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Abstract. Theoretical calculations, especially shell-model calculations, have shown a strongly
chaotic behavior of bound states at higher excitation energy, in regions of high level density.
However, it had not been possible up to now to observe chaos in the experimental bound energy
levels of any single nucleus. In this paper we study the spectral fluctuations of the 208Pb nucleus
using the complete experimental spectrum of 151 states up to excitation energies of 6.20 MeV.
For natural parity states the results are very close to the predictions of Random Matrix Theory
(RMT) for the nearest-neighbor spacing distribution. By contrast, the results for unnatural
parity states are far from RMT behavior. We interpret these results as a consequence of the
strength of the residual interaction in 208Pb, which, according to experimental data, is much
stronger for natural than for unnatural parity states. In addition our results show that chaotic
and non-chaotic nuclear states coexist in the same energy region of the spectrum.

1. Introduction

The atomic nucleus is generally considered a paradigmatic case of quantum chaos. Intuitively
one can expect that fast moving nucleons interacting with the strong nuclear force and bound
in the small nuclear volume should give rise to a chaotic motion. The quest for chaos in
nuclei has been quite intensive, both with theoretical calculations using nuclear models and
with detailed analyses of experimental data. Statistical spectroscopy studies in nuclei have been
also motivated by a desire to understand the implications of chaotic behavior in many-body
quantum systems. Theoretical calculations, especially shell-model calculations, have shown a
strongly chaotic behavior of bound states at higher excitation energy, in regions of high level
density. However, as we discuss below, it has not been possible up to now to observe chaos in
the experimental bound energy levels of any single nucleus. For a comprehensive review of chaos
in nuclei see for example Gómez et al. [1] and Weidenmüller and Mitchell [2].

In this paper we first present in Section 2 a brief outline of the spectral properties that
characterize quantum chaos using two different approaches, the Random Matrix Theory (RMT)
and the time series approach. Then we look at the theoretical and experimental evidence for the
existence of chaos in nuclei in Section 3, and we study in Section 4 the spectral fluctuations of the
lowest 151 states in 208Pb, which have been recently identified with spin and parity assignements
[3]. It turns out that nuclear motion in 208Pb is strongly chaotic at least for the natural parity
states [4]. For unnatural parity states the evidence is less clear, but it seems to be intermediate
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between chaotic and regular motion. Finally we compare our results with those of another recent
study of chaos in 208Pb [5].

2. Quantum chaos and spectral fluctuations

Quantum chaos has been the subject of many investigations during the last decades. The
pioneering work of Berry, Bohigas et al., and others [6, 7] leads to an important and concise
statement: the spectral properties of simple systems known to be ergodic in the classical limit
follow very closely those of the Gaussian orthogonal ensemble (GOE) of random matrices. On
the contrary, integrable systems lead to level fluctuations that are well described by the Poisson
distribution, i.e., levels behave as if they were uncorrelated.

Fluctuations are the departure of the actual level density from a local uniform density.
Therefore it is essential to eliminate the smooth part of the exponential increase of the nuclear
density, mapping the actual spectrum onto a quasiuniform spectrum with mean spacing 〈s〉 = 1.
This step, called unfolding, is delicate and of utmost importance, because some of the unfolding
procedures used in the literature can lead to completely wrong results on the behavior of level
fluctuations [8].

Short-range correlations between energy states are usually measured by the nearest neighbor
spacing (NNS) distribution P (s). The Poisson distribution is given by PP (s) = exp(−s). The
GOE distribution has no analytical formula, but is well approximated by the Wigner surmise,
PW (s) = (πs/2) exp(−πs2/4). Note that PP (0) = 1 and PW (0) = 0. Quantum chaos is
characterized by strong state correlations and level repulsion. An assesment of chaotic or
regular behavior of a system is given by comparison of the NNS distribution to Poisson and
Wigner. Real complex systems are often not fully chaotic or fully regular. These intermediate
situations are often described in terms of a single parameter ω by means of the Brody distribution
PB(s, ω), which is just an interpolation formula between the Poisson (ω = 0) and Wigner (ω = 1)
distributions. Although it has no obvious physical meaning, the Brody parameter ω is a simple
and widely used measure of chaoticity of a system. When the number of spacings is not very
large, it is preferable to fit the cumulative distribution, I(s) =

∫
s

0
P (x)dx.

Long-range correlations are usually studied with the Dyson-Mehta statistic ∆3(L). For

Poisson 〈∆3(L)〉 =
L

15
and for GOE 〈∆3(L)〉 =

1

π2
log(L) + b+O(L−1), L ≫ 1.

There is another approach to quantum chaos based on the analogy between a discrete time
series and a quantum energy spectrum, if time t is replaced by the energy E of the quantum
states [9]. The spacing between two consecutive levels is si = εi+1 − εi. We define the statistic
δn as a signal,

δn =

n∑

i=1

(si − 〈s〉) = εn+1 − ε1 − n (1)

and the discrete power spectrum is P (k) =
∣∣∣δ̂k

∣∣∣
2

, where δ̂k is the Fourier transform of δn,

δ̂k =
1√
N

∑

n

δn exp

(−2πikn

N

)
(2)

and N is the size of the series. It turns out that the energy spectra of chaotic quantum systems
are characterized by 1/f noise, and on the contrary, the energy spectra of regular quantum
systems are characterized by 1/f2 noise (Brown noise) [9].

3. Chaos in nuclei

3.1. Spectral fluctuations in shell-model spectra

Theoretical calculations provide long sequences of Jπ or JπT levels suitable for statistical analysis
of fluctuations (no missing levels, no uncertain spin and parity assignments). Calculations
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performed with the spherical shell model, the cranking model, the interacting boson model and
other models have shown examples of highly regular energy spectra in deformed nuclei and
examples of highly chaotic spectra in spherical nuclei, although there are exceptions in some
nuclei.

In spherical nuclei, where the shell model is most appropriate, many calculations have shown
that for large configuration spaces, with JπT level sequences up to several thousand, the usual
fluctuation measures P (s) and ∆3(L) agree very well with GOE predictions. To mention just
some examples, Fig. 1 illustrates the good agreement of P (s) and ∆3(L) with GOE for the
Jπ = 2+ states of 28Si calculated with the shell model [10]. Fig. 2 illustrates the 1/f noise
behavior of shell-model states in 34Na (α = 1.11) and 24Mg (α = 1.06). The straight line is the
best fit of the power spectrum assuming P (k) = 1/kα.

In the 2p1f shell the configuration space and the level density are much larger than in sd-shell
nuclei. Shell-model calculations with a realistic interaction have been performed to investigate
the degree of chaos in different isotopes as a function of excitation energy by Molina et al.

[11]. For example, in 46Sc a total of 25,498 spacings are included in the calculations, ensuring
excellent statistics. Fig 3 shows the behavior of ∆3(L) for the Jπ = 0+, T = Tz states of 46Ca,
46Sc and 46Ti. Clearly, there is an isospin dependence in the chaoticity of these isobars. For 46Ti
the agreement with GOE (dotted line in Fig. 3) is excellent. For 46Sc there is GOE behavior
up to L ∼ 40, and 46Ca clearly deviates from GOE towards Poisson (dashed line) for L ≥ 10.
Furthermore, at low energies the fluctuations in Ca isotopes are more regular than chaotic, for
instance ω = 0.25 for the levels up to 5 MeV above yrast in 52Ca. Similar results were obtained
for Pb isotopes, with only valence neutrons outside the 208Pb core [12].

We interpret the observed isospin dependence of chaoticity as a result of the strength of the
residual interaction. The shell-model residual nn interaction is much weaker than the residual pn
interaction. Ca isotopes have only neutrons in the pf shell, but if just one neutron is replaced
by a proton, the pn interactions destroy the mean-field order. Therefore Sc or Ti isotopes,
having both protons and neutrons in the valence space of the pf shell, exhibit strong chaotic
characteristics even in the ground-state region.

Figure 1. Shell-model P (s) and 〈∆3(L)〉 values for the Jπ = 2+, T = 0 states of 28Si. Taken
from [10].

3.2. Spectral fluctuations in experimental nuclear bound states

Haq, Pandey and Bohigas [13] analyzed the spectral fluctuations of a very large number of
experimentally identified neutron and proton Jπ = 1/2+ resonances just above the one-nucleon
emission threshold and showed that they agree very well with the spectral fluctuations of GOE.
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Figure 2. Power spectrum
of δn statistic for nuclear shell-
model spectra exhibiting 1/f noise.
Adapted from [9].

Figure 3. Comparison of 〈∆3(L)〉
for Jπ = 0+ states in 46Ca (full
circles), 46Sc (triangles) and 46Ti
(open circles). Adapted from [11].

Thus, in this sense, it is clear that nuclei are very chaotic in the energy region just above the one-
nucleon emission threshold. But for bound states, the situation is not so clear, because a good
analysis of fluctuations in experimental energy spectra requires the knowledge of sufficiently
long, pure and complete sequences, i.e. with the same JπT values and without missing levels
or JπT misassignments. But this ideal situation is rarely found in nuclei. For very light nuclei
the number of bound levels is not sufficient for statistical purposes. For medium and heavy
nuclei the identified levels are limited to the ground state region, because at higher energy the
level density becomes very high and the experimental identification of the energy and Jπ values
becomes generally impossible.

In order to improve statistics, level spacings from different nuclei can be combined into a
single set to analyze the behavior of the NNS distribution P (s). An extensive analysis of low-
lying energy levels was performed by Shriner et al. [14] using experimental data along the whole
nuclear chart. A total of 988 spacings from 60 different nuclei were included in the analysis,
giving ω = 0.43 ± 0.05, which is closer to Poisson than to GOE. Separating the data in six
different mass regions a clear trend from GOE to Poisson is observed as A increases. For
A ≤ 50, the fit gives ω = 0.72 ± 0.16, and for A > 230 it gives ω = 0.24 ± 0.11. Generally
spherical nuclei are closer to GOE and deformed nuclei are closer to Poisson. The latter is not
necessarily a manifestation of regular behavior for the low-lying states of these nuclei, because
a deviation towards Poisson may be also due to the omission of some symmetry. In the present
case of deformed nuclei it may be due to omission of the K quantum number.

4. Chaos in the experimental bound states of 208Pb

Recently the complete experimental spectrum of the lowest 151 states in 208Pb, up to 6.20
MeV excitation energy, has been identified with spin and parity assignments. This represents
the largest ensemble known up to now which can be used for a statistical investigation of the
chaotic behavior among bound states in an atomic nucleus. We consider that these accurate
data on 208Pb enable a meaningful statistical analysis of level fluctuations, with pure, complete,
and reasonably long sequences. There are 14 Jπ sequences with a minimum of 5 and up to 19
known consecutive states.

Separate unfolding has been performed for all Jπ sequences using the constant temperature
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Figure 4. Comparison of spectral fluctuation statistics for natural parity states (left panels)
and unnatural parity states (right panels) in 208Pb. Panels (a) and (b) show the cumulative
nearest neighbor spacing (cumulative NNS) distribution for experimental levels (dots). Panels
(c) and (d) show the NNS distribution P (s) for experimental levels (histogram). In all panels
the green (light gray) line is the Wigner surmise, the red dashed line is the Poisson distribution,
and the black solid line is the best fit Brody distribution. Adapted from [4].

formula [14],

ρ(E) =
1

T
exp[(E − E0)/T ], (3)

where T and E0 are taken as parameters. Gathering the unfolded spacings for all Jπ into a single
set, there are 115 spacings. The P (s) distribution and the cumulative I(s) distribution for the
full set of spacings exhibit shapes much closer to GOE than to Poisson, but still the difference
with GOE is substantial. The Brody parameter for the cumulative distribution is ω = 0.68.

The relevant question with these results is how to interpret them regarding chaotic motion
in 208Pb. The result ω = 0.68 is similar to the highest value ω = 0.72 ± 0.16 obtained for
experimental states of nuclei with A < 50 [14]. Therefore we may wonder whether it represents
more or less a practical limit of possible chaos in nuclear bound states.

Heusler et al. [3] have shown that the number of identified states at Ex < 6.20 MeV nearly
agrees with the number of states in this energy interval predicted by a simplified shell-model
consisting of 1p-1h mean field configurations. However, 70 unnatural parity states agree with
this model within ∼ 0.2 MeV, and 20 natural parity states differ by > 0.5 MeV. Hence they
conclude that configuration mixing is stronger for natural parity states and therefore the residual
interaction is much larger than for unnatural parity states. To check if this effect can be observed
in the fluctuation measures we have analyzed separately the spectral fluctuations of those two
sets of states and have found that they behave very differently.

Fig. 4 shows the experimental P (s) and I(s) distributions for natural and for unnatural
parity states, compared to Wigner and Poisson. Clearly the agreement with GOE is good for
natural parity states (ω = 0.85), but for unnatural parity states the results are somewhat closer
to Poisson (ω = 0.43). Table 1 summarizes the number of spacings and the value of ω for
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Table 1. Number of spacings, Brody parameter ω and rms deviation from Wigner and Poisson
distributions for different combinations of parity in the experimental states of 208Pb at Ex < 6.20
MeV.

Number of spacings
Parity all natural unnatural
even 45 29 16
odd 70 42 28
all 115 71 44
Brody ω 0.68 0.85 0.43
(RMSD)W 0.040 0.025 0.077
(RMSD)P 0.115 0.129 0.088

the different combinations of parity and natural/unnatural parity. Independently of the Brody
parameter, the table gives as well the root mean square deviation (RMSD) of the experimental
I(s) from the Wigner and Poisson limits, showing the strong chaoticity of natural parity states.

These results agree with the observation of a stronger residual interaction for natural parity
states pointed out in Ref. [3]. In the shell model the mean field gives rise to a regular motion
and the residual interaction produces the mixing of basis states in the eigenstates, destroying the
regular mean-field motion. This effect has been observed in shell-model calculations introducing
a strength parameter to modulate the residual interaction. As the strength parameter increases,
the fluctuations measures of energy levels approach GOE behavior and thus the motion becomes
chaotic [10].

Finally, let us point out that another analysis of spectral fluctuations has been recently
published [5]. They use two chaoticity measures different from ours and do not observe a
significant difference between the experimental natural and unnatural parity states. Possibly
this difference with our results is due to the different unfolding procedures used. The influence
of the unfolding method is important when the number of levels is relatively small, as is the
case for the unnatural parity states of 208Pb. On the other hand, the spectral fluctuations have
been analyzed by the same authors for two different shell-model calculations in 208Pb. It should
be noticed that the shell-model Jπ sequences are much larger than the experimental ones and
therefore the unfolding is more reliable. The shell-model values of the chaoticity parameters are
different for natural and unnatural parity, the natural parity states being more chaotic.
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