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Visión general 

Las tecnologías grid permiten integrar recursos heterogéneos distribuidos. Las 

aplicaciones del mundo científico y empresarial ganan así acceso a vastas 

infraestructuras que traspasan límites administrativos. En este entorno distribuido, los 

trabajos de computación pueden ser ejecutados en cualquier recurso y se hacen 

necesarias estrategias para seleccionar el destino óptimo para cada tarea, con el objetivo 

de maximizar la eficiencia de las aplicaciones. Los metaplanificadores como GridWay 

son los encargados de enviar los trabajos a los recursos y en los momentos apropiados.  

 

Este proyecto se ocupa de la planificación de tareas que consumen grandes 

cantidades de datos ya existentes. Muestra cómo los metaplanificadores necesitan tener 

en cuenta dónde se hallan los datos para poder minimizar replicaciones innecesarias y 

para optimizar la eficiencia de los trabajos. También describe las modificaciones 

realizadas en GridWay para hacerle capaz de aceptar requisitos de datos de los trabajos 

y flexible para implantar diferentes algoritmos en función de ellos. Se repasan y prueban 

con GridWay algunos de estos algoritmos y finalmente se propone una aproximación al 

problema general de planificación de trabajos y colocación de datos en el grid. 

 

Como ejemplo de motivación, se discuten las exigentes necesidades en datos del 

experimento CMS, participante del proyecto EGEE. Éstas servirán como referencia para 

evaluar los algoritmos propuestos y nuestra propia implementación. 

 

La organización de este trabajo es la siguiente: el capítulo 1 introduce el concepto de 

grid, describe las principales tecnologías grid usadas hoy en día y el metaplanificador 

GridWay, y presenta la infraestructura EGEE. El capítulo 2 estudia los retos planteados 

por la planificación de tareas con importantes necesidades de datos, y repasa cómo los 

afronta EGEE y qué proponen otros autores para resolverlos. El capítulo 3 se apoya en 

las conclusiones del capítulo 2 para describir nuestra aproximación al problema, las 

modificaciones realizadas en GridWay y los experimentos llevados a cabo para probar 

nuestra solución. Finalmente, el capítulo 4 resume las conclusiones del proyecto y las 

posibles mejoras de trabajo futuro. 
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Overview 

Grid technologies have brought the promise of seamless integration of distributed 

heterogeneous resources. Applications from both industry and research communities 

will gain access to vast infrastructures across administrative boundaries. In this 

distributed environment, computing tasks may run anywhere and strategies to select the 

best possible destination for each piece of work become fundamental to improve the 

applications’ efficiency. It is the duty of metaschedulers such as GridWay to allocate 

computing jobs to the most appropriate resources at the proper time. 

 

This work focuses on the scheduling of jobs that consume huge amounts of existing 

data. It shows why metaschedulers need to take into account the location of data in 

order to optimize job efficiency and avoid unnecessary data replication. It also describes 

how GridWay has been modified to accept data requirements in job requests and made 

flexible to implement different data-aware scheduling algorithms. Some of these 

algorithms are reviewed and tested with the new GridWay and a proposal for the 

solution of the general problem of data placement and job allocation in the grid is 

presented. 

 

As a motivating example, the demanding data needs of the CMS experiment, within 

the EGEE project, are discussed. This serves to evaluate proposed algorithms and our 

own implementation. 

 

This text is organized as follows. Chapter 1 introduces the concept of grid, describes 

the main grid technologies in use today and the GridWay metascheduler, and presents 

the EGEE infrastructure. Chapter 2 studies the challenges posed by the scheduling of 

jobs with important data requirements. It reviews how this is dealt with in EGEE and 

what other authors propose to address it. Chapter 3 builds on the lessons of Chapter 2 

and describes our approach to the problem, the modifications performed in GridWay to 

make it data location-aware and the experiments that were carried out to test our 

solution. Finally, Chapter 4 summarizes the conclusions of the project and the 

improvements that future work may bring. 
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1. Introduction 

Previous to the description of the problem under study, this first chapter introduces 

the reader to the environment in which it appears; namely, the grid. In this context, the 

grid middleware, the software relevant to the scheduling of jobs, and its reference 

implementation, the Globus Toolkit, are presented. Lastly, the middleware component 

we are working with, the GridWay metascheduler, and the reference target for our 

implementation, the EGEE infrastructure, will be described. 

 

1.1. What is a Grid 

Since the publication of [1] in 1998, the term grid 1  has become increasingly 

popular. Expressions like grid computing or grid infrastructure have been used in a 

variety of contexts and the exact definition of the concepts they refer to have not always 

been completely clear. Subject of hype to certain degree, there are probably numerous 

cases in which the term has been used with a different meaning from the one that was 

originally intended. Within the scientific community, however, it is generally accepted 

that a computing grid infrastructure (or just a grid) denotes a dynamically changing set 

of computing resources distributed among different administrative domains that are 

accessed in a seamless and secure way ([2], [3], [4], [5]). Consumers of these resources 

are individuals and institutions grouped in what have been called virtual organizations 

(VOs) [3]. These VOs act according to well defined rules stating which grid resources 

are shared and who is allowed to access them and under which conditions. 

 

According to the previous definitions, the term grid computing refers to the 

protocols and interfaces, tools and techniques that enable the distributed access to those 

resources in the grid for the different virtual organizations. 

 

                                                 
1 In the literature, the term grid is often capitalized (Grid). In our view, this use is not appropriate; at least 

not yet. We can compare this with the capitalization of the word Internet. While there is only one 

worldwide Internet, there is not yet a global integrated grid, but a multiplicity of technologies and 

infrastructures. The Grid does not exist yet. We will therefore use the lowercase term throughout the text. 
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The software that vertebrates and makes grid computing possible is usually called 

grid middleware [3], which will be studied in more detail in Section 1.2. The reference 

implementation of such software is the one provided by the Globus project [6]. We will 

describe Globus in more detail in Section 1.3. 

 

Although in theory one can envision a global unique grid where only defined 

authorization policies limit access to the world-wide set of computing resources, this is 

not yet the case today. There are, however, many examples of corporative grid 

infrastructures, as well as several research projects currently offering a grid for 

scientific collaboration. Most of these efforts are built on Globus protocols and 

software, either directly deploying the Globus Toolkit or using middleware which is 

based on Globus. Examples of such grid projects are the German Grid Initiative (D-

Grid) [7], the TeraGrid project [8] or the European Union’s initiative Enabling Grids for 

E-SciencE (EGEE) [5]. Since it is the target for our implementation and the framework 

for our tests, we will describe the EGEE project in more detail in Section 1.5. 

 

1.2. Grid Middleware 

The definition of grid that we have presented is general enough to leave space for 

virtually any type of computing resource to be shared; e.g.: processing power, storage 

capacity or remote harnessing of any kind of scientific instrumentation. But even for a 

single and well defined type of resource, several different implementations may exist, 

possibly offering incompatible interfaces. Such situations make it often impossible for 

an application to directly access all available resources in a seamless way. It is at this 

point where the grid middleware comes to help by virtualizing those resources so that a 

single interface is offered to applications. Through this uniform interface, any of the 

implementations can be accessed. But as important as the uniform access is the 

advertisement of these resources using a coherent description schema, so that consumers 

can discover the existing services and choose the one they want to access [3]. Thus, 

summarizing up to now, the middleware must provide the means to describe, discover 

and use available resources in the grid. 
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In order to enable sharing of any kind of resource, the middleware should make use 

of standard, open, general-purpose protocols and interfaces. This is opposite to 

application-specific solutions. 

 

Other characteristics that are usually required to grid middleware ([2], [3]) are the 

following: 

• The middleware provides the functionality above in a secure way, what at least 

means that users and services are authenticated and authorization policies are 

enforced. Otherwise, services are useless for most purposes. 

• Coordinated resources are not centrally controlled. This is implied by our 

definition of grid, where resources are distributed across different 

administrative domains. If a centralized control existed, other solutions that do 

not make use of grid technologies would be sufficient. 

• Nontrivial qualities of service are delivered, such that the coordination of 

resources brings out a combined utility of the grid that is greater than the sum 

of the parts. Otherwise, grid technologies would not be of too much interest. 

 

Within the grid community, it is also common to find the distinction between core 

grid middleware and higher-level grid middleware. Although it can all be considered 

middleware, in the sense that it does not directly offer functionality to users but rather to 

applications, the former refers to the set of most basic services required in a grid, while 

the latter extends this functionality by building on it. As explained in Section 1.4, the 

GridWay metascheduler, whose scheduling algorithm is the subject of study of this 

project, can be considered higher-level middleware making use of Globus services, 

which constitute the core middleware it is building on. 

 

1.3. The Globus Toolkit 

The Globus project was introduced by Ian Foster and Carl Kesselman in [6]. In the 

terminology of that article, Globus addressed the problem of metacomputing; i.e.: 

managing execution environments in which distributed computing resources are 

connected through high speed networks. After those same authors started to use the 
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concept of grid in [1], the Globus Toolkit (first version released in late 1998), became 

the reference software for the development of grid systems and applications. Since that 

moment on, it has been considered by many as the de facto standard for grid computing. 

  

The Globus project became later the current Globus Alliance, which, according to 

the statement in its web page2, is an international collaboration that conducts research 

and development to create fundamental grid technologies. With the help of their 

contributors, they keep developing and releasing the Globus Toolkit as open source 

software. This toolkit includes libraries and services required to build core grid 

middleware, as described in section 1.2. The architecture they define follows the 

hourglass model, according to which a small set of core abstractions and protocols are 

at the neck, while many different resource technologies can be supported (bottom of the 

hourglass) and a lot of diverse applications can be built upon them (top of the 

hourglass).  

 

The services offered by the Globus Toolkit include, amongst others, resource 

monitoring and discovery services (MDS), resource allocation and management 

(GRAM), a public key security infrastructure (GSI), and file transfer services: GridFTP 

for a secure and scalable data transfer and, building on this, the reliable file transfer 

service (RFT). These constitute the basics for secure and transparent access to 

distributed resources. 

 

The Globus Toolkit is now at version 4 (GT4). This version, described in detail 

in [9], follows the principles of the Open Grid Services Architecture (OGSA) firstly 

proposed in [10]. Currently OGSA specifications are being developed by the Open Grid 

Forum (OGF) 3 , and they aim to describe a service-oriented architecture for grid 

computing. In GT4, OGSA services are implemented as state-aware web services (WS), 

following the WS-Resource Framework (WSRF) specifications developed by the 

OASIS4 standards organization, and introduced in [11]. Services in WSRF are similar to 

traditional web services, with the main difference that they support operations to 

                                                 
2 http://www.globus.org 

3 http:www.ogf.org  
4 http://www.oasis-open.org 
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remember state between different invocations (i.e., they are stateful, while traditional 

web services are stateless).   

 

Previous versions of Globus (GT1 and GT2) did not use a web services-based 

approach. Several existing grid infrastructures still use middleware build upon pre-WS 

Globus Toolkit components. In particular, this is the case of the EGEE infrastructure, 

which has been used as target grid for this project. In any case, for what concerns 

resource selection in GridWay, the fact that web services are used or not is not really 

relevant, and all the work should apply to both WS or pre-WS grid infrastructures.  

 

1.4. The GridWay Metascheduler 

So far we have described the possibilities of grid technologies and in particular of 

the Globus Toolkit in a general and abstract way; we have been referring to distributed 

computing resources that can be accessed by applications leveraging grid services. What 

these computing resources may in reality represent is open to essentially anything that 

can be offered by a service and applications want to consume in a distributed computing 

environment. There are however a few paradigmatic examples, main targets of grid 

infrastructures in current operation, which are of most interest for our present work. 

These are processing power, storage capacity and data. 

 

We will start with the second one. The grid may be used store sets of files, database 

records, or any other format of electronic data on any kind of storage technology. The 

storage systems available to hold users data are in this case the resources. Applications 

may want to discover the type and capacity of those storage systems before selecting 

them for their data. Once that is done, they access those resources; i.e.: they store 

(write) the data. 

 

Once the data has been stored somewhere in the grid, it can be considered a resource 

of its own. An application may want to retrieve some piece of data for the user, copy it 

to a different location from where it is residing, or consume it as input for some 

calculation. All these use cases require the ability to locate the existing data, comply 

with data access authorization policies, and effectively accessing the data (reading it). 

 
- 11 -



 

Let us finally consider the last example of computing resource as listed above. 

Consuming processing power5 is the ability to run applications in some node in the 

grid. Traditionally, processing power has been offered by supercomputers or 

Distributed Resource Management Systems (DRMS). These are often called batch 

systems. A batch system accepts users computing tasks (usually called jobs) and 

executes them in one of the local resources it controls. If all the local resources are busy, 

then the batch system is able to queue task requests until some resource is available. 

These systems usually offer additional capabilities like the support of different priorities 

(per user, per task length…), or the implementation of fair share mechanisms.  

                                                

 

For what DRMS concerns, there are several implementations available today; e.g.: 

Torque6, LSF7, Sun’s Grid Engine (SGE)8 or Condor9. These systems typically offer 

incompatible user interfaces. The grid middleware provides the means to retrieve 

information about each existing batch systems and also a common interface to access 

any of them; i.e.: to pass a task (job) to them, so that they make sure it is executed. In 

Globus, the MDS is used to get information about processing resources and the GRAM 

service is used to access them. 

 

As indicated, MDS and GRAM are core level services that make it possible to run 

jobs on the grid, but their use requires a high level of expertise and is probably too 

complex for end user applications. The duty of deciding when and where (among the 

known resources) jobs are run and controlling their execution is called workload 

management. This involves discovering what processing resources are available, 

selecting the best ones for a given task, preparing the remote systems (optionally 

copying necessary input files), dispatching the jobs, watching the evolution of the status 

of these jobs (making sure they are run OK) and recovering the output produced by 

them. 

 
5 The term computing resources is often used to mean processing power resources, as opposed to data 

resources. Up to know we have used this in a generic way, meaning either the first or the second. 
6 http://www.clusterresources.com/pages/products/torque-resource-manager.php 
7 http://www.platform.com/Products/platform-lsf 
8 http://gridengine.sunsource.net/ 
9 http://www.cs.wisc.edu/condor/ 
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In a batch system, the component in charge of the workload management is called 

scheduler. In the grid, the component that manages the job dispatching to available 

resources (each being a batch system) may be called metascheduler. GridWay [4] is a 

metascheduler that uses Globus core services to offer higher-level functionality to 

applications and users, thus simplifying the use of the grid.  

 

The GridWay project 10  is being developed by the Distributed Systems 

Architecture11 Group from the University Complutense of Madrid12. In January 2007, 

GridWay became a full Globus project 13  and, starting with Globus Toolkit 4.0.5, 
GridWay is now included by default with the Globus Toolkit distribution. 

 

 
Figure 1: GridWay, high-level middleware for Globus-based grids 

 

The GridWay metascheduler offers a DRMS-like command line interface for users 

to submit jobs and watch their evolution. It allows users to submit, kill, migrate, 

monitor and synchronize jobs, as well as to watch information about available 

resources. It also supports the Distributed Resource Management Application API 

                                                 
10 http://www.gridway.org 
11 http://dsa-research.org 
12 http://www.ucm.es 
13 http://dev.globus.org/wiki/GridWay 
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(DRMAA) for job submission, which is an OGF standard [12]. The relation between 

GridWay, Globus and the user applications is illustrated in Figure 1. 

 

GridWay was designed with a modular architecture (see Figure 2), in which several 

components may be loaded as plugins. This is the case of the Transfer Manager (used 

to stage input files), the Information Manager (used to retrieve resource information) 

and the Execution Manager (used to submit jobs). Thanks to this, GridWay is able to, 

for instance, submit jobs using WS and pre-WS GRAM. 

 

 
Figure 2: GridWay, modular architecture 

 

GridWay’s decision regarding where to send user jobs is based on configurable 

system policies as well as on per-job user requirements. We will refer to this process of 

job distribution as job scheduling, and we will focus our attention on it in Chapter 2.1. 

 

1.5. The EGEE Project 

The Enabling Grids for E-sciencE (EGEE) project14, described in [5], is one of the 

largest (if not the largest) multi-disciplinary grid infrastructures in the world. It 

presently brings together more than 120 organizations to create a computing system 

                                                 
14 http://www.eu-egee.org 
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composed of around 250 sites (centres of resources) in 48 countries and with more than 

70 000 CPUs available to some 8000 users of the scientific community. Funded by the 

European Commission, the EGEE project was originally started on the 1st April 2004, 

and it has been renewed two times since then. The current project is in fact called 

EGEE-III. 

 

From a technical point of view, the architecture of software services of EGEE is 

described in [13]. The middleware in which this architecture is based is called 

gLite [14]. gLite was built on Globus version 2 (GT2) with many additions and 

enhancements. 

 

 
Figure 3: EGEE, main gLite services 

 

Figure 3 illustrates some of the main elements composing the EGEE infrastructure 

(those of particular interest for our discussion). The user interface (UI) represents 

simply the client software from where the user interacts with the grid, by submitting 

jobs but also, not shown in the figure, by querying about and accessing data. Physical 

centres of resources are called sites. They hold processing and storage resources, which 
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are respectively grouped in the so called computing elements (CE) and storage elements 

(SE). The storage elements present a uniform interface to ease data access and 

management. It is called the Storage Resource Manager (SRM). User jobs arrive 

logically at the CE, but once there they run in any of the worker nodes (WN) sitting 

behind it. From a worker node, they read and write data from and to the SE. The 

Berkeley Database Information Index (BDII) is the implementation chosen for the 

information system (based on Globus MDS). The data catalogues contain information 

about what data there is in the grid and where it is located (in which SE). Finally, the 

workload management system (WMS), which was previously also called resource 

broker (RB), is the metascheduler of the system. These are all services for grid-wide or 

VO-wide use. 

 

We will discuss scheduling in more detail in Chapter 2.1. A brief summary follows: 

the WMS accepts job requests from the users and dispatches them to appropriate CEs 

based on the user requirements, the CE characteristics (as informed by the BDII) and 

possibly data location information (if required). Currently, the WMS and the CEs in 

EGEE can still communicate using the Globus GRAM protocol (pre-WS). In fact, 

during its evolution, gLite has replaced some Globus components with its own 

implementations, but it is still largely compatible with Globus-based infrastructures. For 

what this work is concerned, it is sufficient to say that GridWay is capable of gathering 

information from and submit jobs to EGEE resources. If job submission ever changed in 

gLite, GridWay could always be adapted accordingly thanks to its modular design (i.e.: 

adding a new Execution Manager plugin). 

 

Some of the bigger virtual organizations making use of the EGEE infrastructure (in 

terms of requirements and number of users) are coming from the high energy physics 

world and in particular from the collaborations running experiments in the Large 

Hadron Collider (LHC) 15 , located at the European Laboratory for Particle Physics 

(CERN)16. For our work, the most relevant characteristic of these experiments are the 

incredibly large amount of experimental data that they need to process and store. Taking 

                                                 
15 http://lhc.web.cern.ch/lhc 
16 http://www.cern.ch 
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the example of CMS 17 , the VO we will use for our test case, the experiment will 

produce tens of petabytes of data, which will be analyzed by physicists located in more 

than a hundred sites around the world. The challenge that the management of this 

amount of data imposes has led to the development of new middleware to locate, 

transfer or access data in both gLite [15] and within the VO software frameworks [16]. 

 

Finally, we must note that the development of the gLite middleware is only part of 

the work undertaken within the EGEE project. A production grid infrastructure of such 

size requires big efforts in side but essential tasks like user support, services monitoring 

and general operational activities. The project also supports a large testing infrastructure 

for pre-release testing, provides lots of documentation and performs dissemination 

activities like the organization of tutorials and training courses. 

 

                                                 
17 http://cms.cern.ch 
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2. Resource Allocation and Data-Intensive Jobs 

Grid metaschedulers aim to dispatch computing tasks to the most appropriate 

resource at the most convenient time. The goal is usually the completion of the tasks in 

the shortest possible time. As will be explained, when applying this to tasks consuming 

big amounts of data, certain particular aspects must be considered. In order to deeply 

understand these implications, we will study how the scheduling is performed in our 

reference example in EGEE, and review what other proposals addressing this problem 

exist in the literature. 

 

2.1. Job scheduling 

In the previous chapter, we described how grid technologies make it possible for 

users and applications to gather information about what resources are available in the 

grid, how they can be accessed, and what their most significant characteristics are. With 

this information, a user or program is able to choose one of these resources and access it. 

In what regards processing power, resources are batch systems (computing elements, in 

EGEE terminology), and accessing them means sending computing tasks, jobs, to them. 

 

We have also seen that, in order to ease workload management, a service called 

metascheduler (also called WMS) may be used to accept job submission requests and, 

based on available resources information, allocate jobs to batch systems, i.e.: schedule 

jobs. This is illustrated schematically in Figure 4. 

 

Other systems that do not follow that pattern have been also proposed for job 

scheduling. For instance, auction-like systems where each resource bids for a given job 

request have been described. Calana [17] is an example of this. Its authors argue that 

this system eliminates the dependence on a global information system that unavoidably 

holds some old information (gathered at some time in the past). As [18] indicates, 

however, auction-like systems have communication problems of their own, since job 

proposal have to be distributed to all resources and bids must be gathered and compared. 

We will not deal with this kind of systems since GridWay, the subject of our study, is a 
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metascheduler that follows the more traditional approach described before, and this 

approach is also the one used in the most important grids in operation today. 

 

 
Figure 4: Job scheduling in the grid 

 

The mechanism used to schedule jobs and the algorithm utilized to select the target 

of the submissions affect the efficiency of the job’s execution in the grid. This efficiency 

refers to the time elapsed from job submission to retrieval of the output, usually referred 

to as job turnaround time. Metaschedulers should aim to minimize this time. 

 

Notice that we have defined efficiency for the case of a single job, but we can also 

consider the efficiency of a bunch of jobs as referring to the average of their individual 

turnaround times. If we extend this definition to all the jobs of a VO or in the whole grid, 

we could talk about global efficiency. Typically, a user will be interested in the 

efficiency of her jobs, because she wants her results back as soon as possible. However, 

a VO should be concerned with improving the global efficiency of a VO and in general 

grid operators should pursue the increase of the global efficiency for the whole grid. 

 

The parameters that the resource selection algorithm must consider when scheduling 

a job to the grid are typically indicated by the user herself. For the EGEE WMS and for 

GridWay, the job description (job template in GridWay’s terminology) includes a 

requirements expression and a rank expression. The first one is a logical expression, 

built with logical and relational operators, variables and fixed values (integers or 

strings). The whole expression is evaluated to True or False, and only those hosts for 

which the result is True are eligible to run the job at hand. The rank expression is an 

arithmetic expression in which variables and integers are permitted. This expression is 
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numerically evaluated for each resource satisfying the requirements expression. This 

result is then used to order the resources from most to least desirable, and the job is 

submitted to the resource with highest rank. 

 

The variables that can be used in the requirements and rank expressions are mostly 

those defining the resource characteristics and their values can be retrieved from the 

information system18. A user may ask for nodes with a certain operating system version 

or a particular software release installed. She may also want to rank resources according 

to the speed of their processors. This implies that a common scheme defining the 

attributes to be published in the information system and their format is shared between 

users and resources. In GT2 the MDS schema was used, while the Grid Laboratory 

Uniform Environment (GLUE) [19] is enforced in the EGEE framework and other 

related projects. In GridWay, there are information manager plugins capable of 

understanding both MDS schema and GLUE. 

 

Apart from the resource characteristics retrieved through the information system, 

GridWay takes into consideration three additional aspects when ranking matching 

resources. These are the current resource behaviour, the past grid usage, and a fixed 

priority rate. The former refers to the statistics that GridWay collects regarding failure 

rates and execution times (for the input files transfer, for the queue waiting time and for 

the execution itself). The second deals basically with the same type of statistics but 

collected for some time in the past (querying an internal database that keeps the history 

of resource behaviour). The value for the latest criteria –fixed priority rate- is set by the 

user for specified resources or for resources discovered by specified information 

manager plugins. By means of the fixed priority rate, the GridWay administrator can 

statically assign an offset to the priority value of certain privileged resources. 

 

The values obtained according to the three previous criteria are combined with the 

evaluation of the user supplied rank expression to compute the priority of a resource. 

Firstly, the values of the current and past usage statistics are added and normalized, and 

                                                 
18 For GridWay, the complete list of usable variables can be found in its user guide: 

http://www.gridway.org/documentation/stable/userguide/ 
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that result is added to the normalized values of fixed priority and rank expression. As 

shown in Equation 1, every priority value (Pi) is given a configurable weight (Wi). 

 

(1) Ptotal  =  Wusage (Whist Phist + (1 - Whist) Pcurrent)  +  Wfixed Pfixed  +  Wrank Prank 
 

Finally, GridWay also applies an exponential linear back-off strategy to ban 

resources for which submissions have failed a certain time ago. After a failure, and for a 

period of time that is incremented after each successive error, resources are simply not 

considered for submission. 

 

2.2. Data-Intensive Jobs 

In the previous sections, we have described data and processing power as though 

they were two completely independent resources. For some use cases, they can be 

considered as such. A simulation job may just require an executable and some input 

parameters to run for hours. Alternatively, a user may search some grid data to 

download to her workstation. In these cases, there is no relation between the data and 

the CPU resources. But in many occasions, in particular for scientific applications, user 

applications require data already present in the grid to perform some computation with 

it. Moreover, the amount of data required by a job is sometimes such that the time 

required to get it is not negligible in comparison with the time invested in its processing. 

 

Let us consider the example of the CMS experiment (following [20]), which, as we 

described already, is represented by the CMS virtual organization in the EGEE 

framework. The CMS collaboration has built a very specialized detector to track certain 

type of particle collisions occurring inside in the LHC accelerator. For each of these 

collisions, also called events, a non-negligible amount of data is generated by the 

measurement of particle properties like trajectory or speed. The high rate at which these 

events occur results in the production a huge amount of data, which needs to be 

distributed over the grid for physicists’ consumption. To this raw detector data, several 

versions of processed –refined- data and the result of event simulation (necessary for 

calibration and validation of the detector measurements) have to be added. In total, 
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several petabytes of data are produced each year. Of those, an important fraction needs 

to be replicated at several centres for redundancy and access performance reasons. 

 

The demanding requirements that the management of all this data imposes have led 

CMS to adopt a centralized policy for VO-wide operations and to establish a hierarchy 

of resource centres: the T0 site, from where the detector data is distributed, the T1 

centres, with large storage capabilities, and the T2 sites, smaller but with a considerable 

computing capacity if taken as a whole. The development of certain CMS-specific data 

management services has been also deemed necessary. Among them, the main examples 

are the catalogues to keep track and locate existing data –the Dataset Bookkeeping 

System (DBS) and the Data Location Service (DLS)-, and the system to move and 

replicate data between remote sites: the Physics Experiment Data Export (PhEDEx). 

The use of these systems and the application of the policies described above allow CMS 

to organize its workflows in function of the data it manages. 

 

A CMS operations team organizes the production of simulated data and the 

processing of real raw data. It also defines where this data is to be stored; namely, in the 

T1 centres. But once all the real and simulated, raw and processed, data is stored (what 

is a quite complicated problem on its own right), the numerous physicists in the 

collaboration –spread all over the world- want to run their analysis applications upon 

them. In this case there is no central team in charge of the task since each physicist or 

analysis group selects the data that is interesting for them. The estimated numbers for a 

typical analysis task are as follows: they run over 500 000 physical events, each event 

representing around 2 MB of data, and the task divided in about 100 jobs. This means 

that such a task will consume around 1 TB of data, which is usually stored as a set of 2 

GB files. At common processing speed in modern computers, the analysis of an event 

requires about 2 seconds of CPU, and thus 2.8 hours are required for each one of the 

100 analysis jobs (280 CPU hours in total). One additional and important point is that 

all the data required for a given analysis is very likely to belong to the same physical 

dataset (i.e.: sharing certain physical conditions), and thus likely to be stored together in 

the same storage element. 

  

The numbers presented above illustrate the problem we are facing. If a 

metascheduler like GridWay decides to send user jobs to one processing resource or 
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another based on the characteristics of this resource only (e.g.: processor speed), then 

the jobs will likely need to copy 1 TB of data around, which means that the computing 

nodes will be wasting a lot of CPU time (just copying input data before processing). In 

Chapter 3, we will make some measurements on how much this time may represent. 

 

Another consequence of the jobs copying data to the site where they are running is 

that the number of replicas of the data increases. For such huge files, the storage space 

is a limited resource and so the replicas would have to be recycled with a certain 

frequency and probably retrieved from master copy more often than needed (this may 

imply a read from tape, which is a very costly operation). If no deletion policy is in 

place –which is currently the case, since it is not easy to say when jobs can force the 

deletion of someone else’s old data- what will happen first is that jobs fill storage space 

and then fail to bring the data they need and abort. The users will then need to manually 

ask site administrators to empty space. In general, having more data transfers than 

needed implies fewer resources available –disks, tape drives, network bandwidth- for 

the data movements that are really required –e.g., distribution of fresh detector data. 

 

There is a third possible problem. If data is copied to the computing node’s file 

system (rather than to dedicated storage), it will consume 10 GB of disk space per job. 

Since a node can run 2 or 4 simultaneous jobs (one per core), it is certainly possible that 

the available disk space in the node is exhausted and the jobs crash. 

 

For the reasons just explained, it seems obvious that a job scheduling mechanism 

that does not take into account the location of the data the jobs will require is likely to 

be quite inefficient in certain cases. If, on the contrary, resources are selected so that 

data transfers are minimized, the efficiency can be probably increased. In the next 

section, we study the approach adopted in EGEE and in particular by CMS. In 

section 2.4, other work found in the literature that addresses this problem is reviewed. 

 

2.3. The EGEE Approach 

The EGEE project and the grid infrastructure it provides –built on gLite 

middleware- was presented in Section 1.5. As indicated, several of the VOs in EGEE 
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have huge requirements in terms of data produced and consumed by their applications. 

Managing all this data is a complex task. It is no surprise that the EGEE infrastructure is 

sometimes referred to as a data grid, in opposition to other computing grids, where 

processing power is the most demanded resource and storage needs are modest. 

 

It was also mentioned that specific data management middleware was developed for 

gLite (and within the VOs’ frameworks). In particular, the concept of storage element is 

used to designate a resource for storage, and the SRM is a uniform interface for storage 

elements. Thus, storage and processing capacity are treated as different resources. 

 

Following standard Globus practices, gLite users can ship a small quantity of input 

data with their job. This data is copied to the worker node where the job lands and it is 

available to it. The same strategy is followed by GridWay when users ask to stage input 

files to the executing host. This data is not treated as grid data, that is, it is not managed 

(not registered in catalogues or stored in SEs). However, due to the problems discussed 

earlier, and to potential scalability issues with the WMS services, only a few megabytes 

may be shipped with the job in this way. If a job requires larger amounts of input data, it 

must previously store it in a SE and read it from there. The SEs in EGEE offer 

read/write interfaces for direct access from close computing resources. Resources are 

arbitrarily defined as close by grid administrators, usually indicating that resources are 

located within the same site. The job is thus not forced to copy input files in the WN’s 

file system (although it may be done at occasions). 

 

Regarding job scheduling, the EGEE architecture allows users to tie processing and 

data requirements (normally files) in their job requests. The user is able to express some 

input data needs for her jobs. The WMS will try to locate the list of SEs holding the 

specified data and will then try to send the jobs to CEs defined as close to those SEs in 

the information system. Other job requirements are evaluated only on those CEs. The 

whole process is called matchmaking. If one input file is specified, then the job will 

only go to a site holding that file. If several files are indicated, then, according to [21], 

the WMS will send the job to the site holding the highest number of requested files. In 

other words, by means of the matchmaking process, the WMS will select only CEs 

satisfying the job requirements (and so close to the requested data). Within the list of 
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matching CEs, a user provided rank expression (or the default one, if none is given) is 

used to prioritize them. 

 

We must note here that the information about grid data is different from other 

resource descriptions available through the common information system. This is due to 

the huge amount of files that the grid must keep track of. It is too much information and 

too dynamically changing to be contained in a general purpose information service. 

Like in other grids, dedicated data catalogues are used in EGEE. These catalogues 

associate logical file names to existing physical replicas of those files. They sometimes 

are VO-specific and may contain additional semantic information. In EGEE, the 

standard interface to access those catalogues is the Data Location Interface (DLI), 

which is described in [22]. The interface basically returns the list of replica locations for 

a given logical name. The same interface can be used for files or other entities like 

datasets. Therefore, the WMS needs to query a specified file catalogue (or the default 

one) using the DLI in order to obtain the necessary data location information. This 

system is illustrated with a job scheduling example in Figure 5. 

 

 
Figure 5: Considering data location for job scheduling in EGEE 

 

With this approach, users are free to decide if they want to force jobs to go where 

their data is or not. If their requirements of data are modest, they will probably not use 

this feature, and so the WMS will choose the best suited CE (the one with fewer jobs 
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queuing or with fastest CPUs). If they do need a lot of data, they will choose the CEs 

holding the replicas, because practice teaches that the cost of transferring the data is 

usually highest than the penalty for not choosing the best CE. 

 

We must note here that the WMS does not make it possible to combine both policies 

or to find an intermediate approach. Since input data considerations can only be 

expressed in the requirement but not in the rank expression of job requests, either WMS 

considers only the sites holding required data or it does not care about its location at all. 

 

Within EGEE, the analysis jobs of the CMS VO are always very concerned about 

location of data. The ratio between transfer and processing time is too high not to be. 

For that reason, CMS always includes data requirements in their analysis job requests 

and thus they are always sent to the places where the data is. This avoids many 

problems as discussed previously but implies that data must be replicated in an 

organized manner before the analysis jobs are sent. In particular, since the master copy 

of the data is located at T1 sites where no analysis jobs are allowed, a replica of this 

data must be made to one or more T2 sites. Once replicated, jobs can run on T2 sites. 

 

One problem with the described approach is that it ignores the status of the 

computation resources. For instance, if only one site is holding a replica of the data the 

user is interested in, and this site is down or has many jobs waiting in the queue, then 

the user cannot run her analysis (or it will take a really long time). In this case, though, a 

manual copy of the data can be made (or requested to the central operations team), 

which is considered a small prize to pay in order to avoid the problems described before. 

 

2.4. Data Location-Aware Job Scheduling in the 

Literature 

In the scientific community, it is commonly agreed that data location awareness is 

an important factor to consider when performing job scheduling in the grid. This is in 

general concluded because of the long time spent transferring data before jobs can 

actually compute something. In Section 2.2, we indicated two other problems that may 

appear if data is not considered when scheduling. 
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One of the first works considering this problem was [23]. Its authors have no doubt 

that schedulers need to consider where data is located. They propose an algorithm that 

takes care of replicating popular (most accessed) files in a way that is totally decoupled 

from the job scheduling itself. Their job allocation strategy consists then in just sending 

the jobs where the data resides. This approach tries to avoid the complexities related to a 

combined mechanism for data replication and job scheduling. By asynchronously 

replicating most demanded data, they expect to distribute workload among sites. 

 

If we compare this approach to current CMS activities, we observe that they share 

the scheduling algorithm –jobs to data-, and rely on an independent data placement 

system (DPS) that takes care of file movement. While in [23] automatic replication of 

popular files is proposed, in CMS the PhEDEx system [24] is based on dataset 

subscriptions. Analysis groups subscribe a given site to certain dataset, and PhEDEx 

takes care of transferring all the files in the dataset in the most efficient way. This 

allows for a more reasoned and thus optimized usage of resources but it clearly requires 

more human effort. This method of operation can only work for highly structured and 

organized VOs. 

 

There were also several articles produced as a result of the research conducted to 

develop the middleware that would later evolve to become gLite. In [25], the main 

conclusion that data must be considered when scheduling jobs is reached as well. They 

find that this is optimum when both the number of jobs queuing at a site and the penalty 

that transferring files implies are taken into account. For the later value they use 

information of file catalogues and information on the relative network speed of the links 

between sites. They also propose economic-based algorithms for selecting the best 

replica to transfer when the selected resource for a job is not holding the necessary data. 

Building on these results, the Replica Optimization Service (ROS), which was able to 

calculate the cost of transferring one of the existing files to a given computing resource, 

was presented in [26]. This was designed for the European Data Grid (EDG) 

project [27], which was the precursor of EGEE. However, the ROS relied on a 

complicated network monitoring infrastructure and was not maintained in EGEE. 
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A further iteration on these efforts is the more recent [28]. This presented the Data 

Intensive and Network Aware (DIANA) metascheduling system. DIANA’s job 

allocation takes profit of a distributed network monitoring service that provides 

estimation of data transfer costs and of a data location service keeping track of file 

replicas. For each job to be scheduled a handful of computing nodes are selected 

according to their CPU power, number of queuing jobs and the costs associated with the 

different file transfers: submission of the job, retrieval of results and input data 

replication. As indicated, these costs are only computed for the few previously selected 

resources; it is acknowledged than calculating for the whole grid would be too costly 

and thus impractical. Once the job’s destination has been chosen, DIANA selects the 

best replicas of the input files that need to be transferred to that node, if necessary. 

 

Other authors have tried to incorporate both data location and processing resources 

characteristics into the job scheduling decision. As example of this, [29] introduces a 

grid broker (scheduler) that is capable of finding the location of the file replicas required 

by a job and then calculate the time needed to transfer that data to available computation 

nodes. This delay is added to the estimated completion time for the job in each of the 

nodes, considering queue of waiting jobs and processor speed, and the resource with 

shortest result is chosen. In [30], authors simulate the behaviour of several scheduling 

algorithms. They conclude that heuristics that minimize the sum of data transfer and job 

execution time perform better than one that just sends jobs to data locations, except for 

the case where the input data is huge, the job rate is high and the estimation of job 

completion times is not very reliable. They also consider automatic data replication 

policies that improve overall efficiency, but this is out of the scope of our study. 

 

All these works show that only considering both data transfer and job waiting and 

execution times optimal scheduling is possible. However, balancing the computing 

nodes’ characteristics and the delays of data transfers is not trivial. There are a few 

practical difficulties in the implementation of these algorithms. As noticed by [30], it is 

not always easy for users to indicate for how long their job will run, even if the number 

of available processors at the resource and their speed are known. Estimating delay 

caused by transfers is also a demanding task. It requires good, stable and up-to-date 

knowledge of the network topology, i.e., bandwidth between sites. There might be other 

aspects that need being taking into account. The type of storage of the data is an 
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example. Accessing data that resides on tape requires a previous staging to disk. This 

may take hours. In environments like EGEE, this case is really frequent and data 

placement systems and policies are designed to pre-stage data from tape before transfers 

are scheduled. Furthermore, it should not be forgotten that computing all transfer times 

for each possible pair of data source node and computation node may be a demanding 

task when the number of nodes in the grid is high. Therefore, algorithms considering a 

subset of the best nodes only –like the one described in [28]- seem appropriate. 

 

In relation to these proposals, let us indicate that even if these approaches optimized 

job efficiency, they would probably not minimize data replication. Uncontrolled data 

movements may, as discussed earlier, create problems unrelated to pure job efficiency 

but rather with storage systems themselves and overall data transfers performance. This 

may not affect the efficiency of a particular job but it will probably affect the global 

efficiency for a VO, especially when storage capacity is scarce. We therefore believe 

that it might be desirable to penalize job destinations causing data replication (in 

addition to the temporal cost of input data transferring). The weight of this penalty 

would however very much depend on VO policies and available storage capacity. 

 

A different approach is taken by [31]. Like in previously mentioned [23], its authors 

argue that in order to improve efficiency and also simplify the systems, it is best to 

separate the data placement and the scheduling machinery. But in contrast to the 

previous work, they now consider the case of complex workflows (with interrelated 

tasks and required data staging). Their experiments show that for large amounts of data, 

an independent data placement service, which knows about all data transfers, is more 

efficient and causes less overhead than an ad-hoc staging of files for each individual 

job. This data placement service must pre-stage the data according to instruction coming 

from the workflow management system, but it can group transfers and tune related 

parameters in order to optimize those. 

 

2.5. Lessons Summary 

Based on all that has been presented in this chapter, we have reached some 

conclusions regarding job scheduling for data-intensive applications. These lessons 
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have been already outlined throughout the chapter. Now we summarize them in 

schematic format as follows: 

• Poor results are obtained when data location is not considered 

o Job efficiency is in general decreased 

o Data movement rate is higher 

o Storage element concept is required (not to overload computing nodes) 

• Send jobs to data approach is the simplest one but is helpful and it is used 

o It avoids input data staging delay 

o It minimizes data transfers 

o It is suboptimal for data residing in inaccessible or congested sites 

o It requires an independent data placement system 

• Algorithms combining data location and computing nodes status proposed 

o They optimize individual job efficiency 

o They are difficult to implement: network monitoring, data replication… 

o They do not minimize data movement rate (but should make it 

significantly lower than in the case where no data location is considered) 

o They couple job scheduling and data movements; what may be 

suboptimal compared to an independent data placement service 

• In general, the optimal solution may depend on specific requirements of VOs 

o Some VOs are not data-intensive and are not concerned by all this 

o Some VOs independently arrange data location and movements and may 

not want job schedulers to interfere with that 

o The metrics to weigh data transfer versus processing resource status and 

characteristics are not obvious and may require tuning by the VO 
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3. Making GridWay Data Location-Aware 

So far we have described the challenge that scheduling data-intensive jobs in the 

grid represents and we have reviewed different possible approaches to deal with it. 

Based on what we have learnt, we now propose and implement a solution to make the 

GridWay metascheduler take into account data location when scheduling. We have 

applied this to the EGEE infrastructure, where data-intensive jobs are common, and 

some test results are presented. Finally, since the problem we are dealing with may 

affect the whole workflow policy of a VO and the implications of this fall out of the 

scope of this project, we sketch a more general solution, which has not been 

implemented, but can be considered a proposal for future work. 

 

3.1. Implemented Solution 

GridWay is a general purpose metascheduler. Although it supports dependencies 

between jobs and so it can be used to schedule workflow tasks, it is not a complete 

workflow management system. Moreover, replacing a data placement system is not 

within the aspirations of GridWay. The implemented solution will therefore not deal 

with the complete problem of allocating jobs and data to maximize job efficiency. It 

will focus on job scheduling, which is the task for which GridWay is responsible. A 

more general approach to the problem is however sketched in Section 3.5. 

 

Since there seems to be no general answer to the problem of balancing computing 

nodes capabilities and location of input data, our system lets the submitter set the 

required weights. Following GridWay’s traditional approach, it is the user, via the 

specified requirements and rank expressions, who decides how to prioritize resources. 

Up to now, only values retrieved from the information system could be used in those 

expressions. With the modifications we propose, it is possible for the user to incorporate 

data location information as well. In particular, the rank expression may include a 

boolean value for the presence or absence of an input file in a site, and a numerical 

value for its size. This user interface is explained in some more detail in Section 3.2. 
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The modifications required in the GridWay daemon to take input data into account are 

described in Section 4.3. 

 

By providing the desired requirement and rank expressions, a user (or in general a 

VO) may decide to completely ignore input data location, may on the contrary force 

jobs to go to sites hosting that input data, or may choose an intermediate approach and 

freely set weight to things like available number of processors, processor speed and data 

presence. In this way GridWay is made flexible to cope with different VO necessities or 

policies. The user or VO still needs to carefully choose the right requirement and rank 

expressions, but we believe that is the users or VOs who can best choose this and so it is 

wise to let them set them as needed. 

 

We would like to note that GridWay’s current scheduler imposes the requirement 

that a processing resource must have no waiting jobs (i.e.: must be publishing some 

available slots) to be eligible. This practice is being reconsidered by the GridWay team 

because there are occasions in which it is completely acceptable to submit a job to a site 

where some jobs are queuing. The new job will queue for some time, but it will 

eventually run. If GridWay does not send the job, other jobs may arrive and the queue 

might never empty completely. This behaviour of the scheduler is of importance in our 

case because a site that holds the data a job requires may indeed have a waiting queue 

and it would be very interesting to include this fact as a variable in the rank expression, 

rather than set is as an absolute requirement, as it is done currently. In an environment 

like EGEE, where resources are often busy, the number of jobs queuing at a site is taken 

as ranking expression more often than processor speeds. The different performance of a 

job once it is running in one site or another has usually smaller relative influence in its 

turnaround time than the delay the job may have suffered before being able to get a slot 

to run. Although GridWay does not offer the possibility to play with queuing times at 

the moment, all our considerations would apply to such a prioritization algorithm also 

(and this may well be possible in the near term future). For the experiments shown in 

Section 3.4, we have always used resources offering free slots and have only used CPU 

speed (and data presence, of course) to compare different sites. 

 

Once a job has landed on a site, it is not clear how many of the files specified in the 

rank expression are available at the local storage. The files indicated in the requirements 
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expression are present for sure, but those in the rank expression may or may not be 

there. It depends on which resource was finally selected. For this reason, our 

implementation will keep a list of all requested files and check which ones are present 

in the final destination for the job. This information is made available in the job 

environment, so that the user’s code can copy them to local storage as appropriate. It is 

arguable if the job wrapper submitted by GridWay should copy these files 

automatically, but this would not be trivial. The tools used to copy files depend on the 

middleware (in EGEE are not the same than in GT4-based grids), although the 

underlying protocol is usually GridFTP in every case (this also could change). We 

consider it more flexible to warn the user that several specified files are not there and let 

her copy or access them in the best way for her (this may mean performing a request to 

a data placement service, for example). This is already more than what the current 

EGEE scheduler –WMS- does. Again, details of the interface are given in Section 3.2. 

 

There is an important piece that we are missing in our solution and this is the ability 

to estimate the time that the transfer of a given file between two nodes in the grid will 

take. Without that, it is difficult to balance processing and data requirements. Given a 

site that holds the required input data but has slow processors and another site with 

faster CPUs but with not replica of the data, at what size should the data weigh more 

than the CPUs in the priority calculation? We cannot know, because we ignore how 

long it will take to move the data. Given two sites with same processing capabilities, we 

would like to be able to tell which one is closer to the data in terms of transfer delay. 

 

We have seen that the main factor usually considered when computing elapsed 

transfer time is the quality of the network link (bandwidth, congestion). For example, 

authors of [29] and [30] suggest the use of a generic network information service, like 

the Network Weather Service (NWS), described in [32]. This service would provide the 

scheduler with the conditions of a network link between two given sites. We have not 

considered such a service for our current implementation in GridWay because the grid 

infrastructure we are working with, EGEE, does not offer it, and we consider out of the 

scope of this work to provide a new such service. It would be possible, however, to 

extend our design to use that kind of information. This would imply querying the NWS 

for the links between the sites holding the required data and the other sites we are 

considering as possible job destinations. Since the number of possible sites might be 
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very high, we should look for ways to optimize this, such as using bulk queries or 

restrict these to a limited number of nodes; discarding those with lowest rank according 

to other criteria  

 

There may exist however other factors affecting the time elapsed in data transfers. 

We have already indicated that a potentially important one is the type of storage of the 

original data. If the data is on tape, then access to this data will probably suffer from a 

long initial delay, because it must be first staged to disk. Certainly, this circumstance 

may be indicated with a metadata attribute in the data catalogue, or in the information 

system. However, these practices may differ from one VO to another and it would be 

difficult for a general purpose scheduler to consider all possibilities. Moreover, there 

may be other factors, like VO policies to avoid replication of certain data or to particular 

sites. Considerations like these complicate the design of the scheduler and also extend 

its responsibilities beyond its natural domain: the scheduling of jobs. In the line of the 

reasoning presented in [31], we believe that it would be best to decouple job scheduling 

from data replication tasks. It is out of the scope of the present work to develop a 

component that completely solve these challenges but we have outlined what we 

consider would be the best approach to deal with them in Section 3.5. 

 

3.2. Interface with the User 

As already indicated, the modified version of GridWay that we have implemented 

allows users to set requirements and rank expressions in their job templates that 

consider data location. Remember that the requirements are specified in GridWay by 

means of a logical expression, while the rank takes the form of an arithmetic expression. 

Both expressions admit variables whose values are obtained from the information 

system by GridWay. 

 

A finite list of available variables is not enough for the case of data needs, since 

users must be able to specify which file (or dataset) they require. Therefore, the parser 

of job templates was extended to allow for the inclusion of functions19. Functions are 

treated in the same way as variables (their value will be replaced by GridWay when 
                                                 
19 For specification of job requests, GridWay supports native job templates and the Job Submission 
Description Language (JSDL). For the moment, the new functions are available for job templates only.  
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evaluating the expression) with the difference that they accept arguments. For data 

requirements, the following functions have been defined: 

• CLOSE_DATA(logical_file_name): Usable in the requirements expression. For 

each CE, it is evaluated as True only if specified data is held by a close SE. 

• HAS_CLOSE_DATA(logical_file_name): For rank expression. For each CE, it 

is evaluated as 1 if specified data is held by a close SE, and 0 otherwise. 

• SIZE_CLOSE_DATA(logical_file_name): For rank expression. For each CE, 

evaluated as the size of the specified data if held by a close SE, 0 otherwise. 

 

This has been considered the easiest and most convenient way for users to express 

their necessities –it is an extension of what existed already- while it provides the 

necessary flexibility. In other interfaces, such as the job requests used in EGEE, data 

needs are not indicated within the requirements or rank expressions, but with additional 

clauses in the job description. In practice, this means that they are evaluated as further 

requirements but cannot be used to affect the rank. 

 

Additionally, a new general variable has been added to the job template. This is the 

DATA_CATALOG variable, used to indicate the endpoint where the catalogue service 

can be accessed in order to query for the specified data. This is necessary, since there 

may be several different catalogues for different VOs. Moreover, right now the 

implementation assumes the catalogue is offering the DLI interface, which is the one 

present in EGEE, but if other catalogue interfaces were to be supported, a new variable 

DATA_CATALOG_TYPE should be added, so that GridWay could select the appropriate 

interface to talk to it. 

 

Apart from the specification of users’ data needs, there is another modification in 

the way that GridWay interacts with the user. This is the addition of new variables in 

the user’s job environment. These variables are: 

• GW_CLOSE_SE: its value is a list of SEs registered as close to the CE where 

the job is running. The list is composed of SE hostnames separated by coloms. 
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• GW_REMOTE_FILES_{i}: Set of variables (for increasing values of i, starting 

at 0) whose values are the files that were specified in the job’s template, but are 

not present in any of the close SEs (as indicated by the catalogue). 

 

As explained in Section 3.1, these two variables may be used by the job to replicate 

the necessary files to one of the local SEs (most usual case is that there is only one) and 

access them from there. The files that are already in a local SE are not listed, so that the 

application knows it does not need to copy them. 

 

3.3. GridWay Daemon 

The GridWay daemon is the process that listens for job requests and acts on them. 

In the previous sections we have already described the functionality it offers. When a 

job request is received, its requirements and rank expressions are evaluated for each 

known resource, in order to select one as job destination. Modifications have been made 

on GridWay so that the parsed data functions (described in previous section) trigger a 

query to the indicated catalogue. This information is then used to evaluate the functions 

and produce a numerical or boolean value. To make this possible, the information 

manager plugin (for EGEE) has been modified as well, so that it passes the list of close 

SEs for each resource. This information is also available to users via the normal 

GridWay command line interface, which displays resources characteristics and status.  

 

Given that GridWay evaluates the expressions once for each possible destination 

resource, a data function needs to be evaluated once for each known host. In order to 

avoid multiple catalogue queries requesting the same information –with the consequent 

extra delay that this would cause-, a catalogue data cache has been implemented. A per-

job cache would have solved this problem, but since different jobs may well require the 

same data, a global cache, managed by the GridWay daemon is a better solution. With 

the global cache, each requested file produces just one query to the catalogue, and 

subsequent evaluations will just use the information from the cache. The cache has been 

implemented as a linked list with a limited size and with the last used entry always at 

the front of the list. When the maximum size is reached, entries are removed from the 

cache on a least recently used basis. In addition, each entry includes a timestamp. 
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Before trusting the information of an entry, GridWay checks that the information is not 

older than a configurable time limit. Otherwise, the entry is discarded and the location 

of the data is queried to the catalogue again. 

 

We must note here that the functionality for the SIZE_CLOSE_DATA function (to 

retrieve file’s size) is not completely ready to be incorporated into a distributable 

GridWay yet. The DLI interface offers no method to query for data size. The different 

catalogues present in EGEE do offer this information, but each catalogue’s proprietary 

API must be used. Such API has been used for the experiments presented in this work, 

but it presents practical problems for a GridWay distribution, since it might require 

several catalogue clients being distributed with it. Of course, a user probably knows the 

size of her data before submitting, but still we think it is better if GridWay offers this, so 

we will look into how to better address this problem (e.g. requesting an extension of the 

DLI specification). 

 

As a summary of what has been described up to now, the diagram in Figure 6 

schematically represents the process triggered when GridWay’s job template parser 

encounters a HAS_CLOSE_DATA function in the rank expression. This process is 

followed for each possible destination host. Firstly, the argument of the function is 

saved in the list of requested files for the job. Next, if the required information is 

already in the cache and it is not too old, it is used for the evaluation. Otherwise, the 

catalogue is queried and the response cached. If any of the close SEs associated to the 

candidate destination holds the specified data, then a True value is returned. Otherwise, 

False is given back. 

 

The process for the case of the SIZE_CLOSE_DATA function is resolved in a very 

similar manner, with the difference that size information is asked to the catalogue. The 

CLOSE_DATA function of the requirements expression is almost the same than this, 

except that the argument is not added to the list of requested files, because a file in the 

requirements expression will be, by definition, present in the selected destination. This 

list is parsed by GridWay when preparing the environment for the job. Since this occurs 

after the match-making process, the destination node is already known and all the 

necessary information regarding files location has been already retrieved from the 

catalogue and stored in the cache. The code preparing the environment needs just to 
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check the cache and eliminate from the list the files that are located in the node selected 

as destination. The remaining files are passed to the job as GW_REMOTE_FILE 

environment variables. 

 

 
Figure 6: Activity diagram: resolution of a HAS_CLOSE_DATA function in the rank expression 
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3.4. Experiences with the System 

Several experiments have been conducted in order to evaluate the functionality and 

performance of our implementation. All the tests were done using resources of the 

EGEE infrastructure and standard gLite middleware. The only additional element 

utilized was our modified version of GridWay. 

 

3.4.1.  Delay in the Resource Selection  

We have measured the delay that the queries to the catalogue introduce in the 

match-making process. Our aim is to evaluate if the new capabilities that make 

GridWay aware of data location are too costly from the point of view of the time it takes 

to select destinations for each job request. Table 1 summarizes the results for 

consecutive jobs submitted with different requirement and rank expressions. The first 

row in each of the columns corresponds to a job submitted with an empty data location 

cache. Subsequent jobs could use previously cached information. 

 

The number of sites discovered by GridWay as possible job destinations for these 

tests was 12. The use of the data location cache implies that the number of queries to the 

catalogue does not increase with the number of sites, but with the number of requested 

input files. The different requirements and rank expressions used in the job templates 

are the following: 

• Nothing.tmpl: no input data specified in requirements or rank expressions. 

• Reqs.tmpl: Two input files in the requirements expression. 

• Rank.tmpl: The same two files in the requirements and three additional files 

(one of which is not located in the catalogue) in the rank expression. 

 

Type of job Match-making time Type of job Match-making time 

Rank.tmpl 2.691830 Reqs.tmpl 2.406040 

Reqs.tmpl 0.004601 Nothing.tmpl 0.002329 

Nothing.tmpl 0.000137 Nothing.tmpl 0.001485 

Nothing.tmpl 0.000125 Rank.tmpl 2.504032 

Rank.tmpl 0.005583 Reqs.tmpl 0.004422 

 
- 39 -



Reqs.tmpl 0.004928 Reqs.tmpl 0.004294 

Reqs.tmpl 0.004608 Rank.tmpl 0.005533 

Nothing.tmpl 0.000110 Nothing.tmpl 0.001537 

Rank.tmpl 0.005103 Reqs.tmpl 0.004865 

Nothing.tmpl 0.000150 Rank.tmpl 0.005797 
Table 1: Match-making time in GridWay with data requirements 

 

As we can see, the match-making time is considerable higher for the first time that a 

file is requested; i.e., the first Reqs.tmpl submission triggers the catalogue query for two 

files, and a Rank.tmpl submission causes the query for all of the files (or the three left if 

it comes after a Reqs.tmpl request). This confirms that the global cache of data location 

reduces match-making time as expected. The delay for the worst cases lasts anyhow 

only of a few seconds, while the whole submission time is much bigger as can be seen 

in Table 2, where a file is specified in the requirement expressions for all the 

submissions. 

 

Match-making time Submission to start delay 

0.003049 56.300435 

0.003124 43.859633 

0.003442 66.742958 

0.003127 49.240011 

0.003454 52.357754 

0.003117 39.614477 

0.003757 56.235452 

0.003498 44.173567 

Table 2: Comparison of match-making time and job start delay 

 

These measurements were made in submissions to a resource with no queue of 

waiting jobs. Namely, the job started to run immediately once arrived at the site. The 

delay that the whole submission chain introduces combined with the fact that GridWay 

only schedules jobs on a periodical basis (each 30 seconds by default) make the time 

lost in match-making negligible. We should not forget either that job turnaround time is 
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usually much longer than this, and it is dominated by running time (or maybe queue 

waiting time, in some occasions).  

  

3.4.2.  Scheduling Algorithms Review 

We will try now to use our scheduler to confirm some of our previous conclusions 

regarding different scheduling algorithms for data-intensive jobs. Namely, we argued 

that data transfer times may be comparable to processing times and thus not to take 

them into account may result in worst job turnaround times. But we will also see that 

sending jobs to data is not always the optimum approach, especially if we have good 

knowledge of the time our jobs will spend running. In the process, we show how the 

requirements and rank expressions may be used to put each one of these different 

approaches into practice. 

 

For our test we used several sites with different processing speeds. As discussed 

before, GridWay will not send jobs to a site without free slots, so we will not consider 

queuing times in this experiment. However, if this was included, it would just add to the 

total job time and it would be reflected in final performance in just the same manner as 

processing speed is currently. The utilized job templates use rank expressions that 

favour sites publishing a higher value for the CPU_MHZ attribute. Some of them 

combine this with data location functions. The requirements expression is only used for 

the send jobs to data algorithm. 

 

Let us summarize the characteristics of our experiment: 

• There are three sites: A, B, C. 

o A and B have a CPU_MHZ value of 2800. 

o  C has a CPU_MHZ value of 1001. 

• Once the data has been transferred to a node, the jobs will take: 

o around 500 seconds to run in A or B. 

o around 675 seconds to run in C. 

• We will use four different algorithms (different rank expressions) 
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(a) Not considering data location. 

• RANK = CPU_MHZ + QUEUE_FREENODECOUNT  

(b) Sending jobs to data. 

• REQUIREMENTS = CLOSE_DATA("myfile") 

• RANK = CPU_MHZ + QUEUE_FREENODECOUNT 

(c) Balancing data and CPU equally (as proven by practical experience). 

• RANK = CPU_MHZ + QUEUE_FREENODECOUNT + 

SIZE_CLOSE_DATA("myfile") / 135 

(d) Modification of (c) to additionally penalize data transfers. 

• RANK = CPU_MHZ + QUEUE_FREENODECOUNT + 

SIZE_CLOSE_DATA("myfile") / 68 

• For each algorithm, ten jobs are sent, each one requiring one of ten files located 

at C. The size of these files ranges from 3 to 405 MB. 

 

Table 3 shows the results for all forty jobs. For each one, the table shows the used 

algorithm, the size of the input data required by the job, the CPU_MHZ value of the site 

where it run, the time the input data transfer took, the time the processing of that data 

took, the complete time the job run (including transfer time) and the value of the rank 

expression for the selected site. 

 

Algorithm 
Data 

Size 
CPU 

Exec 

Site 

Transfer 

Time 

Proc. 

time 

Job 

Time 
Rank 

A 03 MB 2800 Site A 8 509  517 2815 

A 45 MB 2400 Site B 43 524  567 2407 

A 90 MB 2800 Site B 187 509  696 2816 

A 135 MB 2800 Site B 389 509  898 2816 

A 180 MB 2800 Site A 150 509  659 2821 

A 225 MB 2800 Site A 347 510  857 2809 

A 270 MB 2800 Site A 626 509  1135 2814 

A 315 MB 2800 Site B 243 510  753 2833 

A 360 MB 2800 Site A 301 509  810 2808 
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A 405 MB 2800 Site B 593 509  1102 2817 

B 03 MB 1001 Site C 8 669  677 1054 

B 45 MB 1001 Site C 8 670  678 1049 

B 90 MB 1001 Site C 8 669  677 1049 

B 135 MB 1001 Site C 25 670  695 1048 

B 180 MB 1001 Site C 25 669  694 1045 

B 225 MB 1001 Site C 15 677  692 1038 

B 270 MB 1001 Site C 14 669  683 1039 

B 315 MB 1001 Site C 16 669  685 1035 

B 360 MB 1001 Site C 22 670  692 1035 

B 405 MB 1001 Site C 29 672  701 1036 

C 03 MB 2800 Site A 9 509  518 2823 

C 45 MB 2800 Site B 94 509  603 2821 

C 90 MB 2800 Site B 92 509  601 2819 

C 135 MB 2800 Site B 176 509  685 2822 

C 180 MB 2800 Site A 108 509  617 2816 

C 225 MB 1001 Site C 15 670  685 2867 

C 270 MB 1001 Site C 14 669  683 3001 

C 315 MB 1001 Site C 20 669  689 3334 

C 360 MB 1001 Site C 35 674  709 3667 

C 405 MB 1001 Site C 25 669  694 4001 

D 03 MB 2800 Site A 9 509  518 2844 

D 45 MB 2800 Site B 176 509  685 2835 

D 90 MB 2800 Site B 115 509  624 2829 

D 135 MB 1001 Site C 33 669  702 2986 

D 180 MB 1001 Site C 74 669  743 3648 

D 225 MB 1001 Site C 19 673  692 4309 

D 270 MB 1001 Site C 21 670  691 4971 

D 315 MB 1001 Site C 26 669  695 5633 

D 360 MB 1001 Site C 24 672  696 6295 

D 405 MB 1001 Site C 19 675  694 6956 

Table 3: Comparison of different scheduling algorithms for data-intensive jobs 
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For a given job, the optimum destination is the one that minimizes the value in the 

job time column. Extending this to a whole group of ten jobs (for all data sizes), we 

might say that the best algorithm is the one minimizing the average time for the ten 

jobs. However, we might also use the number of transfers as the metric for the 

comparison. For some VOs, minimizing this value might be as important as optimizing 

the job turnaround time. 

 

Attending on how the algorithms behave, we can say that: 

(a) All jobs sent to site A or B. 

(b) All jobs sent to site C. 

(c) For small files jobs are sent to site A or B, for large files jobs are sent to site C. 

(d) Same results as (c), but the threshold is lower (most jobs go to site C). 

 

These decisions produce the following results for each algorithm: 

(a) Good job times for small files, worse times for large files. 10 transfers. 

(b) Bad job times for small files, better times for large files. 0 transfers. 

(c) Good job times for all cases. 5 transfers. 

(d) Fairly good times for all, a bit worst than (c) for a few cases. 3 transfers. 

 

The graph in Figure 7 compares the different policies in terms of job running time as 

a function of input data size. There are some oscillations in the transfer times –which 

was expectable-, but in general we see that algorithm (a) behaves OK only for small 

input files and it is worse when large files have to be transferred. All the other 

algorithms select the site holding the input data when this is of big size, but they differ 

for small files. Policy (b) chooses site C for every case, but (c) and (d) prefer to choose 

faster sites accepting the transfer of some files, for the cases where these are small. By 

doing this, they get better numbers. 
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Figure 7: Job completion time versus size of input data for different algorithms 

 

If we consider the number of transferred files, we will see that (b) obtains the 

absolute minimum, since it never moves files, and (a) is again the worst option. 

Between (c) and (d), a slightly worst average job time is traded for a reduction in the 

number of files transferred (transfer penalty). Table 4 summarizes average job times and 

number of transfers for each of the algorithms.  

 
Algorithm Average job time Number of transfers

(a) 799.4 10 

(b) 687.4 0 

(c) 648.4 5 

(d) 674.0 3 

Table 4: Average job completion times for different scheduling algorithms 

 

3.4.3.  Applicability to the CMS Use Case 

In Section 2.2, the numbers of typical CMS analysis task were presented: around 

100 jobs, 1 TB of total input data consumed by the jobs, nominal file of 2 GB and 

around 2.8 hours of processing time per job. In order to assess the relative impact that 

the transfer of all that data would have on the total job turnaround time, we have 

performed some transfer measurements between two sites, a nearby one and a distant 
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one, to the third –local- one. We use the adjective nearby and distant, in the sense that 

the perceived data throughput is higher in the first case than in the second one. This is 

typically due to a better network link connecting the sites or more appropriate tuning of 

local parameters for the characteristics of one of the sites (TCP buffers as a function of 

round trip time, e.g.). Transfers from the local SE to the WN were also conducted. In 

every case the replicated files had a size of 2.5 GB. Results are summarized in Figure 8. 

 

 
Figure 8: Transfer times for a 2.5 GB file to local storage/worker node 

 

What we see is, firstly, that transfer to the WN take much longer that transfers to the 

local SE (except for the copy from local SE which sits within the same local network). 

This is to be expected, since storage elements are tuned to perform well when 

transferring data, while WNs are not optimized for that. Previously, we had already 

concluded (due to disk space reasons also) that staging huge input data files to the 

computing node is clearly suboptimal and it is better to replicate them to the local SE 

and read the files from there directly. 

 

The times in Figure 8 were measured for the transfer of a 2.5 GB file. If we scale 

these times to the case of 10 GB per job, we will see that bringing the input data for a 

job will take 8.49 minutes for the nearby site and as much as 1.59 hours for the distant 

site. Certainly the transfer parameters could be improved for the latter case, but this is a 
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real world example, so it must be taken into account. Considering that a job might run 

for 2.8 hours once the job is there, this transfer delay is clearly unacceptable. For 100 

jobs and these sites, 1 TB of data would be transferred and the whole process would 

take between 14 and 150 hours to complete. 

 

Finally, we would like to compare the numbers we obtained in Section 3.4.2 for the 

different algorithms and these for a CMS typical analysis. For practical reasons, short 

length jobs and files of small size were used, but if we scale both by a factor of 20, we 

have results that are comparable to those of CMS case. Regarding processing time, we 

had before times ranging from 8.48 minutes to 11.28 minutes. Multiplying by a factor of 

20, we have a range from 2.82 to 3.76 hours, which is more or less what a CMS analysis 

job would last, just considering that in EGEE jobs would probably have to queue for a 

while before getting a slot to run. As for what transfer times concerns, Figure 7 tell us 

that already with less than 250 seconds spent in the data replication, it is already wiser 

to send jobs to the site holding the files than to move them to the fastest CPU. If we 

scale these 250 seconds by a factor of 20, we get 1.38 hours, which is less than what it 

takes to move the 10 GB required by a CMS job from the remote SE to the local one. 

 

3.5. General Proposal for the Job Scheduling and Data 

Placement Problems 

The modifications performed in the GridWay metascheduler allow submitters to 

arbitrarily set rank expressions that prioritize computing resources in function of their 

characteristics at the moment but also the location of the required input data. Users and 

VOs are free to combine these parameters as they wish. But two problems remain: how 

to estimate how long a data transfer will take and, further, how to perform those data 

movements efficiently and respecting VO policies. Solving the second of these 

challenges is out of the aspirations of GridWay, but it conditions the first issue and 

certainly affects the general issue we have at hands. 
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3.5.1. Use of a Data Placement System 

Our first consideration is that, since some data placement systems (DPS) already 

exist that schedule data movements for VOs, it is not our purpose to replace them. 

Those systems are the ones knowing more about data location, network topologies and 

VO policies regarding data movements. 

 

Referring to the first problem, instead of asking a service like NWS and build a 

matrix of transfer times ourselves, we judge preferable to query a data service 

placement, which can take into account other factors like free space on sites or the type 

of storage of a given replica. A system like the one used by the CMS VO, PhEDEx, 

already knows about all that. In our view, the whole task of selecting the best sites to 

find a file replica or to transfer one to it could be accomplished by a service like 

PhEDEx. 

 

So, as a first approach to the general problem, GridWay would replace the query to 

the catalogue by a query to the DPS. The arguments of this query would be just the 

requested files, and the response would be a list of prioritized sites, each with an 

assigned cost for the transfer of the files. This is illustrated in Figure 9. If for example a 

single file is requested (best_sites query) and this file is located on disk at sites A and B, 

the cost would be zero for them. If the file is also at site C, but it is only on tape, a 

higher cost –based on history of previous requests- would be given for this site. The 

cost for other sites not holding the data would depend on their network links to A and B 

and how much free space they possess. Of course, VO policies could be also imposed 

(e.g. set an infinite cost to site D, since no data can be copied to it). The DPS would 

return the list of the best sites where to access input data files (up to a configurable 

number of sites). GridWay would then perform the match-making of job requirements 

and calculate the rank for each resource in the usual way, but considering only the sites 

returned by the DPS and subtracting the returned transfer cost from each resource’s 

rank. The job would be sent to the best remaining resource (E). Optionally, GridWay 

could return the chosen destination to the DPS, so that it performed the data movement 

on behalf of the user. 
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Figure 9: Use of a Data Placement System to find best sites for data 

 

The best_site query could be made available as a normal grid service, so that it was 

accessible to GridWay or other clients by just using the appropriate endpoint (and user’s 

credentials). It would be used in the same way that the DLI service is used currently. If 

other types of services existed (like there are different catalogues), plugins could be 

used to access each one of them. 

 

3.5.2. Use of a Complete Workflow Management System 

The approach sketched in the previous section addresses the problem of selecting 

the best resource to run a given job. It also tries to delegate the decisions on where and 

how to move data to the data placement system, which will most probably do it better 

than a metascheduler. This is probably an optimum solution for the scheduling of a 

single job. In some occasions, however, a stricter decoupling of job scheduling and data 

placement tasks could bring better global efficiency for a VO, or for the whole grid. As 

we indicated before, this was already suggested in [31]. 

 

Imagine that a user submits 500 jobs, each requiring the same set of 10 input files, 

all of which reside in the same site. Even if this site offers very few CPUs and another 

much bigger site would happily accept a replica of the files, the best possible scheduling 
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for a single job might still be to send the job to the first site because transferring all the 

files would cause too much overhead. Nevertheless, if we consider the 500 jobs, the 

time required to move the ten files would be negligible compared to the time that the 

500 jobs will take to run, or queue, at the first site if no replica is made available. It is 

even possible that while the files are being transferred other jobs are scheduled first, so 

that job slots are not occupied with jobs that are just waiting for some data. A more 

intelligent system could try to optimize situations like this. 

 

Certainly, providing a complete solution to this is out of the scope of GridWay’s 

aspirations. It would be the duty of a higher-level component, perhaps a workflow 

management system, to take longer term decisions regarding data replication and 

planning of jobs destination. This component would get job requests as input, data and 

jobs information as feedback and VO or grid rules as policies. It would then schedule 

data replications that the DPS would execute and, by setting the requirements and rank 

expressions, instruct GridWay to allocate jobs as appropriate. The organization of such 

a system is illustrated by Figure 10. 

 

 
Figure 10: A workflow management system to schedule data and jobs 
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A system like this seems necessary only for VOs with a high job submission rate 

and with large necessities in terms of data. If a particular user needs to send a few jobs, 

a direct request to GridWay would be probably enough. If a DPS offers a query service 

so that data transfer times can be appropriately estimated, all the better. Finally, if 

resources are scarce for the volume of data and jobs that a VO manages, then a more 

intelligent system like this may be needed. 

 

Notice that the VO of our reference example, CMS, actually uses an approach 

similar to that in Figure 10, where job submission and data placement system are 

completely independent, and both are subject to the decisions of a higher, more 

intelligent entity. The difference is that this entity is not a planner or a workflow 

manager, but a central operations team, a group of humans, who take the appropriate 

decisions. 
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4. Conclusions  

4.1. Conclusions 

This work describes the particularities affecting the scheduling of data-intensive 

jobs in a grid. It shows why location of input data must be taken into account when 

allocating jobs, not only to optimize jobs efficiency, but also to avoid excessive data 

replication and the problems that this entails. The fact that different users and virtual 

organizations may present heterogeneous needs and policies motivates us to argue in 

favour of a flexible system where different allocation algorithms that make use of data 

location information can be supported. This idea has led the process of enhancement of 

the existing GridWay metascheduler and has been demonstrated in several experiments 

with it. 

 

Throughout the work, the relation between data placement decisions and job 

scheduling has been stressed. We have indicated that a metascheduler can only achieve 

optimum scheduling decisions for individual jobs with advice from a data placement 

service and that a system that maximizes global job efficiency for a VO requires further 

coordination between both parties. Although a complete solution to this problem is out 

of the aspirations of GridWay, we have addressed it with a proposal for a system that 

coordinates the planning of data and jobs allocation but keeps the execution of these 

allocation tasks decoupled. 

 

4.2. Possible Improvements and Future Work 

Possible improvements of our GridWay implementation have been indicated 

throughout the text. A consistent method for the retrieval of data size information needs 

to be integrated into GridWay’s distribution. New catalogue interfaces –others than the 

standard in EGEE- should be supported and for that a new variable to indicate the type 

of catalogue to be queried should be added. Finally, the new functionality should be 

supported for JSDL requests also and not only for job templates. 
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There is certainly room for further work on the topics discussed by this project. The 

system might be extended to make use of information from a network weather service 

or from a data placement system. From a more general point of view, further research is 

needed in the area of coordinated planning of data placement and jobs allocation in grid 

environments. 
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