upper triangular matrix and J_ a strictly lower triangular matrix. Moreover, from the string
equation we have the alternative expressions

J =815 =381]5".

We now analyze the structure of J; := (SD; oAS™1) 4 + (SDy AN S™1) + oo + (SDy ,, ANt 1 S71) L Tt is clear
that we need to evaluate expressions of the form SE;;S~! with i = r1(k,a) — 1 and j = k1(k + 1,a — 1) being
k1(k,a) := k|fir| + >0 _, n1,e. Given the form of S, see (33)), we have

(SEi,jS_l)Jr = Ez',j + Z sl,l’El,l’; Liyj = {(l,l,) S Zi” < i,l/ < j, l/ > 1}7
LIEL; ;

for some numbers s; ;7 € R depending on the coefficients of S and on ¢, j; this matrix has zeroes everywhere but on a
region of it that can be represented as a right triangle with hypotenuse lying on the main diagonal, this hypotenuse
has its opposite vertex precisely on the (4,7) position. Therefore

pP1 oo
Jp = (SDioAS™) L+ Y <Em(k,a)—1,m(k+1,a—l) + > Sz,z/Ez,zf>7 L k0 := Licy (k)= 1,51 (k41,a—1)
a=1 k=0 LUELL ka

We see that J; can be schematically represented as a staircase, the 7i;-staircase, descending over the main diagonal
with steps —which are built with right triangles with hypotenuse lying on the main diagonal and opposite vertex
(and therefore corner of the step) located at the (k1(k,a) — 1,%1(k + 1,a — 1)) position of the matrix— having width
and height given by the integers in the composition 7i;. For example, the j-th step has width n, [ and height

Ny 4L it). A similar description holds for JT but replacing the composition 7; by 7iy. Therefore, the matrix .J
’ p1 P1

is a generalized Jacobi matrix and, in contrast with the non multiple case, now is multi-diagonal (having in general
more than three diagonals) and has a diagonal band of length N7 + Ny + 1. Moreover, this band has a number of
zeroes on it, according to the 7i;-stair on the upper part and to the 7is-stair in the lower part, we refer to this as a
double (71, 7ip)-staircase shape. To illustrate this snake shape let us write for the case 7i; = (4,3,2) and 7l = (3,2)
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(70)
(71)
(72)
(73)

b

0 0 0 O
*
*

1 0 0 0 O
*
*

%

*
0 whenever r+s < 0 or s < 0.

*
)n1,1+"'+n1,a_1vlel'

1

*
*

S

(

0 0 0o 0o 00 0O
0 0 o 0O 00 0O

1 0 0 0O OO 0 0 O
*

*

*

*

*

*
*

0

0o 0 0 0 0 0 0 0 0 O

0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 0 O

-+ J*Nz (AT)sz

>

1 0 0 0O OO O 0O 0 0 O
*
*
*
*
*
*
-5 P2,
-5 P1-
l

*

*
ni1++nie—1

*
*
*
*
*
*

b=1,..

*
*
*
*
*
*

o 0 0o o0 0 0 0 0 0o 0 0 0 O
%

1P 0 0 0 0 O OO O O O0O O0 0 O

*
*
*

ES
k
*
*
ES

*
*
*

o 0 0 0 o 0o 0 0 0 0 0 0 0 0 0 0 o0
*

o 06 oo 000 0O O0OOOTOTOOOTGODUO

*

*

Seg’b(O),

1P 0 0 0OOO O OOO O O O0OO0OO0 0 00
Cq = (S_l)Tel,a(O), a=1,..

SN+ Ty + T AT 4

*
*
*
*
*

*
*
*
*

Cp

*
*

.). For convenience we extend the notation with J,.(s)
Sl,n2,1+~-~+n2,b—1elv

J=Jn, AN £ ..

where J; = diag(J;(0), J;(1), ..

We introduce

*
*
*

0

$Pr 000 O0O0OOOOOOOOOTOOOOTOOTO0OO0OTO0OTO0OO

>

l

iFr 000 O0OOOOOTOOOTOOTOTOOO0OO0OO0OO0OUO0OO0OO0

*

1P 0 0 OO OOOOOUOOOOOOOOUOUOUOTU® OO OT®OTO®O0OTGO
na,1+-+ng p—1

*

ES
o 0 oo o0O0O0OO0OOOO0OO0OOTO0OOTOS®OTOTOTOTQOT®O0OTO0OTO0OO

o 6 o o o00o0OO0OO0DO0OTO0ODO0OTO0OO0OTO0OTSO0OTO0OTO0OTO0OTQO0OT®O0OD°UO
o 0 0o 000 OO OO0OO0OOOOOOGOTOOOT® ODTUDO

o 0 oo o000 0 O0OOOTO0OUOUOOTGODODO
o 6 oo o000 0 O0OO0OOO0OTOOOTGO0ODUDO
o 6o o0 o0O0O0OO0OO0OTO0ODO0OTSO0OTO0OTO0OTUO0OTO0OTO0OTO0O0
o 0 0o 0000 O0OOOOTOUOOOGO0OTUOTO
o 6 oo o000 00 0O O0OO0OO0OOTOO0OTO0OTGO0OTO

o 0 0o o 00O 0 O0OO0OO0OGO0OTUO0OSTO
o 06 o o 00O 0O OOO0OTO0OTO0OTO
o 06 o0 0 O0O0OO0OO0OO0OTO0OTO0O0O0

0 0 00 0 0 O

0 0 0o 0 0 O

0 0 00 00O 0 00O

0 0 00 00 0 00

0 0 0000 0 00O

0 06 oo 00O O O0OOTO0OTUO
0 06 oo 000 0 O0O0OO0OTO

*
*

0 0 0 O
0 0 0 O
0 0 0 O

0
Cp =

The semi-infinite matrices J and J ' have the following important property

It is not difficult to show that

J27
where % denotes a non-necessarily null real number. We can write

Definition 12. The semi-infinite vectors c, and ¢, are given by

the corresponding truncated, [ = 27, Jacobi type matrix
Proposition 14. The following equations are fulfilled

(74)

Ay (2) = 2(2),

JT

29,(2),

J (2)

— Cq.-
26,(2) — cp,

T Co(2) = 2€,(2)

(2x2,(2) — €(0))
»(2) — e(0). For JT we proceed similarly:

28X1,a = 29,(2),

S

*
ZX5,

T xep(2)

,b(Z)

26y(2) — cp,
>

Sx

Svfl

T

J%b(z)
ST1S_1SX17,1(Z)
57]

Joty,(2)
J6(2)

where we have taken into account that Y3 x3 ,(2)

Proof. From and (54

—l)T

%)

2(

0

—1)TT2§T(

0

Iy (2) = (

X2,a = ZJZ%;)(Z),

a(2) = (87 (2x1a(2) —€a(0)) = 2

(2) — €.

*
1

(Sfl)TTIS—r(Sfl)T

J a(2)
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Theorem 2. The multiple orthogonal polynomials and their associated second kind functions fulfill the following
recursion relations

2AD(2) = T_n, (AT (2) + -+ T, (AT (2),

(75)
200(2) — &) = T, (OO N (2) 4 -+ Iy ()T (2),

while the dual relations are
2AD(2) = J_n, (14 N) AN () o gy (1= N AL (2),

_ _ _ (76)
2CW(2) — Gy = J_n, (1 4+ No)CUND (2) - 4 T, (1 — N CU=NI (),

We see that given integers (1, 72) there are several recursion relations associated with Az, ,z,) .. In fact they are as
many as different ladders exists leading to this set of degrees. For the simplest ladder, i.e. i1 = 7; and 7y = U + €5 p,,
we get the longest recursion, in the sense that we have more polynomials contributing in the recursion relation,
as smaller are the integers in the compositions shorter is the recursion. Observe also that the multiple orthogonal
polynomials involved in each case are different.

Attending to we get that the recursion relations corresponding to [ = 8 an [ = 14 are of the form

AP () = +AD () -+ 1AL () + AL (2), a=123
A (2) = < ALD(2) + - AT 2), =123

We see that the first recursion has 13 terms while the second one only 7 terms.
In order to identify these polynomials with mops of the form A3, ., ,) we use following the table of degrees for the
compositions 7; = (4,3,2) and 7z = (3,2) is

1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
71 (1) (4,0,0) [ (4,1,0) [ (4,2,0) | (4,3,0) | (43,1) | (432) [ (532) [ (63,2) [ (7,3,2) | (83,2) | (84,2) [ (852) [ (86,2) | (86,3) | (86,4)
vo(l —1) (2,0) (3,0) (3,1) (3,2) (4,2) (5,2) (6,2) (6,3) (6,4) (7,4) (8,4) (9,4) (9,5) (9,6) (10,6)

2.7 Christoffel-Darboux type formulae

From and we can infer the value of the following series constructed in terms of multiple orthogonal polynomials
and corresponding functions of the second kind.

Proposition 15. The following relations hold

— - l ©) o 6a,a’
ZCO(,)(’Z)AG,’ (Z,) - VA ‘zll < |Z|7
D ()40 (2 = O, )
ZC Ab/ )_Z—Zl’ ‘Z|<|Z|’ (77)

A _h /
S C0EICO() = et = BaslE) s,

1=0 z=7
where Rqp is the radius of any origin centered disk containing supp(wi qwe pdp).

Proof. See Appendix [A] O

2.7.1 Projection operators and the Christoffel-Darboux kernel
To introduce the Christoffel-Darboux kernel we need
Definition 13. We will use the following spans
HY =R{e, .. €7V}, HY =R{e”, ...l 7V}, (78)
and their limits

Hqi = { Z cldl),cl S R}, Ho = { Z leél),cl € R}. (79)

0<iK o0 0<iK 0
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The corresponding splittings
H=H @ (1), Hy =y & (W), (80)
induce the associated orthogonal projections
L TR o a2y — 1l (81)

In the previous definition ! <« co means that in the series there are only a finite number of nonzero contributions.
It is easy to realize that

Proposition 16. We have the following characterization of the previous linear subspaces

1! =R{QV, ..., Q01 1 =R{QW,..., QU1
l ‘ : ~( 82
MY ={ ¥ 6@V er}), ()t ={ 3 QY. er}, (82)
I<j<Koo I<j<Ko0

and

Hi = { Z ClQ(l),Cl S R}, Ho = { Z ClQ(l),Cl S R}. (83)

<l 0 <l 0

Definition 14. The Christoffel-Darbouz kernel is

KWz Z QW (1)QW (). (84)

This is the kernel of the integral representation of the projections introduced in Definition

Proposition 17. The integral representation

(=0 )(y) = / KW (z,y)f(@)du(z), VfeHy,

(85)
1w = [ K )f @)dute). ¥ € Ha
holds.
Proof. 1t follows from the bi-orthogonality condition (46]). 0O
This Christoffel-Darboux kernel has the reproducing property
Proposition 18. The kernel KU (x,y) fulfills
K(z,y) = [ KO0} K0, )dute). (56)
Proof. From
/K z,y) f(z)dp(z), Vf e H)
/K y,z) f(x)dp(z), Vf e Hy

and KW (z,y) € 'H[ll] as a function of y and Kl(z,y) € 'H[Ql] as a function of = we conclude the reproducing property. O
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2.7.2 The ABC type theorem
We also have an ABC (Aitken-Berg—Collar) type theorem —here we follow [35]— for the Christoffel-Darboux kernel

Definition 15. The partial Christoffel-Darboux kernels are defined by

! “(k
K (2,y) =" AP (@) AP (y) (87)
k=0
Observe that
Elz,y) = 3 KD (@ y)wa(y)wss(z). (88)
ot

We introduce the notation

Definition 16. Any semi-infinite vector v can be written in block form as follows

U

v

v = , 89
<v[>” ) (89)

where v is the finite vector formed with the first | coefficients of v and v!ZY the semi-infinite vector formed with the
remaining coefficients. This decomposition induces the following block structure for any semi-infinite matrix.

W=
(4" g
9= (Q[zl,l] > ) ' (90)

)
From we get
Proposition 19. Given a moment matriz g satisfying we have
gl = (sthy—15l, (91)
and (5*1)[11 — (S[I])fl’ (571)[21] - (S[Zl])fl,
Proof. Use the block structure of g, S and S. O

Then, we are able to conclude the following result

Theorem 3. The Christoffel-Darboux kernel is related to the moment matriz in the following way

K (2.9) = 0y ) T (@), ). (92)

Proof. The ABC theorem is a consequence of the following chain of identities

Klgl]a(m, y) = (e (2)) T (111 o7, () the sum is over the first I components
= X2(@) ST IS x1 4 (y) see
= X;b(x) @ISy STy x g o (y) lower and upper form of S and S
= (@) " (818U )
= (X[Ql}b(x))T(g[l])_1x[1l}a(y) LU factorization .
O
We immediately deduce the
Corollary 2. For the Christoffel-Darboux kernel we have
K(,y) = (@' @) (6" 76 ). (93)

26



2.7.3 Christoffel-Darboux formula

In this subsection we derive a Christoffel-Darboux type formula from the symmetry property of the moment

matrix g. We need some preliminary lemmas

Lemma 3. The relations

(@)l = ()T (@) = (@) (g2 T

hold true.
Proof. The first block of @ is

Tgl 4 =gzt = gl (rll)

T4 g[l,zl]<fr[2121])‘l'

b

B T[ll,ZI]g[zl,l])(g[l])—l’ (94)

from where the result follows immediately. O
Lemma 4. We have
T¢ (@) = 2 (@) - 1726 @), (=12 (95)
Proof. Tt follows from the block decomposition of Definitions [I6] and the eigen-value property of Y. O
After a careful computation from Definition [10| we get
Lemma 5. If we assume that | > max(|7i1], |i2|) we can write
1,>1 < 1,>1 G
=t = Ze(l—l)fael—:—a—b Ty = Zeu—l),b‘{rl' (96)
— b=1

Here 14, is the £ associated integer within the i, composition, while l+y is the £ associated integer for the fia

composition.

Finally, to derive a Christoffel-Darboux type formula we need the following objects

Definition 17. Associated polynomials are given by
l a
Aggl,a (y) X( p )(y) (gl+a,0 Glya,1
7 [1+1] _
AC, @) = 0 @) T (@) e,
l —1
AY @) = (dTH) T (),

T(l Iyp l _
ALy (@)= (3 @) = (6l (@) T ()

/—\
\_/

with the corresponding linear forms given by

: Z A+a o Wials Q(l)a, = i A(ll,b

a’=1 b'=1

P1
) = ZA(—Z;),Q/U}LG/? +b - ZA"Fb b,U}2 by b: 1’

a’'=1 b'=1

Then, we can show that

gz+a,z—1)( [l]) ! [la (y)

J1—1,144

Wapy, a=1,...

(97)

y D1,y
(98)
y D2

Theorem 4. Whenever | > max(|fi1], |fia|) the following Christoffel-Darbouz type formulae

(@ - K, (2.y) = Z AD, (@AY D) —

b=1

P2
(@~ K@,y = QY @)eQ", V() -
b=1

hold.
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Proof. From Lemma [3| we deduce

1 _ 1 l _ 1 1 _ 1,>1 1,>1 1 [
Oy @) (@)= () T (™) "D () = (0 (@) T (o) 2 (g2 (xf 2 T 2= (g =1yl (),

)

so that, recalling Theorem |3 we get

1 1 _ 1,>1 1,>1 1 [t
(y— @)Ky o (2,y) =0y (@) T (g™ 72 (g =0 (el =T — x2glbly () =13 ()

(99)
1 Z1an >0 [ L>1 . [>1 —1, 1l
+ 0l @) T (@) =0 ) — (0= @) T T o ),
or
-1 > 1 - 1,>1 —1 1
(2 = Ky @) =06 @) T = 6k @) T 1= (=T (o)l )
L2 ([ —1
= Oy @) T (B ) - g2 6 ).
Finally, from Lemma [5| we conclude
T[l >1] [>l] Ze(l 1)_ axl a/ (y),
l>l] [>” Ze(l )_a gua,o 9iie,l " 9l+u,l—1),
I
(s (@) T (03 =T ng W@
90,04
P2 91,1
[l >l] [, >1\T 204b T
( ) - b_zl e(l71)7b7
G1-1,0,
and consequently
90,044
P2 91,1
l l l — b 1
(= K o @y) =Y (5 @) = 68 @) T | T | )ed @™ w)
b=1 :
G1-1,1,
P1
l a —1 1
S0 @) T gm0 @) = (90 Giwa i) (@I @)
a=1
(100)
Recalling Definition [17] we get the announced result.
O
The associated linear forms are identified with linear forms of multiple orthogonal polynomials as follows
Proposition 20. We have the formulae
(I1,a) ) _ H@Lb) A1) _ A/0LD) 210) (I,a)
Qvl(l 1)4€1,a;72(1=1)]" Cgfb_62[91(1);%(1)—52,&;]7 QJFb—Q[ﬁz(l—1)+€2,b;ﬁl(l—1)]’ Q_ QV2(Z )71 (1) —€1,a]”
(101)
Proof. See Appendix [A] O

Proposition [20] allows us to give the following form of the Christoffel-Darboux formula stated in Theorem [4]
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Proposition 21. For [ > max(|71|, |72|) the following

1 (I1,b) (L,b)
( K[] l’ y Z Q[V2 1— 1 +62 b3 lll(l 1)]( )Q[Vl 1— 1 llz(l 1) =0y b](y)
(102)

P1
~(La (I1,a)
Z Q[D 1)1 (1—1)—én, a]( )Q [T1(I—=1)+€1,q;P2(1— 1)]( )

P2
[ 7(ILb) (1,b)
(= y) Ky o ZA[V21 1)4&2.;51 (1-1)], p (@ )A[pl(171);172(171)762,,,]@/(y)
b=t (103)
(I,a) (I1,a)
- Z A[l/g 1—1);01(1—1)—€1,a], b/( )A[ul(l 1)+€1,q;02(1—1)], a’( )

a=1

holds.

Relation is precisely the Christoffel-Darboux formula derived in [I4], the difference here is that derivation
is based on the Gauss—Borel factorization problem for the moment matrix; i.e. only on algebraic arguments, and
not in the Riemann—Hilbert problem found in [I4], and hence the conditions on the weights are not so restrictive.
However, the reader should notice that the Christoffel-Darboux kernel does not depend on the ladder determined by
the composition vectors 7,2, but only on the degree vectors #;(I — 1) and 7»(I — 1). This was noticed in [I5] for
type I multiple orthogonality.

Proposition 22. The associated polynomials introduced in Definition[17 have the following determinantal expressions

(0)
go,o 9o 9o,1-1 | X1,a/
g10 911 " g1 Xgli
o __1 . . . .
Afow = det gl det : : : : ’ (104)
-1
91-1,0 91—-1,1 " gi—-1,01—-1 x§ a,)
l a
Glvas0 Glpand **° Glpai—1 xgﬁ )
goo - 9go,i-1 4o,
" gl_o—1,0 " Gi_,—1,1-1|91_,—1,1
(1) _ (1)t G410 T G101 G 1
A—a,b’(‘r) - detg[”l] det ) . . ) (105)
g1 .1 0o 9171',171 g1 '1 l
(0) (1-1) U]
Xopr 0 Xow X2.,b/
B to (0)
goo -t 9oi_p—1 | Gol_p+1 "7 G0oi-1 | X1,/
_ I
_1)l+Lb : : | .
PIUT Gl ) o (106)
—b,a/ I+1 ! -1 |’
detg[ ] 9i-1,0 " G110, —1191-1,0_y+1 """ 9I-1,1-1 Xg a/)
T
9,0 Gui_y—1 1 Gily+1 0 gui-1 Xg)a’
goo goa -+ Goi-1 | 901,
g0 911 - g1i-1 | 911,
— 1 . . . .
Aﬁb el det : : : : : (107)
g gi—1,0 gi—1,1 " Gi—1,1-1|91—1,1,,
(0) (1) (1-1) (T4s)
Xoyr Xopr "7 Xow X2 Z/b
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3 Connection with the multi-component 2D Toda Lattice hierarchy

In this section we introduce deformations of the Gauss—Borel factorization problem that give the connection with the
theory of the integrable hierarchies of 2D Toda lattice type, in the multi-component flavor case. First, we introduce
the continuous flows and then the discrete ones. Let us stress that both flows could be considered simultaneously but
we consider them separately for the sake of simplicity and clearness in the exposition.

3.1 Continuous deformations of the moment matrix

Definition 18. The deformed moment matrix is given by
Gity, iz (8) 1= Wi, () gWo,, (£) 7, (108)

where we use the following semi-infinite matrices

Wo i, (t Zexp(ZtM la) € Gy, Wo.ii, (1) Zexp(i tin(A ) €G-

b=1 j=

—

depending on t = (tj.q,tjp)jap Withtjq,tipy €R, j=1,2,...,a=1,....,py andb=1,...,ps.

As in the previous section and when the context is clear enough we will drop the subscripts associated with the
compositions 7i; and 7is. The reader should notice that the following semi-infinite matrices are well defined

(Wo i, ( Zexp ( - th,a(AIa)j) eG_, (Wo ., ( Z exp ( — Z{j’bAg,b) eG,.
j=1 j=1

This deformation preserves the structure that characterizes g as a moment matrix, in fact we have

Theorem 5. The matriz g(t) is a moment matriz with new “deformed weights” given by

w14z, 1) = &z, t)wr o), &, = exp (Z tj7axj),

. (100)
wa p(z,t) = & (2, 1) twap(z), & :=exp (Z £j7bmj).

j=1

Proof. Observe that
B P2 s
)= Y3 0l Wo(H)™ =" (A3,)5” (1),
j>0a=1 §>0b=1

(a)

where o is the j-th elementary Schur polynomial in the variables ¢;, and 6§j ) is also an elementary Schur polynomial

but now in the variables —¢;;. To prove (109) we first discuss the action of Ay, and A; , on g explicitly. Recalling
it is straightforward to see that

(Al,ag/\;b)i,j :/xkl(i)ﬂwml(i)(l“)wz,az(j)(33) +15a1 (i),a 5a2 )bdu( )

and consequently the following expression holds

p1
(WogWO i — Z Z/ kl Zdl X )wl,al(i)(x)wzﬂ,“(j)(x)( 5£)xm)x’”(])éal(i)7a5a2(j)7bdy(x)7

a=1b=1 l>0 m>0

that leads directly to (109).
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That the sign definition of the weights is preserved under deformations is ensured by the fact that all times ¢
are real. Let us comment that these deformations could be also be considered as evolutions, and from hereon we
indistinctly talk about deformation/evolution. If the initial measures have bounded support then there is no problem
with the exponential behavior at co of the & factors; however, for unbounded situations a discussion is needed for
each case.

The Gauss—Borel factorization problem

gririn (1) = S(8)71S(1), Sty eaG-, S(t) € Gy, (110)

with S(t) lower triangular and S(t) upper triangular, will give the connection with integrable systems of Toda type.

Let us assume that the weights in (wh,ws) are of the form and that conform an M-Nikishin, then Theo-
rem (1| indicates that for small values of the times the new weights are also in the M-Nikishin class, ensuring that
(W (), Wa(t), 1) is a perfect system and therefore the Gauss—Borel factorization makes sense.

3.2 Lax equations and the integrable hierarchy

Let us introduce the Lax machinery associated with the Gauss—Borel factorization that will lead to a multi-component
2D Toda lattice hierarchy as described in [28]:

Definition 19. Associated with the deformed Gauss—Borel factorization we consider

1. Wave semi-infinite matrices
W(t) == S(t)Wo(t), W (t) := S(t)Wo(t). (111)
2. Wave
Va(z,t) = W(t)x1.a(2), Uy(z,1) == W(t)x3,(2), (112)
and adjoint wave semi-infinite vector functionsﬂ
Uoz,t) = (W) ™) X7 0 (2), Ui (2, 1) = (W) ™) Txza(2). (113)
8. Lax semi-infinite matrices

La(t) := S(t)A1,S(t) 7, Ly(t) == S(t)A],S(t) " (114)

4. Zakharov-Shabat semi-infinite matrices

Bj,a = (Lg)-‘rv Bj,b = (f’{;)—a (115)

where the subindex + indicates the projection in the upper triangular matrices while the subindex — the projection
in the strictly lower triangular matrices.

Observe that
LoVo =0g,02¥y, EJ\I/Z/ = 5b,b/zil\i/?;/- (116)

We also mention that the matrices S and S correspond to the Sato operators (also known as gauge operators) of the
integrable hierarchy we are deling with. Some times [9] the operators L, are referred as resolvents and the Lax name
is reserved only for a convenient linear combination of the resolvents.

The reader should notice that as S(¢) € G_ and Wy(t) € G the product W(t) = S(t)Wy(t) is well defined as
its coefficients are finite sums instead of series, for (W (t)™1)T = (S(t)~1) T (Wy(¢))™1)T we can apply the previous
argument and therefore the product is well defined. However, (W (t)~1)T = (S(t)™1)T(Wo(t)~H) T is a product of

elements which involves series instead of finite sum and its existence is not in principle ensured. The situation is

2In this point the reader should notice that there are two differences between this definition of wave functions (also known as Baker—
Akheizer functions) and the one common in the literature, see for example [4]. Our modifications are motivated by two facts, i) we prefer
\Il;; to be a polynomial in z and not in 2~!, up to plane-wave factors, ii) we choose to have a direct connection between wave functions
and Cauchy transforms of polynomials, with no z~1 factors multiplying the Cauchy transforms when identified with wave functions. If we
denote by small 1) the wave functions corresponding to the scheme of for example [4] then we should have the following correspondence

U (2) ¢ 0P (2), 205D (2) & @2)D(2), 21TV (z71) & 9P (2) and (T3)D (=71 (7)) D (2).
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reproduced with W(t) = S(t)Wy(t), and the existence of the product is not guaranteed. However, we notice that
the simultaneous consideration of the factorization problems and leads S(t)~1S(t) = Wo(t)S—1SWy(t)~*
that shows two products involving series, namely Wy (#)S~! and SWy(t)~!, but they are well defined if we assume the
existence of both LU factorizations. From hereon we give for granted the existence of W and W~ and as we will see
they indeed involve series, which in the convergent situation lead to Cauchy transforms.

Proposition 23. For the wave functions we have
(k) — AR 3+ (k) _ ) & -1
U (z,t) = ALV (2,8) 80 (2, 1), (W) (2,t) = A7 (2,0)E(2,1) 7, (117)

where A,(lk)(x, t), Aék)(:zz, t) are the multiple orthogonal polynomials and dual polynomials (in the x variable) correspond-
ing to (109). The evolved linear forms, associated with weights (109), are

D1 D1

QM (x,1) := ZAgk)(x,t)wLa(x,t) = Z T (2, t)wy o (z), (118)
a=1 a=1

QW (w,t) =Y (Ap) W (w, thway(w,t) = Y (U)W (&, t)way (), (119)
b=1 b=1

which are bi-orthogonal polynomials of mized type for each t

/Q(l)(tv‘r)Q(k) (t,x)du(x) = 5l,k7 la k Z O; (120)
and
_ F) (g 2R (2
990 = [ L0 s w)auta), (@O0 = [T @@, a2

Proof. From the definitions (112]) and (113)), and the factorization problem Wg = W we conclude
Uy = Wxs, = S(Wog)xs . Vo =W ) Txi. = (") (W5 ) X0 (122)

We get, in terms of the linear forms, the following identities

_ ) (2, ¢ " ) (2, ¢
860 = [ @) @0 = [ )
z—x z—x
where the Cauchy transforms are understood as beforeﬂ O

We must stress in this point that these functions are not the evolved second kind functions of the linear forms
_ F) (gt 2R (.t
0= [ L w0, €00 = [ E e du. 2

Theorem 6. For j,j' =1,2,...,a,a’ =1,...,p1 and b,b' = 1,...,ps the following differential relations hold

3The reader should notice that there is a difference in this semi-infinite context, appropriate for the construction of multiple orthogonal
polynomials, and the bi-infinite case which is the one considered in [37]. In the present context we do not have expressions, as we do have
in the bi-infinite situation, of the form

— (& _ B )
\Ill() )(z,t) =(Py+ Piz71 +- --)exp(ZtLsz),
>0
(WM (2,1) = Qo+ Quz7 - exp (= D tj.077).
3>0
The reason for this issue is rooted into non-invertibility of A,. Indeed, for the semi-infinite case, we have

o]

(ADYxE = [#x3] = exp (D¢ (Mg ) ) = lexp (D ¢j27)xk]-
j=1 j=1

where the subindex — stands for the negative powers in z in the Laurent expansion; while in the bi-infinite case we drop the — subindex
in the previous formulae.
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1. Awuziliary linear systems for the wave matrices

ow ow _ ow - ow _
—— = B; W, —— = B;,W, =B, W, — = B, W.
ja oty P tya oty P
2. Linear systems for the wave and adjoint wave semi-infinite matrices
oV oV _ oWy, _ vy _
= Bj oV, —% =BV, = Bj ¥y, — = By ¥y,
Oya ity P e 0070 oty 0P
:7B \I/*/ _a :7B \Ij*/ :7B \IJ*/ — :7B \P*/
8tj)a Ja=al at]"b g;b=al 8tj,a Jra=bn 8tj)b 3,b=b
3. Linear systems for multiple orthogonal polynomials and their duals
Oy , 0.y _ <ty T - Ody - -
=(Bjq— Sqax?) Ay, — = (Bjp) Ay, =-B, %%y, — =(—DB, Op.br 27 )y .
o (Bj, ar’) o (Bj.») o R T (=Bjp + o pra? )y
4. Lax equations
0L 0Ly _ OLy = OLy _
:B'aaLa’7 — = |B; 7La’a 7:B'aaL’7 = = |Bj 7L"
8tj,a [ s ] ath) [ 7,b ] 8tj,a [ Js b] atj,b [ J,b b]
5. Zakharov-Shabat equations
6Bj a aBj' a’
S = L 4 (B, Bya] = 0,
8153'/7,1/ 3tj7a +[ b 7 ]
aBj b 8Bj/ b — —
0 By, B y] =0,
Btj/,b/ (925]',5 * [ 30y 23tb ]
3BJ a GBJ/ b _
— — 2 B; ., Biiy] =0.
Dy Oty (Do Brvl
Proof. To prove ([124)) we proceed as follows. In the first place we compute
oWy ; oWy o
=AW, — = (AJ )W,
8tj,a 1,V 0 atj,b ( 2,b) 0,
and in the second place we observe that
ow oS 4 ow oS -
= St L)W, - Ss-1
Otj.q (atm * “) ’ Otj.a (atm ) '
ow oS ow s -
— = = S_l W — = = S LJ W
otjp (8tj7b ) ’ otjp (atﬂ, + b)
Now, using the factorization problem we get
oS - oS
ST+ Ll = St
Otja o otja
s = oS
— S+ [ = —57!
3tj7b 4 8tj7b ’
which, taking the + part (upper triangular) and the — part (strictly lower triangular) imply
oS , oS , oS _p a8 ny
S™t=—(L))_ S~ = (L — S5 ' =—(L} — S5 = (L])-
Ot ( a) ’ 8tj,a ( a)+7 8tj,b ( b)-‘rv 8tj,b ( b) ’

inserting into (|
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(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

ja
so using (134) into (132 and (133]) with the definitions (115)) we obtain (124]). The linear system ([125)) is obtained by
[T2) into (129).



To obtain the Lax equations ([128)) we take derivatives of ([L14])

(9L / 65 aib/ 85' — — —
o _ sfl,L,}:B, Ly, :[ sfl,L/]:B, Lyl
Ot;q [atm @] = Biar L] Oja  LOlja v] = Bia Lv]
aLa/ 8S _ — 8Eb/ 85 - — — —
Zal _Sl,La/}:Bz,L/, _—:[_517L/}:B»,L/.
Otjp [3%1) i b Otjp Lot v] = P L]
Finally, (129) are obtained as compatibility conditions for (124)). O

All these equations provide us with different descriptions of a multi-component integrable hierarchy of the 2D Toda
lattice hierarchy type that rules the flows of the multiple orthogonal polynomials with respect to deformed weights.
This integrable hierarchy is the Toda type extension of the multi-component KP hierarchy considered in [9].

3.3 Darboux—Miwa discrete flows

We complete the previously considered continuous flows with discrete flows, which we introduce through an iterated
application of Darboux transformations [5].

Definition 20. Given sequences of complex numbers
)\a = {)\a(n)}nez - (Ca a = 17"'ap17 j‘b = {j\b(n)}nez C(C’ b= 1""’p2’ (135)

(where X is not intended to denote the complex conjugate of A) and two vectors, (s1,...,8p,) € ZP' and (31,...,5p,) €
ZP2 | we construct the following semi-infinite matrices

pP1 HfLazl(Al,a - Aa(n)]:[17a)’ Sq > 07
Dy = Z DO,a7 DO,a = Hl,a7 5a =0,
a=1 [sal -1
H;:l (Aia i\a( n)Hl,a) s :9a <0, (136)
P2 Hn:1(A27b - )‘b(n)HQ,b)y 5p > 0,
Dyt=> (Dg"), (Dgh), =< My, 5 =0,
b=t [T (AT, = Mo(—n)Ip) 7", 8 <0,

where s := {Sa, 5p}a=1,...p, denotes the set of discrete times, in terms of which we define the deformed moment matriz
b=1,...,p2

g(s) = Do(s)gDo(s)™* . (137)

Proposition 24. The moment matriz g(s) has the same form as the moment matriz g but with new weights

[T (2 — Aa(n)), Sa > 0,
W1 ,4(8, %) = Do, $a)w1,0(2), Dy =11, 8q =0,
Isal (2 — Ag(—n))~1, s, <0,
Hg_l( 4 (=n)) (138)
_ B Hnl;l(w - /\b(n))v Sp > Ov
w2,b(8, x) = @b(x, Eb)_lwg’b(xL 9;1 =<1 5, =0,

15 (2 = Xo(—n)~L, 5 <0,

Thus, the proposed discrete evolution introduces new zeroes and poles in the weights at the points defined by
sequences of \’s. For example, in the a-th direction, the s, flow in the positive direction, s, — s, + 1, introduces a
new zero at the point A\, (s, + 1), while if we move in the negative direction, s, — s, — 1, it introduces a simple pole
at Ag(sq — 1). Let us stress that for the time being we have not ensured the reality and positiveness/negativeness of
the evolved weights, this will be considered later on.

3.3.1 Miwa transformations

Here we show that the discrete flows just introduced can be reproduced with the aid of Miwa shifts in the continuous
variables.

Definition 21. We consider two types of Miwa transformations:
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1. We introduce the following time shifts

_ I
t=tF [z e = {tj,a' Fdara775> tj,b’} =125 (139)
Jz a'=1,...p1,
b,fl7 P2

2. Dual time shifts are

) 1
bt T, = { s G i&b,,bjz.} =12 (140)

Proposition 25. The Miwa transformations produce the following effect on the weights

+8,, 0/
wy o (z,t F [z_l]a, s) = (1 — E) wy,q (2, t,8), wap (z,t F [z_l]a, s) = wap(x,t,8), (141)
z
£ 4
Wi (x,t £ [271],,8) = wi o (2,1, 5), woy (x,t £ [271],,8) = (1 — f) wo (2,1, 8). (142)
z

Proof. When we consider what happens to the evolutionary factors under these shifts we find

; ‘7 x :F(sa’,a .
exp (th,a/mj) — exp (Z ( jar F oo “]j)) = (1 — ;) exp (th,a/x]>, (143)
J J J

and therefore the weights transform according to

NE
w,q (x,t,8) = (1 - 7> w,q (2,1, 8), (144)
z

which is like the Darboux transformations considered previously. For the dual Miwa shifts we consider what happens
to the evolutionary factors under these shifts

exp(_zt—j,b/xj)%xp(_z(zj,b,iab,,b;)):(1_ 5 e ( - i) (145)

3 J;b’ 3’

and the transformation for the weights is

+8, 11
wo p (x,t,8) — (1 — ;) o Wo,q(z,t, 5). (146)

Thus, a comparison of (138]), (141)) and (142) leads to

Proposition 26. Miwa transformations and discrete flows can be identified as follows

Wi, t =300, P‘a(n)il]a), $a >0, [ (=Xa(n)™h sa>0
CaW1,a(x, 1, 5q) = w1 q(, ) o 5=0, cq:= 17| | 84 =0

wia(@,t+ 350 [Aa(=n) 7] ), 84 <0, 1_[721( ):a( n)), $a <0, (147

wap(x,t+ E L [Ae(n)~ 1]b,x), Sp > 0, [, (=X(n)™t, 5 >0
Cywap(2,t,5) =  wap(z,t), 5,=0, ¢c:=<1, 5,=0

wap(a,t— Y e(=n)~1],), & <0, H'Sb‘ (=Xw(=n)), 5 <0.

As a conclusion, the discrete flows and Miwa shifts in the continuous flows are the very same thing, and therefore
we could work with continuous flows and Miwa transformations or with continuous/discrete flows. This discussion
justifies the Miwa part in the name we gave to these discrete flows.
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3.3.2 Bounded from below measures

Of course, in order to preserve the link with multiple orthogonal polynomials, these discrete flows must preserve the
reality, regularity and sign constance of the weights, which generically is not the case. When the support of the
weights is bounded from below, i.e. there are finite real numbers K, and K3, such that supp(wq .dp) C [K,, 00) and
supp(ws pdp) C [Kp, 00), a possible solution is to place all the new zeroes and poles in the real line but outside the
corresponding support, \,(n) < inf(supp(w odu)) and Ay(n) < inf(supp(wszpdu)). A different approach, which will
be considered in Appendix [B] is to arrange the zeroes in complex conjugate pairs.

To analyze the consequence of the discrete flows on the integrable hierarchy we introduce two sets of shifts operators:

Definition 22. 1. Let us consider the sets of shift operators {T,}'~, and {T, 22 |, where T, stands for the shift

— a=1
Sa — Sq + 1 and Ty, stands for sy — 55+ 1. The rest of the variables {sq/, 3y } will remain constant.

2. We introduce
Ga ‘= I— :Hl,a(]I + )\a(sa + 1)) + Al,a;

g e ! (148)
Qo =T =Tl p(T+ Ap(5p + 1)) + Ag .
3. We also define the operators
00 1= 8qeS™ ' =1—Cou(l+ Xo(8q + 1)) + La, 0 =SSt =T~ Cy(T4 N(5p + 1)) + Ly, (149)
C, = SHLGS_I, Cy = Sﬂg,bg_l.
Here the matrices 6, and 6 are called lattice resolvents.
4. Finally the semi-infinite wave matrices
W := SDy, W := SDy. (150)
Observe that
(TuDo)Dy' = qu, Dy '(TuDo) =1, 151)

Do(TbDal) = @, (TbDQ)Dal =1.

When we assume that the semi-infinite matrices 6, and 0, are LU factorizable as in (33)), i.e. all their principal minors
do not vanish, we can write

S0 =0, 6a,+, 8 =8, L 6b 4, (152)

where 0, _ and 0y, are lower matrices as is S in (33), and &, and & ;. are upper matrices as S in ([33). We now show
that when the deformed moment matrix g(s) is factorizable, and therefore the multiple orthogonality makes sense, the
following holds

Proposition 27. If the deformed moment matriz g(s) is factorizable for all values of s then so is 64 and &, with

Sas = (T,8)S7Y, 6._ = (T,S)S™,

o = (LS)57, d = (1,5)57 1
Proof. When we apply the discrete shifts to the Gauss—Borel factorization problem g(s) = S71(s)S(s) we get
Ta(S™)Tu(S) = Tag(s) = (TaDo) Dy '9(s) = dag(s) = (T.8)S™1) " (Tu8)S ™! = da,
Ty (S™HTy(S) = Tug(s) = g(s)Do(TyDg ') = g(s)a = (T8)S™) 7 (Tp5)S™" = 6,
and the desired result follows. O
Therefore, we can consider the following
Definition 23. The semi-infinite matrices w, and Wy are given by
Wa = 64,—0q = 0a+, Wp 1= Op— = 640 ', (154)
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and show that
Proposition 28. 1. The following auxiliary linear systems

TW =w, W, T,W =w,W,

_ - o (155)
TbW = wa, TbW = wa,
are satisfied.
2. The Lax matrices fulfill the following relations
TaLa’ = waLa’wa_ly Taf/b = Waibwt;la
_ 5 _ — (156)
TyL, = waa‘Db , TyLy = @bLb’a)b .
3. The following discrete Zakharov—Shabat compatibility conditions hold
(Tawa/)wa = (Ta/wa)war7 (Taa}b)wa = (waa)a}m (Tb@b’>@b = (Tb,wb)@b/. (157)
4. When the discrete and continous flows are considered simultaneously, the following equations
Ta’Bj,a = (aj)awa,)wa_,l + Wq! j)aw;,l, Tij7a = (8j7aa}b)a]b_1 + (Dijﬂwb_l, (158)
TaBj,b = (@)bwa)wa_l + waBj}bwgl, Tb/Bj,b = (5j,bwb')wl;1 + (Db/Bjyb@l;l,
are obtained.
Proof. We compute
T.W = (T.S)(TuDo) = (T0S)S™'SquS ' SDg = 64— 6,W = 64+ W,
T.W = (T,S)Dy = (T,5)S™'SDg = 64+ W,
[LW = (T,S)Do = (TpS)S~'SDo = &, W,
LW = (T,5)(TyDo) = (Ty5)5 5, ' 55Dy = 8.8, W = &, W
from where we deduce (155]), which in turn imply (156) and (157]).
O

The simultaneous consideration of continuous and discrete flows leads to the replacement Wy — WyDg and Wy —
WDy, and the corresponding modification of the weight’s flows is achieved by the multiplication of the continuous
and discrete evolutionary factors, in this context we also have . These discrete flows could be understood as a
sequence of Darboux transformations of LU and UL types in the terminology of [B], which motivates the Darboux
part in name we give to these discrete flows. In fact, we have that the lattice resolvents satisfy

00 =0, 0604 = Taba = Wabaw, " = 0,40, 00,40, % = 60,40, -,

& =0, "o = Tyoy = Wpdpy * = gb,—ggigb,+5;l = 5b,+5bf£,

which amounts to the typical permutation of the LU factorization to the UL factorization. When there is only
one component we have § = L + X and § = X\ + L and the shift corresponds to the classical LU or UL Darboux
transformations.

If At(lk) (z,s), flék) (z, s) are the multiple orthogonal polynomials and dual polynomials in the x variable correspond-
ing to the discrete evolution of the weights respectively we have the discrete version of Proposition

Proposition 29. The wave and adjoint wave functions (150) are
VP (z,5) = AP (2,5)Za(2,54) (7)) (20 8) = A7) (2,5) Doz, 5) (159)

and the the linear forms

P1 p2
QW (w,5) =Y AP (z, s)wya(z,9), QW (z,5) =D (A)W (@, s)wap(x, ), (160)
a=1 b=1
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associated with the weights wy q(x, s), w2p(z,s), can be expressed as

p1 P2
QW (x,s) := Z TE) (2, 8)wy o(z), QW (x,s) = Z(@Z)(k)(x, s)wa p(x), (161)
a=1 b=1
in terms of which we have the equations
] ®)(z, s ) ) (z, 5
e = [ L wauta), @)W = [ C e, a6

Here the Cauchy transforms must be interpreted in exactly the same terms as in Proposition |8} Observe that (162])
do not correspond to the functions of the second kind

_ (%) xz,Ss D) Zz,s
ngk) (z,8) := / %wgb(x, s)du(x), CF)(z,s) = / %wl,a(xv s)dp(z). (163)
Notice also that from (149)-(152]), relations that hold true for any g and not only for the moment matrix, we get
Lemma 6. We have that
We = wa,()AIﬁl‘_nl”’J'_l + Wa’lA‘ﬁll_nl’a 4+ Wa, |71 |~n1.at1>

_ - T\|A2|— 1, ~ Tyliz|— D
wb:wb,O(A )|n2\ na b+ +(J.}b71(A )\n2| n2’b+"'+wb,\ﬁ2|—n2,b+17

W] = pao(AT)FAITmatl g JATYIF e g (164)
@y = Poo ATzt gy AR g 1
for some diagonal semi-infinite matrices
Wq,; = diag(wg,;(0), we ;(1),...),
Whj = d?ag(@b,j(O), Wi (1),...), (165)
Pa.j = diag(pa,;(0), pa,i(1), - --),
pu,; = diag(pe,;(0), pb,;(1),...),
with
/ia,j(k) = O_Ja,j(k - |7f1| +ni,0—1 +?'), (166)
P, (k) = @ j(k + |fia] —ngp + 1 — 7).
that with
Definition 24. We define
Yo (5,2) = (1= 800 (L+ Aasa + 1) — 2)), o
Yo (8,2) = (1 — ppr (L + Mp(5p + 1) — ),
leads to
Proposition 30. The following equations
(T AP Voo = waro (R AL HD L e (R)AD), .
Ty A®) = @y o ()AL ™™ 7Y @y a1 (R) AP, (16%)
paro(R)(Tur A0y o oy 1 () (T APy = A,
(o0 () (T A" 1720y e iy g 0 (B (T &) )0 = ALY, 1o
are fulfilled.
Proof. For recall the discrete auxiliary systems for W, while for just consider that
wa T(WHT) =W HT, @y T(W—HT)y =Ww~=HT.
O

Notice that relations (168)) and (169)) are among multiple orthogonal polynomials in the same ladder but with
different weights, they link the polynomials for the weights w1 4, w2 with those with To w1 q, Torwa b or Ty wi o, Thrwa p.
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3.4 Symmetries, recursion relations and string equations

We now return to the discussion of the symmetry of the moment matrix that we started in but with evolved
weights and the use of Lax matrices. The first observation is the following

Proposition 31. The j-th power of the evolved Jacobi type matriz introduced in §2.0] is related with Lax matrices
through what we call a string equation:

p1 p2
J =L, => 1L, ji=1,2,..., (170)
a=1 b=1

and the multiple orthogonal polynomials are eigen-vectors:

Ty = ) oy, (JNT ey = a9 ey, (171)
fora’=1,...,p1 and V' =1,... ps.
Proof. Using it can be proven by induction on j that for any j > 1 the following equation holds

A o912 = 1ag(Ag ) (172)
so that
LiCy = C, L. (173)
Summing over a,b we deduce ([L70]). Moreover (L71) is obtained as follows
P1
Ty =8> N S 1.0 =7 A, (174)
a=1
()T s = (57T 3 A,87 (57 xawr = ' . (175)
b=1
O

We are ready to show that the symmetry induces a corresponding invariance on Lax matrices and multiple
orthogonal polynomials

Proposition 32. The following relations hold for j =1,2,...

P1 P2 P1 P2
0 0 0 0 .-
—_— La/ = O7 —_— L /= 0, 176
(GZI Otja atj,b) (a:1 Otja Btj’b) b (176)
p1 b2 p1 b2
0 0 0 0 .\ -
—_— a’ — O7 — JZ(/ - . 177
(a:1 C{)tj,a =t 8tj)b) (a:1 8tj a 8tjyb) b ( )
Proof. See Appendix [A] O

3.5 Bilinear equations and 7-functions

The proof of the bilinear identity needs three lemmas. For the first one, let Wy, 7,, Wa, 7, be the wave matrices
associated with the moment matrix gz, 7,; so that, Wy, 7,97, 7, = Wi, 7, Then, we have

Lemma 7. The wave matrices associated with different compositions and times satisfy
Wi, i, (L s)w%ﬁl Wi i, (t', st = Wﬁ17ﬁ2 (t, s)ﬂ'g/z’% Wﬁluﬁ,’z ', s, (178)
Proof. We consider simultaneously the following equations
Wi, s (8, 8)9 = Wi, (1, 8),
Wig ity (Vs 8" )70y 2, 97521 3, = Wy iy (¢ 87),
where g = g5, 7,, and we get
Wiy iy (8 8) ™ Wiy ity (,8) = a0 Wy g (8 8') ™ Wy iy (¢, 8 )y 2, = 0,

and the result becomes evident. O
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For the second one, let (-)_; denote the coefficient in 2! in the Laurent expansién around z = oo (place where
the Cauchy transforms make sense).

Lemma 8. For the vectors x, the following formulae hold

(D X))y = (D_xixa), =L

and therefore

Lemma 9. For any couple of semi-infinite matrices U and V we have

(i Uxa) (Vi)' ) (179)

(i (Uxap) VTXz,b)T>_1, (180)

Proof. Tt follows easily from Lemma [8}

P1

(S waat ™)) =0(E natia?) V=0V
a=1

a

gu
L

(ST =U(S i) v=uv.
b=1

o
Il
—

We have the following

Theorem 7. 1. The wave functions and their companions satisfy
P1 P2
Zj{ \IIS?HQ o2t ) (Vi r DW(z ', s)dz = Z% % a2t 3)(\Ilﬂ,)ﬂ 3V (2t s )dz.
a=1
2. Multiple orthogonal polynomials, their duals and the corresponding second kind functions are linked by

p1 p2
k ~(1 k 71 =
> f AL 1y o258 SNz = 30 O ()4 (ot ) Br(e)dz, (181)
b=1">®

where
= (éaa‘@tI)(Z’ t, S)((ga‘@a)(zv t/7 S/)>_1’ Eb = (gb‘@bxza t, S)(<gb‘@b)<za tla S/))_l'

Proof. 1. If we set in U=Wg 7,(t,s)and V = 7r~, 2, Wiy (t',8") 7" and in ([180) we put U = Wi, 7,(t, s)
and V = 7ra, Wﬂ/ il (t s’)~! attending to , recalhng that Wi, 7y = Wity ita Xty as Wity iteb = Wﬁl’%x;im’
and observmg that U7, o , = (Wril’ﬁé)Twﬁfvﬁlx%ha and ‘ij%’l,ﬁ;,b = (Wq,yﬁ,) Ty iis Xiig,b W get the stated
bilinear equation for the wave functionsﬁ

2. We can write
Wi, ity (6 8) g0 2, Wiy iy (8 8') ™1 = (Say i () Wo i, ()70 2, (Woay (8, 8) ™ g )T, Sy (5 87) 7
which strongly suggests to consider in ((179))

U = Sﬁhfiz (t, S)WO,ﬁl (t, S)?TT Jit1 (W07ﬁ'1 (tl, S/))_lﬁﬁ/lﬁl, V= 7Tg/ = Spr o (t/, 8/)_1.

1511 75T

4The reader familiarized with Toda bilinear equations should notice that in the right hand term we are working at z = co instead of,
as customary, at z = 0; the reason is that for the definition of 2%, we have used x2 instead of x3, in order to get polynomials in z, while

normally one gets polynomials in z~!. See footnote 2. Moreover, due to the redefinition of the wave functions there is no factor

dz
2miz
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Analogously

_‘
|
|

_‘

V_V’filﬁ2 (ta S)Trﬁ' R RO (t S ) = ( 1,72 (tr S)V_Voﬂ_h (t’ S)ﬂ-ﬁ'l,fil (WO,ﬁ’l (t/7 S/))ilﬂﬁ’lﬁl)ﬂﬁ—,r’l,ﬁl _ﬁ/lﬁé (t,7 S/)il’

suggest to set in (180))

U= i1, ita (t S)WO ng(t S) = = (WO,ﬁIQ (t/,s/))il’ﬂ'ﬁ/z)ﬁ2, V = ngz’ﬁZ ﬁllﬁﬁ/z(t/,sl)il.

’I’L2 na

The application of ( . 1180) and ( - gives the alternative bilinear relations where we have used the
evolved Cauchy transforms (123]) and introduce the evolutionary factors

= (6a2a) (2,1, 5)(6aZa) (2,1, 8)) !
Eb = (&%) (2, )((éabgb)(zat"S'))_l-

O

The factors involved in this definition were introduced in and , so that we assume the discrete flows
within the bounded from below support scenario, while if we consider the two-step discrete flows the replacement of
the P-factors by the 2’- factors is required.

It can be shown that for certain weights, for which we can use the Fubini and Cauchy theorems, and when one
only considers a finite number of continuous flows that the r.h.s and Lhs. in this bilinear relations are proportional to

Ja Qg?,ﬁz( )Qq, i (x,t")dp(x). This is a direct consequence of

Proposition 33. We have the following identity

/in i x 2 S)Q (l‘ t' ) S )dﬂ( ) Wﬁl,ﬁ2(t78)7rv%r'1,ﬁ1 (Wﬁ’l,ﬁ’z(t/’sl))_l (182)
= Wiy (8 8) 7y 2, (Wi g (¢, 8) 7 (183)
Proof. See Appendix [A] O

Now, we will perform a full characterization of the 7-functions associated with the multiple orthogonal polynomials
defined in this paper.

Definition 25. Let us define the following matrices

goo go,1 ' 9Jo,i-1 Yo, go,o go1 -t Joi-1 : 90,04,
g10 911 - 911-1 g1 g10 91,1 " g1,1-1 : 91,04
+11 . _ . . . . —[l+1]

ta - : : : : Ito - : : : : : (184)

910 il Gt Gimul 9110 Got1 e G-,

Glia,0 Glia,l "0 Glyig,l—1 Glig,l gio g1 o gri—1 ! 9,0y,

The matrix gzj:l] is obtained from gl't1] replacing the last row (operation denoted by a dashed line) by
(gl+a,07gl+a,1a~'~7gl+a,l71agl+a,l)a

and g[lJr lis obtained from g1 replacing the last column by (g, Tap Iy ,gl_l,l-+b,gl,l-+b)—r. It is clear that if

a1(l) = a then gﬂfﬂ;” = g and if ay(1) = b then gﬁlj” = g+,
The minors of the these matrices ([184)) will be denoted as Ml[ljl] = MZ[IJH] for glt+1], MET]J for g 1 and ME:ZI]]
for gﬂlj”. Now we introduce the following determinants that are cofactors of the previously defined matrices

Definition 26. The T-functions are defined as follows

@ — I+1_ g pl+1 7O ,_ T o4l g yyli+1
T+a —a’ T ( 1) - M—[&-a l] ol —b —a T ( ]‘) ot Ml[7a7l] b (185)

l , I+1 (1 L a I+1
J(rl)7 —b ( 1)l+l b M[+b l]l YA Ez)z,fb ( 1) - le[_ l] b (186)

Moreover,

41



1. If a1(l) = a then we denote TEZL)L, = Tﬂiﬁa, and ?ﬁlz = fﬁli)_b-

2. If ax(l) = b then we denote Til,)l = ng,ia and 7’{[2, = ’J(rlgﬁb,.

3. We also introduce 7 = 71 .= detg[l] and

Tﬂ;l) = det gLﬁZI], %J(rlljl) = det g[ﬁr”.

If a1 () = a then Tﬁjl) = 7D "and if ay(l) = b then ﬂl;rl) = 74D,

Given a perfect combination (u, w1, w2) and the corresponding set of multiple orthogonal polynomials { A, 172]7a}§1:1,
with degree vectors such that || = || + 1, there exists a (71, 7i2) ladder and an integer | with |74 = [ 4+ 1 and
|72| = I such that the polynomials {Agl) P | coincide with {Az, 5,0 }51,. The final result does not depend upon the
particular (7i1,7i2) ladder we choose to get up to the given degrees in the ladder; however, the 7-functions do indeed
depend on the ladder chosen through a global sign. A simple sign-fixing rule is to choose the ladder ©; = 7, and
iy = Uy + €p,. We define

Tivs2) = Ty, l:|ﬁl‘_1:|ﬁ2‘7
and we deduce

Proposition 34. Given degree vectors (v, 2) such that |Vh| = |2+ 1, a composition with fi1 = V4 and fia = Uy + €,
and | = |Ph| — 1 = |k, we have the following identities
(l) _ / ) _ b b/
T+a77a’ - El,l(aa a )T[D‘lfé‘lra/#»eql’a;ﬁg]a T+b’7b’ - 6272< ’ )7[171§172*€2,b/+€2,b]’
) o

Tobma =Toa—p =210, Q)T[5 12, &1 0ia s py 0]
where
era(a,d) = (—1)>i= ERADNN VLi+oap =1 ad <a
e11(a,d) = (—1)>i= vt Ei Vi t0al iy ad>a
ea0(b, ) = (—1)Z0-1 vt S i vy b <b
Eaa(b b)) 1= (—1)Zim vt v, B> b
£a1(bya) 1= (—1)Xi=1 720t X5 150
e11(a,a) :==1=-e32(b,b)
In particular
) =i, A)T(5) 481, —1.0ii72] 7 = e2.5(pa, O)T(5) 37482y — 1)
TJ(rl;rl) = 5171(a’pl)T[171+51,a§172+52,p2]7 %il;rl) = 62,2(b’p2)7—[171+51,p1§l72+52,b]'

We now proceed to give the 7-function representation of multiple orthogonal polynomials, their duals, second
kind functions and bilinear equations. The 7-functions allow for compact expressions for the multiple orthogonal
polynomials:

Proposition 35. The mized multiple orthogonal polynomials A((ll), A(+l21',a and A(_l)ba have the following T-function
representation

@) -1
Wy — 4(Lai(1) 1Tt = [27a)
A (2) = A[D‘l(li;ﬁz(l—l)],a =z IO I1>1, (187)
O] -1

l ,a’ Vi a(l=1)4+5, 1 — T+a’,—a(t_ [z7a)

Ailf,a(z) = Afﬁl(l—)1)+€1’a/;ﬁ2(l—1)],a = (Dol 70 5 [>1, (188)
@) -1

0) _A(@Lb) a1 b=t~ [27]a)

Afb,a(z) = A[ﬁl(Z);JQ(Z)—EZ,b],a = 2o () T(lﬂ)(t) ) [>1 (189)
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The dual polynomials Agl , AJQJ, by and fl(_lZL’b have the following T-function representation

®

AV () = A(I as (b)) Zyg,b(z)fﬁ—b(“r[z’l]b)
b (T2 (I=1))b — ()
Fa0 -1
—p(t+[271,)
0] (IL,b") vy (I=1) 48y —1 D, b b
A+b’ ( ) Ayz(l 1)+€&5 47371 (1-1)],b =20 . (l)(t) ’ [ > 1,
~(1)
_ S [z
) (La) _ vep(D)— 17—a, b(
AT p(2) = A (1) (D) —Eralib = % 7 (1) J
Proof. See Appendix [A]
Observe that in the simple ladder defined above (71, U + €5 p,) with | = |ih| = || — 1 we have
ﬁl(l)zﬁl, ﬁg(l—l)—yg,
171(1 — 1) =0 — 61,p17 ﬁg(l) =Dy + €2 py
From Proposition [35] we get
-1
(I1,p1) - v1a—1 To1+e1,p 761,:104;172](2‘: - [Z ]a)
[171;172]7¢1(Z) - 61)1(])1,66)2 ' 1 T, : (t) ,
[D1;72]
-1
(I1,a”) - ’ V1a—08a.py 46, ar—1 7-[91—é'l,a-?—é'l,a/;172] (t - [Z ]a)
[F1—€1,pq +€1,a/?’72]7‘1(z) - 51)1((1 ,a)z ' ' , T[ﬁl;ﬁz](t) ’
W) (bayget P Pt ] ([ o)
[P1302+E2,p, —€2,5],a T[l71+é‘17p1;172+é’2‘p2](t)
T(i13 4. py —2) (E T [27 M)
g (2) = caalpa, B)aterinms 1 [AE o L 2
(724 €271 =Ep, 0 7 T[171+€1,p1%l72+€2,p2](t)
P Lty e, 1(EF [271])
(EI,bZ o _ by va,p+ 8y p—1 Ty ;72 82‘b+82’b/]( b
[F2+E5 pri1—€1,p, ] ;b €2 2( ’ )Z 7[91;172](t) ’
o L. . -1
Afll;;f‘l)‘éé 1—E1a],b  C2 1(b,a) V2, + 8,y —1 711101 —E1,0i72 42 9y —E2 0] (t+ [z ]b)
,p2 V1 —€1,al;

T[40,y P2+ 2.0y ()
We now present the 7-representation of the Cauchy transforms of the linear forms.
Proposition 36. The Cauchy transforms have the following T-function representation
L+
GO — y-wnal-1)-1Tra_(EF 7o)
a T+ (¢) ’

~(D) T
C,El) _ ,ves(-1)-174b (t [z~ ]b).

Proof. See Appendix [A]

We have the representation

o, T+ 0i7 48,5, (EF 271 a)

o) (2) = 5171(a,p1)z_yl'a_1+6a
T[ﬁl+€1,p1;l72+€2.p2](t)

[F2+€2,py ;71 —€1,p, |0

)

e e (t—10,)
(ILp1) ( ) —c (b 71/2&71T[V1+61,p17’/2+62,b]( b
5 = €22(b,p2)z
;71,0 T[ﬁl;ﬁz](t)

Finally, we consider the 7-function representation of the bilinear equation
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Proposition 37. The 7 functions fulfill the following bilinear relation

p1
E Vl,a —v] -+ k - i+1 B

% ooz (k)= (1=1) ZTél?ﬁz,*a(t_[z 1]a)7—é/17ﬁ§7+a(t/+[z 1]G)Ea(z)dz
a=17%*=

D2
V! — —1)—2-(k+1 - _(1 - =
=Y f b2 T+ B e (197
b=1"*=>

Proof. Just consider (181)) together with (187)), (190), (195) and (196). O

This bilinear relation can also be written as follows

Pp1

a—V1 g—8a,p; — - I+1 -
2611(p17 a)glll(plv a) i Z7he " e P 27—[’71"!‘61,101 _€I,a§’72](t - [Z 1]a)7-1§'{+€)1,a;9§+52,p2 (tl - [Z 1}a)Ea(Z)dZ
a=1

=00
P2 , _

= Z €22 (an b)5/22 (p27 b) f ZVQ’bJréb'm?W’bizT[ﬁl +€1,pq ;V2+E2b] (t - [Zil}b)ﬂjﬁﬁé-i-é‘z,pz_52,b] (tl + [Zil}b)Eb(Z)dZ'
b=1 #=00

(198)

That with the identification m* = 7, + €} ,,, n* = o, m = V] and n = Uy + & p,, up to signs, is the bilinear relation
(41) in [6].
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Appendices

A Proofs

Proof Proposition [7] The orthogonality relations can be recast into two alternative forms

goo  Jou ottt Goi-1
9170 gl,l Tt gl,l—l
(S0 Sip o+ Sii-1) . . =— (g0 @1 G-1)s 1> 1, (199)
gi-10 gi-11 0 Gi-10-1
goo goa - o,
gi10 91,1 - 911 B
(Sto Sii o S Su) | ) =0 0 - 0 Sy, >0 (200)
gl.vo gl'71 . gl.’l 1 + 1 components

From we get

1
QY = Z Sz,kéik)
k=0

= gl)*(gl,o g1 Guio1) (gt ~te]! use (199) (201)
=50 0 - 0 1) (gt "t use ([200) (202)
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Cramer’s method solves (|199) as follows

_1)i+zMi(ll+1)

-1
1 it €
Sl,z—detg[l]zogl,g(—l) MY = g (203)
=

where Mi(’l]? is the (i, j)-minor of the truncated moment matrix ¢!l defined in . Therefore,

l
1 ; 141) (i
Q(l) _ oo Z(_l)H_lMi(,l )gll)
97 =0
(0)
go,0  9o,1 go,1—1 1
(1)
910 91,1 g1,1-1 1
1
= ——det : , > 1.
det glU :
(1-1)
91—-1,0 g1—1,1 " gi—1,1-1|S1
l
g0 g1 o g | &Y

The orthogonality relations for the dual system can be written also in two alternative forms

g9o,0 go,1 go,1—1 S(l),z go,l
g0 911 o g10-1 S _ 91,1
. . . Ml = =@ 1>1 (204)
gi-10 gi—11 - Gi—-1,1-1 5'171,1 gi—1,1
G 0
go,0 9o, go,i 5:(/” 0
g1,0 91,1 91,1 Si,l
) . . . =1|:1, [>0. (205)
: : : ; 0
gi0 g gi S1 1
As before, leads to the following expressions for the dual linear forms
!
QY =3 54"
k=0
9o,
& \—=1( W) W\T -1 | I
CD R GG UM I use (207) (206)
gi-1,
0
0
_ (££l+1])T( [l+1])—1 : use (205) (207)
0
1

From (205 we obtain

B B —1)l+jM(l,+1)
N ES ) e A ( l .
= (oY )j,l—W, J=0,....1, (208)
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and consequently

l l
~ o 1 G
Q=% ;ylé]) = det gl+1] Z(_l)lﬂMl(,j ¢!
Jj=0 j=0

go,o 9o,1 -+ gojg-1 | 9o,
g10 911 - g11-1 | 911
1
— det : : : : [>0.
1+1 . . . . ’ -
detg[ ] 91—1,0 91—1,1 " gi—1,1—-1|91—-1,1
0 1 -1 l
(0 gD Y | D
Proof Proposition [9] We have
l e’}
1 1 ! ke
c,) = det g1l PRCH T DI 1/mkl(k)wl,alm(f)wzb(x)f'szdﬂ(“)v
k=0 ko=vg 4 (1—1)

which according to recasts into

!
1 1 I+ =0
o = o S,
—0

1
det gl :
go,o 9go,a - 9go,i-1 I_1((){)17
gio 91,1 - g1i-1 fgl,)b
_ >
det gl! det B l: ’ =1
91-1,0 Gi—1,1 *** Gi—1,1—1 Fl(—)l,b
gio g1 o gri-1 fl(fg»
We also obtain
1 o)
_ 1 1 ke —
O = G DMLY S et [t @ g Pauta),
k=0 klzl/l,a(l_l)

which can be written as

l
~ 1
- _ - kL D RO
Ca - detg[lH] Z( 1) Ml,k Fk ’
k=0
go,o Yo - goju—1 | Yo,
gio 911 - gii-1 | 911
1 . . . .
= ——det : : : : ) [>1.
detg[l+1] gi—1,0 91—-1,1 " 9i—1,1-1|91-1,1
l l l l
ren T, - T, | T

Proof Proposition From and we deduce that

2 * 5a,a’
(Ga(2)) o (2') = (G 0(2) 1.0 (21) = 255, EARE
On 1
2] < |2,

(6(2)) " ar () = (63,(2) xawr () = 25,

(€a(2)) " 6(2') = (X7.a(2)) " 9x5,4(2"):
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The two first relations imply the corresponding equations in the Proposition. For the third we observe that from
we get

() 96 () = [ (02D €0 (2) €2l x5 () ds)
= [ () X100 (s (0) o () )
:/(——%;—jmﬁwmmwmmm
— - [ (55 - 7))

z—2 z—x -z
Proof Proposition Using Definition |17| for the linear forms QSQI and multiplying by («Eg} (z))T we have

O @) (EP )T = @ E @) = (G0 gas o geie1) @) @) EP @),
integrating both sides we get

/ Q0 (@) (€ (o) du(x) / £ (@) (6 () T dpu(a)
_ l
g0 - i) (¢ / e0(@) (€ ()T du(z)
/5”“ @) Tdp@) = (G100 Gpur o Gpaa-1) (g7l
gl+ao Jiia1 gl+a,l71)_(9l+a,0 (777 B gl+a,171)
_0’

that written componentwise gives the following orthogonality relations

Qﬁ)a(x)wlw(k)(z)xkz(k)du(z), k=0,...,1—1,
R

or equivalently
| QU@usste)san(z) = o 0<k<imp(l—1)-1, b=1...pa.
R

Notice that, ASZ . 1s monic and deg A+a () = k1(l4q) but A+a o With a # o satisfy degA

@
+a,a’

with respect to the a-th component of type II; i.e, Q(l) Qg??((?flwa (=1

In a similar way, the associated linear forms ng(x) solve a mixed multiple orthogonal problem that can be obtained
as follows. From Definition |17 and multiplying by (Eg] ()T we get

QU @) @) T = ¢ (gLl T (@) (e T @),

+a,a’ < kl((l - 1)—(1/)'

This means that the set of polynomials A}, ,(x) have degrees determined by 74 (I — 1) 4+ €1, and a normalization

integrating both sides

[ Q@€ @) Tante) = e ) [ e @) dute) = o

and written componentwise

/RQ(_ll(ac)xkz(k)wgm(k)(x)du(x) =0ki_, k=0,

that is equivalent to

/RQ(_l)b(x)wlb(x)xkdu(x) = Opl_ys 0<k<w()—1, b=1,...,po.
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Hence, the set A(_ll . 1s a type I normalized to the b-th component solution for a mixed multiple orthogonality problem;
the degrees satisfy deg A%’a, < l_g,. Moreover, the fact that the last orthogonality condition in the b-th component
is missing gives the identification Q(l) Q(ilb()l Vi (1)—Ea )"

Using Definition (17| and multiplying by 51 (z) we have

Q@@ = (e @ - el @nTen | 1),

and integrating both sides
gO,Z+1,
91,1
/Q” /a “>mmm—/¢ux¥wfwum%* )
G1—1,0 44
90,14,
91,1
- /a )8 @)duta) - ([ )
J1—1,0,
90,04 9ol
B 91,04 91,04,
J1—1,044 G1—1,04,
= ()7
that componentwise leads to the following orthogonality relations
QU (@10, 9 (@)a" () =0, k=0,....1-1,
R
or alternatively
Q) (@)wn,(@)a"du(z) = 0, 0<k<mal-1)-1, a=1....p.

Notice that, Aﬁ)b,b is monic and deg Aﬁ}b = ko(lyp) but /_1( ) py With b # b’ satisfy deg A+b y < ki((l—1)_,,). This
means that the polynomials /ﬁ&b, have degrees determined by >(I — 1) + €2 and a normalization with respect to

the b-th component of type II; i.e, Q( Q[ifl) V)t 0571 (1—1)]"

Finally, we obtain the orthogonality relations for the linear forms Q(_l)a (z). From the definition we get

& @)@ (x) = & @) (€ @) T (g ) e,
and integrating both sides

[ @t @ant) = [ & @e @) @) @) e = e

and componentwise that means

/ Q(jl(x)xkl(k)wl,al(k)(w)d,u(x) =0k ., k=0,---,1
R

or equivalently
/QQNWﬁW@@MMﬂzémﬂa 0<k<wl)—1, a=1.p,
R

so the set fl(ll wisa type I normalized to the a-th component solution for a mixed multiple orthogonality problem.

The degrees satisfy degA ap < l-p; and therefore we conclude that Q(l = Qfé;b()l)ﬁl(l)—a B
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Proof of Proposition Taking + and — parts in (170]) we obtain
P1 ) P1 P2 N P2 .
IR SRS SINED SIS wETHS LIRS o NED o
a=1 a=1 a=1 a=1 b=1 b=1

Using Lax equations and observing that L,L, = Lo L, and LyLy = Ly L, we have the following symmetries for
the Lax operators

P1 a " |
(a:1 at] Zat b a/ - |:ZBQG+ZB]()7 ] :;[Lgul/a/] :0,
b2 o
( 8tj f)ibf = [ZBJ, +ZB] b,Lb,] = Z[I_’ivl’b’] 0.
e a=1 b=1

From (|127)) we conclude that the multiple orthogonal polynomials and their duals are also invariant

P1 P} P2 o | |
( ot; +Z@fj a’_(ZB“JFZBJb_“TJ) Aoy = () =2y =0,
a=1 @ b=1 b

LI LN . - ‘ B ‘ o
(a_latj,a+;%)%(;Bj,a+§3j,bxﬂ) iy = (7 —29) ey =0,

Proof of Proposition We just follow the following chain of identities

Wi iia (8 )0 3, Wiy g (85 8) ™1 = Wy, (8 8) 730 2, 9oy i, (Woag g (¢, 8) 1
= S (65 Woz, (6. 9)7, 1, / 6 (067, ()0 (2)) (Wo, (8, 5) 7 (S (¢,5)
= S st IWo (1:5) ([ €, (06T, (2)u@)) Wo,g (¢ 5) 7 Sy (¢ 5) !

= a1, [ € (08,56, 0500 (o)) (S ¢, )

— [ (S (0,9 6 ) (5, (5 e o) T (o)

= [ Qe )@,y .t ),

where &5, (2,1, s) and gy (w1, s") represent the vectors of weighted monomials but with evolved weights.

Proof of Proposition To find the 7-function of the multiple orthogonal representation we first need two lemmas
Lemma 10. Let RY) be the j-th row of T (t) and RY) the j-th row of 7Ot — [271],a), then
RY = RY) —§, () a2 'RV, (211)

where j' = j+1ifr1(§) <nio—1, but j' = j+ (|f1] —n1,e) +1 if r1(j) = n1,o — 1. This is also valid for 7_,, “ 7_5}()17_@,
(1)

and for T p—ar
Let now be C9) the j-th column of 7 and CY the j-th column of 7 (t +[z71],), then
ng) —cU _ 5a2(j),bz_10(j/)a (212)

where 7' = j+ 1 if ro(l) <ngp — 1 but j' = j + (|flie]| —naop) + 1 if r2(j) = nep — 1. This is also valid for T(l) ?J(:Zﬁb,

and for 7'( ) -

Proof. Tt follows directly from (141) and (142]). O
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Let us recall the skew multi-linear character of determinants and the consequent formulation in terms of wedge
products of covectors. Observe that

Lemma 11. Given a set of covectors {ry,...,rn} it can be shown that
n n+1
/\ (Z?“j — Tj+1) = Z(—l)n+1_JZ]_1 ri AT Ao A ’f‘j JARERIAY SR (213)
j=1 j=1

where the notation #; means that we have erased the covector r; in the wedge product vy A -+ A Tpqq.
Proof. Tt can be done directly by induction. O

The proof of Proposition [35] relies on Lemma Lemma Corollary [I] and Proposition First let’s focus on
(187); it is clear that z”lv“(l)_ngzl(t — [¢71]4) expands in z according to for Till)l and to (213). Now n = ki (I_,)
and the covectors r; should be taken equal to those rows RY) with a,(j) = a. Observe that there are only k1 (I_,)(=
v1 4(1) — 1) rows which are non-trivially transformed. In this form we get the identification of (49) with , where

the terms correspondlng to the wedge with one covector deleted corresponds to the minors M; [ZH]

and (| we expand agam in z and use the same technique based on (211]) for T( ) / and T(l) _and (213).
—a a

These allow to hnk - ) to and - to

To prove we proceed Slmllarly. Lookmg at for ?ilg observe that there are only ko(l_p)(= vap(l) — 1)
columns Which are non—trivially transformed. Now, recalling and using (213]) but with r; being the columns C G,

such that as(j) = b, and n = k’g (l »), we get the desired result. Finally for (191)) and (192)) we expand around z to
see the equivalence between and (191) and the equivalence between (105 and (192))

Now, looking to

Proof of Proposition We need the following two lemmas:

Lemma 12. Let RY) be the j-th row of 94 1) ond RY) the j-th row of g[l+1]( t+[z7Ya), we get

RY = R9 464,50 Z 2 MRS, g0 a (214)
Let CY) be the j-th column of 44 1 and O the j-th column of g[lH]( [z71],), then (142) gives
CcW =cW 44, Z k2N oG+, D7) (215)
7'=1

Proof. For the first equality insert the expansion

A >, zF
1-2) =2
k=0
into (142)). The other equation is proven similarly. O
Lemma 13. The following identity
/\ (Z rj+iz’i) =71 A ATpg A (Z rn+iz*i) (216)
j=1 " i=0 i=0
holds.
Proof. Use induction in n. O

Finally Proposition |36|is proven using and (| -
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B Discrete flows associated with binary Darboux transformations

When the supports of the measures are not bounded from below, (in which case the new “weights” do not have
in general a definite sign and therefore should not be considered as such), there is an alternative form of constructing
discrete flows which preserve the positiveness/negativeness of the measures. The construction is based in the previous
one, but now the shift is the composition of two consecutive shifts associated with the pair A\, (n) and A,(n+ 1), being
complex numbers conjugate to each other; i.e., we consider

Definition 27. We define a deformed moment matriz

g9(s) = Dy(s)g(Dg(s)) " (217)
with
pP1
D= Df,,
a=1
[, (JAa(n)]?I1q — 2Re(Aa(n))Arq + A2 ), Sa > 0, (218)
D6a = H1 as Sa :0,

T1Eh (IAa(=n)|2T01 0 — 2Re(Aa(—n))A1a + A2,) 7", 54 <0,

(D)™ = ((Do())7),,
b=1
T2, (2o (n) 21, — 2Re(A(n))AT,) + (AT,)2)) 5 >0, (219)
((Do(s))71), := 4 Hayp, 5, =0,

(T (Ao(=m)PT — 2Re(h(-m)AL,) + (AL,)%) ™, 5 <0.

Proposition 38. The previously defined deformed moment matriz corresponds to a moment matriz with the following
positive/negative evolved weights

[T |z — Aa(n)|?, Sq >0,
w1,q(s,2) = D0 (2, $q) w1 0(T), 9 =11, Sq =0,
|sal Lz = Xa(—n)| 72, s, <0
HS a(=n)| (220)
) ) [12, |z — Ap(n)]?, 5, >0,
wa (s, ) = Dy(x,5) Twap(x), (7)) ':=41, 5, =0,
[T fe = ()72, 5 <.
Proceeding as in the previous case
Definition 28. We introduce
o =1~ Mo (I = [Aa(sa + 1)|2) —2Re(Aa(8q +1))A1,0 + Al ,a (221)
G i= 1= a1 — [N(5p + 1)I?) — 2Re(Ro(5, + 1)(AL,) + (AL,)2,
and
6l =1~ Co(l — [Na(8q + 1)|?) = 2Re(Na (84 + 1)) Lo + L2, (222)
& =1 — Cy(L = [ Ao (56 + 1)[*) = 2Re(Ny (55 + 1)) Ly + Li -
The wave and adjoint wave functions now have the form
VP (z,8) = AP (2,572, 50), (T3) P (z,5) = 4 (z.9) 74 (2. 50) ", (223)

and the expressions (161)-(162) still hold.
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If we introduce w), and @, as in (154) but replacing 0 by ¢’, the equations (155))-(158]) hold true by replacement of
w by w’. Now, the form ' differs from (164]) as now we have

Wl = wZL’OAQ(‘ﬁll*nl,a‘i’l) Lt w:z,Z(\ﬁll—nl,a+1)7 (22
0 = W o(AT)2P2lmmet ) g @2 (|| g p-+1)-
With the definition of
Vaa (5,2) = (1 = Ga,r (1= & = Aalsa + 1)), (225)
Yo (5,2) 1= (1= Gy (1 — |z — X (56 + 1)]?),
we have that
Proposition 39. The present setting and are replaced by
(T A8 Voo = war AL FHIBIT3 D) w0 a4y =y ey (R) AL,
Ty AL = @1/7,0(k)Agk_Q(mﬂ_an)) teoe Tt @2,2(\ﬁ2|7n2)b,+1)14¢(1k)a (220
Plro(Twr Ay 2Ty e g i) () (T A = AP, oo

_ = g(k+2(]7z2|—ny 5 +1) _ = =(k _ +(k
(péf,o(k)(Tb’Ab T b B (el ) (T A ))W%b’ =47,
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