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ABSTRACT 
 
 

The first two principal components in the vector of term structure slopes from IRS 
markets in eight major currencies can be approximately identified as the slopes for the US dollar 
and Deutsche mark. Each of the eight slopes considered is cointegrated with these two factors. 
The implied Error Correction models can be very fruitful for short and medium term slope 
forecasting for the eight currencies. This scheme achieves a drastic reduction of dimensionality, 
since the eight slopes can be predicted using just univariate forecasts for the two factors. Adding 
more factors to the model does not lead to a significant improvement in forecasting performance, 
while forecasts obtained using just one factor are not as good as those from two-factor Error 
Correction models. 
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1. Introduction 

 

Characterizing the main properties of term structure slopes has quickly become a center 

of attention in the analysis of fixed income markets. There are two reasons for this increased 

attention: on the one hand, a long line of research has accumulated robust evidence on the fact that 

changes in term structure slope can anticipate turning points in the business cycle [see Estrella and 

Hardouvelis (1991), Stock and Watson (1988), Hardouvelis (1994) and Plosser and Rouwenhorst 

(1994), among others]. From this research emerges the idea that fluctuations in term structure 

slopes contain information that is different from that contained in other, more standard indicators of 

production activity or demand. Besides, this type of result arises very consistently for different 

markets and countries. A second research line has recently been devoted to characterizing the main 

factors behind changes in the term structure [Litterman and Scheinkman (1988), Steeley (1990) and 

Knez et al. (1994)]. Work along this line has shown that term structure shifts are produced mainly 

by changes in the general level of interest rates, with changes in the slope and concavity of the term 

structure being additional factors explaining variations along the yield curve. 

The importance of term structure slopes, as it emerges from these two issues, has motivated 

research attempting to characterize the joint fluctuations in slopes across international fixed income 

markets. The interest is not only in testing for robustness of the previously mentioned properties, 

but also in summarizing the extensive correlations observed among term structures in different 

currencies.  

Interest rates should be expected to be correlated across currencies, since it is widely 

believed that monetary policy interventions in different countries are not independent from each 

other. Furthermore, increased monetary policy coordination, as it was the case in Europe prior to 

the constitution of the Euro area, led to common interest rate fluctuations among countries in the 

European Union. However, since monetary authorities determine very short-term interest rates, we 

should expect to see high correlations in the shorter end of the term structure, but not necessarily 

among longer-term rates. Correlations between slopes would emerge from correlations between 

short-term rates if interest rates at longer maturities were roughly constant (they are much less 

volatile than short-term rates in all countries). A view that the spread between long- and short-term 

interest rates is roughly constant over time would also lead from correlations among interest rates 

at short maturities to correlations among slopes. None of these views is fully realistic, and 
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deviations from them will produce lower correlations among slopes than among short-term interest 

rates. 

Two different lines have been followed to characterize co-movements among slopes in 

different countries. Working with monthly interest rate data on Eurodeposits on the British pound, 

French franc, Deutsche mark, Swiss franc, Japanese yen and US dollar over 1979-1998, 

Domínguez and Novales (2000) use linear regression models to estimate causal relationships 

among slopes for the different currencies, showing that the US and Deutsche mark slopes help 

predict future slope fluctuations in other countries.  

A second approach has used factor analysis, generally in the form of principal components, 

to summarize such co-movements. As an example, Domínguez and Novales (2002) used a factor 

model approach to show that one or two factors are enough in most currencies to produce forecasts 

as good as those obtained from univariate models. It is quite striking that a projection by regression 

on just the first factor can compete with dynamic, univariate models in terms of the forecasting 

performance of term structure slopes, and that adding more factors does not generally lead to a 

significant gain in forecasting performance.  
In this paper, we use the principal components technique to search for factors among a 

wide set of international term structure slopes from Interest Rate Swap (IRS) markets. At a 

difference of markets in Eurodeposits, which include maturities up to 1-year, the IRS term structure 

goes up to 10-year maturities, allowing for the possibility of a richer variety of changes in interest 

rates. After showing that fluctuations in the vector of slopes in eight different currencies can be 

summarized by changes in a few factors, we test for the quality of slope forecasts obtained from 

factor models, as compared with those obtained from univariate slope models. Using the former 

strategy would greatly simplify the problem of producing slope forecasts when searching for 

changes in economic activity across countries, since it would only be necessary to forecast a small 

number of factors.  

Slopes are computed as the difference between 10- and 2-year rates in interest rate swap 

(IRS) markets in each currency. Once the most relevant factors have been characterized, we 

estimate projections of each slope on the common factors. Since IRS slopes turn out to be I(1) 

variables, these projections take the form of Error Correction models (ECM). Forecasts from these 

ECM models are then compared to slope forecasts from univariate models.  

Section 2 describes the data and the methodology used to characterize the common factors 

among the set of international term structure slopes. In Section 3 we report estimates for univariate 

as well as Error Correction models for each slope. In Section 4 we describe the forecasting 

exercise, and present the obtained results. The paper closes with some conclusions. 
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2. Factor analysis 

 
2.1. The data 
 

Data for interest rate swap (IRS) rates at 2, 3, 4, 5, 7 and 10 year maturities, for the 

Deutsche mark, US dollar, Japanese yen, British pound, Italian lira, Swiss franc, French franc and 

Spanish peseta were obtained from DataStream TM, between June 26, 1991 and December 12, 1998. 

In this database, IRS daily data are collected at 18:00 GTM. They are the average of bid and ask 

quotes, as provided by Dark limited, from Intercapital Brokers Limited. We use data from each 

Wednesday as weekly data. When a Wednesday fell on a holiday, we take data from the previous 

market day. A term structure of zero coupon rates were then derived from swap rates by the 

bootstrapping method. We used the spread between 10- and 2-year zero coupon rates as term 

structure slope. 

 

2.2. First results 

 

Figure 1 shows the time behavior of term structure slopes in IRS markets for the 

currencies considered. Table 1 presents Dickey-Fuller and Phillips-Perron unit root tests, 

suggesting that, except for the Japanese yen, slopes seem to follow I(1) processes. This could give 

raise to spurious correlations between slopes, so appropriate statistical methods need to be used. 

Table 2 shows sample correlation coefficients among slopes. Slopes in European currencies display 

high correlations, being significant smaller for the British pound. Correlations between European 

slopes and that of the Japanese yen are also large and positive. Correlations between European 

slopes and the US slope are large, but negative. Whether the high correlations are purely spurious, 

due to the presence of unit roots, will be discussed later. As a first check, we present below the 

diagonal in Table 2 correlations between differenced slopes. Slopes in the group of European 

countries show again significant correlations among themselves except for Spain, but there are no 

other noticeable correlations. The correlations across continents which were present in level slopes 

all but disappear in first differences, suggesting that they were spuriously produced by the presence 

of trend with either the same or opposite sign in both slopes.  
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       2.3. Principal components among international slopes 

 

Principal components is a particular form of factor analysis, aimed at producing a few 

linear combinations of a set of variables explaining as much as possible of the fluctuations in the 

whole vector of variables. The principal components analysis starts from the variance-covariance 

matrix of the variables, in differences to their sample means. This is a semi-positive definite matrix, 

with non-negative eigenvalues. The eigenvector associated to the largest eigenvalue defines the 

linear combination of variables that explains the largest percentage of the variance in the vector of 

original variables. The ratio between the largest eigenvalue and the sum of all them is the 

percentage of variance being explained by the first principal component. Since eigenvectors 

corresponding to different eigenvalues are orthogonal to each other, the correlation between linear 

combinations defined by eigenvectors associated to successive (if different) eigenvalues display 

zero correlation. 

Panel a in Table 3 shows that the first principal component explains 73.5% of the 

fluctuation in the vector of eight term structure slopes. The second principal component is defined 

through the eigenvector associated to the second largest eigenvalue of the variance-covariance 

matrix. It adds information which is all new, not overlapping with that contained in the fluctuations 

of the first principal component. The two together explain 92.0% of the fluctuation in the original 

variables. Adding a third component raises the percentage of explained variance to 96.4%, while a 

fourth one would take us to 98.4%. 

The entries of a given eigenvector are not readily interpretable as the relative importance 

of the different slopes in each principal component, since slope levels in different currencies may 

be quite different from each other. To identify the components, we use linear projections of each 

slope on a given component. Table 3 (panel b) shows that the first principal component is most 

closely associated with European slopes, especially those in the Deutsche mark, Swiss franc and 

French franc. The second component is essentially the US dollar slope, while the third principal 

component is essentially the slope for the British pound. This interpretation may not be 

independent from the fact that the Euro and US dollar are the more heavily traded currencies in IRS 

markets. At the end of 1998, the Bank for International Settlements reported that 34,7% and 23,7%, 

respectively, of trades in IRS markets were made in these two currencies. 

The same type of evidence can be read from panel c in Table 3, which presents a 

sequence of non-decreasing R-squared values, obtained from regressions that incorporate 

successive principal components as explanatory variables, having each slope as a dependent 

variable. 
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It is also useful to examine scatter diagrams in Figure 2, which suggest a similar 

interpretation, with the first principal component more closely related to the Deutsche mark slope 

than with those of any other European currency although with a negative sign, the second principal 

component being essentially the US dollar slope, the third component being the British pound slope 

again with a negative sign, and the fourth one being the slope for the Japanese yen or Italian yen. 

As a last identification strategy, we computed the changes induced on each slope by a 

change in a given principal component. Figure 3 represents the variation induced on each slope by 

a two standard deviation change in a given component. These are the implied changes in each slope 

normalized by its standard deviation, so as to make them comparable across currencies. A change 

in the first component induces noticeable changes in the slopes in European currencies, as it should 

be expected from a change in the slope of the term structure in Deutsche marks. Changes in the 

second and third components affect mainly slopes for the US dollar and British pound, 

respectively. A change in the fourth component implies a change in slope for the Italian lira and 

Japanese yen. 

Having a reasonable interpretation for each factor, the right panel in Table 1 shows them 

to be I(1) variables, not surprisingly, since we have just seen how they can be interpreted as 

specific slopes in most cases. 

Working with data from Eurodeposits for a similar set of currencies, Domínguez and 

Novales (2000) find that a factor linked to slopes in European currencies explains 61% of the 

fluctuation in the vector of slopes. However, in their analysis, the US slope plays a minor role, 

revealing a significant difference between cross-currency correlations among term structures from 

Eurocurrency and IRS markets. This difference might be explained by a higher relative volume 

traded in US dollars in the IRS than in the Eurocurrency market. On the other hand, it might also 

reflect the fact that it is fluctuations in long maturity interest rates for the US dollar that play a 

leading role in influencing fluctuations in similar rates in other currencies. That would barely show 

in Eurocurrency markets, where just interest rates up to 1-year maturity are negotiated. Analyzing 

in detail these two alternative interpretations remains as an interesting issue for further research. 

 

 

3. Models for term structure slopes  

 

Given the evidence on non-stationarity of IRS slopes, as discussed in Section 2.2, a clear 

choice is to estimate univariate models in first differences. Differenced slopes display very little 

autocorrelation, so that short autoregressive models should be enough in most cases. On the other 
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hand, third order autoregressions [AR(3)] in level slopes also produce stationary residuals and no 

significant evidence of autocorrelation [see left column for each currency in Table 4], so they could 

be considered acceptable for forecasting purposes. This is a simple model, the characteristic 

equation of the associated autoregressive polynomial having three roots, which may capture a 

possible cycle through two complex roots, plus a possible unit root. Since term structure slopes are 

all I(1) and their changes show low persistence, it is not surprising that AR(3) models in levels 

produce stationary, white noise residuals in all cases.  

Theoretically, a second order autoregression in first differences should be equivalent to a 

third order autoregression in levels, but it is unclear that they perform equally well in practice. In 

fact, it is often the case working with interest rate data that level models produce better forecasts 

than models in differences [Abad and Novales (2002)]. A preliminary exploration of slope 

forecasts with both types of models suggested that models in levels produce in our data set 

forecasts at least as good as those from models in differences, so we proceeded with the analysis of 

level slopes, although paying special attention to the possible presence of unit roots in the residuals 

in each estimated model.  

The right column for each currency in Table 4 display two sets of estimates: the upper 

panel presents estimations of a long-run relationship between each slope and the corresponding 

first two principal components, 

0 1 1, 2 2,ˆ ˆ ˆ ˆt t t tS F F uα α α= + + +      (1) 

 

Being a static model, residuals display extensive autocorrelation, but they turn out to be 

stationary in all cases, so this equation is a cointegrating relationship between each slope and the 

first two common factors, which we associated in the previous section to the European and US 

term structure slopes. This relationship can be interpreted as a long-term equilibrium relationship 

between the three variables. The lower panel then contains estimates of the Error Correction Model 

(ECM) for each slope. In this equation, the differenced slope is projected on one lag of itself, the 

first lagged difference of the two principal components, and the lagged error-correction term ˆtu , 

the residual from cointegrating relationship (1), 

 

1 1 2 1 3 1, 1 4 2, 1
ˆ ˆ ˆ ˆ ˆˆt t t t t tS u S F Fβ β β β ε− − − −∆ = + ∆ + ∆ + ∆ +   (2) 

 

Even though this is a single-equation exercise, it should be interpreted as the corresponding 

equation from the vector ECM. R-squared and Standard Error of Estimate (SEE) in the right 
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column for each currency in Table 4 correspond to the ECM equation. It is interesting to see that 

the SEE is essentially the same for both models.  

Estimated coefficients are statistically significant in the cointegrating relationship (1). The 

first factor, which is negatively related to the slope in European markets, enters with a negative 

sign in the long-run relationships for those countries. The second factor, which is positively related 

to the US slope, enters with a positive sign in the cointegrating equation for that country. In ECM 

estimates, the error correction term is statistically significant except for the Swiss franc, and the 

associated coefficient has the right sign in all cases except the Deutsche mark. There is no 

significant evidence of residual autocorrelation, so the model seems to appropriate capture the 

dynamics in slope fluctuations.  

 

 

4. Forecasting with slope models 

    

 As mentioned in the Introduction, our final goal is to analyze the extent to which a few 

common factors for a set of international term structure slopes are able to provide good predictions 

of future fluctuations in the set of eight slopes considered. By good forecasts we understand 

forecasts at least as good as those that could be obtained from univariate models for each slope.  

If our search is successful, we could reduce the problem of forecasting a potentially large 

number of slopes to that of forecasting a reduced number of factors. This possibility is far from 

trivial, since principal components are designed to fit the data, but not to capture the 

autocorrelation in the data, and a better fit does not necessarily come together with an improvement 

in forecasting ability. Hence, it is important that we discuss next the extent to which the in-sample 

explanatory power of the principal components for term structure slopes across countries can 

actually be used to improve upon more complex forecasting models.  

 

4.1. The forecasting exercise 

 

We computed static and dynamic forecasts over the last six months in our sample, July to 

December 1998, from both estimated models for each slope. Six months should be a long enough 

period so that results are not contaminated by any particular event. Dynamic forecasts are obtained 

with models estimated using data until the end of June1998. These are once-and-for all predictions 

over the 27 weeks of the second semester of 1998. We also computed static forecasts. For them, we 

estimated the previous models with data until the end of June 1998, and obtained forecasts for the 
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first week in July 1998. We then repeatedly estimated the models adding one data point at a time, 

and producing forecasts for the next week each time. That way, we have a sequence of 27 one-step 

ahead forecasts for each slope. Except for the first forecasting week, dynamic forecasting always 

produces larger forecast errors than static forecasting, since the former exercise projects over the 

whole forecasting period using only data up to the last week of June 1998.  

As a first option, we computed static and dynamic forecasts from autoregressive slope 

models. As discussed above, level slopes produce forecasts at least as good as differenced slopes, 

in spite of the general presence of a unit root. AR(3) models in Table 4 seem statistically 

reasonable and, as explained, produce stationary residuals, so they can be used for forecasting 

purposes. As an alternative, we obtained forecasts from estimated ECM in Table 4.  

As we ran out of actual data for the lagged slope in dynamic forecasting from univariate 

models, we use previously obtained forecasts. The same applies to the use of ECM, in which 

forecasts for the principal components need to be obtained previously to computing slope forecasts. 

To do so, we need to start by computing forecasts for the principal components. In consistency with 

the autoregressive models for slopes themselves, forecasts for the principal components were also 

obtained from AR(3) models in levels for each factor. This is quite reasonable, since we have 

shown in Section 2.3 how principal components can be interpreted as an approximation to specific 

slopes.  

 In addition to being satisfactory from the point of view of estimation and forecasting, the 

choice of a common AR(3) univariate structure for each slope and principal component avoids the 

possibility that model searching could bias the results of our forecasting tests. A variety of trials 

run on this data set suggest that such a structure can be routinely used, without need of investing 

time resources in searching for the best dynamic specification each time the forecasting system is 

updated. 

In each case, we computed four indicators of forecasting performance: mean absolute error, 

median absolute error, root mean squared error, and the U-statistic proposed by Theil. Percent Root 

Mean Square Errors are not advisable in this forecasting exercise, since the slope often becomes 

small in absolute value, to the point that even acceptable forecast errors might produce huge 

percent errors for a single period, dominating the value of any time aggregate forecasting 

performance indicator. Hence, we will use their versions in absolute terms. To compare the 

forecasting performance of both models, we calculated the ratio between comparable criteria for 

both models. Since we have four forecasting error criteria, and compute static as well as dynamic 

forecasts, we have 64 comparisons in total. 
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4.2. Forecasting results 

 

Below each currency code in Table 5, we show the sample average absolute value of each 

slope over the forecasting horizon, the reference against which forecast statistics should be 

compared to evaluate forecast performance. Bold figures highlight cases in which the principal 

components model outperforms the univariate slope model in forecasting.  

Statistics in Table 5 show that:  

1) median one-step-ahead forecast errors from AR(3) models oscillate between 3% and 

5% of the sample mean absolute slope for all currencies except the US dollar and 

British pound, for which they reach levels of 11,2% and 10,3%, respectively. Hence, 

autoregressive slope models in levels produce acceptable one-step ahead forecasts in 

most currencies,  

2) quite strikingly, in spite of the need to predict the principal components, ECM with 

factors produce slope forecasts which are in some cases even better than those from 

univariate models. In 35 out of the 64 forecasting performance indicators, the use of 

principal components leads to better slope forecasts than univariate models. In fact, 

even the long-run cointegrating relationship between slope and principal components 

leads to better forecast than the autoregressive models in 20 of the 64 comparisons, 

3) only two principal components are enough to produce this forecasting performance. In 

fact, even though there is additional explanatory power in further components (as 

shown in Table 3), adding them to the least-squares projections does not significantly 

improve forecasting performance. On the contrary, we could not proceed along with 

just one factor, the factor ECM then leading to better forecasts in just 25 of the 64 

comparisons. 

4) Even though the first two components reflect fluctuations in Deutsche mark and US 

dollar slopes, future slope values for the Japanese yen and British pound can be 

satisfactorily predicted by the proposed error correction factor model. Even though the 

third and fourth principal components can be approximately interpreted as slopes in 

these two currencies, the explanatory power of the first two components seems to be 

important enough so that the information in the next two factors can be safely ignored 

for forecasting purposes.  

 

 These results are quite striking because slope forecasts from ECM rest on forecasts from 

autoregressive models for the factors. That way, we add to the sampling error in estimating ECM, 
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that from estimating autoregressive models for the factors. Yet, in spite of this double estimation 

process, factor models often predict better than autoregressive models.  

 The practical implication is that to forecast the set of eight international IRS market slopes, 

we only need to forecast the two common factors. Applying estimates from cointegrating 

relationships (1) to new slope data will provide us with the error correction residual. Adding 

univariate forecasts for the factors, we can easily compute forecasts for the vector of eight slopes 

from estimates of ECM (2).  

 
 
 
5. Conclusions. 
 
 

We have shown that the first two principal components can explain 92% of the fluctuation 

in a vector of term structure slopes from the IRS market in eight major currencies, the two factors 

being closely related to the slopes for the Deutsche mark and US dollar. We have also found strong 

evidence that reducing the dimensionality of the vector of slopes by using these two factors can be 

very fruitful for short and medium term slope forecasting in all these currencies. The reduction in 

dimensionality leads to a very simple forecasting scheme for term structure slopes, in the form of 

an Error Correction model between each slope and two common factors. Adding more factors to 

the model does not lead to a significant improvement in forecasting performance, while forecasts 

obtained using just one factor are not as good as those from two-factor Error Correction models. 
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Table 1. Unit root tests 
 Slopes Principal Components 
 DEM JPY ESP USD GBP ITL CHF FRF First Second Third Fourth
Augmented Dikey-Fuller 
Level -1.596 -3.026 -1.431 -0.846 -1.798 -1.778 -1.876 -1.456 -1.847 -0.571 -2.167 -2.656 
Differences -7.734 -8.128 -10.695 -8.399 -8.137 -8.431 -7.678 -7.798 -8.191 -7.989 -7.699 -8.772 
Phillips-Perron statistic 
Level -1.544 -3.399 -1.853 -0.806 -1.484 -2.012 -1.870 -1.439 -1.843 -0.540 -1.803 -2.851 
Differences -20.246 -17.846 -28.492 -18.195 -19.620 -20.719 -19.327 -20.216 -18.168 -23.056 -19.243 -22.056
Note: Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root statistics. Critical values for both statistics: -3.45 (1%),  
-2.87 (5%). 

 
Table 2. Contemporaneous correlation coefficients between slopes 

 DEM JPY ESP USD GBP ITL CHF FRF 
DEM 1.000 0.799 0.833 -0.703 0.344 0.687 0.914 0.939 
JPY 0.134 1.000 0.495 -0.393 0.422 0.279 0.701 0.664 
ESP 0.117 0.071 1.000 -0.813 0.059 0.814 0.769 0.887 
USD 0.169 0.092 0.063 1.000 0.304 -0.601 -0.780 -0.728 
GBP 0.286 0.003 -0.250 0.127 1.000 0.210 0.099 0.180 
ITL 0.201 -0.038 -0.098 0.051 0.345 1.000 0.651 0.755 
CHF 0.423 -0.043 -0.004 0.133 0.140 0.040 1.000 0.877 
FRF 0.637 -0.010 0.041 0.178 0.272 0.317 0.231 1.000 

Note: The upper triangular matrix contains correlation coefficients between level slopes. The lower triangular matrix 
contains correlation coefficients between first differenced slopes. 

 
Table 3. Principal Components in IRS slopes 

 DEM JPY ESP USD GBP ITL CHF FRF 
Panel a: Variance-covariance matrix of interest rates 

Eigenvalues 4026.4 1012.5 238.7 110.3 44.5 25.2 13.0 5.8 
First eigenvector -0.4922 -0.4811 -0.2456 -0.2577 -0.2632 -0.1936 -0.3819 -0.3835 
Second eigenvector -0.251 0.2312 -0.3445 0.7604 0.2992 -0.139 -0.2032 -0.191 
Third eigenvector -0.1378 0.312 -0.0322 0.2451 -0.8708 -0.1113 0.2113 0.0848 
Fourth eigenvector 0.2668 0.2721 -0.4833 -0.3403 0.1062 -0.6208 0.2762 -0.1802 

Panel b: R-squared coefficients on individual principal components 
On first component 0.9644 0.674 0.6526 0.3554 0.2113 0.5032 0.7796 0.8604 
On second component 0.6257 0.1911 0.8163 0.9349 0.0530 0.5141 0.7223 0.7216 
On third component 0.1370 0.0977 0.0328 0.0329 0.9295 0.1287 0.0113 0.0515 
On fourth component 0.0530 0.3246 0.0525 2.87E-03 0.0209 0.2105 0.0801 9.31E-05 

Panel c: R-squared coefficients on subsets principal components 
On first component 0.9644 0.674 0.6526 0.3554 0.2113 0.5032 0.7796 0.8604 
On first two comp. 0.9823 0.7164 0.8724 0.9511 0.8339 0.5952 0.8803 0.9343 
On first three comp. 0.9824 0.8257 0.9000 0.9537 0.9957 0.7242 0.9096 0.9374 
On first four comp. 0.9915 0.8932 0.9492 0.9904 0.9984 0.9008 0.931 0.9574 
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Table 4. Estimated Models 
 DEM  JPY  ESP  USD  GBP  ITL  CHF  FRF  
Own lag                 

i=1 0.967  1.059  0.675  1.076  1.002  0.942  1.009  0.970  
 (0.051)  (0.051)  (0.051)  (0.051)  (0.051)  (0.051)  (0.051)  (0.051)  

i=2 0.049  -0.153  0.362  0.034  0.044  0.007  0.040  0.062  
 (0.071)  (0.074)  (0.058)  (0.074)  (0.072)  (0.070)  (0.073)  (0.071)  

I=3 -0.022  0.070  -0.059  -0.114  -0.058  0.028  -0.057  -0.040  
 (0.051)  (0.051)  (0.051)  (0.051)  (0.051)  (0.051)  (0.051)  (0.051)  

Constant -0.418  0.509  0.232  0.621  -1.701  0.159  0.279  0.141 
  (0.024)  (0.045)  (0.049)  (0.028)  (0.058)  (0.059)  (0.047)  (0.034) 
First component -0.604  -0.344  -0.183  -0.091  -0.720  -0.151  -0.307  -0.346 
  (0.007)  (0.013)  (0.014)  (0.008)  (0.017)  (0.017)  (0.014)  (0.010) 
Second component -0.150  0.108  -0.401  0.610  0.711  -0.178  -0.271  -0.225 
  (0.008)  (0.014)  (0.015)  (0.009)  (0.019)  (0.019)  (0.015)  (0.011) 
Error correction (t-1) 0.066  -0.031  -0.152  -0.058  -0.058  -0.054  -0.008  -0.074 
 (0.031)  (0.013)  (0.033)  (0.022)  (0.018)  (0.017)  (0.014)  (0.022) 
Slope (t-1) -0.117  0.115  -0.096  0.118  -0.067  -0.093  -0.032  -0.131 
 (0.085)  (0.056)  (0.071)  (0.068)  (0.068)  (0.054)  (0.058)  (0.068) 
First comp (t-1) -0.037  0.025  0.030  0.026  -0.212  -0.153  -0.064  -0.085 
 (0.053)  (0.030)  (0.078)  (0.034)  (0.063)  (0.053)  (0.035)  (0.048) 
Second comp (t-1) -0.071  -0.013  0.459  0.001  -0.064  -0.170  -0.036  -0.133 
 (0.042)  (0.036)  (0.127)  (0.045)  (0.077)  (0.060)  (0.039)  (0.044) 
R-squared 0.994 0.008 0.980 0.011 0.946 0.177 0.991 0.019 0.978 0.072 0.950 0.077 0.991 0.003 0.987 0.066 
SEE 0.091 0.090 0.075 0.076 0.207 0.199 0.077 0.077 0.139 0.134 0.137 0.131 0.085 0.084 0.099 0.096 
Q(3) 6.16 3.02 0.96 1.23 11.96 7.48 0.96 5.88 8.94 0.81 11.21 1.17 11.06 5.30 2.69 1.40 
 [0.29] [0.39] [0.97] [0.75] [0.04] [0.06] [0.97] [0.12] [0.11] [0.85] [0.05] [0.76] [0.05] [0.15] [0.75] [0.71] 
Q(10) 8.50 7.74 2.71 4.86 13.76 14.92 8.19 14.89 16.88 20.22 27.61 24.30 16.91 17.17 7.12 8.60 
 [0.58] [0.65] [0.99] [0.90] [0.18] [0.14] [0.61] [0.14] [0.08] [0.03] [0.00] [0.01] [0.08] [0.07] [0.71] [0.57] 
LM(1) 2.27 3.99 0.44 0.30 0.89 4.79 0.38 4.23 1.21 0.33 0.23 2.49 4.56 4.83 0.34 0.00 
 [0.13] [0.05] [0.51] [0.59] [0.35] [0.03] [0.54] [0.04] [0.27] [0.57] [0.63] [0.11] [0.03] [0.03] [0.56] [1.00] 
LM(4) 3.89 7.49 4.40 1.76 12.89 9.12 1.74 6.55 7.68 7.25 3.82 6.64 11.02 19.55 0.80 1.76 
 [0.42] [0.11] [0.36] [0.78] [0.01] [0.06] [0.78] [0.16] [0.10] [0.12] [0.43] [0.16] [0.03] [0.00] [0.94] [0.78] 
ADF -7.82 -7.98 -8.10 -8.03 -9.79 -8.41 -8.92 -8.33 -8.17 -8.39 -7.96 -8.12 -7.76 -7.74 -7.87 -7.83 
PP -19.70 -19.52 -19.47 -19.38 -19.67 -19.01 -19.73 -19.99 -19.76 -19.89 -19.71 -20.09 -19.67 -19.41 -19.68 -19.65 
Note: The left column in each currency contains autorregressive models that were estimated using levels of interest rates. A (generally non-significant) constant was included in all 
models. The right column in each currency contains estimates of a possible cointegration relationship between each slope and the corresponding first two principal components, as 
well as estimates of the implied error correction model, when it applies. Standard deviations in parentheses. Statistics shown for each regression include: adjusted R-squared, 
standard error of estimate (SEE), Ljung-Box autocorrelation statistics of orders 3 and 10 (Q(3), Q(10)), Breusch-Godfrey autocorrelation statistics of orders 1 and 4 (LM(1), 
LM(4)), and Augmented Dickey-Fuller and Phillips-Perron statistics to test for unit root in the residuals. p-values are included in square brackets. 
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Table 5. Forecasting performance indicators 

 DEM JPY ESP USD GBP ITL CHF FRF 
Sample absolute mean values: 7/1/1998 - 12/30/1998 

 1.0034 1.1044 0.9304 0.4476 0.6012 0.8745 1.4941 1.0013 
Forecasting model 

 
AR 

model 
Factor 
models 

AR 
model 

Factor 
models 

AR 
model 

Factor 
models 

AR 
model 

Factor 
models 

AR 
model 

Factor 
models 

AR 
model 

Factor 
models 

AR 
model

Factor 
models 

AR 
model 

Factor 
models 

Static forecasts 
Mean 0.0507 0.0376 0.0678 0.0658 0.0554 0.0593 0.0631 0.0617 0.0856 0.0823 0.0511 0.0553 0.0669 0.0700 0.0515 0.0525 
Median 0.0383 0.0376 0.0326 0.0450 0.0389 0.0323 0.0502 0.0384 0.0619 0.0542 0.0431 0.0433 0.0634 0.0685 0.0416 0.0463 
RMSE 0.0640 0.0376 0.0989 0.0973 0.0745 0.0812 0.0942 0.0960 0.1202 0.1142 0.0670 0.0676 0.0856 0.0868 0.0647 0.0627 
U-Theil 0.9892 0.9069 0.9720 0.9731 0.9825 0.9804 0.9287 0.9235 0.9611 0.9650 0.9854 0.9858 0.9867 0.9868 0.9890 0.9904 

Dynamic forecasts 
Mean 0.0611 0.2756 0.2953 0.1853 0.2045 0.0923 0.2750 0.2721 0.5448 0.4716 0.2730 0.2549 0.1525 0.1698 0.0880 0.0544 
Median 0.0527 0.2284 0.2252 0.1090 0.1956 0.0906 0.2796 0.2677 0.5637 0.4852 0.2316 0.2187 0.1088 0.1352 0.0726 0.0509 
RMSE 0.0760 0.3403 0.3672 0.2393 0.2473 0.1096 0.3364 0.3343 0.6497 0.5664 0.3224 0.3023 0.1957 0.2165 0.1051 0.0660 
U-Theil 0.9857 0.7550 0.7816 0.8891 0.8518 0.9687 0.5160 0.5176 0.7908 0.8002 0.7486 0.7742 0.9301 0.9162 0.9724 0.9882 
Note: Forecasts obtained from estimated models in Table 4. Mean and Median are the mean and median absolute values of the forecasting errors. RMSE denotes the Root Mean Square
Error, while U-Theil denotes Theil´s statistic. Boldface figures denote cases when factors models forecast better than univariate models. 
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Figure 1. Time behavior of term structure slopes in IRS markets. 
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Figure 2. Projections on principal components 
 

a) on first component      b) on second component 
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c) on third component     d) on fourth component 
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Figure 3. Changes induced on each slope by a change in a given principal component 
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