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Abstract
We study the evolution of an initially confined atom condensate, which is
progressively outcoupled by gradually lowering the confining barrier on one
side. The goal is to identify protocols that best lead to a quasi-stationary sonic
black hole separating regions of subsonic and supersonic flow. An optical lattice
is found to be more efficient than a single barrier in yielding a long-time sta-
tionary flow. This is best achieved if the final conduction band is broad and its
minimum is not much lower than the initial chemical potential. An optical lattice
with a realistic Gaussian envelope yields similar results. We analytically prove
and numerically check that, within a spatially coarse-grained description, the
sonic horizon is bound to lie right at the envelope maximum. We derive an
analytical formula for the Hawking temperature in that setup.
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1. Introduction

An attractive feature of Bose–Einstein condensates is their ability to provide a convenient way
to investigate analog black-hole physics in the laboratory [1, 2]. Unruh noted [3, 4] that
Hawking radiation in a cosmic black hole [5, 6] is an essentially kinematic effect that can be
simulated in a quantum fluid. More specifically, it has been predicted that, for a quantum fluid
passing through a sonic horizon (i.e., a subsonic–supersonic interface), phonons will be emitted
into the subsonic region even at zero temperature [7–12].

A sonic black hole was recently realized in an accelerated Bose–Einstein condensate [13].
An alternative route towards the detection of Hawking radiation may be provided by a quasi-
stationary horizon, which in principle can be achieved by allowing a large, confined condensate
to emit in such a way that the coherent outgoing beam is dilute and fast enough to be supersonic
[11, 14–16]. The hope is that the elusive Hawking radiation will be less difficult to detect
unambiguously in such quasi-stationary transport scenarios. In particular, recent research has
addressed the possibility of detecting the spontaneous Hawking radiation above the stimulated
signal [17–19]. Experimental evidence of stimulated Hawking radiation was recently found in a
black-hole laser setup [20].

This paper aims to explore the actual attainability of the steady-state regime. Within a
mean-field approximation, we investigate the dynamics of an initially confined condensate that
begins to leak as the height of one of the confining barriers is driven from an essentially infinite
to a finite value that permits a gentle yet appreciable flow of coherently outcoupled atoms. An
alternative route to a quasi-stationary black-hole configuration has been proposed for atom [21]
and polariton [22] condensates, based on the idea of throwing the condensate onto a localized
obstacle such as a potential barrier. In the present work, we focus on a finite-sized condensate
and on cases where the increasingly transparent potential is formed not by a single [16] or
double [15] barrier, but by an extended optical lattice, because the latter scenario seems more
suitable for the achievement of quasi-stationary flow within this deconfinement scheme, as we
will show later. We will see that close-to-ideal stationary flow within the permitted energy
bands is achievable under realistic opening protocols.

The present mean-field study aims to identify transport scenarios that offer the potential
hopes for detecting Hawking radiation in the future. More conclusive predictions about the
detectability of spontaneous radiation will require a study of the time-dependent Bogoliubov-de
Gennes (BdG) equations, which should show us the actual intensity of the expected
spontaneous radiation. This task is left for a future study.

In addition to the motivation of realizing gravitational analogs, the achievement of
stationary transport scenarios is of general interest to the investigation of atom quantum
transport, in the case of both bosons [23–28] and fermions [29, 30], within the emergent field of
atomtronics.

This paper is arranged as follows. Section 2 presents the model for the gradual reduction of
the optical lattice amplitude that we will investigate. After some preliminary remarks in
section 3, we present the main numerical results, along with some theoretical arguments (that
help to understand the observed trends) in section 4. The second part of that section describes
the achieved quasi-stationary regime. Section 5 addresses the more realistic case of an optical
lattice with a Gaussian envelope. Interestingly, we find that the horizon lies at the maximum of
the envelope, and we give a theoretical explanation of that fact. The main conclusions are
summarized in section 6. Appendix A provides a detailed description of the initial state of the
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condensate as it exists before the deconfinement procedure begins. Appendix B discusses some
properties of Bloch waves in the presence of the nonlinearities that account for the interaction.
Appendix C presents a perturbative treatment of the interaction. Finally, appendix D describes
the numerical method of integration and the use of absorbing boundary conditions.

2. The model

In this work, we study the outcoupling of a one-dimensional (1D) Bose–Einstein condensate
through a finite-size repulsive optical lattice whose intensity is gradually lowered in such a way
that, within a finite time frame, the periodic barrier shifts from a regime of practical confinement
to one of full transparency within certain atom energy bands. We focus on the mean-field
dynamics (i.e., we only consider the evolution of the condensate wave function, leaving the
dynamics of quasi-particles for a future study). We restrict our present study to a quasi-1D
model. The time-dependent condensate wave function, Ψ x t( , ), obeys the Gross–Pitaevskii
(GP) equation [31, 32]:

⎡
⎣⎢

⎤
⎦⎥

Ψ Ψ Ψ∂
∂

= − ∂ + + x t

t m
V x t g x t x ti

( , )
2

( , ) ( , ) ( , ), (1)x

2
2 2

where m is the atom mass and V x t( , ) is the time-dependent optical lattice potential. The
effective 1D coupling constant, ω= g a2 str (where as is the s-wave scattering length), is the
relevant interaction strength in a setup where only the ground state of a confining transverse
harmonic oscillator of frequency ω π2tr is populated. This is the 1D mean-field regime,
characterized by the condition ρ ≪a 1s , where ρ Ψ=x t x t( , ) | ( , )|2 [33, 34]. At the same time,
ρ ≫a a 1str

2 (with atr as the transverse oscillator length) must be satisfied to stay away from the
Tonks-Girardeau regime [33, 35, 36]. Taking the initial bulk density, n0, as a typical value for
the density, we can realistically set (see section 4) ∼ −n a 10s0

1 and ∼n a a 10s0 tr
2 3, from which

we conclude that we are safely in the 1D mean-field regime.
Equation (1) conserves the total particle number, N, as given by the normalization

condition

∫ Ψ=N x x td ( , ) . (2)2

The condensate density is nonzero only for >x 0, because at all times we assume a sufficiently
high barrier at x = 0, which is simply implemented via the hard-wall boundary condition,
Ψ =t(0, ) 0.

Initially (at times <t 0), we consider an equilibrium condensate made of N atoms
occupying the region < ≲x L0 . Thus, ≃n N L0 is the initial atom density, which is defined
more precisely below. We also introduce an optical lattice that spans the region

≲ ≲ +L x L L lat, whose initial amplitude, V0, is large enough that particle tunneling through
the lattice is practically forbidden. The initial wave function is stationary,
Ψ Ψ= μ− x t x( , ) e ( )ti 0 , with Ψ x( ) satisfying the time-independent GP equation

⎡
⎣⎢

⎤
⎦⎥μ Ψ Ψ− ∂ − + + =

m
V x g x x

2
( , 0) ( ) ( ) 0. (3)x

2
2

0
2

3

New J. Phys. 16 (2014) 123033 J R M de Nova et al



The initial chemical potential, μ0, is determined by the normalization condition (2). The initial

healing length is defined as ξ ≡  mgn0
2

0 , where μ≡n g0 0 . Further details on the initial
condensate are given in appendix A. At time t = 0, the optical lattice intensity starts to decrease
and atoms begin to escape toward the region ≳ +x L L lat, where the potential is assumed to be
negligible. On fairly general grounds [15, 34, 37], we can expect the flow beyond the optical
lattice to be supersonic.

We assume that the optical lattice is made of two fixed phase lasers of wavelength λ, and
whose wave vectors form an angle, θ [38, 39]. The time-dependent optical lattice potential is
chosen so that in the lattice region (defined by − ⩽ ⩽ − +L x L Ld d

2 2 lat) and for times ⩾t 0,

= −

= + − τ
∞ ∞

−

[ ]
( )

V x t V t k x L

V t V V V

( , ) ( ) cos ( )

( ) e , (4)

L

t

2

0

where π=k dL and λ θ=d [2 sin ( 2)] is the lattice period, while =V x t( , ) 0 everywhere else.
The potential profile in equation (4) is somewhat idealized. A more realistic choice should

include a Gaussian envelope. For simplicity, we choose to start by considering a flat-envelope
optical lattice, where Blochʼs theorem can be invoked with reasonable confidence. We will see
that, remarkably, essentially the same results are obtained when a more realistic Gaussian
envelope is used. A sketch of the time-dependent, flat-envelope optical potential and the
resulting condensate flow is presented in figure 1.

3. Preliminary remarks

We note that the time-dependent amplitude, V(t), evolves from μ≫V0 0 at ⩽t 0 to μ≳∞V 0 for
τ≫t . The asymptotic behavior is determined by the initial parameters of the condensate

0 L Lx 1at

t tρ(x, )

tV(x, )

0τ

Figure 1. Schematic representation of the emitting condensate setup studied in this
article. Within the ideal lattice scenario, hard-wall boundary conditions are assumed at
x = 0, and an optical lattice lies in the region < <L x L lat with a time-dependent
amplitude such that the potential, V x t( , ) (represented by the semi-transparent yellow
surface over the −x t plane), evolves from strongly to moderately confining. The
resulting time-dependent density profile, n x t( , ), is represented by the grey-blue surface.
The vertical axis gives the density in some (unimportant) units. The surface, V x t( , ), is
uplifted to provide a better vision of n x t( , ). Some parameters defined in the main text
are indicated. The trend towards a long-time quasi-stationary flow regime can be
qualitatively observed.
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N g L( , , ), the specific form of the final potential ( ∞V , d), and the barrier-lowering time scale (τ).
The initial potential amplitude, V0, plays almost no role, provided that it is sufficiently large.
More precisely, the condition of initial confinement requires μ0 to lie well below the lowest
conduction band of the initial optical lattice potential. On the other hand, the properties of the
final steady state are insensitive to τ unless τ is very small (see subsection 4.1.2).

The main goal of this work is to identify the barrier-lowering protocol that best leads to a
regime of quasi-stationary outcoupled flow, by which we mean a flow regime characterized by
parameters that vary slowly in time in a sense that we will specify later. For space dependence
in that regime, we require the density to be as uniform as possible in the region < ≲x L0 .

In the supersonic region ( ≳ +x L L lat), we also want a uniform flow profile, even though
this will be more difficult to achieve due to the low density. However, disturbances in the
supersonic region should not affect the spectrum of the part of the Hawking radiation that is
emitted into the subsonic region. On the other hand, in the optical lattice region, the flow should
be as close as possible to that of a propagating Bloch wave. At the boundary between these two
regions, large gradients of the flow speed and density are likely to occur, but the current density
should remain essentially uniform.

In what follows, when we refer to bands, we mean the Schrödinger (noninteracting) bands,
unless specified otherwise. Bands in a nonlinear context are discussed in appendices B and C.
We will see that in virtually all cases, the relevant properties of the optical lattice are determined
by its lowest band, provided the lattice is sufficiently long. An important result is that, due to the
finite size of the subsonic reservoir, the quasi-stationary flow is formed only when the space-
averaged chemical potential lands at a value slightly above the bottom of the lowest lattice
band. Because the local chemical potential is approximately uniform along the structure, this
implies that the density is small almost everywhere in the optical lattice region. As a
consequence, the interaction term can be neglected, since Ψ ≪ g x t k m| ( , )| ( )L

2 2 ; see
appendix B for details. In the noninteracting regime, equation (1) becomes the usual
Schrödinger equation, which for a sinusoidal potential can be transformed into a Mathieuʼs
equation [40].

The structure of the final bands can be characterized by the dimensionless parameter

≡ ∞ v mV k8 . (5)L
2 2

The nearly-free atom regime occurs when ≪v 1. Then bands are wide and gaps are narrow. By
contrast, in the tight-binding regime ( ≫v 1), bands are narrow and widely spaced. Since

∝ ∞v V d2, the band structure can be modified by changing the lattice amplitude or its spacing.

4. Ideal optical lattice

In this work, the unit length is the initial bulk healing length, ξ0, defined in section 2.
Accordingly, velocities are measured in units of the sound speed, ≡c gn m0 0 , and times are
measured in units of ξ≡t c0 0 0. Energies are expressed in units of the initial chemical potential,
μ = mc0 0

2. Quasi–1D condensates of 87Rb are typically made of ∼ −N 10 104 7 atoms and

have a transverse trapping frequency of ω π∼ ×2 10tr
3 Hz and a confinement length of ∼L

10–400 μm. The optical lattice periodicity is bounded from below, λ>d 2 nm, for geometrical
reasons. The value of lambda is chosen to be sufficiently far from the resonance to avoid any
spontaneous emission, and on the blue-side of the resonance to produce a repulsive potential
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(λ < 780 nm for rubidium atoms). The simulations are run up to times ∼t 104– t105
0. As

ω= ∼− −t n a(2 ) 10s0 0 tr
1 4 s, then ∼t 1–10 s for our simulations, which is on the order of the

mean lifetime of this type of condensate.
In the simulations, we use a numerical scheme based on the Crank–Nicolson method to

integrate the time-dependent GP equation (1). Hard-wall boundary conditions are assumed at
x = 0. At the other end of the finite-size computational grid (located at =x Lg, with Lg as the
total length of the grid), we use absorbing boundary conditions. Lg is taken so that the final
point of the grid is sufficiently far from the end of the optical lattice for the supersonic region to
be clearly observed. Further details of the numerical method are given in appendix D.

4.1. Analysis of the simulations

To characterize the quasi-stationary regime, we use the local chemical potential defined as

μ Ψ
Ψ

Ψ≡ − ∂ ∂ + +
x t

m

x t x

x t
V x t g x t( , )

2
( , )
( , )

( , ) ( , ) , (6)
2 2 2

2

which can be complex. For a stationary solution, Ψ Ψ= μ− x t x( , ) e ( )ti , one has μ μ=x t( , ) ,
real and independent of (x, t). The current,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Ψ Ψ Ψ Ψ= − ∂

∂
− ∂

∂


j x t
m x x

( , )
i
2

*
*

(7)

is also independent of (x, t) for a stationary solution, as dictated by the continuity equation,
ρ∂ + ∂ =j 0t x . In the quasi-stationary regime, the uniformity of j x t( , ) is impossible to fulfill

strictly, because the current is zero at x = 0, while the emitted atoms carry a nonzero current.
Thus, there must be a current gradient and, by the continuity equation, the density has to be time
dependent. However, the hope is that, in the quasi-stationary regime, this time dependence is
weak because the condensate leak is slow.

On the other hand, we can expect that, in the quasi-stationary regime, μ x t( , ) is a
sufficiently uniform function, with small spatial variations around its space-averaged mean
value. To check this expectation in a quantitative manner, we introduce the space-averaged
chemical potential, μ t¯ ( ), together with an appropriate measure of its relative spatial fluctuation
spread, σ t( ):

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥

∫
∫

∫
∫

μ
ρ μ

ρ

σ
μ

ρ μ μ

ρ

≡

≡
−

t
x x t x t

x x t

t
t

x x t x t t

x x t

¯ ( )
d ( , ) ( , )

d ( , )

( )
1

¯ ( )

d ( , ) ( , ) ¯ ( )

d ( , )
. (8)

L

L

L

L

0

0

0

2

0

g

g

g

g

1
2

We recall that μ x t( , ) and μ t¯ ( ) can be complex. A nonzero imaginary part of μ x t( , ) reflects a
leaking condensate, as revealed by the local relation
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ρ ρ μ∂
∂

=
t

2
Im . (9)

Accordingly, we can define and compute the emission rate per particle as

∫
Γ

ρ
μ≡ = −


( )

t
j L t

x x t
t( )

,

d ( , )

2
Im ¯ ( ), (10)

g

L

0

g

where the continuity equation has been used. The spatial average of the time-dependent
chemical potential [see equation (8)] is mostly determined by the subsonic region, where
μ ρ≃x t g x t( , ) ( , ).

A further rescaling of the condensate wave function, Ψ Ψ→x t n x t( , ) ( , )0 , more neatly
reveals the intrinsic parameters governing the system. Once the healing length, ξ0, is given, only

ξ ξ τ ∞L d t V mc, , ,0 0 0 0
2, and ≡n L dosc lat (number of oscillations in the optical lattice) are

relevant to the problem. We have already noted that V0 plays almost no role in the limit μ≫V0 0
. We find that, for the pertinent experimental ranges, namely ∼L 10–400 μm, variations of ξL 0

have little effect on the properties of the quasi-stationary regime. We have noted that they have
a small influence on the time needed to achieve the desired quasi-stationarity, which grows
weakly with the initial size of the condensate. A similar point can be made about nosc, which
becomes unimportant when it lies in the range ∼nosc 15–100. The (relatively small) effect of
increasing nosc even further is that there are more spatial fluctuations in the chemical potential,
for two reasons: the optical lattice tends to host larger μ x t( , ) spatial fluctuations than the
subsonic zone because of atomic reflections across the wells, an effect that is enhanced for
larger optical lattices; and the larger the lattice, the bigger its contribution to the average
chemical potential and its fluctuations.

In summary, except for the above remarks, only the parameters ξ τ ∞d t V mc, ,0 0 0
2, have

a noticeable effect on the transport properties of the system under study.

4.1.1. Role of the final band structure. As previously noted, the combination of d and ∞V fixes
the final band structure. Figure 2 shows the various possible scenarios, depending on the long-
time width and position of the lowest band with respect to the initial chemical potential, μ0. The
band structure is computed numerically. The desired steadiness of the long-time behavior
improves with the width of the band, as the first row in figure 2 reveals. In figure 2(a), a
favorable case (wide band) is presented and compared with a less favorable case in figure 2(b),
which has the same conduction band minimum but a narrower band. After a short transient, a
comparison of the relative chemical-potential standard deviation, σ t( ), as defined in
equation (8) and plotted in the graph, shows a clear advantage in the use of wider bands.
For instance, in figure 2(a), σ ∼ −t( ) 10 4 in the stationary (long-time) regime, about 10 times
smaller than in figure 2(b).

After a transition time of order ∼ t5000 0, all the characteristic magnitudes of the system
shown in figure 2(a) vary slowly enough in time to properly view the resulting flow regime as
quasi-stationary. In fact, the leak is so slow that other processes that limit the lifetime of the
condensate (such as condensate decay due to inelastic collisions) operate on a shorter time
scale.

If the chemical potential reaches and goes below the bottom of the conducting band in a
relatively short time, then a transition occurs to an essentially confined situation where the leak

7
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is exponentially small, corresponding to an atom transmission probability,
κ∝ −T L L( ) exp ( )lat lat , where κ μ∝ −Emin , with Emin being the bottom of the conducting

band. This situation whereby one soon reaches the regime μ < Emin , is not interesting for our
purposes because we need some appreciable flux to form a useful black-hole configuration. In
particular, we are typically interested in considering condensates so large that the time needed to
reach the bottom of the conduction band is longer than the typical lifetime of the condensate.

A further argument can be invoked in favor of wide bands. In virtually all the cases we
have addressed, μ tRe ¯ ( ) drops until it almost reaches the bottom of the conduction band, where
leaking is slow. In the resulting regime, the density in the lattice is very small, ≪ gn k m¯r L

2 2 ,
where n̄r is the mean density in the optical lattice, as defined precisely in subsection 4.2. We
show in appendix C that, in this regime of low interactions, the width of the conduction band for
the linear perturbations (whose evolution is governed by the BdG equations) is very close to
that obtained for the linear Schrödinger equation, and the corrections are computed there. This
means that the optical lattice acts like a low-pass filter, the band width being the equivalent of

Figure 2. Time evolution of the real part of the space-averaged chemical potential, μ t¯ ( )
(black dashed line), and its fluctuation spread, σ t( ) (green solid line), both defined in
equation (8). The gap and conduction band of the instantaneous band structure, which
was computed from the potential equation (4) are indicated, respectively, by grey and
white backgrounds. All graphs are computed with τ = t500 0, μ=L 400 m, =n 30osc ,

=N 104, and ω π= ×2 4 kHztr , which yields μ= −n 25 m0
1 and ξ μ= 0.3175 m0 . The

long-time potential amplitude, ∞V , and the lattice spacing d are indicated in the graphs.
The dimensionless parameter v (see equation (5)) takes the values
(0.0905, 0.2350, 0.2036, 0.1018) for graphs (a)–(d). The setups (a) and (b) are
designed to have the same band bottom. The simulations are run until a time

× =t4 10 5.5 s4
0 . Note that the scale of σ t( ) is considerably enlarged. The initial

value, σ (0) (only observed with some magnification), is spurious, and is related to the
discrete approximation to the derivatives in equation (6).
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the cutoff frequency. The higher the cutoff, the wider the transmission band of the lattice is. As
a consequence, fluctuations on the subsonic side are transmitted away through the optical
lattice, which reduces the space fluctuations in the chemical potential.

Another trend can be observed in the second row of figure 2. When placing μ0 slightly
below the top of the conduction band or in the first gap, as figure 2(d) illustrates, leaking occurs
faster, but the reached regime presents much larger fluctuations than in the other cases shown in
figure 2. For the purpose of keeping σ ≪t( ) 1, a more favorable situation for the chemical
potential is shown in figure 2(c). There, for the same length, d, as in figure 2(d) but a higher
barrier amplitude, ∞V , the chemical potential is initially placed in the final conduction band. This
case clearly yields smaller fluctuations, even though the width of the conduction band is
smaller. This shows that, besides having wide bands, one also needs μ0 to be placed close to the
bottom of the final conduction band in order to obtain a more favorable quasi-stationary regime.
This point is further discussed in the next subsection (4.2).

Within the nearly free particle approximation ( ≪v 1), the bottom and top of the first
conduction band are given by the relations:

= − +

= + − +

( )
( )

( )
( )

E v E v v O v

E v E v v O v

( ) 8

( ) 1 4 2 , (11)

min R
2 4

max R
2 4

where ≡ E k m2LR
2 2 is the recoil energy of the optical lattice. Given that π=k dL , the

condition that the initial chemical potential lies within the final conduction band, that is,

μ< <E v E v( ) ( ), (12)min 0 max

is guaranteed to be satisfied if

μ< <E v E8 . (13)R 0 R

The left inequality is just

μ<∞V

2
, (14)0

while the right inequality can be rewritten as:

π ξ<d
2

. (15)0

Equations (14) and (15) express a sufficient condition to satisfy equation (12).

4.1.2. Non adiabatic effects. In the favorable situation shown in figure 2(a), the dependence
on τ is not important as long as τ ≫ t0. A simulation is presented in figure 3, showing that in the
fast regime (τ ∼ t0), and due to the high-frequency excitations induced by the short lowering
time scale, σ t( ) remains higher than in the adiabatic case (see figure 2(a)).

4.2. Quasi-stationary regime

From the discussion in the previous subsection (4.1), and particularly through the situation
shown in figure 2(a), we have learned that, for wide enough bands, initial chemical potential
close to the bottom of the final conduction band, adiabatic evolution (τ ≫ t0), and a typical
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setup, the system evolves towards a quasi-stationary regime in a time frame that is shorter than
the lifetime of a condensate.

The quasi-stationary regime can be defined as a regime where Re μ x t( , ) is essentially
uniform [σ ≪t( ) 1] and whose global time variations take place on a time scale of the order of,
or greater than, the condensate lifetime. We focus our study on the most favorable quasi-
stationary scenarios, which we identify here with those satisfying σ ≲ −t( ) 10 4.

The achievement of this regime is of general interest as a scenario for the study of atom
quantum transport. In particular, one may expect spontaneous Hawking radiation to be
detectable above a quasi-stationary background with small spatial fluctuations.

In this section, we discuss several features of the condensate wave function for the quasi-
stationary regime. For illustration purposes, all the graphs considered in this subsection have
been obtained for a system with the parameters found in figure 2(a), which are sufficiently
representative.

By writing the condensate wave function as Ψ ρ= ϕx t x t( , ) ( , ) e x ti ( , ), we may introduce
two local velocities:

ϕ

ρ

≡
∂

≡


v x t

x t

m

c x t
g x t

m

( , )
( , )

,

( , )
( , )

, (16)

x

with v x t( , ) being the local condensate flow velocity and c x t( , ) being the local speed of sound.
The spatial variations of both velocities are small in the subsonic and supersonic regions, but
not in the lattice. We note that, in that region, c x t( , ) must not be regarded as the lattice sound
speed (see appendices B and C).

The profile of both quantities computed at a time, = ×t t4 104
0, after a barrier removal

time of τ = t500 0, is shown in figure 4. The subsonic zone shows an essentially flat (uniform)
density and flow speed profile, in the sense that the spatial fluctuations are on the order of
∼ − n10 4

0 for the density and ∼ − c10 3
0 for the flow speed, which is too small to be observed in

figure 4. An approximate analytical formula (equation (A.21)) for the wave function of the

Figure 3. Fast barrier lowering. Same parameters as in figure 2(a) except for τ = t0,
which is too short a time to be observed on this scale.
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initially confined condensate fits the numerical results within this level of accuracy. This good
agreement reflects the low value of the flow velocity in the condensate region.

On the other hand, in the deep central region of the optical lattice, Blochʼs theorem is
satisfied. We introduce the space-averaged density, n t¯ ( )r , by averaging ρ x t( , ) over the optical
lattice after excluding 10 lattice sites at each end of the lattice. That average density, combined
with numerically computed quantities that depend on the optical lattice potential, yields an
effective sound velocity (see equation (C.15)) that is plotted as a horizontal green segment
spanning the averaged region in figure 4. One can clearly see that, within the optical lattice, the
flow is subsonic, with the horizon lying on its right edge. In the quasi-stationary regime, n t¯ ( )r

decreases at a rate comparable to the inverse lifetime of the condensate, as the inset in figure 5
shows.

At the edges of the lattice, there are strong variations of the density due to the the matching
between the vastly different densities found on both the subsonic and the supersonic sides.

A check on the approximate validity of Blochʼs theorem in the presence of nonlinear
corrections, for the central part of the optical lattice and in the quasi-stationary regime, is also
shown in figure 5. In this graph, the real part of μ t¯ ( ) is compared with the time-dependent
chemical potential computed using n t¯ ( )r and assuming zero Bloch momentum, as explained in
the first paragraphs of appendix B. The good agreement between the two curves suggests that
the condensate flows with a very small Bloch momentum.

In the supersonic zone, once in the quasi-stationary regime, both density and flow-speed
profiles are almost uniform. This is hinted at in figure 4, but is not shown explicitly. Part of the
nonflat behavior is due to small spurious reflections; see appendix D for details. Conservation of
the chemical potential and the near absence of interaction effects in this zone make the flow
speed almost uniform, because the chemical potential is almost fully transformed into kinetic
energy. On the other hand, the supersonic density decays with time as the reservoir is depleted,
but the process is such that, at each instant, the density profile remains essentially uniform (not

Figure 4. Local flow velocity (red) and local speed of sound (blue) at a late time,
= ×t t4 104

0. The horizontal green segment shows the speed of sound in the optical
lattice, computed using (C.15), with the coefficients there appearing to be computed
numerically. Within this finite lattice, the mean density is n t¯ ( )r , computed by dropping
10 lattice sites at each end of the lattice. System parameters are the same as in
figure 2(a).
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shown). An inhomogeneous density profile would show up only on a space scale much larger
than that used in this simulation. A comparison of the decaying supersonic density, nd(t), and
the nearly constant supersonic side speed, vd(t), is shown in figure 6 (subindex d stands for
‘downstream’ region). The emission rate per particle (not shown), as computed from
equation (10), is practically identical to the product n t v t( ) ( )d d , except for a numerical factor
corresponding to the instantaneous total number of particles, which in the quasi-stationary
regime is practically constant. This emission rate gives us the typical time scale for the variation
of the number of particles of the system, which is approximately the time scale for the variation
of μ. In the quasi-stationary regime considered here, it is ∼ −− − −t10 106 7

0
1, from which we infer

that the typical variation time of the chemical potential is ∼ − t10 106 7
0, much longer than the

lifetime of a condensate, which is ∼ t104
0.

We conclude that the realization of this quasi-stationary regime needs two fundamental
ingredients: the existence of a band structure and the presence of interactions. Without a band
structure such as the one provided by the optical lattice, the condensate would continue leaking
through the barrier at a fast rate. On the other hand, the presence of interactions (as reflected in
the fact that μ∂ ∂ ≠n 0) allows the condensate to stabilize its flow near the bottom of the
conduction band. If the interactions in the subsonic region were negligible, the condensate
would empty quickly (if μ0 lay in the final conducting band) or it would remain confined (if μ0
lay in the final gap).

Such trends can be seen in the accompanying videos (available at stacks.iop.org/njp/16/
123033/mmedia) that represent simulations for the same parameters as in figure 2(a) except for
L = 10 μm and N = 250. The qualitative conclusions are similar. In video 1, we see the time
evolution of the density of a condensate confined by an ideal optical lattice of 30 barriers. We
see that the system achieves the desired quasi-stationary regime. On the other hand, in video 2,
we introduce a similar potential, but with a single barrier. We observe that the fluid leaks faster
through the single barrier because there is no structure providing a conduction band whose
lower boundary is raised close to the chemical potential in order to efficiently slow down the

Figure 5. The same system parameters as in figure 2(a). Blue: real part of the space-
averaged chemical potential, μ t¯ ( ) (see equation (8)). Green: chemical potential for zero
Bloch momentum computed from the results of appendix C and using n t¯ ( )r as the mean
density, which is precisely defined in the previous figure and plotted in the inset.
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density decrease. This conclusion applies to the class of setups we are considering, which
include an initially confined condensate. In other approaches, such as that of [21], the
condensate is projected onto a potential barrier and a quasi-stationary black-hole regime is also
eventually reached.

The interaction plays the additional role of providing relaxation channels, whereby the
condensate lowers its energy while some collective modes are excited. The existence of Landau
instabilities (see appendix B) when μ0 lies well above Emin can be clearly observed in the upper
right corner of figure 5 of [41], whose chosen parameters are similar to those of the present
work. The low value of the critical velocity helps us understand the small value of the
condensate Bloch momentum, which we infer from the numerical results shown figure 5 of this
article. The appearance of instabilities can also be viewed as responsible for the fast lowering of
the chemical potential after being initially prepared above the final conduction band, as shown
in figure 2(d). This interpretation is consistent with the relatively large values found for σ t( )
when μ0 is considerably above E .min

5. Gaussian-shaped optical lattice

Here we perform the same analysis as in the previous section, but we use a more realistic optical
lattice that includes a Gaussian envelope [38, 42, 43]:

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥= − − −[ ]V x t V t k x L

x L

w
( , ) ( ) cos ( ) exp 2

˜
(17)L

2
2

where θ=w w˜ cos ( 2) (with w being the laser beam width and θ being the angle between the
laser beams) plays the role of an effective lattice length. The time dependence of V(t) is the
same as in equation (4). Usually, w̃ varies in a range of 10–200 μm. Here, L is the position of the
maximum of the lattice Gaussian envelope. For consistency, we replace the hard wall at x = 0
with a Gaussian barrier of the type = −V x U x w( ) exp ( 2 )L L

2 2 with μ=w 2 mL and μ≫U 0 in
order to simulate a more realistic confinement on the left side. This time-independent potential

Figure 6. Time evolution of the mean density and the mean flow velocity on the
supersonic side. The means are taken over the entire downstream region. System
parameters are the same as in figure 2(a).
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must be added to the time-dependent potential (17), which provides confinement on the right;
see appendix A for a detailed description of the initial confinement.

In the ‘adiabatic’ regime ( ≫w d˜ ), the solutions of the linear Schrödinger equation for this
type of potential can show features similar to those found for an ideal optical lattice with the
same instantaneous amplitude, V(t), as one can see in figure 7, where the transmission bands are
compared. If we focus on the long-time limit ( = ∞V t V( ) ), the realistic potential acquires the
form

= −∞ [ ]V x V x k x L( ) ( ) cos ( ) , (18)L
2

where

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥= − −

∞ ∞V x V
x L

w
( ) exp 2

˜
(19)

2

is a slowly varying function. Then, we have a locally ideal optical lattice at each point of the
space with amplitude ∞V x( ). Blochʼs theorem can also be applied locally, resulting in a local
band structure that is plotted as a function of space in figure 8. A similar type of reasoning was
already used in [44–46]. The left panel presents the setup whose single atom transmission is
plotted in figure 7. Since the bottom of the lowest lattice conduction band is an increasing
function of the periodic potential amplitude, the bottleneck for transmission across the realistic
lattice occurs at the center of its Gaussian envelope. This fact explains the accurate coincidence
between the bottom of both conduction bands shown in figure 7. We also see that for >E ER,
which is defined after equation (11), the particle encounters a gap somewhere along the
Gaussian lattice, and this explains why the transmission begins to decay for >E ER in figure 7.
For < <E v E E( ) Rmin , the setup shows a plateau of essentially perfect atom transmission. The
absence of interference oscillations in this region is due to the adiabatic variation of the lattice
envelope. The right panel presents the different case of <E E v( )R min . From the preceding

Figure 7. Single atom transmission probability T(E), as a function of energy, for a
realistic (Gaussian-shaped) optical lattice (blue) with the instantaneous value

=V t E( ) 1.6 R (see equation (17)) and =w d˜ 30 , with ER defined after equation (11),
and for an ideal (flat) optical lattice (red) with same amplitude, V(t), and =n 30osc .
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arguments, we do not expect to find a conduction band that can be numerically confirmed. We
conclude that, in order to have a well-defined conduction band for the realistic lattice, the
condition >E E v( )R min is required, which implies <∞V E2.33 R. Combining all these
considerations, we conclude that a necessary condition for achieving a quasi-stationary regime
is μ<E v( )min 0. We also require μ < ER0 to avoid having μ0 lying too high above E v( )min ,
which, as found for the ideal lattice, tends to generate relatively high values of σ t( ). This last
inequality is equivalent to equation (15).

Here, space can also be divided into three zones. In the quasi-stationary regime, both the
subsonic and supersonic zones are located where the Gaussian envelope amplitude is negligible
compared to the chemical potential, that is, where

μ≪∞V x t( ) Re ¯ ( ) (20)

as seen in equations (8) and (19). For the subsonic side to be well differentiated, we set ≫L w̃.
The optical lattice region is the complementary of the subsonic and supersonic zones (i.e., the
region where (20) does not apply).

The requirements of quasi-stationarity are similar to those formulated for the ideal optical
lattice. Specifically, the quasi-stationary regime requires broad conduction bands, an initial
chemical potential close to the bottom of the final conduction band, and a barrier amplitude that
does not evolve very fast. We also find that the condensate leaks relatively fast until μ tRe ¯ ( )
(equation (8)) approaches the bottom of the conduction band. All these features can be observed
in figure 9, which is the Gaussian-envelope equivalent of figures 2 and 3. We reach a quasi-
stationary state in which σ ∼ −t( ) 10 4. The bands in figure 9 are computed as in the ideal case,

Figure 8. Plot of the spatially dependent energy bands for a realistic optical lattice with
=w d˜ 30 . We use the same color criterion as we did for the band structure of figure 2.

Left panel: the instantaneous value of the amplitude is =V t E( ) 1.6 R, which
corresponds to the case of figure 7. Right panel: the instantaneous value of the
amplitude is =V t E( ) 4 R. In this case, the first conduction band becomes ineffective, as
we can expect from the plot, since transmission is always hindered somewhere for the
energies of interest.
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assuming a uniform barrier amplitude, V(t). As noted in the discussion of figure 7, the positions
of the bottom of the ideal and the realistic conduction (or transmission) bands are very similar,
so the lower threshold of the transmission band can still be a good reference value to discuss the
evolution of μ t¯ ( ).

We notice that in the Gaussian case, the condensate apparently leaks from the beginning of
the simulation. What is actually happening is that the chemical potential is already lowered by
the initial expansion of the condensate towards the neighboring, low-amplitude region of the
Gaussian optical lattice, even when the leaking (towards the right side of the Gaussian
envelope) is not yet occurring. This process can be observed in the simulation later presented in
video 3 at the end of section 5.1. The situation contrasts with that shown in figure 2, where the
condensate only begins to leak when the chemical potential is placed within the
conduction band.

We also study the corresponding quasi-stationary state. For that purpose, we take a
snapshot of the configuration at = ×t t4 104

0 for the parameters in figure 9. We compare the
profiles of c x t( , ) and v x t( , ) in figure 10, which is the realistic equivalent of figure 4. The
apparently sharper oscillations, as compared to those in figure 4, are due to the different
horizontal scales used. The larger oscillations of the flow velocity beyond the horizon with
respect to those inside the lattice subsonic region in figure 4 can be explained because of the
large difference in the space-averaged flow velocities. In the supersonic region, we again find
essentially flat profiles for the density and flow velocities, with their time evolution shown in
figure 11. The general features of this quasi-stationary configuration are similar to those of the
ideal case, but some interesting new features appear.

5.1. Location of the sonic horizon and related properties

We notice in figure 10 that the horizon seems to be placed at the maximum of the Gaussian
envelope. This can be explained on general grounds by invoking the properties of the quasi-
stationary regime and the adiabaticity condition, ≫w d˜ , which allows us to think in terms of a

Figure 9. Time evolution of the real part of the chemical potential and its fluctuation
spread in a realistic (Gaussian-shaped) optical lattice. The parameters are μ=w̃ 50 m,

=d 600 nm, τ = t500 0, and =∞V mc1.5 0
2 and we have taken ξ μ= 0.3053 m0 . The

confinement parameters are N = 9161, μ=L 420 m, and ω π= ×2 4 kHztr .
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local band structure stemming from a periodic potential of local amplitude ∞V x( ). Then we can
use an adiabatically space-dependent version of equations (C.10)–(C.18) (where the sound
speed, atom current, and chemical potential are obtained for an infinite optical lattice) by
making every parameter slowly dependent on x.

In particular, we take:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥α

μ

=

≃

≃ + +

s x
gn x

m x
x

j x n x v x

x E x m x v x m x s x

( )
( )

*( )
( )

( ) ( ) ¯ ( )

( ) ( )
1
2

*( ) ¯ ( ) *( ) ( ), (21)

r

r

0
(1)

min
2 2

1
2

Figure 10. Local flow velocity (red) and local speed of sound (blue) at = ×t t4 104
0.

System parameters are the same as in figure 9.

Figure 11. Time evolution of the mean density and the mean flow velocity on the
supersonic side for a condensate emitting through a Gaussian-shaped optical lattice.
System parameters are the same as in figure 9.
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where we neglect the time dependence because the system is assumed to already be in the quasi-
stationary regime. The local averages for n v, ¯r are taken over several lattice periods. In the
quasi-stationary regime, the chemical potential is already close to the bottom of the conduction
band, so the perturbative study used in appendix C is valid. Taking spatial derivatives, while
noting that the chemical potential is almost uniform, μ μ≃x( ) ¯, and that ∂ j x( )x can be neglected
(as implied by the continuity equation and quasi-stationarity), we arrive at:

α
α

= ′ + + + − ′′
′

( )E m v m s m v s
v

v
0

1
2

* ¯ * * ¯
¯
¯

. (22)min
2 0

(1)

0
(1)

2 2 2

The quantities αE x m x x( ), *( ), ( )min 0
(1) depend on x through the amplitude of the envelope,

∞V x( ), and they increase with its value, provided that the envelope amplitude is always positive
(see equation (C.16)). Therefore, the first three terms in the right-hand side of (22) have the
same sign.

Let us assume that we have a horizon ( =s v̄) somewhere in the optical lattice. We prove
next that a necessary implication is that an envelope maximum or minimum exists at that point.
It has just been noted that the first three terms in (22) have the same sign. Thus, their sum can
only be zero whenever the derivative of the amplitude is zero (i.e., when ′ =∞V x( ) 0). In our
setup, this means that we have an amplitude maximum at the horizon.

Now we consider the inverse implication. Assume we have ′ =∞V x( ) 0, which in our setup
is the case at x = L. This implies that the first three terms in (22) are zero. As a consequence, we
are left with two possibilities:

=s L v L( ) ¯ ( ) (23)

(i.e., a horizon) or ′ =v̄ 0. By the continuity equation, the second option implies a density
minimum, which must be ruled out in our current single-Gaussian-barrier setup. However, it
can be a perfectly feasible result in other experimental contexts.

Finally, we note equation (22) can also be written as

= ′ + + + ′ + ′′( ) ( )E m v s m vv ss0
1
2

* ¯ 2 * ¯ ¯ 2 , (24)min
2 2

and, as a corollary of the foregoing analysis, we find that at the horizon, ′ = − ′s L v L( ) ¯ ( ) 2.
We can further exploit the previous results. For example, we can obtain the value of the

density and the current at x = L as a function of μ̄:

⎜ ⎟⎛
⎝

⎞
⎠

μ
α

μ

α

=
−

= =
−( )

gn L
E

j L n L v L
E

g m

( )
2
3

¯
,

( ) ( ) ¯ ( )
2
3

¯

*
, (25)r

min

0
(1)

min

0
(1)

3
2

3
2

which are very good approximations to the actual numerical values. Here, the dependence of the
various parametes on L is understood. Using (25), we can arrive at a differential equation for the
time evolution of μ̄. First, we note that from the continuity equation, we can write:

= −
N

t
j L

d

d
( ), (26)L
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where NL is the number of particles contained between x = 0 and x = L. As the subsonic region
is in the Thomas-Fermi regime (see appendix A), we can take μ ≃ gN L¯ sb sb, where Nsb is the
number of particles in the subsonic region and Lsb is its size. Since the density in the optical
lattice is small, we can assume ≃N NL sb (which implies μ ∝ N¯ L), and write equation (26) as:

μ μ= − −( )
t

C E
d ¯
d

¯ , (27)min
3
2

where C is a positive constant independent of μ̄. The solution of this equation is

μ = +
−

t E
C t t

¯ ( )
4

( )
, (28)min 2

1
2

(with t1 an integration constant), which fits the numerical data of figure 9 reasonably well.
Finally, we can estimate the value of the Hawking temperature, which is given by:

π
= − =
 [ ]k T

x
v x s x

2
d
d

¯ ( ) ( ) (29)B x LH

If we note that we operate in the nearly-free atom approximation ( ≪v 1) and in the weak
interaction regime ( ≪gn Er R), and derive twice the third equation (21), we obtain

π
≃ −∞

k T
w

V

m
v

2 ˜

3

*
(1 ), (30)B H

which gives a good estimate of the numerical value of the Hawking temperature. Noting that

μ∼ ∼∞V m m, *0 , we obtain ξ μ μ μ∼ ∼ ≪−k T w̃ 10B H 0 0
2

0 0. The temperature of the

condensate is typically of the order of μ kB0 , so we conclude that ∼ ≪−T T T10H
2 .

To observe the birth of the black hole and to check that the horizon position naturally
evolves towards the maximum of the optical lattice envelope, we have created a movie (video 3)
that shows the time evolution of the coarse-grained velocities c v( ¯, ¯) of the emitting condensate,
using the setup parameters of figure 9. At long times, the predicted coincidence between the
sonic horizon and the maximum of the Gaussian envelope in the stationary regime can be
clearly observed.

When applied to an ideal optical lattice, the above arguments on the position of the horizon
yield no preferred point for the location of the horizon because the envelope is uniform.
Actually, in the bulk of the lattice, since ′ =∞V 0 everywhere, the natural outcome (from the
discussion leading to equation (23)) is ′ =v̄ 0 everywhere (i.e., the mean velocity and, by quasi-
stationarity, the mean density are also uniform, as can be observed in figure 4). This fact only
leaves two options: either the lattice bulk is subsonic or it is supersonic. The latter choice is
energetically unstable (see [41]) and as a consequence, the subsonic regime is energetically
favored in the bulk of the lattice. In the rightmost region, where the potential is not present, the
flow must be supersonic, so the only possibility for the horizon is to lie at the right extreme of
the lattice, as one can see in figure 4.

6. Conclusions

Within a mean-field description, we have investigated the process where an initially confined
atom condensate is coherently outcoupled as the barrier on one side is gradually lowered. The
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goal has been to identify the barrier-lowering protocol that best leads to a quasi-stationary sonic
black hole located at the interface between subsonic and supersonic flow. We find that the use
of an optical lattice for the lowered barrier is convenient for achieving a regime of quasi-
stationary flow with minimal value of the fluctuation spread. First, we focused on an optical
lattice of finite length and uniform amplitude. We found that the long-time band structure of the
optical lattice greatly influences the asymptotic behavior of the emitted atom flow. Within this
class of setups, the best quasi-stationary flow was is achieved when the lowest conduction band
was broad and the initial chemical potential lay not much higher than the bottom of the final
conduction band. In optimal cases, the relative value of the spatial fluctuations can be as small
as σ ∼ −t( ) 10 4. When we replaced the uniform amplitude of the optical lattice by a more
realistic Gaussian envelope, we found that the results are similar to those of a uniform lattice
with the amplitude of the envelope maximum. Quite interestingly, we argued analytically and
checked numerically that, in the quasi-stationary regime, the horizon separating the regions of
subsonic and supersonic flow was pinned down right at the Gaussian maximum. We also found
that the Gaussian envelope was quite efficient in guaranteeing a small deviation from the ideal
stationary flow.

Whether the quasi-stationary regimes identified in this article can become scenarios for the
detection of Hawking radiation is something that will have to be confirmed by a future study of
the quasiparticle dynamics operating against the background of seemingly favorable mean-field
configurations.

Acknowledgments

We thank I Carusotto and R Parentani for valuable discussions. This work has been supported by
MINECO (Spain) through grants FIS2010-21372 and FIS2013-41716-P, Comunidad de Madrid
through grant MICROSERES-CM (S2009/TIC-1476), and the Institut Universitaire de France.

Appendix A. Initial configuration of the condensate

In this appendix, we compute the initial profile of the condensate, which at early times ( <t 0)
experiences a confining time-independent potential. We require a hard-wall boundary condition
at x = 0, which implies, via continuity equation, that the phase of the condensate is constant in
space. The amplitude Ψ≡A x x( ) | ( ) | of the solution to the time-independent GP equation (3), in
the region where there is no potential, satisfies the equation

⎛
⎝⎜

⎞
⎠⎟ μ− ∂ + =

m
gA A A

2
. (A.1)x

2
2 2

0

As is well known, this equation can be interpreted as the equation of motion for a particle with
‘coordinate’ A and ‘time’ x in a certain potential

μ

μ μ

= −

= =
 

W A A
g

A

m
g

m
g

( ) ˜
˜

2

˜ , ˜ . (A.2)
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Invoking ‘energy’ conservation, the equation can be integrated as

′ + =A W A E
1
2

( ) , (A.3)A
2

where EA is the total energy of this effective motion.
Following [15], equation (A.3) can be rewritten in terms of ρ =x A x( ) ( )2 as

ρ ρ ρ ρ′ = − − −g e e e4 ˜( )( )( ), (A.4)2
1 2 3

where

ρ= ⩽ ⩽ <e e e0 , (A.5)1 2 3

and e2,3 are the zeros of

ρ
μ

ρ− + =
g

E

g
2

˜

˜
2

˜
0. (A.6)A2 0

The solution can be expressed in terms of elliptic functions [40]. Imposing the boundary
condition ρ =(0) 0, one obtains a solution of the form

ρ ν ν= =( )x e ge x
e

e
( ) sn ˜ , , . (A.7)2

2
3

2

3

In order to determine e2,3, another boundary condition is needed, together with the particle number

normalization ∫ ρ =x x Nd ( ) . From (A.2) and (A.6), the chemical potential can be written as

μ =
+

g
e e

2
. (A.8)0

2 3

A.1. Ideal confinement

The ideal confinement boundary condition is defined as =A L( ) 0, and the condensate is
confined between 0 and L. Using equation (A.7), we find

ν= ∈ge L nK n˜ 2 ( ), , (A.9)3

where νK ( ) is the complete elliptic integral of the first kind [47].
Hereafter, we work with the ground state (n = 1). The particle number normalization is

∫ ν= ( )N x e ge xd sn ˜ , . (A.10)
L

0
2

2
3

By performing the integral in equation (A.10) and using (A.9), we have

ν
ν ν= −N

e

ge
K E

˜

2
[ ( ) ( )], (A.11)2

3

where νE ( ) is the complete elliptic integral of the second kind [47]. Equations (A.9) and (A.11)
lead to

ν ν ν= −NgL K K E˜ 4 ( )[ ( ) ( )], (A.12)
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or

⎛
⎝⎜

⎞
⎠⎟ν ν ν

ξ
− =K K E

L
4 ( )[ ( ) ( )] , (A.13)

2

where the healing length, ξ ≡  L mgN2 , is not identical to ξ0 as defined in section 2.
After eventually solving for ν, e2, and e3, equation (A.7) can be rewritten as

⎜ ⎟
⎛
⎝

⎞
⎠ν ν=A x e K

x

L
( ) sn 2 ( ) , . (A.14)2

For the chemical potential, using (A.8) and (A.9), we obtain

μ ν ν= +
mL

K
2

(1 )[ ( )] . (A.15)0

2

2
2

Taking into account that ν is a function of ξL , as given by equation (A.13), we plot
equation (A.15) in figure 12. In order to find ν, equation (A.13) must be solved numerically.
However, good approximate solutions can be found. We can clearly distinguish two different
regimes: ξ≪L and ξ≫L . The physical interpretation is straightforward because the ratio
between the kinetic energy and the interaction energy is

⎛
⎝⎜

⎞
⎠⎟

ξ
ξ

∼ ∼ =





E

E

gN L

mL

m

mL

L
. (A.16)int

kin
2 2

2 2

2 2

2

Then, ξ≪L is the Schrödinger limit, in which we have ν ≃ 0. In that limit, we arrive at
the well-known results: π=ge L˜ 3 and ρ π=x e x L( ) sin ( )2

2 . In all the cases considered in this
work, ξ≫L , so we work in the limit in which interactions represent the main contribution to
the chemical potential (Thomas-Fermi regime). νK ( ) diverges when ν → 1, while νE ( ) remains
finite. From (A.13), this means that ν ≃ 1. In fact, there are cases in which ν−1 is so small that
it falls below computer floating-point relative accuracy. In those cases, the only way to obtain

Figure 12. Computation of the chemical potential as a function of ξL using
equations (A.13) and (A.15) for an ideal lattice confined between hard walls and in
equilibrium. When ξ ≪L 1, we are in the Schrödinger limit in which μ ∼ L10

2, and
when ξ ≫L 1, we are in the Thomas–Fermi regime, and then μ ξ≃  m0

2 2.
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the solution is through asymptotic expansion. One can prove that, in that limit [47],

ν
ν

ν≃
−

≃K E( ) ln
4

1
, ( ) 1. (A.17)

Thus, equation (A.13) is rewritten as

ξ
− − = =K K

r
r

L

4
0, , (A.18)2

2

and from its solution we get = + +K r2 1 1 2 . Therefore, ν− = ≪−1 16e 1K2 , which
implies both ≃e e2 3 and μ ≃ ge0 2. Equation (A.9) implies

⎜ ⎟⎛
⎝

⎞
⎠

ξ= ≃ +e
K

r

N

L L

N

L

4
1 2 , (A.19)3

2

2

and then

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

μ

ξ
ξ
ξ

ν ν ξ ξ= = = + ≃ + +
 m

n

N L

K

r L L
2(1 )

( )
1 2 2 . (A.20)0

2 2

0

0

2 2 2

Collecting all these results, the wave function can be effectively approximated by

⎜ ⎟

⎜ ⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

Ψ ≡
⩽ ⩽

− ⩽ ⩽
x

e K
x

L
x

L

e K
x

L

L
x L

( )

tanh 2 , 0
2

tanh 2 1 ,
2

(A.21)0

2

2

because =x xsn( , 1) tanh( ). The function tanh quickly reaches the asymptotic value 1, which
means that in the central zone of the confinement region, the solution is essentially flat.

A.2. Ideal optical lattice potential

For computational purposes, the initial rightmost boundary condition is also taken as =A L( ) 0,
but now half a period of the lattice potential lies inside the confinement region, as explained in
the main text of this article. This artificial boundary condition does not create a problem because
we take ≫V gN L0 , so the function inside the lattice potential is exponentially small. In order
to compute the stationary solution in the region where the potential is present, a numerical
solution of the GP equation must be performed. In the situations considered in this article,

≫L d , so the wave function is very similar to that of the ideal confinement case. For numerical
convenience, instead of fixing N and then obtaining the chemical potential, we first set n0 to a
typical experimental value of the density. Then, using μ = gn0 0, we compute the number of
particles, N, by integrating the resultant GP wave function. The computed number of particles
satisfies ⎡⎣ ⎤⎦ξ= + +( )N L n O L O d L1 ( )0 0 .

A.3. Realistic optical lattice potential

In order to simulate a more realistic scenario, we introduce the following two potentials: on the
left side, a Gaussian barrier centered at x = 0 of the form = −V x U x w( ) exp ( 2 )L L

2 2 , with
μ=w 2 mL , and on the right side, a realistic optical lattice centered at x = L, which has the form

⎡⎣ ⎤⎦= − − −[ ]V x V k x L x L w( ) cos ( ) exp 2( ) ˜L0
2 2 2 .
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We take the amplitudes of the confining potentials to be much larger than the chemical
potential. We also take ≫ ≫L w w˜ L, so that they are well separated in space and there is a
large region where the potential is negligible and where we expect some kind of flat wave
function. The width, wL, does not play a significant role in our simulations; we choose

μ=w 2 mL . In this way, we can set =A (0) 0 and =A L( ) 0bc as boundary conditions for the
numerical computation, with Lbc sufficiently deep in the region where

μ− − ⩾V x L wexp [ 2( ) ˜ ]0
2 2

0. Once we have fixed the potential and the boundary conditions
for the numerical calculation, we repeat the same process of the previous subsection by fixing n0
to a typical experimental value and using the resulting value of μ0 to compute the number of
particles, N.

Appendix B. Flowing condensate in a nonlinear optical lattice

The results of this section are partially based on [41]. The time-independent GP equation in an
ideal infinite optical lattice whose potential has the same form as the long-time potential of
equation (4), = ∞V x V k x( ) cos ( )L

2 , reads, after rescaling the wave function and the coordinates,
Ψ Ψ≡z x n( ) ( ) r0 (with ≡z k x2 L ),

Ψ
Ψ Ψ Ψ αΨ

α
μ

−
∂
∂

+ + =

= = =
−∞ ∞

z
v z c

v
V

E
c

gn

E

V

E

1
2

cos ( )

2
, ,

2
, (B.1)

L

r

L L

2
0

2 0
2

0
2

0 0

2

where nr is the average atomic density, μ is the chemical potential, and = =E k m E4 8L L R
2 2 .

We look for solutions of the Bloch form

Ψ =z y z( ) e ( ), (B.2)qz
q0

i

with π+ =y z y z( 2 ) ( )q q periodic, because the non-linear term is periodic for a Bloch-wave type
solution. The normalization condition reads

∫π
Ψ =

π
z z

1
2

d ( ) 1. (B.3)
0

2

0
2

The Brillouin zone is placed in the region − < <q1 2 1 2. The equation for yq is:

⎜ ⎟⎛
⎝

⎞
⎠ α− ∂

∂
+ + + =

z
q y v z y c y y y

1
2

i cos ( ) , (B.4)q q q q q q

2
2

2

where we have allowed for a q-dependence of α, defined in (B.1). The linear (Schrödinger)
regime is obtained when c = 0. For >c v2 , some extra nonlinear Bloch waves appear. This
generates a loop structure in the conduction band. In the systems analyzed in the present work,

∼ −− −c 10 102 3 4 and v ∼ 10−1, hence ≫v c2. As a consequence, loops do not appear, and the
system is close to the linear Schrödinger regime.

To compute the Bloch energy eigenvalues, we follow the method developed in [41]. First,
we perform a finite Fourier expansion of the periodic function yq(z) of the form:
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∑=
=−

y z c( ) e , (B.5)q
n M

M

n
nzi

where M is a numerically enforced cutoff. After substitution of this solution in (B.4) and in
(B.3), we get +M2 2 equations for +M2 2 variables (the +M2 1 values of the Fourier
coefficients, cn, plus the eigenvalue, α). Instead of directly solving these nonlinear equations, it
is more efficient to minimize the quadratic sum of the +M2 2 equations,

∑=
=

+

S f , (B.6)
j

M

j
1

2 2
2

where α =f c( , ) 0j n (with = … +j M1, 2 2 2) are the equations to be solved. It is easy to see
that all these equations are real, so the coefficients, cn, can be chosen as real numbers and there
is no need to use complex conjugates in (B.6).

A given Bloch solution can be unstable, either dynamically or in the sense of Landau, as
explained below. The GP wave function is an extreme of the grand canonical Hamiltonian

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∫Ψ α Ψ Ψ Ψ α Ψ= ∂

∂
+ + −K z z

z
v z

c
[ ( ), ] d

1
2

cos ( )
2

. (B.7)
2

2
2

4 2

A superflow through the lattice is obtained when the actual solution, Ψ z( )0 , minimizes the
functional Ψ αK z[ ( ), ]. When this is not the case, the system can minimize its energy by
emitting excitations (phonons). The mean-field solutions of this last type are said to exhibit
Landau instabilities. These instabilities can be sought by expanding Ψ αK z[ ( ), ] around Ψ z( )0 ,
(i.e., Ψ Ψ δΨ= +z z z( ) ( ) ( )0 ). The first-order term is automatically zero because Ψ z( )0 solves
the GP equation. The quadratic terms reads

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫δ δΨ δΨ Λ
δΨ
δΨ

Λ

Ψ α

Ψ

=

=
′

′

′ = − ∂
∂

+ + −

=

K z

H L

L H

H
z

v z c

L c

1
2

d *
*

*

1
2

cos ( ) 2

. (B.8)

q

2

2
2

0
2

2
0
2

Landau instabilities correspond to negative eigenvalues of the Hermitian operator, Λ. The
corresponding eigenvalue equation is

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦Λ λ=u
v

u
v . (B.9)

By absorbing the exponential plane-wave factor of the Bloch-type GP solution, =u z u z( ) e ( )qz
q

i

and = −v z v z( ) e ( )qz
q

i , we arrive at a new matrix operator, Λq, which is periodic. Applying

Blochʼs theorem in the form =u z u z( ) e ( )q
kz

q k
i

, and =v z v z( ) e ( )q
kz

q k
i

, with u z( )q k, and v z( )q k,

periodic in π[0, 2 ], the final eigenvalue equation reads
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⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥Λ λ=

u
v

u
vq k

q k

q k
q k

q k

q k
,

,

,
,

,

,

⎜ ⎟

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎛
⎝

⎞
⎠

Λ

α

=
″

″

″ = − ∂
∂

+ + + −

=

+

−

H L

L H

H
z

ik v z c y

L c y

1
2

cos ( ) 2

. (B.10)

q k
k q q

q k q

k q

q q

,
*

2
2

2

2 2

Dynamical instabilities correspond to modes that grow exponentially with time. They are
computed by looking for nonreal eigenvalues of the BdG equations, which are formally similar
to equation (B.9):

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ϵ=M u
v

u
v , (B.11)

with σ Λ=M z (here, σ = −diag(1, 1)z is the usual Pauli matrix). Blochʼs theorem also applies
here, and after a computation similar to that which has led to equation (B.10), the eigenvalue
equation reads

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ϵ=M

u
v

u
v , (B.12)q k

q k

q k
q k

q k

q k
,

,

,
,

,

,

with σ Λ=Mq k z q k, , . In addition to the dynamical stability analysis, the real eigenvalues of this
operator can be used to compute the speed of sound in the optical lattice. When q = 0, it can be
proven that the the small wave-vector k eigenvalues go like ϵ = ±s k| |, with s being the speed
of sound (here, in units of k m2 L ). On the other hand, the form of the Bloch-type solution of
the GP equation as a function of both q and nr can be directly used to compute the sound speed
without the need to solve for the BdG equations [31]. Restoring dimensions by introducing

=Q k q2 L , one can prove that

 
=

∂ ∂


s (B.13)

n Q
2 2

where ∂n denotes derivative with respect the mean density, nr, ∂Q is the derivative with respect
the pseudomomentum Q, with both derivatives evaluated at Q = 0, and  is an average energy
density given by

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

 ∫

∫μ
π

= − ∂
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+

= −
π
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n
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2
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4
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r d

q L L

r
q L q L

r
r

q

0

*
2 2

2

2

2

0

2 4

We will make use of this expression in appendix C.
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Appendix C. Perturbative treatment of the nonlinearity in the optical lattice

In this appendix, some of the results of appendix B are perturbatively explored further. In
equation (B.1), there are two dimensionless parameters, v and c2. The former is essentially the
amplitude of the potential ( ≫v 1 is the tight-binding regime, while ≪v 1 corresponds to the
nearly-free-particle regime) and the latter is a measure of the strength of the interaction or
nonlinearity. In the cases studied in this paper, ≪v 1. However, the forthcoming discussion
applies to arbitrary values of v. The quantity δ ≡ ≪c 12 is the small parameter of our
perturbation theory. We expand in powers of δ both the Bloch wave, yq(z), and the displaced
and dimensionless chemical potential αq, which solves equations (B.3) and (B.4) and is defined
in equation (B.1). We obtain

∑

∑

δ

α δ α

=

=

=

∞

=

∞

y z y z( ) ( ),

, (C.1)

q
m

m
q

m

q

m

m
q

m

0

( )

0

( )

which transforms equation (B.4) into (hereafter we omit the explicit z-dependence in
y z y z( ), ( )q q

m( ) )

⎜ ⎟⎛
⎝

⎞
⎠

δ α+ =

≡ − ∂
∂

+ +

H y y y y

H
z

iq v z
1
2

cos ( ). (C.2)

q q q q q q

q

(0) 2

(0)
2

In what follows, we focus on the lowest Bloch band and keep terms up to δO ( )2 . The lowest-
order term solves the linear Schrödinger equation, α=H y yq q q q

(0) (0) (0) (0) . Therefore, ϕ=yq q
(0)

,0

and α ε=q q
(0)

,0, where ϕ z( )q,0 is the corresponding eigenfunction for the lowest band, which
involves Mathieu functions, and εq,0 is its eigenvalue (note the use of the index 0 for two
different purposes: perturbative order is indicated in the superindex, while the band index
comes in the subindex). We normalize ϕq,0 according to (B.3).

The first-order corrections must satisfy

α α+ = +H y y y y y , (C.3)q q q q q q q q
(0) (1) (0) 2 (0) (0) (1) (1) (0)

which, using standard perturbation techniques, leads to

∫

∫

∑

α
π

ϕ

β ϕ

β π
ϕ ϕ ϕ

ε ε

=

=

=
−

π

π
=

∞
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1
2
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2

d
, (C.4)
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1
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2

,
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2

,0

,0 ,
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where ϕ =
∞{ }q n n, 1 are the Schrödinger eigenvectors of the rest of bands and εq n, are its

corresponding eigenvalues, for a given value of q.
The second-order equation reads

α α α+ + = + +H y y y y y y y y2 . (C.5)q q q q q q q q q q q q
(0) (2) (0) 2 (1) (0)2 (1)* (0) (2) (1) (1) (2) (0)

We note that yq
(2) is not needed to compute αq

(2) . Specifically, we find

∫

∑

α
π

ϕ ϕ ϕ

β ε ε

= +

= − −

π

=

∞

( )z y y
1

2
d 2

3 ( ), (C.6)

q q q q q q

n
n q n q

(2)

0

2

,0

2

, 0
* (1)

,0
(1)*

1

2
, ,0

which is always negative.
Instead of invoking Mathieu functions, the numerical computation of the formulae

presented in this appendix (equations (C.4) and (C.6)) can be easily performed in a Fourier
representation. As ϕy ,q q n, are periodic functions in π[0, 2 ], their Fourier expansion reads

= ∑ = −∞
∞y z c( ) eq m m

mzi and ϕ = ∑ = −∞
∞z a( ) eq n m n m

mz
, ,

i . Both the cm and the an m, coefficients

can be chosen to be real (see appendix B). In this Fourier representation, Hq
(0) is a tridiagonal

matrix with elements =± vH 2m m, 1 and = +m qH ( ) 2m m,
2 . Multiplication by ϕ| |q,0

2 is

represented by the matrix = ∑ + −a arm p l l l m p, 0, 0, . The perturbative expansion of the Fourier

components of solution to the GP equation reads δ= ∑ =
∞c cm n

n
m

n
0

( ) . In this Fourier basis,
Mathieuʼs equation for all the bands is written as an eigenvalue-eigenvector matrix equation

ε=Ha a , (C.7)n q n n,

where matrix multiplication is understood. The other previous results, equations (C.4) and (C.6)
can be written as:

∑

∑

α

β

β
ε ε

α β ε ε
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=
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= = − −
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(1)
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(1)

1

2
, ,0

Now we can use the perturbative results (C.8) to give approximate closed expressions for
some parameters of the optical lattice. To the first order in δ, the energy density is given by
equation (B.14),

⎜ ⎟
⎛
⎝

⎞
⎠ μ α≃ −n

gn

2
. (C.9)r

r
q
(1)
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We can write

μ α α α δ

μ α δ

= + ≃ + +

= +

∞ ∞E
V

E
V

E

E

2 2

, (C.10)

L L q L q

L q

(0) (1)

(0) (1)

where EL is defined after equation (B.1). On the other hand, for the noninteracting chemical
potential, we have (assuming ≪q 1 2):

μ μ= ≃ + 
Q E

Q

m
( )

2 *
, (C.11)(0) (0)

min

2 2

where Emin is the bottom of the conduction band as defined in the main text, m* is the effective
mass, and we recall that =Q k q2 L . Thus we can rewrite equation (C.10) as:

μ α= + +
E

Q

m
gn

2 *
. (C.12)r qmin

2 2
(1)

Using (C.12), we can rewrite (C.9) as

 α≃ + +
n E n

Q

m

gn

2 * 2
. (C.13)r r

r
qmin

2 2 2
(1)

Computing the derivatives to the lowest order in δ, we arrive at:
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∂
∂

≃

∂
∂

≃


Q

n
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n
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*
,

. (C.14)

r

r

2

2

2

2

2 0
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Now we compute the speed of sound using equation (B.13) and obtain:

α α= =s
gn

m

gn

m

m

m* *
. (C.15)r r

0
(1)

0
(1)

Similar results appear in [48] and references therein. The first square root is the speed of
sound in the absence of the optical lattice. The second factor on the right takes into account
the presence of the optical lattice and is practically unity for ≪v 1. Specifically, we can
write:

α

= + +

= +
−

+

( )( )

( )
( )

m m v O v

v

q
O v

* 1 8

1
8

1 4
, (C.16)q

2 4

(1)
2

2 2
4

and then α = +m m O v* 1 ( )0
(1) 4 , so ≃s gn mr , which is the usual expression for the

speed of sound. Equation (C.15) can also be interpreted as the sound velocity arising in a
system with an effective constant coupling, α=g geff 0

(1) , and effective mass, m* [49].
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The current is also conserved for a stationary solution of the GP equation and is given, to
the lowest order in δ and Q, by

= ∂
∂

=



j

Q
n

Q

m

1

*
. (C.17)r

In the nearly-free atom approximation, where the relative oscillations of the density around the
mean value are small, we can write ≃j n v̄r were v̄ is a locally averaged flow velocity (not to be

confused with the dimensionless parameter, v). Then, we have ≃ v Q m¯ *, and we can rewrite
equation (C.12) in a more appealing form:

μ = + +E m v m s
1
2

*¯ * . (C.18)min
2 2

The physical interpretation of this equation is straightforward: the chemical potential in the
optical lattice is the sum of the energy of the bottom of the conduction band plus the
contribution of the kinetic energy and the interaction energy, both with m* instead of m.

As explained at the end of appendix B, the same result for the speed of sound can be
obtained by solving the BdG equations (B.12) perturbatively to the first order in δ. When q = 0,
which implies that the GP solution y z( )0 can be taken as real, we perform an expansion of the
spinors in terms of solutions to the Schrödinger equation,

⎡
⎣⎢

⎤
⎦⎥ ∑ϕ χ=

=

∞u z

v z
z

( )

( )
( ) , (C.19)

k

k n
k n k n

0,

0, 0
, ,

where χk n, are spinors of constant (z-independent) coefficients. The matrix operator, M k0, ,

introduced in (B.12) can be written, to the first order in δ, as δ= +M M Mk k0,
(0) (1) with:

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥
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2

0, 0
2

0, 0
2

0
(1)

ϕ z( )0,0 being the Schrödinger solution for the bottom of the lowest band. Note that ϕ z( )k n, are

eigenfunctions of Hk
(0) . A matrix equation for the perturbative expansion of the χk,0 spinors to

the first order can be obtained by projecting onto the lowest Bloch eigenfunction, ϕ z( )k, 0
* :
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2
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2
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2

Restoring units for k by using =K k k2 L , expanding to the lowest order near K = 0, and

neglecting corrections δO ( ) to m*, the eigenvalues are approximated as
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⎡

⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥
⎥ϵ α= ± + 

K
K

m
gn

K

m
(0, )

2 * *
, (C.22)r

2 2 2

0
(1)

2 2
1
2

which for small K gives ϵ ≃ K sK(0, ) , with s given by (C.15).
The previous results can be used to compute the corrections to the width of the lowest

band, which by using (C.21) leads to

⎡⎣ ⎤⎦Δ Δ α≃ + −J gn2 (1 2) , (C.23)c c r
BdG

0
(1)

where Δc is the Schrödinger bandwidth, and we have used Δ ≫ gnc r, which is true in all the
situations considered in this paper.

Appendix D. Numerical methods: Crank–Nicolson method and absorbing boundary
conditions

The numerical computation of the time evolution of the system was completed using the Crank–
Nicolson method, as in [25]. The spatial interval, L[0, ]g , is divided into +N 2 equally spaced
points separated by a distance, Δ = +x L N( 1)g , and the time interval, t[0, ], into steps of size
Δt. Hence, we write the grid points as

Δ
Δ

= = … +
= = …

x j x j N

t k t k n

0, 1 1

0, 1 . (D.1)

j

k

Here, we use units such that ξ= = = m 10 , and rescale the wave function by extracting the
factor, n0 . The GP equation can be then written as

Ψ Ψ

Ψ

∂
∂

=

= − ∂
∂

+ + −

x t

t
H x t x t

H x t
x

V x t x t

i
( , )

( , ) ( , )

( , )
1
2

( , ) ( , ) 1 (D.2)
2

2
2

where the ‘−1’ comes from subtracting the initial chemical potential and V x t( , ) is the time-
dependent potential. Here, H x t( , ) plays the role of an effective Hamiltonian. If we define the
spatial vector with the discretized values of the wave function in a given time, tk, as Ψk, with
components Ψ Ψ= x t( , )k

j
j k , and using

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Ψ Δ Ψ Δ Ψ Δ

Ψ Δ Ψ Δ Ψ
Δ

Δ

Ψ Ψ Δ Ψ Δ Ψ
Δ

Δ

+ = + + +

∂
∂

+ = + − +

∂
∂

= + + − − +

( )

( )

( )

x t
t x t t x t

O t

t
x t

t x t t x t

t
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x
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x
O x

,
2

( , ) ( , )
2

,
2

( , ) ( , )

( , )
( , ) ( , ) 2 ( , )

, (D.3)

2

2

2

2 2
2
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we can write, up to the second order in Δx and Δt, a discrete version of (D.2)

⎜ ⎟⎛
⎝

⎞
⎠

Ψ Ψ Ψ Ψ

Ψ

Δ
Ψ Ψ Ψ

Δ
Ψ Ψ Ψ Ψ
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−
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+

= − + − + + −

= +

+
+

+

+
+ −

+ +

+

( )
t

x
V

V V x t
t

H

H

i
2

2

2( )

,
2

. (D.4)

k k
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1 1

1 1
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1
2

1
2

1
2

1
2

1
2

This can be written in matrix form

Ψ Ψ
Δ

=

= ∓

+

+i
t

M M

M H1
2

, (D.5)

k k

k

2 1 1

1,2 1
2

where
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⎥
⎥
⎥

=

⋱ ⋱ ⋱
± ∓ ±

± ∓ ±
⋱ ⋱ ⋱

+

A B A

A B A
M

1

1
, (D.6)k

j

k
j1,2 1

with

⎛
⎝⎜

⎞
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Δ
Δ

Δ
Δ

Ψ= = + + −+ +A
t

x
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t
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V

i

4
, i

2
1

1 . (D.7)k
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k
j

k
j

2 2

2
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2

1
2

Because we ignore the value of Ψ +k
j

1
2
in the non-linear term, we use a corrector-predictor

method, which consists of performing an additional step in every time iteration. In the first
iteration, we useΨk

j instead ofΨ +k
j

1
2
in order to obtain a value ofΨ +¯

k
j

1. Next, we perform a new

iteration, taking Ψ Ψ Ψ= ++ +( )¯ 2k
j

k
j

k
j

11
2

to obtain the final value, Ψ +k
j

1.

The main advantage of this integration scheme is that the obtention of Ψ +k
j

1 only requires
the resolution of a tridiagonal system of equations, which is computationally very efficient (the
number of operations grows like N).

The hard-wall boundary condition reads

Ψ = = +l N0, 0, 1, (D.8)k
l

and this can be easily implemented by suppressing the first and the last columns of the M
matrices in (D.6)

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

=
∓

⋱ ⋱
∓

B A

A B

M
1

1

(D.9)
k

k
N

1,2

1

On the other hand, any boundary condition imposed at the final point of the grid ( =x Lg)
will induce reflections, which are unwanted because our goal is to simulate a semi-infinite
supersonic region. To minimize those spurious reflections, one can use complex absorbing
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potential (CAP) at the grid boundaries [50]. Instead of that, we make use of the alternative, so-
called absorbing boundary conditions (ABC) [51, 52]. This method is based on the linearization
of the dispersion relation in the boundary in order to achieve the relation corresponding to an
outgoing plane wave. Both ABC and CAP are very useful because they not only prevent the
artificial reflection of the waves, but also permit us to reduce the size of the supersonic zone.

The point =x Lg is placed in the supersonic zone, where there is no potential. In addition,
we expect that the nonlinear term in (D.2) can be neglected. This means that the effective
Hamiltonian, H, in this region is the usual free (Schrödinger) Hamiltonian, and equation (D.2)
can be written as

Ψ Ψ Ψ∂
∂

= − ∂
∂

−
t x

i
1
2

, (D.10)
2

2

which implies the dispersion relation

ω = −k

2
1. (D.11)

2

On the supersonic side and in the quasi-stationary regime, the wave function is well peaked in
momentum space around a value ≃k E20 min , where Emin is the energy of the bottom of the
first conduction band. By linearizing the dispersion relation around k0 and expressing this
relation in terms of derivatives, one can get

⎛
⎝
⎜

⎞
⎠
⎟Ψ Ψ Ψ∂

∂
= − ∂

∂
− +

t
k

x

k
i i

2
1 . (D.12)0

0
2

We replace the hard-wall boundary condition at = +j N 1, equation (D.8), by the discrete
version of equation (D.12) at j = N; hence there are +N 1 variables (Ψ = … +j N, 1 1k

j ) and
+N 1 equations corresponding to N equations resulting from equation (D.4) for = …j N1 and

the ABC equation. We can regard the point +xN 1 as a ghost point because the GP equation is not
properly defined there and the ABC (D.12) is the corresponding equation for this point [52].
Following these considerations, we can easily implement the ABC condition by adding a new
row to the matrices, M, which are now of size + × +N N( 1) ( 1) and of the form

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

⋱ ⋱
± ∓ ±
± ± ∓

A B A

C D C
M 1

1
(D.13)k

N
1,2

with

⎛
⎝
⎜

⎞
⎠
⎟Δ

Δ
Δ= = +C

k t

x
D

t k

4
, i

2 2
1 (D.14)0 0

2

Due to the finite size of the grid and the nonzero width of the momentum distribution in the
supersonic region, the absorption is not perfect. We have found, however, that in practice, the
small spurious reflections have no effect on the final results.
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