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Sweeping gas membrane distillation process (SGMD) has been used for desalination and its performance index,
defined as the product of the distillate flux and the salt rejection factor, has beenmodeled using artificial neural
network (ANN) methodology. A feed-forward ANN has been developed for prediction of the performance index
based on a set of 53 different experimental SGMD tests. A feed solution of 30 g/L sodium chloridewas used in all
experiments and the salt rejection factors were found to be greater than 99.4%. The individual and interaction
effects of the input variables, namely the feed inlet temperature, the feed flow rate or the feed circulation veloc-
ity, and the air flow rate or the air circulation velocity, on the SGMD performance index have been investigated.
The optimum point was determined bymeans ofMonte Carlo simulation. The obtained optimal conditions were
a feed inlet temperature of 69 °C, an air flow rate of 34.5 L/min (i.e. 2.02 m/s air circulation velocity) and a feed
flow rate of 160 L/h (i.e. 0.155 m/s liquid circulation velocity). Under these operating conditions a performance
index of 1.493×10−3 kg/m2.s has been achieved experimentally being the maximal SGMD performance index
obtained inside the region of experimentation.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

During the last years artificial neural network (ANN) modeling was
used frequently in various separation and technological applications,
mainly due to their powerfulness for solving complex multiple regres-
sion problems [1]. The ability of ANN for mapping non-linear relation-
ships between the inputs and outputs of a system or a process has
extended the field of applications of this modeling tool.

Several studies have been considered for the application of ANN
in modeling of various processes in membrane technology [1–10]. A
feed-forward ANN was developed by Abbas and Al-Bastaki [1] for the
prediction of a reverse osmosis (RO) performance using a FilmTec
SW30 membrane for desalination of various salt solutions ranging
between brackish water and seawater salinities. Purkait and collabora-
tors [2] employed two ANN models for prediction of the permeate flux
when treating a leather plant effluent by nanofiltration (NF) process
followed by reverse osmosis (RO). Zhao and co-workers [3] have per-
formed a comparison between a modified solution diffusion model
and ANN to predict RO/NF water quality effluent. Yangali-Quintanilla
et al. [4] also used ANN to predict the rejection of neutral organic
compounds by NF and RO using polyamide membranes. Libotean and
collaborators [5] proposed an ANN with back-propagation to forecast
the performance of an RO plant and for potential use in operational
diagnostics. Al-Abri and Hilal [6] developed an ANN model for simula-
tion of a combined humic substance coagulation and membrane
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filtration. Huaiqun and Kim [7] used a radial basis function neural net-
work approach for prediction of permeate flux decline in crossflow
membrane filtration of a colloidal suspension. Darwish, et al. [8] used
ANN for simulation of NF of sodium chloride and magnesium chloride
solutions. Sahoo and Ray [9] worked on the prediction of permeate
flux decline in crossflowmembranes usingANN and genetic algorithms.
Mhurchú and Foley [10] employed the dead-end filtration of yeast
suspensions by correlating specific resistance and permeate flux data
using artificial neural networks.

In our previous paper [11] we compared the ANN model with
response surface model (RSM) in terms of prediction and optimization
of desalination by RO process. The ANN model was found to be more
adequate in prediction of the RO performance index than the RSM em-
pirical model in a wide range of salt concentrations.

It is worth quoting that the application of neural network modeling
in membrane distillation (MD) is very limited. MD is a thermally driven
processmainly dealingwithwater vapor transport through non-wetted
porous hydrophobic membranes [12]. This process demonstrates to
be successfully applied in desalination of seawater or brackish waters.
Various MD configurations can be considered to apply the driving
force, which is the transmembrane vapor pressure, i.e. direct contact
membrane distillation (DCMD), air gap membrane distillation
(AGMD), vacuum membrane distillation (VMD) and sweeping gas
membrane distillation (SGMD) [12].

Recently we have reported on the development and application of
an ANN model to predict the AGMD desalination performance index
[13]. The ANN model was used for optimization of the AGMD process
and the following optimal conditions were obtained, an air gap
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Fig. 1. The structure of an artificial neuron (node).
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thickness of 3.0 mm, a condensation temperature of 13.9 °C, a feed
inlet temperature of 71 °C and a feed flow rate of 205 L/h. Under
these conditions a maximum experimental performance index of
51.075 kg/m2.h was achieved experimentally.

In this study, attempts are made to develop an ANN model for the
prediction of the SGMD performance index. To the best of our knowl-
edge, there is no ANN model reported for SGMD configuration, so far.
This MD configuration, which is rarely studied (i.e. about 4.5% of the
papers dealing with MD published up to December 2010 in refereed
journals [12]), consists of a gas that sweeps the permeate side of the
membrane carrying the evaporatedmolecules away from the permeate
side of the membrane pores. Condensation of the vapor takes place
outside the membrane module. Therefore, external condensers are
required to collect the vapor in the permeate side stream, complicating
in this way the system design and increasing its cost. Similar to the
other MD configurations, the feed liquid solution is maintained at a
higher temperature than the temperature in the permeate side [12–15].

2. ANN theoretical

ANN is a computational model that was inspired by the structure
and functional aspects of biological neural networks. The artificial net-
work is an adaptive system that changes its structure based on external
or internal information that flows through the network during the
learning phase. It consists of an interconnected group of artificial neu-
rons that processes information using a connectionist approach [16].

Each artificial neuron is a unitary computational processor, which
has a summing junction operator and a transfer function [17,18]. The
connections between inputs, neurons and outputs consist of weights
and biases, which are considered parameters of the neural network.
The summing junction operator of a single neuron (i) summarizes the
weights and bias into a net input Ai known as argument. The transfer
function of a single neuron converts the net argument Ai into the scalar
output according to the scheme shown in Fig. 1wherewij is the connec-
tion weight, xj is the input variable, i and j i ¼ 1;m; j ¼ 1;n

� �
are the

integer indexes, m is the number of artificial neurons, n is the number
of input variables and bi is the bias of the single artificial neuron (i).
The type of transfer functions frequently employed for solving multiple
Table 1
Transfer functions of artificial neurons used for solving multiple regression problems.

Description Notation Summing junction

Linear transfer function purelin Ai ¼
Pn
j¼1

xj⋅wi;j þ bi

Log-sigmoid transfer function logsig Ai ¼
Pn
j¼1

xj⋅wi;j þ bi

Hyperbolic tangent sigmoid transfer function tansig Ai ¼
Pn
j¼1

xj⋅wi;j þ bi
regression problems is summarized for a single artificial neuron in
Table 1 togetherwith the explicit relationship for the summing junction
operator.

The most used transfer functions to solve multiple regression prob-
lems are the linear transfer function (purelin), log-sigmoid transfer
function (logsig) and hyperbolic tangent sigmoid transfer function
(tansig) [17–22].

The way in which the inputs, neurons and outputs are connected is
known as architecture or topology of the neural network. Usually, the
neurons of a network are grouped into several layers such as hidden
and output layers consisting of, hidden and output neurons, respective-
ly. In addition, the inputs can be considered as an additional layer. The
most applied neural network topology for solving the multiple regres-
sion problems (i.e. function approximations) is the multi-layer
feed-forward structure also known as multi-layer perceptron MLP
[17–19,21]. This topology is detailed elsewhere [19]. The most impor-
tant phase for buildingANNmodel is the training of the network. During
the training process the weights and biases of a feed-forward neural
network are adjusted systematically in order to minimize the residual
error between network outputs (predictions) and targets (experimen-
tal data) [11,23,24]. There is a variety of training algorithms. The most
used classes of training methods for feed-forward neural networks are
the back-propagation (BP) algorithms [11,17,18,23,24]. Training of
ANN using BP algorithm is an iterative optimization process applied
for performance function minimization by adjusting the network
weights and biases appropriately. The most employed performance
function is the mean-squared-error (MSE). In the case of a single
response (output neuron), MSE may be written as [13,21]:

MSE ¼ 1
N

XN

q¼1

Y expð Þ
q −Ŷ predð Þ

q

� �2 ð1Þ

where Yq(exp) is the experimental response (target), Ŷ predð Þ
q is the predicted

response by ANN (network output), N is the number of experimental
data points and q is the iteration index (positive integer number). There
are many variations of BP algorithm. Most of them use the gradient
descent method for iterative updating of weights and biases until the
convergence is satisfied. Normally, the gradient descent updating of the
network weights (wij) and biases (bi) using a single iteration of BP algo-
rithm can be written as [25]:

w kþ1ð Þ
ij ¼ w kð Þ

ij −η
∂E kð Þ

∂w kð Þ
ij

ð2Þ

b kþ1ð Þ
i ¼ b kð Þ

i −η
∂E kð Þ

∂b kð Þ
i

ð3Þ

where E is the error function (e.g.MSE), η is the learning rate and k is the
integer index indicating the epoch (iteration) in learning phase. Once the
ANNwas trained the optimalweights and biases are saved and the neural
network model can be used for simulation and optimization [11,23].
(input transformation) Transfer function equation Output range

f(Ai)=Ai −∞≤ f(Ai)≤+∞

f Aið Þ ¼ 1
1þ exp −Aið Þ 0≤ f(Ai)≤1

f Aið Þ ¼ 1− exp −Aið Þ
1þ exp −Aið Þ −1≤ f(Ai)≤+1
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3. Experimental

In all experiments a commercial porous hydrophobic membrane
TF450 provided by Gelman company has been employed. This mem-
brane is made of polytetrafluorethylene (PTFE) supported by a poly-
propylene (PP) net. Its main characteristics as specified by the
manufacturer are the total thickness, PTFE/PP (178 μm), the mean
pore size (0.45 μm), the fractional void volume or porosity (80%) and
the liquid entry pressure of water (LEPw, 137.8 kPa).

For preparation of the feed salt solution, sodium chloride NaCl
(puriss) provided by Sigma-Aldrich was used. The electrical conduc-
tivity of the feed and distillate solutions was measured using a
conductivimeter 712 Ω Metrohm. Then the salt concentration was
determined from the electrical conductivity using a previous calibra-
tion. Finally, the salt rejection factor was determined based on salt
concentrations in feed and distillate solutions.

The experimental set-up of SGMD configuration used is shown
in Fig. 2. A plate and frame membrane module (1) has been used
consisting of two chambers, one for the feed and the other for distillate.
The chambers are made from silicone separators and placed between
two acrylic manifolds. The polymeric membrane (2) is placed between
the two chambers and has an effective area of 5.53×10−3 m2. Both
chambers have a thickness of 4.3 mm (length=86.3 mm; width=
6.83 mm). The flow paths within the sweeping-gas module were
of counter-flow type. The temperatures of the liquid feed and the
sweeping air were measured at the inlet and outlet of the membrane
module by Pt100 sensors connected to a digital multimeter FLUKE
HYDRA. To avoid membrane pore wetting, the pressure difference
through the membrane was controlled with two manometers placed
at the inlets of the module. The liquid was circulated from the feed
reservoir (3) through the system by a circulation pump MasterFlex
7529-20 (4). The feed flow rate was measured with a flowmeter
Tecfluid (5) and the temperature of the circulating liquidwas controlled
by a heat exchanger (6) connected to a thermostat (Techne TU-16D).
The sweeping air flow rate was maintained by means of a compressor
(Fiac 1001, PS 11 bar) (7). A valve (8) was employed to adjust the
flow rate that is measured with a flowmeter Gilmont 51501 (9). Two
humidifiers connected in series (10a and 10b) were used for water
saturation of the air. The heat exchanger (11) connected to a thermostat
(Techne RB-12A) was used to adjust the temperature of the sweeping
air. A trap for water retention (12) was connected before air could
enter the module. A condenser (13) controlled by a thermostat
Fig. 2. SGMD experimental set-up. (1) SGMDmodule; (2) flat sheet membrane; (3) feed conta
(8) valve; (9) air flowmeter; (10a,10b) humidifiers; (11) heat exchanger for cooling or h
(14) permeate container; (15) balance.
(PolyScience Recirculator) was used for condensation of the produced
water vapor. The distillate was collected in a graduated cylinder (14).
The distillate flux was determined experimentally by weighing the
obtained distillate during a predetermined time using a digital balance
(ANDGF-1200 with precision of 0.01 g) (15). To minimize the heat
loss, the containers and pipes of the SGMD set-up were thermally
insulated.

The desalination performance index (Y) of the SGMD process has
been determined experimentally using the following relationship:

Y ¼ J � RF
100

ð4Þ

where J denotes the distillate flux (kg m−2 s−1) and RF the salt rejec-
tion factor (%).

4. Results and discussions

The experimental data used to construct the ANN model for SGMD
process are summarized in Table 2. A total number of 53 different
experiments were employed. It was found that the salt rejection factor
was varied between 99.64% and 99.97% and most of the values are near
99.9%. Therefore, the ANN model was developed for the SGMD perfor-
mance index (Y). About 80% from all these available data were used
for training and 20% for validation and test. As inputs of the neural
network three variables were considered, i.e. the feed inlet temperature
(Tf,in), the feed liquidflow rate or liquid circulation velocity (Uw) and the
air flow rate or air circulation velocity (Ua). In all experiments the feed
liquid concentration (NaCl) and the temperature of the sweeping air
(Ta,in) at the module inlets were maintained constants, 30 g/L and
20 °C, respectively. The desalination performance index (Y)was consid-
ered as response (target). To avoid overfitting, both input variables and
response were normalized before training. The input variables were
normalized so that they can vary in the range [0–1] according to the
following relationship [13]:

xj ¼
zj−zmin

j

� �

zmax
j −zmin

j

� � ð5Þ

where xj refers to the normalized input variable, while zj, zjmin and zj
max

are the actual, minimum and maximum values of the input variable.
iner; (4) peristaltic pump; (5) water flowmeter; (6) heat exchanger; (7) air compressor;
eating the air at desired temperature; (12) trap for water retention; (13) condenser;

image of Fig.�2


Table 2
Experimental data used for the construction of the ANN model of SGMD process.

Run Input variables Responses

Trial Type Tf,in (°C) Ua (m/s) Uw (m/s) J (kg m−2 s−1)×10−3 RF (%) Y (kg m−2 s−1)×10−3 Yn

1 Training 68 1.932 0.200 1.106 99.962 1.1056 0.800
2 Training 54 1.932 0.200 0.636 99.876 0.6352 0.438
3 Training 68 0.966 0.200 0.650 99.881 0.6492 0.449
4 Training 54 0.966 0.200 0.459 99.919 0.4586 0.302
5 Training 68 1.932 0.140 0.969 99.924 0.9683 0.694
6 Training 54 1.932 0.140 0.740 99.784 0.7384 0.517
7 Training 68 0.966 0.140 0.582 99.942 0.5817 0.397
8 Training 54 0.966 0.140 0.326 99.927 0.3258 0.200
9 Training 70 1.449 0.170 1.016 99.709 1.0130 0.729
10 Training 52 1.449 0.170 0.499 99.919 0.4986 0.333
11 Training 61 2.028 0.170 0.841 99.929 0.8404 0.596
12 Training 61 0.869 0.170 0.499 99.945 0.4987 0.333
13 Training 61 1.449 0.206 0.989 99.452 0.9836 0.706
14 Training 61 1.449 0.134 0.634 99.920 0.6335 0.437
15 Training 61 1.449 0.170 0.670 99.903 0.6694 0.464
16 Training 68 1.449 0.170 0.919 99.963 0.9187 0.656
17 Training 54 1.449 0.170 0.542 99.924 0.5416 0.366
18 Training 65 1.884 0.170 0.988 99.954 0.9875 0.709
19 Training 58 1.014 0.170 0.528 99.920 0.5276 0.355
20 Training 65 1.014 0.170 0.647 99.944 0.6466 0.447
21 Training 58 1.884 0.170 0.698 99.911 0.6974 0.486
22 Training 65 1.594 0.194 0.849 99.955 0.8486 0.602
23 Training 58 1.304 0.146 0.780 99.954 0.7796 0.549
24 Training 65 1.304 0.146 0.626 99.938 0.6256 0.431
25 Training 61 1.738 0.146 0.893 99.936 0.8924 0.636
26 Training 58 1.594 0.194 0.686 99.928 0.6855 0.477
27 Training 61 1.159 0.194 0.610 99.940 0.6096 0.418
28 Training 54 0.966 0.170 0.361 99.904 0.3607 0.227
29 Training 68 0.966 0.170 0.579 99.928 0.5786 0.395
30 Training 54 1.932 0.170 0.679 99.936 0.6786 0.471
31 Training 68 1.932 0.170 1.024 99.962 1.0236 0.737
32 Training 54 1.449 0.140 0.549 99.949 0.5487 0.372
33 Training 68 1.449 0.140 0.846 99.925 0.8454 0.600
34 Training 54 1.449 0.200 0.562 99.946 0.5617 0.382
35 Training 68 1.449 0.200 0.966 99.951 0.9655 0.692
36 Training 61 0.966 0.140 0.473 99.948 0.4728 0.313
37 Training 61 1.932 0.140 0.896 99.853 0.8947 0.638
38 Training 61 0.966 0.200 0.409 99.922 0.4087 0.264
39 Training 61 1.932 0.200 0.804 99.925 0.8034 0.567
40 Training 65 1.690 0.185 0.956 99.956 0.9556 0.685
41 Training 57 1.690 0.185 0.688 99.905 0.6873 0.478
42 Validation 65 1.207 0.185 0.704 99.812 0.7027 0.490
43 Validation 57 1.207 0.185 0.543 99.914 0.5425 0.367
44 Validation 65 1.690 0.155 0.873 99.955 0.8726 0.621
45 Validation 57 1.690 0.155 0.639 99.899 0.6384 0.441
46 Validation 65 1.207 0.155 0.600 99.860 0.5992 0.410
47 Validation 57 1.207 0.155 0.559 99.936 0.5586 0.379
48 Test 66 1.449 0.170 0.887 99.968 0.8867 0.632
49 Test 56 1.449 0.170 0.625 99.968 0.6248 0.430
50 Test 61 1.738 0.170 0.993 99.639 0.9894 0.711
51 Test 61 1.159 0.170 0.552 99.930 0.5516 0.374
52 Test 61 1.449 0.188 0.802 99.874 0.8010 0.566
53 Test 61 1.449 0.152 0.664 99.917 0.6634 0.460
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The target Y was normalized in the range varying between 0.2 and 0.8
using the following equation [13,26]:

Yn ¼ 1−2Δð Þ Y−Yminð Þ
Ymax−Yminð Þ þ Δ ð6Þ

where Yn, Ymin and Ymax are the normalized, minimum and maximum
levels of the target Y and Δ is a quantity set as 0.2 in order to ensure
the normalized interval [0.2–0.8]. Such an interval gives the network
limited extrapolation capability for the extended range [0–1]. The
values of the normalized target Yn are listed in the last column of
Table 2.

In order to build the ANN model our code was developed using
MATLAB software and the standard functions included in the neural
network toolbox. The normalized values of the inputs and target
were used to feed and train the neural network. In this case, the
Levenberg–Marquardt back-propagation algorithm (LM-BP) was
employed [18]. In order to optimize the neural network architecture,
the computations started using one neuron in the hidden layer as the
initial guess. Afterwards, the number of neurons was increased and
the performance function MSE was calculated as shown in Fig. 3. As
can be seen, the increment of the number of neurons results in a
minimal value of the error function MSE for a network topology
with 9 neurons in the hidden layer. Further increase of the number
of neurons leads to a slight increase of the MSE. Therefore, in this
case the optimal architecture of the ANN model includes three inputs
(i.e. variables), one hidden layer with 9 neurons and one output layer
with a single neuron (Fig. 4). Thus, the notation of the developed
feed-forward neural network may be written as MLP (3:9:1). Note
that, all neurons of the hidden layer have the log-sigmoid transfer
function (logsig) while the single neuron from the output layer has
the linear (purelin) transfer function. As it can be observed in Fig. 4,



Fig. 3. Dependence between thenetwork performance (MSE) and thenumbers of neurons
in hidden layer using LM-BP algorithm.

Fig. 5. Evolution of network performance (MSE) during training phase using LM-BP
algorithm; goal is 5×10−4 while performance is 4.29×10−4.
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the connections between the inputs, the neurons and the output consist
of weights and biases that are the parameters of MLP (3:9:1). It should
be pointed out that the biases connected to all artificial neurons from
the hidden and output layers (Fig. 4) play a similar role to the offset
terms in multiple regression models.

The training of the neural network MLP (3:9:1) has been carried
out by adjusting the values of weights and biases in order to minimize
the performance function MSE. Fig. 5 shows the evolution of the MSE
during training phase when LM-BP algorithm has been applied. It was
observed that after 10 epochs (iterations) the training performance of
4.29×10−4 was achieved. Therefore, the training convergence has
been satisfied since the goal was set at 5×10−4. For validation and
test subsets the performance function after 10 epochs was lower
than 1×10−3, which is acceptable.

After training phase the optimal values of the network weights and
biases were saved and the developed ANN has been used for simulation
and optimization of the SGMD process. Table 3 presents the optimal
values of the network weights and biases in vector–matrix format
after computation with LM-BP algorithm. Thus, the ANN model
Fig. 4. Optimal topology of the developed ANN model u
developed for the prediction of the SGMD performance index can be
presented mathematically as an input–output composite mapping:

Ŷn xð Þ ¼ ψ 2ð Þ LW 2;1ð Þψ 1ð Þ IW 1;1ð Þx þ b 1ð Þ� �
þ b 2ð Þ� �

ð7Þ

where Ŷn denotes the vector of the normalized output (network predic-
tions), x is the vector of the input variables, ψ(1) is the vector of logsig
transfer function corresponding to the hidden layer (layer-1), ψ(2) is
the vector of purelin transfer function corresponding to the output
layer (layer-2), IW(1,1) is the input weight matrix, LW(2,1) is the layer
weight vector, b(1) is the bias vector, and b(2) is the bias scalar.

The agreement between the target (experimental observations) and
the network output (predictions) for training, validation, and test sets is
sed for prediction of the SGMD performance index.

image of Fig.�4
image of Fig.�3
image of Fig.�5


Table 3
Optimal values of the network weights and biases computed by means of LM-BP
algorithm.

Input weight matrix, IW
{Destination: hidden layer
Source: inputs}

IW{1,1}=

−11.3157 −4.7519 9.4878
−5.9269 1.11766 7.6865
−5.7622 −11.1475 −9.6669
12.0438 5.3625 −7.2883
5.9918 3.7665 −5.4772
9.215 8.6715 4.4463
−12.3579 6.9493 1.4116
7.6707 −1.8324 5.9155
−10.4228 7.0446 −3.4597

Bias vector, b
{Destination: hidden layer}

LW{2,1}T=

10.9375
2.2155
14.8345
−5.5984
−9.48
−4.12229
−2.3598
1.842

Layer weight vector, LW
{Destination: output layer
Source: hidden layer}

LW{2,1}T=

−0.6597
0.2486
−0.1759
0.0933
−05746
0.3838
−0.2305
−0.1517
0.1402

Bias scalar, b
{Destination: output layer}

b{2}=0.7267
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shown in Fig. 6. The overall correlation coefficient including training,
validation and test, is r2=0.80, while the correlation coefficient for
validation is higher (r2=0.93). These values reveal a satisfactory pre-
diction of the experimental data by means of the developed ANN of
MLP (3:9:1) type. In addition, the average relative error has been
computed to appraise the goodness-of-fit between the ANN model
and experiment. This average relative error is of 8.66% revealing a rea-
sonable neural network model.
Fig. 6. Network outputs (predictions of SGMD performance index) plotted against the
experimental observations (target).
The trained neural network was applied to plot 3D and 2D diagrams
showing the simultaneous effects of two variables on the SGMD perfor-
mance index.

Fig. 7 shows the influence of the air circulation velocity (Ua) and

the feed inlet temperature (Tf,in) on the performance index Ŷ
� �

. As

can be seen from Fig. 7, increasing both Ua and Tf,in leads to an enhance-

ment of Ŷ . An interaction effect between Ua and Tf,in was detected. For

example, at a high values of Ua and Tf,in, Ŷ increases considerably due
to the synergetic effect between these two input variables.

Fig. 8 illustrates the influence of the liquid circulation velocity
(Uw) and Tf,in on Ŷ . As stated previously, the increase of Tf,in leads to
an increase of Ŷ , whereas the influence of Uw on Ŷ is insignificant.
Similar results were obtained in our previous study dealing with
modeling SGMD using response surface methodology (RSM) [27].
From the RSM model, it was also concluded that the effect of the liq-
uid flow rate on the distillate flux was less significant.

The influence of Ua and Uw on Ŷ is shown in Fig. 9. A significant
interaction effect between these two variables was observed. At low
Uw values, Ŷ increases with the increase of Ua. In contrast, for higher
Uw values, the increment of Ua leads first to a slight increase of Ŷ
followed by a stationary zone and finally a slight decrease. On the
other hand, the increase of Uw at low Ua values results in an enhance-
ment of . However, for higher Ua values, the increase of Uw does not
change Ŷ significantly. Similar interaction effects have been detected
Fig. 7. SGMD performance index Ŷ
� �

as a function of Tf,in and Ua for Uw=0.165 m/s,
(a) 3D output surface and (b) 2D contour-lines map.

image of Fig.�6
image of Fig.�7


Fig. 8. SGMD performance index Ŷ
� �

as a function of Tf,in and Uw for Ua=1.45 m/s,
(a) 3D output surface and (b) 2D contour-lines map.

Fig. 9. SGMD performance index Ŷ
� �

as a function of Uw and Ua for Tf,in=61 °C, (a) 3D
output surface and (b) 2D contour-lines map.

Table 4
Optimal conditions determined bymeans of the ANNmodel and
Monte Carlo simulation.

Feed solution NaCl (30 g/L)

Optimal operating conditions:
Tf,in (°C) 69
Ua (m/s) 2.02
Uw (m/s) 0.155

Responses:
J (kg/m2.s) 1.495×10−3

RF (%) 99.903
Yexp (kg/m2.s) 1.493×10−3

Ŷ pred (kg/m2.s) 1.365×10−3
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when RSM was used for SGMD modeling [27]. It was stated that this
last effect was attributed to the formation of small air bubbles on
the membrane surface contacting the liquid (i.e. feed/membrane
surface) due to the high sweeping air flow rate. The presence of such
bubbles produces an increase of the resistance to mass transfer and
therefore a reduction of the permeate flux. As a consequence, operating
under a high air flow rate above a critical point that depends on the
liquid flow rate, its temperature and pressure should be avoided.

The constructed neural network model MLP (3:9:1) has been used
to model and optimize the SGMD process. Monte Carlo simulation
was employed for optimization. According to this algorithm, for each
normalized input variable (xj) the pseudo-random numbers (PRNs)
are generated and thus a set of trial points is produced. Then, the
network output is computed for each point using Eq. (7) and the max-
imal output value is determined by comparison. PRNs are generated by
the computer processor being uniformly distributed in the normalized
interval, PRN ∈ [0–1]. For instance, in MATLAB program, PRNs can be
generated automatically using the standard function rand. In our case,
Monte-Carlo simulations were carried out by multistage approach
using a zoom-in technique in order to identify the optimal solution
more accurately. At each stage a number of 104 points were generated
randomly. The computed optimum condition given by the ANN
model is summarized in Table 4. This condition corresponds to the
following optimal values of the variables, Tf,in=69 °C, Ua=2.02 m/s
(i.e. 34.5 L/min) and Uw=0.155 m/s (i.e. 160 L/h). Table 4 also shows
the experimental performance index together with the predicted one
for the determined optimum condition. As it can be observed, the
experimental response (Yexp=1.493×10−3 kg/m2.s) is slightly higher
than the predicted one (Ŷ pred=1.365×10−3 kg/m2.s) being the resid-
ual error 8.57%. It is to point out that, among all responses of the 53 dif-
ferent SGMD tests (Table 2), the performance index corresponding to
the optimum operating condition is the highest one.

image of Fig.�8
image of Fig.�9


109M. Khayet, C. Cojocaru / Desalination 308 (2013) 102–110
In our recent published paper [27], using the same SGMD system,
the obtained SGMD optimal condition by RSM model was a liquid
circulation velocity of 0.16 m/s (i.e. 165 L/h liquid flow rate), an air
circulation velocity of 2.11 m/s (i.e. 36 L/min air flow rate) and a tem-
perature difference between the liquid and air at the module inlets of
54.3 °C. In the present study, the optimal temperature difference
obtained by ANN model is lower (i.e. 49 °C), whereas the liquid and
air flow rates are quite similar. The optimum performance index de-
termined by RSM model is 1.5 times higher than that obtained by
ANN model. This is attributed to the higher temperature difference
determined by the RSM model.

5. Conclusions

An artificial neural network model was proposed to predict the
SGMD performance index considering the most important inputs
variables, namely the feed inlet temperature, the air circulation veloc-
ity and the liquid circulation velocity. A feed-forward neural network
was developed by means of back-propagation training method.
SGMD was applied for desalination of saline aqueous solution of
30 g/L NaCl concentration. The agreement between the experimental
and the ANN predicted response, which is the SGMD performance
index, was acceptable.

According to the ANN predictions, the most significant effect on the
SGMD performance index is attributed to the inlet feed temperature
followed by the sweeping air flow rate. The liquid flow rate is the less
significant variable having a small influence on the SGMD performance
index. An interaction effect between the airflow rate and the liquidflow
rate has been detected and discussed.

The ANN model was used for optimization of SGMD process. The
obtained SGMD optimal conditions by Monte Carlo simulation were as
follows: an inlet feed temperature of 69 °C, a sweeping air flow rate of
34.5 L/min (i.e. air circulation velocity of 2.02 m/s), and a feed liquid
flow rate of 160 L/h (i.e. liquid circulation velocity of 0.155 m/s).
The predicted SGMD performance index under such optimum condi-
tions is 1.3654×10−3 kg/m2.s. According to the confirmation run
the optimal performance index determined experimentally is 1.493×
10−3 kg/m2.s being the maximal response within all 53 SGMD tests
performed in this study. However, this maximal performance index
determined by ANN is smaller than that obtained by response surface
methodology (RSM).

Nomenclature
A net input argument
b bias term for a neuron
b bias vector for a layer
E error function
J distillate (permeate) flux
IW input weight matrix
logsig log-sigmoid transfer function (Matlab syntax)
LW layer weight matrix
MSE mean-squared-error (performance function)
n number of input variables
N total number of experimental trials
m number of artificial neurons
PRN pseudo random number
purelin linear transfer function (Matlab syntax)
r2 linear correlation coefficient
RF rejection factor
Ta,in air inlet temperature
Tf,in liquid inlet temperature
ΔT temperature difference
tansig hyperbolic tangent sigmoid transfer function (Matlab syntax)
Ua air circulation velocity
Uw liquid circulation velocity
w weight (neural network connection)
x vector of normalized input variables
x normalized input variable
Y performance index (experimental value/target)
Ŷ performance index (predicted value/network output)
Yn normalized performance index
Ŷn vector of network output (normalized predicted values of

performance index)
z actual variable

Subscripts and Superscripts
exp experimental value
i positive integer number (iteration index)
j positive integer number (iteration index)
k positive integer number (iteration index)
max maximal level
min minimal level
pred predicted value
q positive integer number (iteration index)

Greek letters
Δ positive quantity
η learning rate
ψ vector of transfer function
Acknowledgments

The author (C. Cojocaru) is grateful to the Spanish Ministry of
Science and Innovation for supporting the research grant (project
SB2009-0009). The authors also acknowledge the financial support
from the University Complutense of Madrid, UCM-BSCH (projects
GR58/08 and GR35/10-A, UCM group 910336).
References

[1] A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination unit using neural
networks, Chem. Eng. J. 114 (1–3) (2005) 139–143.

[2] M.K. Purkait, V.D. Kumar, D. Maity, Treatment of leather plant effluent using NF
followed by RO and permeate flux prediction using artificial neural network,
Chem. Eng. J. 151 (1–3) (2009) 275–285.

[3] Y. Zhao, J.S. Taylor, S. Chellam, Predicting RO/NF water quality by modified solution
diffusion model and artificial neural networks, J. Membr. Sci. 263 (1–2) (2005)
38–46.

[4] V. Yangali-Quintanilla, A. Verliefde, T.U. Kim, A. Sadmani, M. Kennedy, G. Amy,
Artificial neural network models based on QSAR for predicting rejection of
neutral organic compounds by polyamide nanofiltration and reverse osmosis
membranes, J. Membr. Sci. 342 (1–2) (2009) 251–262.

[5] D. Libotean, J. Giralt, F. Giralt, R. Rallo, T. Wolfe, Y. Cohen, Neural network approach
for modeling the performance of reverse osmosis membrane desalting, J. Membr.
Sci. 326 (2) (2009) 408–419.

[6] M. Al-Abri, N. Hilal, Artificial neural network simulation of combined humic sub-
stance coagulation and membrane filtration, Chem. Eng. J. 141 (1–3) (2008) 27–34.

[7] H. Chen, A.S. Kim, Prediction of permeate flux decline in crossflow membrane
filtration of colloidal suspension: a radial basis function neural network approach,
Desalination 192 (1–3) (2006) 415–428.

[8] N.A. Darwish, N. Hilal, H. Al-Zoubi, A.W. Mohammad, Neural networks simulation
of the filtration of sodium chloride and magnesium chloride solutions using
nanofiltration membranes, Chem. Eng. Res. Des. 85 (4) (2007) 417–430.

[9] G.B. Sahoo, C. Ray, Predicting flux decline in crossflow membranes using artificial
neural networks and genetic algorithms, J. Membr. Sci. 283 (1–2) (2006) 147–157.

[10] J.N. Mhurchú, G. Foley, Dead-end filtration of yeast suspensions: correlating
specific resistance and flux data using artificial neural networks, J. Membr. Sci.
281 (1–2) (2006) 325–333.

[11] M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network modeling and response
surface methodology of desalination by reverse osmosis, J. Membr. Sci. 368 (1–2)
(2011) 202–214.

[12] M. Khayet,Membranes and theoreticalmodeling ofmembrane distillation: a review,
Adv. Colloid Interface Sci. 164 (1–2) (2011) 56–88.

[13] M. Khayet, C. Cojocaru, Artificial neural networkmodeling and optimization of desa-
lination by air gap membrane distillation, Sep. Purif. Technol. 86 (2012) 171–182.



110 M. Khayet, C. Cojocaru / Desalination 308 (2013) 102–110
[14] M. Khayet, M.P. Godino, J.I. Mengual, Theoretical and experimental studies
ondesalination using the sweeping gas membrane distillation method, Desalination
157 (2003) 297–305.

[15] M. Khayet, M.P. Godino, J.I. Mengual, Thermal boundary layers in sweeping gas
membrane distillation processes, AIChE J. 48 (2002) 1488–1497.

[16] Wikipedia (the free encyclopedia): Artificial Neural Network. available on-line at:
http://en.wikipedia.org/wiki/Artificial_neural_network.

[17] M.T. Hagan, H.B. Demuth, M. Beale, Neural Network Design, PWS Publishing Co.,
Boston, 1996.

[18] H. Demuth, M. Beale, Neural Network Toolbox: For Use with MATLAB (Version 4.0),
The MathWorks, Inc., 2004.

[19] A. Shahsavand, M. Pourafshari Chenar, Neural networks modeling of hollow fiber
membrane processes, J. Membr. Sci. 297 (1–2) (2007) 59–73.

[20] M. Dornier, M. Decloux, G. Trystram, A. Lebert, Dynamic modeling of cross-
flow microfiltration using neural networks, J. Membr. Sci. 98 (3) (1995)
263–273.

[21] M. Sadrzadeh, T. Mohammadi, J. Ivakpour, N. Kasiri, Separation of lead ions from
wastewater using electrodialysis: comparing mathematical and neural network
modeling, Chem. Eng. J. 144 (3) (2008) 431–441.
[22] H. Niemi, A. Bulsari, S. Palosaari, Simulation of membrane separation by neural
networks, J. Membr. Sci. 102 (1995) 185–191.

[23] C. Cojocaru, M. Macoveanu, I. Cretescu, Peat-based sorbents for the removal of oil
spills fromwater surface: application of artificial neural network modeling, Colloids
Surf., A 384 (1–3) (2011) 675–684.

[24] K. Yetilmezsoy, S. Demirel, Artificial neural network (ANN) approach formodeling of
Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells,
J. Hazard. Mater. 153 (3) (2008) 1288–1300.

[25] I.N. da Silva, R.A. Flauzino, An approach based onneural networks for estimation and
generalization of crossflow filtration processes, Appl. Soft Comput. 8 (1) (2008)
590–598.

[26] B. Sarkar, A. Sengupta, S. De, S. DasGupta, Prediction of permeate flux during electric
field enhanced cross-flow ultrafiltration — a neural network approach, Sep. Purif.
Technol. 65 (3) (2009) 260–268.

[27] M. Khayet, C. Cojocaru, A. Baroudi, Modeling and optimization of sweeping gas
membrane distillation, Desalination 287 (2012) 159–166.

http://en.wikipedia.org/wiki/Artificial_neural_network

	Artificial neural network model for desalination by sweeping gas membrane distillation
	1. Introduction
	2. ANN theoretical
	3. Experimental
	4. Results and discussions
	5. Conclusions
	Nomenclature
	Acknowledgments
	References


