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ABSTRACT

We compute the relevant parameters of the combined Higgs and φ scalar effective potential

in the Littlest Higgs (LH) model. These parameters are obtained as the sum of two kind

of contributions. The first one is the one-loop radiative corrections coming from fermions

and gauge bosons. The second one is obtained at the tree level from the higher order effective

operators needed for the ultraviolet completion of the model. Finally we analyze the restrictions

that the requirement of reproducing the standard electroweak symmetry breaking of the SM

set on the LH model parameters.
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1 Introduction

The discovery of a Higgs boson and the elucidation of the mechanism responsible for the

electroweak symmetry breaking are some of the major goals of present and future searches

in particle physics. The quadratically divergent contributions to the Higgs mass and the

electroweak precision observables imply different scales for physics beyond the Standard Model

(SM) ( 1 and 10 TeV respectively). This is the so called little hierarchy problem. As it is well

known the mass of the Higgs boson receives loop corrections that are quadratic in the loop

momenta. The largest contributions come from the top quark loop, with smaller corrections

coming from loops of the electroweak gauge bosons and of the Higgs boson itself. Cancellations

between the top sector and other sectors must occur in order to have the Higgs mass lighter

than 200 GeV as expected from the electroweak precision test of the Standard Model (SM)

which requires a fine-tuning of one part in 100. As this situation is quite unnatural various

theories and models have been designed to solve this problem. For example, in Supersymmetric

models the problem of quadratic Higgs mass divergences is resolved by the introduction of an

opposite-statistic partner for each particle of the SM. The more recent idea of the Littlest

Higgs model (LH) [1], inspired in an old suggestion by Georgi and Pais [2], tries to solve the

little hierarchy problem by adding new particles with masses O(TeV) and symmetries which

protect the Higgs mass from those dangerous quadratically divergent contributions (see [3]

and [4] for reviews). These particles include the Goldstone bosons (GB) corresponding to a

global spontaneous symmetry breaking (SSB) from the SU(5) to the SO(5) group, a new

third generation vector quark called T and the gauge boson corresponding to an additional

gauge group which contains at least a SU(2)R and eventually a new hypercharge U(1) . In this

case cancellation occurs between same-statistics particles. However, LH models typically leave

an uncanceled logarithmic mass contributions, which requires additional new contributions at

some high scale to preserve a small Higgs boson mass. All of these new states could give rise

to a very rich phenomenology, which could be probed at the CERN Large Hadron Collider

(LHC) [5, 6].

Nevertheless, it is clear that any viable model has to fulfill the basic requirement of repro-

ducing the SM model at low energies. In particular, from the LH model it is, in principle,

possible to compute the Higgs low-energy effective potential and then, by comparing with the

SM potential, to obtain their phenomenological consequences including new restrictions on the

parameter space of the LH model itself. For example, once obtained the one-loop corrections

to the parameters of the standard Higgs potential, V = −µ2HH† + λ(HH†)2 ; where µ2 and

λ denote the well known Higgs mass and Higgs self-couplings parameters, restrictions over

the LH parameters space can be obtained by imposing the condition µ2 = λv2 , where v is

the SM vacuum expectation value (H = (0, v)/
√

2 ) with v ≃ 245 GeV. The µ2 sign and

value are well known [1, 6], and effectively they are the right ones to produce the electroweak
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symmetry breaking, giving a Higgs mass m2
H = 2µ2 . However, the full expression for the

radiative corrections to λ has not been analyzed in detail. In principle both µ2 and λ receive

contributions from fermion, gauge boson and scalar loops, besides others that could come from

the ultraviolet completion of the LH model. We have previously computed the contributions

to the Higgs effective potential in the LH model coming from the fermion and gauge boson

sectors [7, 8]. On the other hand, several relations for the threshold corrections to the λ pa-

rameter in the presence of a 10 TeV cut-off, depending of the UV-completion of the theory,

has been reported before (see, for example [9]).

In this work we continue our program consisting in the computation of the relevant terms of

the Higgs low-energy effective potential in the LH model and to analyze their phenomenological

consequences. As has been mentioned before, we have started to developed this program in

two previous articles [7, 8]. First, we have computed and analyzed the fermion contributions

to the low energy Higgs effective potential and we have illustrated the kind of constraints

on the possible values of the LH parameters that can be set by requiring the complete LH

Higgs effective potential to reproduce exactly the SM potential [7]. Second, the effects of

virtual heavy and electroweak gauge bosons present in the LH model have been included in

the analysis [8]. The radiative corrections to λ , at the one-loop level, have not been previously

computed. First results are presented in the above two articles. We want to note that the

computation of λ is important for several reasons: First, it must be positive, for the low

energy effective action to make sense (otherwise the theory would not have any vacuum).

In addition, from the effective potential above, one gets the simple formula m2
H = 2λv2 or,

equivalently, µ2 = λv2 , being v set by experiment (for instance from the muon lifetime) to

be v ≃ 245 GeV. Our phenomenological discussion in [7, 8] have shown that the one-loop

effective potential of the LH model cannot reproduce the SM potential with a low enough

Higgs mass, m2
H = 2λv2 = 2µ2 , to agree with the standard expectations. However, there are

some indications suggesting that the effects of including interactions terms between Goldstone

bosons (GB) and the other particles, i.e. fermions and gauge bosons and/or higher order GB

loops could reduce the Higgs boson mass so that complete compatibility with the experimental

constraints could be obtained.

The main objective of this work is to compute the effective potential for the doublet Higgs

and the triplet φ , being both scalar fields of the LH model coming from some of the GB
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corresponding to the global SU(5) to SO(5) global symmetry breaking of the LH model. Its

relevant terms can be read as [5],

Veff(H, φ) = −µ2HH† + λ(HH†)2 + λφ2f 2tr(φφ†) + iλH2φf(Hφ†HT −H∗φH†) . (1.1)

This potential get contributions from radiative corrections and from effective operators coming

from the ultraviolet completion of the LH model. With this potential we will study the regions

of the LH parameter space giving rise to the SM electroweak symmetry breaking. Although

radiative corrections from fermion and gauge boson loops are discussed in [7, 8], the radiative

contributions to λφ2 and λH2φ have not been computed so far. A new constraints over the LH

parameter space emerge once we impose the new relation between coefficients of the effective

Higgs potential, imposed by the diagonalization of the Higgs mass matrix.

This work is organized as follows: In Section 2 we briefly explain the LH model and set the

notation. Section 3 is devoted to the computation of the radiative corrections contributions

to the effective potential at one-loop level. Next section is dedicated to the effective operator

contribution. In Section 5 we analyze the constraints that our computation establishes on the

LH parameters and, finally, in Section 6 we present the conclusions. The Goldstone bosons

couplings to fermions and gauge bosons, needed for our computations, are listened in the

Appendix.

2 The Littlest Higgs model Lagrangian

The LH model is based on the assumption that there is a physical system with a global SU(5)

symmetry that is spontaneously broken to a SO(5) symmetry at a high scale Λ through a

vacuum expectation value of order f . Thus, 14 Goldstone bosons (GB) are obtained as a

consequence of this breaking. In this work we will consider two different versions of the LH

model. In the first one the global SU(5) symmetry is explicitly broken by a gauge group

[SU(2)×U(1)]2 . We refer to this version as Model I [7,8]. In the second one the gauge group

is [SU(2)2×U(1)] (Model II ) [7,8]. In both cases some of the GB become pseudo-GB acquire

their masses through radiative corrections coming from gauge bosons and t, b T fermions

loops.

The LH low energy dynamics is then described by a non-linear sigma model lagrangian
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plus the appropriate Yukawa terms. The corresponding lagrangian is given by [1, 5, 6],

L = Lkin + LY K

=
f 2

8
tr[(DµΣ)(DµΣ)†] −

λ1

2
fuRǫmnǫijkΣimΣjnχLk − λ2fURUL + h.c. , (2.1)

where

Σ = e2iΠ/fΣ0 (2.2)

is the GB matrix field. Σ0 is

Σ0 =







0 0 1

0 1 0

1 0 0






, (2.3)

with 1 being the 2 × 2 unit matrix. The Π matrix can be parametrized as,

Π =







0 −i√
2
H† φ†

i√
2
H 0 −i√

2
H∗

φ i√
2
HT 0






. (2.4)

Here H = (H0, H+) is the SM Higgs doublet and φ is the triplet given by:

φ =

(

φ0 1√
2
φ+

1√
2
φ+ φ++

)

. (2.5)

The covariant derivative Dµ is defined by:

Model I

DµΣ = ∂µΣ − i
2
∑

j=1

gjW
a
j (Qa

jΣ + ΣQaT
j ) − i

2
∑

j=1

g′jBj(YjΣ + ΣY T
j )

Model II

DµΣ = ∂µΣ − i
2
∑

j=1

gjW
a
j (Qa

jΣ + ΣQaT
j ) − ig′B(Y Σ + ΣY T ) , (2.6)

where g and g′ are the gauge couplings, W a
j (a = 1, 2, 3) and Bj , B are the SU(2) and

U(1) gauge fields, respectively, Qa
1ij = σaij/2 , for i, j = 1, 2 , Qa

2ij = σa∗ij /2 for i, j = 4, 5

and zero otherwise, Y1 = diag(−3,−3, 2, 2, 2)/10 , Y2 = diag(−2,−2,−2, 3, 3)/10 and Y =

diag(−1,−1, 0, 1, 1)/2 .
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The Yukawa Lagrangian in (2.1), LY K , describes the interactions between GB and

fermions, more exactly, the third generations of quarks plus the extra T quark appearing

in the LH model. The indices in LY K are defined such that m,n = 4, 5 , i, j = 1, 2, 3 , and

uR = c tR + s TR ,

UR = −s tR + c TR, (2.7)

with:

c = cos θ =
λ2

√

λ2
1 + λ2

2

,

s = sin θ =
λ1

√

λ2
1 + λ2

2

, (2.8)

and

χL =







u

b

U







L

=







t

b

T







L

. (2.9)

The SU(5) to SO(5) spontaneous breaking give rise to four massless gauge bosons (the

SM gauge bosons) and four or three massive gauge bosons corresponding to Model I or Model

II respectively. In the fermion sector, we obtain one massive T quark and two massless quarks,

namely the top and the bottom quarks.

In order to compute the gauge bosons loops, the lagrangian L must be supplemented by

the standard terms depending only on the gauge fields. For sake of simplicity we will work in

the following in the Landau gauge. Then these terms can be written symbolically in the mass

eigenstate basis as:

LΩ =
1

2
Ωµ((� +M2

Ω)gµν − ∂µ∂ν + 2Ĩ gµν)Ω
ν (2.10)

where Ω stands for any of the gauge bosons:

Model I Ωµ = (W ′µa,W µa, B′µ, Bµ)

Model II Ωµ = (W ′µa,W µa, Bµ) , (2.11)

being the mass matrix eigenstates,

Model I MΩ = (MW ′13×3, 03×3,MB′ , 0)

Model II MΩ = (MW ′13×3, 03×3, 0) , (2.12)
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with MW ′ = f
√

g2
1 + g2

2/2 and MB′ = f
√

g
′2
1 + g

′2
2 /

√
20 . Finally, Ĩ is the interaction matrix

between the gauge bosons and the H and φ scalars as it is given in the Appendix.

For the quarks, the complete Lagrangian is,

Lχ = χR(i∂/−M + Î)χL + h.c. (2.13)

where

χR =







t

b

T







R

,

M = diag (0, 0, mT ) with mT = f
√

λ2
1 + λ2

2 , and Î , being the scalar-quark interaction matrix,

given also in the Appendix. For more details of the model, including Feynman rules and also

some phenomenological results see, for example, [5].

3 One-loop Effective Potential

As it is well known the electroweak symmetry breaking in the LH model is triggered, in

principle, by the Higgs potential generated by one-loop radiative corrections, including both,

fermion and gauge boson loops. Obviously this potential is invariant under the electroweak

gauge group SU(2) × U(1) . Its relevant terms are given in (1.1), being µ2 and λ the Higgs

mass and the Higgs self-couplings parameters respectively. Quartic terms involving φ4 and

H2φ2 are not included since they are not relevant in our present computation. The coefficients

λ , λφ2 and λH2φ appearing in the potential (1.1) receive contributions from the tree-level

higher order operators coming from the ultraviolet completion of the LH model (see Section 4)

and also from the gauge boson and fermion radiative corrections as will be discussed in this

section.

As described in detail in our previous articles [7,8], we first focused on the effective potential

for the H doublet, obtaining the first two terms of the potential,

Veff(H) = −µ2
fgHH

† + λfg(HH
†)2 , (3.1)

where µ2
fg and λfg denote the sum of fermionic and the gauge boson contributions to µ2 and

λ . By imposing that these parameters should reproduce the SM relation m2
H = 2λv2 = 2µ2 ,
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where mH is the Higgs mass and v is the vacuum expectation value (vev), we found that this

potential it is not sufficient to find a light Higgs mass and to satisfy the relation µ2
fg = v2λfg .

Notice that v is set by the experiment (for instance from the muon lifetime) to be v ≃ 245

GeV and µ is forced by data to be at most of order 200 GeV. However, the inclusion of the

Goldstone boson (GB) sector could channel the situation towards a complete compatibility

with the SM and the experimental constraints. In this way, the next objective is to obtain the

effective potential for the H and φ fields, including the radiative contributions from fermion

and gauge boson loops and the ones coming from the effective higher order operators (tree-

level contribution) [1, 5, 10]. In this work we concentrate on the computation of the fermionic

and gauge bosons contributions to the remaining coefficients of the complete one-loop effective

potential defined in (1.1), λφ2 and λH2φ . For this purpose, we consider constant GB fields,

i.e. ∂H = ∂φ = 0 . This assumption makes easier the computation since we have:

Seff [H, φ] = −
∫

d4x Veff(H, φ) (3.2)

On the other hand the action is quadratic in the fermionic fields. Therefore, this one-loop

contribution is exactly computed.

We split the calculation in two parts: the first one is dedicated to the fermion sector, and

the second one to the gauge boson sector. Details on how the effective action is computed,

by using standard techniques (see for instance [11]), are given in [7, 8]. In the following we

summarize just the main steps needed for the calculation.

3.1 Fermionic contribution

Following the idea in [7], the fermionic part of the effective action can be expanded as:

Sfeff [H, φ] ≃ −iTr log(1 +GĨf ) = −iTr

∞
∑

k=1

(−1)k+1

k
(GĨf)

k, (3.3)

where we have neglected a constant, irrelevant for the computation of the effective action. The

fermion propagator, Gab(x, y) , is given by:

Gab(x, y) ≡
∫

dk̃e−ik(x−y)(k/−mf )
−1
ab a, b ≡ t, b, T, (3.4)
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c

f f

c

c

f

H

H

Figure 1: Fermionic one-loop diagrams contributing to the λφ2 and λH2φ , with χ = t , b ,T .

All possible combinations of these particles appear in the loops.

where dk̃ ≡ d4k/(2π)4 , and the interaction operators are:

ˆ̃Iabf (x, y) = (Ĩf1 + Ĩf2 + Ĩf3 + Ĩf4)δ(x− y)δab. (3.5)

Here the subindex indicates the number of GB interacting with two fermions.

In order to obtain the fermionic contribution to the λφ2 and λH2φ we only need consider

the terms k = 1 and k = 2 in the expansion (3.3), respectively. The generic one-loop diagrams

are shown in Fig.1. For k = 1 we get,

S
(1)
f [H, φ] = −iTr[Ga(Ĩaaf2 + Ĩaaf4)] . (3.6)

For the case k = 2 one obtains,

S
(2)
f [H, φ] =

i

2
Tr[2GaĨabf1G

bĨbaf2 +GaĨabf2G
bĨbaf2 + 2GaĨabf1G

bĨbaf3]. (3.7)

By using well known methods, and after some work in which the divergent integrals that

emerge are regularized by using an ultraviolet cutoff Λ , we obtain the different contributions

to the couplings. The Fermionic contributions are:

λφ2f =
8Nc

(4πf)2
(λ2

t + λ2
T )

(

Λ2 −m2
T log

(

Λ2

m2
T

+ 1

))

, (3.8)

and

λH2φ f = −
4Nc

(4πf)2

[

(λ2
t + λ2

T )Λ2 − λ2
Tm

2
T log

(

Λ2

m2
T

+ 1

)]

, (3.9)

where Nc is the number of colors and, λt and λT are, respectively, the SM top Yukawa

coupling and the heavy top Yukawa coupling, given by:

λt =
λ1λ2

√

λ2
1 + λ2

2

, λT =
λ2

1
√

λ2
1 + λ2

2

. (3.10)
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For the purpose of illustration and the final discussion of this paper, we also summarize

here the fermionic contribution to the other two parameters of the Higgs potential, µ2 and

λ , as have been obtained in [7]:

µ2
f = Nc

m2
Tλ

2
t

4π2
log

(

1 +
Λ2

m2
T

)

, (3.11)

and

λf =
Nc

(4π)2

[

2(λ2
t + λ2

T )
Λ2

f 2
− log

(

1 +
Λ2

m2
T

)(

−
2m2

T

f 2

(

5

3
λ2
t + λ2

T

)

+ 4λ4
t + 4(λ2

T + λ2
t )

2

)

− 4λ2
T

1

1 +
m2

T

Λ2

(

m2
T

f 2
− 2λ2

t − λ2
T

)

− 4λ4
t log

(

Λ2

m2

)

]

. (3.12)

Observe that the λ ’s parameters, λf , λφ2f and λH2φ f , are quadratically divergent. This is

due to the lack of any symmetry protecting them, unlike the µ parameter which is protected

by a SU(3) global symmetry. This will be the case for the gauge sector too, as it will be seen

in the following.

3.2 Bosonic contribution

Here we concentrate in the gauge boson contributions at the one-loop level. We use the Landau

gauge so that we do not have to consider any ghost field at this level. In this case the effective

action can be expand as:

Sgeff [H, φ] =
i

2
Tr log(1 +GĨg) =

i

2
Tr

∞
∑

k=1

(−1)k+1

k
(2GĨg)

k, (3.13)

where G is the gauge boson propagator given by (Landau gauge):

Gab
µν(x, y) ≡

∫

dk̃
e−ik(x−y)

k2 −M2
g

(

−gµν +
1

k2
kµkν

)

ab

, a, b = W ′a,W a, B′, B. (3.14)

and the interaction operators are:

ˆ̃Iabg (x, y) = (Ĩg2 + Ĩg3 + Ĩg4)δ(x− y)δab. (3.15)
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f f

W

W

f

H

W

H

Figure 2: One-loop gauge boson diagrams contributing to the λφ2 and λH2φ , where Ω repre-

sents to the gauge bosons particles, W
′1,2,3 , W 1,2,3 , B′ and B . All possible combinations of

these particles appear in the loops.

The generic diagrams for this computation are given in Fig.2. In this case, we only need

to consider the term k = 1 to obtain the two parameters λφ2 and λH2φ . Then, we get:

S(1)
g [H, φ] = iTr[G(Ĩg2 + Ĩg3 + Ĩg4)] (3.16)

As it was mentioned above we consider in our analysis two different models: The original

LH with two U(1) groups (Model I ) and the other one with just one U(1) group (Model II ).

As there is no mixing between the SU(2) and U(1) groups, the only difference among these

two models occurs in the U(1) sector.

3.2.1 Model I

The contributions from gauge boson sector to the λφ2 and λH2φ parameters are given by:

λIφ2g =
3

4(4πf)2

[

g2

c2ψs
2
ψ

Λ2 − g2M2
W ′ log

(

Λ2

M2
W ′

+ 1

)

(

(s2
ψ − c2ψ)2

c2ψs
2
ψ

− 4

)

+
g

′2

c2ψ′s2
ψ′

Λ2 − g
′2M2

B′ log

(

Λ2

M2
B′

+ 1

)

(s2
ψ′ − c2ψ′)2

c2ψ′s2
ψ′

]

, (3.17)

λIH2φg =
3

8(4πf)2

[

g2
s2
ψ − c2ψ
c2ψs

2
ψ

(

Λ2 −M2
W ′ log

(

Λ2

M2
W ′

+ 1

))

+ g
′2
s2
ψ′ − c2ψ′

c2ψ′s2
ψ′

(

Λ2 −M2
B′ log

(

Λ2

M2
B′

+ 1

))

]

. (3.18)
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Note that this last parameter only receives contributions from the heavy gauge boson sector.

For the sake of completeness and our phenomenological discussion we also list here the

results for the gauge boson contributions to µ2 and λ , as obtained in [8]:

µ2 I
g = −

3

64π2

[

3g2M2
W ′ log

(

1 +
Λ2

M2
W ′

)

+ g
′2M2

B′ log

(

1 +
Λ2

M2
B′

)]

, (3.19)

λIg = −
3

(16πf)2

[

−

(

g2

c2ψs
2
ψ

+
g

′2

c
′2
ψ s

′2
ψ

)

Λ2

+ g2M2
W ′ log

(

1 +
Λ2

M2
W ′

)

(

4 +
1

c2ψs
2
ψ

+ 2g
′2

(c2ψs
′2
ψ + s2

ψc
′2
ψ )2

c2ψs
2
ψc

′2
ψ s

′2
ψ

f 2

M2
W ′ −M2

B′

)

+ g
′2M2

B′ log

(

1 +
Λ2

M2
B′

)

(

4

3
+

1

c
′2
ψ s

′2
ψ

+ 2g2
(c2ψs

′2
ψ + s2

ψc
′2
ψ )2

c2ψs
2
ψc

′2
ψ s

′2
ψ

f 2

M2
B′ −M2

W ′

)

+ f 2 log

(

1 +
Λ2

M2
W ′

)

(

3g4 + 2(3g2 + g
′2)g2

(s2
ψ − c2ψ)

2

c2ψs
2
ψ

)

+ f 2 log

(

1 +
Λ2

M2
B′

)

(

g
′4 + 2(g2 + g

′2)g
′2

(s
′2
ψ − c

′2
ψ )2

c
′2
ψ s

′2
ψ

)

+ f 2 log

(

Λ2

m2

)

(

3g4 + g
′4 + 8g2g

′2
)

− 3f 2 g4

1 − M2

W ′

Λ2

− f 2 g
′4

1 − M2

B′

Λ2

]

. (3.20)

where

g ≡ =
g1g2

√

g2
1 + g2

2

, sψ = sinψ =
g1

√

g2
1 + g2

2

, cψ = cosψ =
g2

√

g2
1 + g2

2

(3.21)

and

g′ ≡
g′1g

′
2

√

g
′2
1 + g

′2
2

, s′ψ = sinψ′ =
g′1

√

g′ 21 + g′ 22
, c′ψ = cosψ′ =

g′2
√

g′ 21 + g′ 22
. (3.22)

3.2.2 Model II

The corresponding results for this model are:

λIIφ2g =
3

64π2f 2

[

g2

c2ψs
2
ψ

Λ2 − g2M2
W ′ log

(

Λ2

M2
W ′

+ 1

)

(

(s2
ψ − c2φ)

2

c2ψs
2
ψ

− 4

)]

+
3g

′2

(4πf)2
Λ2,

(3.23)
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λIIH2φg =
3g2

8(4fπ)2

s2
ψ − c2ψ
c2ψs

2
ψ

(

Λ2 −M2
W ′ log

(

Λ2

M2
W ′

+ 1

))

. (3.24)

As it was expected, the U(1) sector does not have any influence on λIIH2φg .

In addition the µ2 II
g and λIIg parameters are given by [8]:

µ2 II
g = −

3

64π2

(

3g2M2
W ′ log

(

1 +
Λ2

M2
W ′

)

+ g
′2Λ2

)

, (3.25)

and

λIIg = −
3

(16πf)2

[

−
g2

c2ψs
2
ψ

Λ2 +
4

3
g′

2
Λ2 + g2M2

W ′ log

(

Λ2

M2
W ′

+ 1

)

(

4 +
1

c2ψs
2
ψ

)

+ f 2 log

(

1 +
Λ2

M2
W ′

)

(

3g4 + 2(3g2 + g′
2
)g2

(s2
ψ − c2ψ)

2

s2
ψc

2
ψ

)

+ f 2 log

(

Λ2

m2

)

(3g4 + g′
4
+ 8g2g′

2
) − 3f 2 g4

1 − M2

W ′

Λ2

]

. (3.26)

With these results, the radiative contributions at one-loop level to the Higgs potential

parameters are completed.

4 Effective Operators

As discussed above, the Higgs potential gets gauge boson and fermion one-loop contributions in

the LH model. In addition, the potential coefficients also receive contributions from additional

operators coming from the ultraviolet completion of the LH model. Thus these operators must

be consistent with the symmetry of the theory [1, 5, 10]. At the lowest order they can be

parameterized by two unknown coefficients a and a′ ∼ O(1) . The form of these effective

operators are, for the fermion sector [5],

Of = −a′
1

4
λ2

1f
4ǫwxǫyzǫ

ijkǫkmnΣiwΣjxΣ
∗myΣ∗nz , (4.1)
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where i, j, k,m, n run over 1,2,3 and w, x, y, z run over 4,5 and for the gauge sector (Model

I ),

Ogb =
1

2
af 4

{

g2
j

3
∑

a=1

Tr
[

(Qa
jΣ)(Qa

jΣ)∗
]

+ g
′2
j Tr [(YjΣ)(YjΣ)∗]

}

, (4.2)

with j = 1, 2 and Qa
j and Yj being the generators of the SU(2)j and U(1)j groups, respec-

tively.

In the case of the Model II :

Ogb =
1

2
cf 4

{

g2
j

3
∑

a=1

Tr
[

(Qa
jΣ)(Qa

jΣ)∗
]

+ g
′2Tr [(Y Σ)(Y Σ)∗]

}

, (4.3)

where j = 1, 2 and Y is the generator of the unique U(1) group.

By expanding the GB field matrix Σ in these effective operators, we obtain their different

contributions to the coefficients of the effective potential (1.1):

parameters Model I Model II

λEO
a
8

(

g2

s2
ψ
c2
ψ

+ g
′
2

s
′2

ψ
c
′2

ψ

)

+ 2a′(λ2
t + λ2

T ) a
8

(

g2

s2
ψ
c2
ψ

)

− a
3
g

′2 + 2a′(λ2
t + λ2

T )

λφ2
EO

a
2

(

g2

s2
ψ
c2
ψ

+ g
′
2

s
′2

ψ
c
′2

ψ

)

+ 8a′(λ2
t + λ2

T ) a
2

(

g2

s2
ψ
c2
ψ

)

+ 4ag
′2 + 8a′(λ2

t + λ2
T )

λH2φEO
a
4

(

g2 c
2

ψ
−s2

ψ

s2
ψ
c2
ψ

+ g
′2 c

′
2

ψ
−s′2

ψ

s
′2

ψ
c
′2

ψ

)

+ 4a′(λ2
t + λ2

T ) a
4
g2 c

2

ψ
−s2

ψ

s2
ψ
c2
ψ

+ 4a′(λ2
t + λ2

T )

µ2
EO 0 af 2g

′2

To summarize, the complete results for these parameters is the sum of the contributions

coming from the effective operators, as given above, and the radiative contributions coming

from the fermion and gauge boson sector, which were given in Section 3.

5 Numerical Results and Phenomenological Discussion

In this section we discuss about the constraints on the possible values of the LH parameters. In

our previous works we focused on the analysis of the constraints on the LH parameters by con-

sidering the effective potential only for the LH doublet (3.1) [7,8]. Our computation included

13



the effect of virtual heavy quarks t, b and T , together with the heavy and electroweak gauge

bosons W
′

, W , B′ and B , present in the LH model. By imposing that the potential (3.1)

has a minimum whenever µ2 = λv2 ( v = 246 GeV), we found that the obtained values for

the µ parameter were too high to be compatible with the expected Higgs mass, which should

not be larger than about 200 GeV according to the electroweak precision data.

It is clear that a similar analysis should be done if we consider the complete effective Higgs

potential as given in (1.1). In this case, by diagonalizing the Higgs mass matrix, the Higgs

mass is given to the leading order by m2
H ≃ 2(λ− λ2

H2φ/λφ2)v2 = 2µ2 [5]. Therefore, the LH

parameters must satisfy the condition:

v2 =
µ2

(λ− λ2
H2φ/λφ2)

. (5.1)

In the following we will discuss about the constraints that the condition (5.1) imposes on the

LH parameters space. In this way, we should also take into account other constraints imposed

by requiring the consistency of the LH models with the electroweak precision data. There exist

several studies of the corrections to electroweak precision observables in the Little Higgs models,

exploring whether there are regions of the parameter space in which the model is consistent

with data [3–6, 12–16]. In the Model I with a gauge group SU(2) × SU(2) × U(1) × U(1)

one has a multiplet of heavy SU(2) gauge bosons and a heavy U(1) gauge boson. The last

one leads to large electroweak corrections and some problems with the direct observational

bounds on the Z ′ boson from Tevatron [12,13]. Then, a very strong bound on the symmetry

breaking scale f , f > 4 TeV at 95% C.L, is found [12]. However, it is known that this

bound is lowered to 1 − 2 TeV for some region of the parameter space [13] by gauging only

SU(2) × SU(2) × U(1) (Model II ). Thus in the following, we focus in the LH version called

Model II.

In order to avoid small values of the W ′ mass and a very strong coupling constant we will

set MW ′ > 0.6 TeV and gR ≤ 3 in our numerical discussion. We have found that for very

small or very large values of the gauge group mixing angles, µ2
fg is not positive and the SSB

does not occur. However, due to the dependence of heavy gauge coupling constants on the

mixing angles,

g2
R ≡

1

2
(g2

1s
2
ψ + g2

2c
2
ψ), (5.2)
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it is found that cψ < 0.1 or cψ ∼ 1 imply a very strong gauge coupling. Accordingly we will

work with 0.1 < cψ < 0.9 , and then we will ensure that µ2 has the right sing to generate a

SSB. Besides, taking into account the restrictions on the parameters given in [8], we also set

the following ranges: 0.5 < λT < 2 , 0.8 TeV < f < 1 TeV and 10 TeV < Λ < 12 TeV.

The condition λT >∼ 0.5 is established setting the bounds on the couplings λ1, λ2 ≥ mt/v or

λ1λ2 ≥ 2(mt/v)
2 from the top mass [5]. The condition mT

<∼ 2.5 TeV is required in order

to avoid a large amount of fine-tuning in the Higgs potential [1, 6]. Then, since mT grows

linearly with f , f should be lesser than about one TeV [7]. Finally, Λ is restricted by the

standard condition Λ ∼ 4πf [17]. On the other hand the a and a′ parameters are expected

to be O(1) [1,5,10]. Values of the symmetry breaking scale f around 4 TeV are also allowed

by the electroweak precision observables [12,13]. However, this value of f implies that mT is

always greater than 5.7 TeV, when λT > 0.5 . A fine-tuning of 0.8% is estimated for a Higgs

mass of 200 GeV [12]. Besides, one gets MW ′ > 2.6 TeV. In addition, we have found that for

f = 4 TeV, the allowed region for the LH parameters space, satisfying the condition imposed

by the minimum of the Higgs potential, is smaller [7,8]. In fact, values around 1− 3 TeV are

the preferred ones for our selected choices of the LH parameters.

By considering the LH parameters bounded as described above and imposing the condition

(5.1), we analyze the constraints on the different LH parameters with the inclusion of the

effects of both contributions, the radiative ones (for the Model II ) and the effective operators.

We found that the minimum µ value is µ = 0.39 TeV; for f = 0.8 TeV, Λ = 10 TeV,

λT = 0.72 , cψ = 0.34 and a = a′ = 0 , and the maximum is µ = 0.761 TeV; for f = 0.95

TeV, Λ = 11.5 TeV, λT = 1.8 , cψ = 0.71 , a = 1 and a′ = 0.3 . Clearly, the minimum value

corresponds with the case of considering the radiative corrections alone. In this case, small

values of cosψ are preferred. This is due to the fact that the fermionic contribution to the µ

parameter is very large for higher energies, while λ does not change strongly with f and Λ .

In this way, to satisfy the condition (5.1), small values of cosψ are needed in order to reduce

µ . As it was expected, large φ mass, Mφ = 4.1 TeV, is found for values of the parameters

corresponding to the minimum value of µ .

In Fig.3 we show how the viable region changes with different values of f , Λ , a and a′ .

Deviations from the condition (5.1) are allowed up to 20% . In the top row we have set the

f and Λ values to 0.8 TeV and 10 TeV, and in the bottom row to 1 TeV and 12 TeV
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Figure 3: Contours of the viable regions in the λT − cψ plane with the condition (5.1) for

different values of a and a′ . In the top and bottom rows f and Λ are fixed to f = 0.8 TeV

and Λ = 10 TeV, and f = 1 TeV and Λ = 12 TeV, respectively.

respectively. Thus, the columns represent different a and a′ values. Starting from left to

right the values are the following: a = 0.3 and a′ = 0.2 , a = 0.3 and a′ = 0.7 , a = 0.9 and

a′ = 0.2 , and finally, a = 0.9 and a′ = 0.7 . One can see that small a′ values are preferred

in order to satisfy the SSB condition. Since in this case we are taking into account both, the

radiative corrections and the effective operators, the fermion sector contributions become even

more important than in the cases of considering some of these contributions alone. Therefore,

the strongly dependence on a′ caused by the top’s Yukawa couplings, gives large values of the

λ ’s parameters for high a′ values making difficult to satisfy the eq.(5.1). However, the case

of a is quite different. From Fig.3 it is clear that the results do not depend strongly on this

parameter since its contribution is suppressed by the gauge couplings g and g′ and by the

not so small values of cψ .

It is interesting to note that if one consider only the contributions to the potential coming

from the effective operators (except for the µ parameter which still will be dominated by the

radiative corrections), the SSB condition is not easily satisfied. The reason is very simple;

the λ ’s parameters at tree-level does not depend neither on f nor on Λ , while µ does. For
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example, the dependence of µ on f appears trough the heavy particle masses and then µ

is directly proportional to f . In this way, µ rises very quickly with f meanwhile the λ ’s

parameters do not. Therefore high values of the parameters a and a′ are needed in order to

satisfy the condition (5.1). We find that only for f = 0.8 TeV, Λ = 10 TeV, and a ≥ 0.75

y a′ ≥ 0.95 the equality (5.1) is satisfied. A more detailed analysis of the allowed values of

the constants a and a′ , in agreement with the electroweak precision fits, is given in [12]. The

lowest value we found for µ is µ = 0.49 TeV, corresponding to f = 0.8 TeV, Λ = 10 TeV,

cψ = 0.2 λ = 2.59 , a = 0.75 and a′ = 0.95 , being the mass of the φ scalar 2.86 TeV.

From the discussion above we see that in all cases the µ values are higher than 350 GeV.

This is far away from the expected bound of the order of 200 GeV predicted by the SM

precision tests. Therefore, it is clear that the inclusion of the interactions terms between GB

and the other particles is not enough to reduce the Higgs boson mass so that the complete

compatibility with the experimental constraints can be obtained. There are some indications

suggesting that contributions coming from the scalar sector must reduce the absolute value of

µ2 and thus the Higgs mass. Although the scalar loops contributions have not been analyzed

before (except the case of the radiatively generated scalar operators that have been discussed

in [18]), the expression for the leading correction to the Higgs mass parameter, µ2
φ , is presented

in several articles. In particular, this correction is given by [1],

µ2
φ = −

λ

16π2
Mφ log

(

1 +
Λ2

M2
φ

)

. (5.3)

Let us now estimate the size of the above contribution for the case in which we have obtained

the minimum value for µ , µ = 0.39 TeV; corresponding to f = 0.8 TeV, Λ = 10 TeV,

λT = 0.72 , cψ = 0.34 and a = a′ = 0 , with Mφ = 4.1 TeV. Thus, by taking Λ = 10 TeV,

Mφ = 4.1 TeV and assuming that λ ≃ 1
3

(at tree level) for having a Higgs mass of order 200

GeV [12], we get µφ = −0.14 TeV. This implies that the µ value is reduced to be µ = 250

GeV. Note, however, that the quartic coupling λ is fixed to a particular value in the above

analysis. Since small changes in the input parameters of the model produce large changes in

the value of λ (and therefore the value of µ could vary), the radiative corrections to this

coupling coming from the scalar sector must be also taken into account in a full analysis [19].
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6 Conclusions

In this work we have computed the Higgs and φ bosons effective potential of the LH model

(1.1). We have considered two kind of contributions to the parameters of this effective potential.

Firstly, we have concentrated on the fermions and gauge bosons one-loop radiative corrections.

In this case, we observe that the λ ’s parameters are O(Λ2) , since they are not protected as

the Higgs mass is in the LH model. Secondly, we compute the contributions to the parameters

from the effective operators coming from the ultraviolet completion of the LH model. Here,

the obtained parameters depend exclusively on the two new unknown coefficients a and a′ ,

as well as the mixing angle cψ and the T Yukawa coupling. This is an important difference

between the results obtained at one-loop which also depend on the cutoff Λ .

The resulting potential has the right form to produce a spontaneously symmetry breaking,

since µ2 > 0 for some regions of the LH model parameter space. Thus, if the condition (5.1)

is satisfied, the electroweak symmetry is broken. By using the obtained effective potential we

have analyzed the constraints imposed on the LH parameters in order to reproduce the SM

electroweak symmetry breaking. We observe that if one only consider the effective operator

contribution, the SSB condition is not easily satisfied. However, if the radiative corrections

or both contributions are taken into account the allowed ranges of the parameters are much

wider. The explanation comes from the way in which the coefficients of the potential, µ and

λ ’s, depend on f and Λ , as it was discussed above.

Finally, we numerically analize the LH parameter space that can be set by requiring the

LH Higgs effective potential to reproduce exactly the SM potential, and its compatibility with

the present phenomenological constraints on the Higgs boson mass. The lowest value found for

the µ parameter is 390 GeV, which implies a Higgs boson mass of mH ≃ 550 GeV which is

far from the current bound of about 200 GeV. As a consequence, we conclude that radiative

corrections, coming from the Higgs itself and φ fields, could also provide relevant contributions

to the effective potential if the LH model is able to reproduce the SM at low energies. An

estimation of the scalar contribution to the µ parameter leads to a value of µ = 250 GeV, and

thus mH ≃ 350 GeV. Nevertheless, the full contribution from the triplet, and thus the triplet

mass Mφ , is required to correct the Higgs mass in improved computations. The value of the

Higgs quartic coupling, λ , receives several contributions which have a non-trivial dependence

on the various parameters of the model and have no being computed so far. Work is in progress
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in order to compute these contributions and to check if then the value of Higgs mass will get

closer to the current bound [19].
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Appendix

The Goldstone bosons couplings to fermions and gauge bosons, needed for our computa-

tions, are listened in the following:

1. Couplings between Fermions and Goldstone Bosons

a-Three particles

−
√

2λTH0t(1 + γ5)T

−
√

2λtH0t(1 + γ5)t

−
√

2λTH
+b(1 + γ5)T

−
√

2λtH
+b(1 + γ5)t

b-Four particles
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− i
√

2
f
λTH

∗
0φ0t(1 + γ5)T − i

√
2
f
λtH

∗
0φ0t(1 + γ5)T

− i
f
λTH

∗
0φ

+b(1 + γ5)T − i
f
λtH

∗
0φ

+b(1 + γ5)t

− i
f
λTH

+∗φ+t(1 + γ5)T − i
f
λtH

+∗φ+t(1 + γ5)t

− i
f
λTH

+∗φ++b(1 + γ5)T − i
f
λtH

+∗φ++b(1 + γ5)t

−λt
f

tr(φφ†)T (1 + γ5)t −λT
f

tr(φφ†)TT

2. Couplings between Gauge Bosons and Goldstone Bosons

a-Four particles

g2

2
(φ0φ

∗
0 + 2φ+φ− + φ++φ−−)W1µW

µ
1

g2

2
(φ0φ

∗
0 + 2φ+φ− + φ++φ−−)W2µW

µ
2

2g2(φ0φ
∗
0 + φ++φ−−)W3µW

µ
3

(

− 1
2

g2
1
g2
2

g2
1
+g2

2

tr (φφ†) + 1
4

g4
1
+g4

2

g2
1
+g2

2

φ+φ−
)

W ′
1µW

′µ
1

(

− 1
2

g2
1
g2
2

g2
1
+g2

2

tr (φφ†) + 1
4

g4
1
+g4

2

g2
1
+g2

2

φ+φ−
)

W ′
2µW

′µ
2

(

− 1
2

g2
1
g2
2

g2
1
+g2

2

tr (φφ†) + 1
4

g4
1
+g4

2

g2
1
+g2

2

(φ0φ
∗
0 − φ+φ− + φ++φ−−)

)

W ′
3µW

µ
′3

g
′2 tr (φφ†)bµB

µ

1
4

(g
′
2

1
−g′2

2
)2

g
′2

1
+g

′2

2

tr (φφ†)B′
µB

′µ

a-Five particles

i(g2
1
−g2

2
)

8f
(H0φ

−−H0 +H+φ∗
0H

+ +
√

2H0φ
−H+)W ′

1µW
′µ
1 +h.c.

− i(g2
1
−g2

2
)

8f
(H0φ

−−H0 +H+φ∗
0H

+ −
√

2H0φ
−H+)W ′

2µW
′µ
2 +h.c.

i(g2
1
−g2

2
)

8f
(H0φ

−−H0 +H+φ∗
0H

+ −
√

2H0φ
−H+)W ′

3µW
′µ
3 +h.c.

i(g
′
2

1
−g2

′2
)

8f
(H0φ

−−H0 +H+φ∗
0H

+ +
√

2H0φ
−H+)B′

µB
′µ +h.c.
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