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1. Introduction  

One of the most important tasks financial institutions face is evaluating their market risk 

exposure. Traditionally, the market risk of a portfolio was measured through the variance. In fact, 

traditional financial theory defines risk as the dispersion of the results with respect to the mean 

return. Another way of measuring risk, which is currently the most commonly used, is to evaluate the 

losses that may occur when the price of the assets that makes up the portfolio decreases1. To evaluate 

those losses, two measures have been developed: (i) the value at risk (VaR) measure (J.Morgan, 

1996) and (ii) the expected shortfall (ES) measure (Acerbi and Tasche, 2002). The VaR of a 

portfolio is defined as the worst expected loss over a given horizon under normal market conditions 

at a given level of confidence. Formally speaking, the 𝑉𝑎𝑅(𝛼) of a portfolio at (1 − 𝛼)% confidence 

level is the percentile 𝛼 % of the return portfolio distribution. To date, the VaR measure has been by 

far the most used by financial institutions and regulators2

However, this measure is not exempt from criticism. Certain researchers have remarked that 

VaR is not a coherent market risk measure as it violates the subadditivity condition, which may 

discourage diversification

.  

3

Although, to date, the VaR measure has been the most used for quantifying market risk, in 

the future, ES will garner more prominence, in part due to the change in the regulation set by the 

Basel Committee on Banking Supervision (BCBS). Under the new regulation, financial institutions 

must calculate the market risk capital requirements’ risk based on the ES measure, replacing the VaR 

measure (BCBS, 2012, 2013, 2017).  

 (see Artzner et al., 1999). Another weakness of the VaR measure is that it 

fails to control tail-risk. The ES is defined as the average of all losses that are greater than or equal to 

VaR, i.e., the average loss in the worst 𝛼 % cases. In other words, this measure provides the expected 

value of an investment in the worst 𝛼 % of the cases. In contrast to the VaR measure, ES is a 

coherent risk measure, and it does not present tail-risk. 

To estimate those measures, several methodologies have been developed: (i) the parametric 

approach, (ii) the non-parametric approach (e.g., historical simulation) and (iii) the semi-parametric 

method (e.g., extreme value theory, filtered historical simulation and CaViar method). Among all 

these measures, extreme value theory (EVT) has been proven to be one of the most successful in 

VaR estimation (see Abad et al., 2014)4

The extreme value theory approach focuses on limiting the distribution of extreme returns 

observed over a long time period, which is essentially independent of the distribution of the returns 

themselves. The two main models for extreme value theory are the block maxima model (McNeil, 

1998) and the peaks-over-threshold (POT) model. In the context of the POT model, extreme values 

.  

                                                           
1 In this case, the concept of risk is associated with the danger of losses. 
2 In 1996, the Basel Committee on Banking Supervision (BCBS) introduced an amendment where financial 
institutions were required to meet capital requirements based on VaR estimates.  
3 A risk measure 𝜌 is called coherent if it satisfies the following conditions: (i) homogeneous, (ii) subadditive, 
(iii) monotonic and (iv) translation invariant.  
4 To date, there are few studies dedicated to comparing ES models.  
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above a high threshold are analysed using a generalized Pareto distribution (GPD). The difficulty of 

this method lies in finding the optimal threshold for GPD fitting. Threshold choice involves 

balancing bias and variance. The threshold must be sufficiently high to ensure that asymptotic 

underlying the GPD approximations is reliable, thus reducing bias. However, the reduced sample 

size for high thresholds increases the variance of the parameter estimates (see Scarrot and 

McDonald, 2012).  

To determine the optimal threshold, several techniques have been proposed such as graphic 

methods, ad hoc methods or methods based on goodness-of-fit contrasts. However, none of these 

techniques have been proven to provide better results than the others.  

Although many proposals have been made to determine the optimal threshold in the 

framework of the POT method, in this paper, we ask whether in the financial field; specifically, in 

measuring market risk, the choice of the threshold is important. The study by Iriondo (2017) offers 

preliminary evidence against this hypothesis. In accordance with this author, we analyse the extent to 

which the selection of the threshold is decisive in quantifying the market risk. To answer this 

question, we will analyse the impact of the threshold on the two aforementioned risk measures: VaR 

and ES. 

The results of the study indicate that according to the literature, the choice of the threshold 

affects the parameter estimates of the GPD; however, the risk measures (VaR and ES) obtained from 

these parameters do not depend on the choice threshold. To answer this question, we analyse in 

detail the case of the S&P 500 and later extend that study to a set of 14 assets: 7 stock indexes 

(CAC40, DAX30, FTSE100, HangSeng, IBEX35, Merval and Nikkey), four commodities (Copper, 

Gold, Crude Oil Brent and Silver) and three rates exchange (₤ /€, $/€ and ¥/€). This result is also 

found in a smaller sample. 

The remainder of the paper is organized as follows. In section 2, we present the methodology 

we use for the study. In section 3, we present the data and the results obtained for the particular case 

of the S&P 500 index. Section 4 displays a robustness analysis. The main conclusions are presented 

in section 5.  

 

2. Methodology 

2.1 Extreme Value Theory  

The extreme value theory (EVT) approach focuses on the limiting distribution of extreme 

returns observed over a long time period, which is essentially independent of the distribution of the 

returns themselves. The two main models for EVT are (1) the block maxima models (BM) (McNeil, 

1998) and (2) the peaks-over-threshold model (POT). The second model is generally considered to 

be the most useful for practical applications due to the more efficient use of the data at the extreme 

values. In the framework of the POT model, there are two types of analysis: the Semi-parametric 

models built around the Hill estimator and its relatives (Beirlant et al., 1996; Danielson et al., 1998) 
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and the full parametric models based on the generalised Pareto distribution (Embrechts et al., 1999). 

In this paper we focus on the full parametric model.  

Given a set of random variables (𝑟1, 𝑟2, … , 𝑟𝑛), iid ~ 𝐹 , we choose a low threshold 𝑢 and 

examine all values (𝑦) exceeding 𝑢: �𝑦1,𝑦2, … ,𝑦𝑁𝑢 � where 𝑦𝑖 = 𝑟𝑖 − 𝑢 and 𝑁𝑢 are the number of 

sample data greater than u. The distribution of excess losses over the threshold u is defined as: 

𝐹𝑢(𝑦) = 𝑃�(𝑟 − 𝑢) < �𝑦| 𝑟 > 𝑢� = 𝐹(𝑟+𝑢)−𝐹(𝑢)
1−𝐹(𝑢)

   (1) 

According to the theorem of Pickans (1975) and Balkema and de Haan (1974), for a large 

class of underlying distributions functions 𝐹 the conditional excess distribution function 𝐹𝑢(𝑦), for a 

𝑢 large , is well approximated by 𝐹𝑢(𝑦) ≈ 𝐺𝑘.𝜉(y) with 𝑢 → ∞, where 

𝐺𝑘.𝜉(y) =  �
1 − �1 + 𝑘

𝜉
𝑦�

−1/𝑘
   𝑖𝑓  𝜉 ≠ 0

1 − exp �− 𝑦
𝜉
�          𝑖𝑓   𝜉 = 0

�   (2) 

𝐺𝑘.𝜉(y) is the so-called generalized Pareto distribution (GPD), and 𝑘 and ξ represent the shape 

parameter and the scale parameter, respectively. The shape parameter can take any value, positive or 

negative. The scale parameter is always positive.  

Figure 1 illustrates the shape of the generalized Pareto distribution and the corresponding 

density function when the shape parameter or tail index takes negative and positive values. 

[Insert Figure 1] 

Assuming that, for a certain 𝑢, the distribution of excess losses above the threshold is a 

generalized Pareto distribution, then the distribution function of returns is given by: 

𝐹(𝑟) = (1 − 𝐹(𝑢)) 𝐹𝑢(y) + 𝐹(𝑢) (3) 

and replacing  𝐹𝑢(y) by GPD and 𝐹(𝑢) by its empirical estimator (𝑛 − 𝑁𝑢)/𝑛, where 𝑛 is the total 

number of observations and 𝑁𝑢 the number of observations above the threshold 𝑢, we have 

  𝐹(𝑟) = 𝑁𝑢
𝑛
�1 − �1 + 𝑘

𝜉
(𝑟 − 𝑢)�

−1/𝑘
� + (1 − 𝑁𝑢

𝑛
)               (4) 

which simplifies to 

𝐹(𝑟) = 1 −  𝑁𝑢
𝑛
�1 + 𝑘

𝜉
(𝑟 − 𝑢)�

−1𝑘
                                          (5) 

For a given probability 𝛼 > 𝐹(𝑢), the quantile 𝛼, which is denoted by 𝑞(𝛼), 𝑖s calculated by 

inverting the tail estimation formula to obtain 

𝑞(𝛼) = 𝑢 −  
𝜉
𝑘 �

�
𝑛
𝑁𝑢

𝛼�
−𝑘

− 1� 
(6) 

 

The expected shortfall associated with the quantile 𝛼, which is denoted by 𝐸𝑆(𝛼), is given 

by: 

𝐸𝑆(𝛼) = 𝑞(𝛼) + 𝐸[�𝑟 − 𝑞(𝛼)| 𝑟 > 𝑞(𝛼)]   (7) 
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where the second term on the right is the mean of the excess distribution 𝐹𝑉𝑎𝑅𝛼(𝑦) over the threshold 

𝑉𝑎𝑅(𝛼). It can be demonstrated that the mean of the excess distribution 𝐹𝑉𝑎𝑅𝛼(𝑦) over the threshold 

𝑉𝑎𝑅(𝛼) is given by:  

𝐸[�𝑟 − 𝑞(𝛼)| 𝑟 > 𝑞(𝛼)] = 𝜉+𝑘(𝑞(𝛼)−𝑢)
1−𝑘

    (8) 

and therefore, we obtain 

𝐸𝑆(𝛼) =  𝑞(𝛼) +
𝜉 + 𝑘(𝑞(𝛼) − 𝑢)

1 − 𝑘
=

 𝑞(𝛼)
1 − 𝑘

+
𝜉 + 𝑘𝑢
1 − 𝑘

 
(9) 

   

2.2 Threshold selection method  

One of the most difficult problems in the practical application of EVT is choosing the 

appropriate threshold. Threshold choice involves balancing bias and variance. An excessively low 

threshold may violate the asymptotic underlying the GPD approximation and, consequently, increase 

the bias. Conversely, an excessively high threshold may involve a smaller sample size and generate 

few excesses, leading to high variance in the parameter estimations (see Scarrot and McDonald, 

2012).  

 To determine the optimal threshold, several selection methods have been proposed that can 

be grouped into the following categories: (i) graphic methods; (ii) ad hoc methods; (iii) methods 

based on goodness-of-fit contrasts; and (iv) the bootstrap bias-variance method. Due to its simplicity, 

the graphic method most commonly used in practice is the mean excess plot method introduced by 

Davison and Smith (1990). This instrument is a graphical tool based on the sample means of the 

excesses function (SMEF), which is defined as: 

𝑆𝑀𝐸𝐹(𝑢) =
∑ (𝑟𝑖−𝑢){𝑟𝑖>𝑢}
𝑁𝑢
𝑖

𝑁𝑢
    (10) 

The sample means excesses function (SMEF) is an estimate of the excess mean function 

(MEF): 

𝑒(𝑢) =  𝐸[(𝑋 − 𝑢)|𝑋 > 𝑢]    (11) 

For the GPD, the excess mean function is given by a linear function in 𝑢: 

𝑒(𝑢) = 𝜉
1−𝑘

+ 𝑘
1−𝑘

𝑢     (12) 

This finding means that for 0 < 𝑘 < 1 and 𝜉 + 𝑘𝑢 > 0, the mean excess plot should 

resemble a straight line with positive slope. Thus, the general rule for the choice of optimal threshold 

will be to choose a value of 𝑢 for which the resulting line has a positive slope. An application of this 

method can be found in Beirlant et al. (2004).  

An alternative graphic method is to fit the GPD distribution at a range of thresholds and to 

seek the stability of the parameter estimates. This method involves plotting 𝑘�  and 𝜉 together with 

confidence intervals for each of these quantities and selecting the value of 𝑢 from which the 

estimates are no longer stable (see Coles, 2001). 
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 The main drawback of graphic approaches is that they can be rather subjective and require 

substantial expertise to interpret these diagnostics as a method of threshold selection. 

Other authors have developed their own techniques to identify the optimal threshold (ad 

hoc). Christoffersen (2003) suggests a practical rule consisting of considering extreme values but 

only those observations in the upper or lower decile of the distribution. Neftci (2000), followed by 

Bekiros and Georgoutsos (2005), proposes the estimation of the threshold as 1.176 𝜎0, where 𝜎0 is 

the standard deviation of the sample. DuMouchel (1983) proposes a simple quantile rule using an 

upper threshold of 10%, frequently used in practice. Ferreira et al. (2003) use the square root of the 

number of data (𝑛) to specify the number of exceedances (𝑁𝑢). Ho and Wan (2002) and Omran and 

McKenzie (1999) use the rule 𝑁𝑢  = 𝑛
2
3/log [log(𝑛)] proposed by Loretan and Philips (1994) to 

determine the optimal number of exceedances. Reiss and Thomas (2007) choose the lowest upper-

order statistic 𝑁𝑢 to minimize  1
𝑁𝑢 

∑ 𝑖𝛽�𝑘�𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑘�1. . . . .𝑘�𝑁𝑢)�𝑁𝑢  
𝑖=1 .  

The last method based on the goodness of fit consists of the following: fixed to a threshold, a 

generalized Pareto distribution is fitted to the excess losses on the threshold yield. The goodness of 

fit of the distribution is then contrasted by the Kolmogorov-Smirnov test, and the p-value 

corresponding to the contrast statistic is extracted. This exercise is repeated for a wide range of 

thresholds. Theoretically, the optimal threshold is one that generates a higher p-value.  J.M. van Zyl 

(2011) shows that the Kolmogorov-Smirnov statistic can be used not only to test the goodness of fit 

of the Pareto model assumption but also as an indication of where to choose the threshold. 

Lastly, other researchers have suggested using techniques that provide an optimal trade-off 

between bias and variance. This method involves using bootstrap simulations to numerically 

calculate the optimal threshold considering the trade-off between bias and variance. Applications of 

this method can be found in Danielsson et al. (2001), Drees et al. (2000) and Ferreira et al. (2003). 

 

2.3 Risk measure 

According to Jorion (2001), the “VaR measure is defined as the worst expected loss over a 

given horizon under normal market conditions at a given level of confidence”. Thus, the VaR is a 

conditional quantile of the asset return loss distribution.  

Let 𝑟1, 𝑟2. 𝑟𝑛 be identically distributed independent random variables representing the 

financial returns. Using 𝐹(𝑟) to denote the cumulative distribution function, 𝐹(𝑟)  =  𝑃𝑟(𝑟 <

 𝑟|Ω𝑡−1) conditionally on the information set Ω𝑡−1that is available at time t-1.  

Assume that {𝑟𝑡} follows the stochastic process:  

𝑟𝑡 = 𝜇𝑡 + 𝜎𝑡𝑧𝑡,   𝑧𝑡~𝑖𝑖𝑑 (0.1)  (13) 

where 𝜎𝑡2 = 𝐸(�𝑧𝑡2|Ω𝑡−1) and 𝑧𝑡  has the conditional distribution function 𝐺(𝑧), 𝐺(𝑧)  =  𝑃(𝑧𝑡 <

 𝑧|Ω𝑡−1). The VaR with a given probability 𝛼 ∈ (0, 1), denoted by 𝑉𝑎𝑅(𝛼), is defined as the 𝛼 

quantile of the probability distribution of financial returns: 𝐹(𝑉𝑎𝑅(𝛼))  =  𝑃𝑟(𝑟𝑡 < 𝑉𝑎𝑅(𝛼)) =𝛼. 



7 
 

This quantile can be estimated as follows: 

𝑉𝑎𝑅𝑡(𝛼) = 𝐹−1(𝛼) = 𝜇𝑡 + 𝜎𝑡𝐺−1(𝛼)  (14) 

where 𝜇𝑡 and 𝜎𝑡 represent the conditional mean and the conditional standard deviation (volatility) of 

the returns. For estimating the volatility of the return, we use an APARCH model, which is given by 

the next expression:  

σtδ = α0 + α1(|εt−1| − γεt−1)δ + βσt−1δ  

α0,β, 𝛿 > 0,    α1 ≥ 0,−1 < 𝛾 < 1 

 (15) 

 In this model, the γ parameter captures the leverage effect (Black, 1976), which means that 

volatility tends to be higher after negative returns.  

 The ES with a given probability 𝛼 ∈ (0, 1), denoted by 𝐸𝑆(𝛼), is defined as the average of all 

losses that are greater than or equal to VaR, i.e., the average loss in the worst 𝛼 % cases: 𝐸𝑆𝑡(𝛼) =

𝐸[�𝑟| 𝑟 < 𝑉𝑎𝑅(𝛼)].     

𝐸𝑆𝑡(𝛼) = 𝜇𝑡 + 𝜎𝑡𝐸[�𝑧| 𝑧 < 𝐺−1(𝛼)]       (16) 

Replacing expression (6) in  expression (14) and equation (9) in  (16), we obtain the 

expressions for VaR and ES, respectively, measured under the conditional extreme value theory 

approach.  

 

2.4 Backtesting  

a) Backtesting VaR 

To evaluate the accuracy of the VaR estimates, several tests have been used. All of these 

tests are based on the indicator variable. We have an exception when 𝑟𝑡+1 < 𝑉𝑎𝑅(𝛼); then, the 

exception indicator variable (It+1) is equal to one (zero in other cases).  

To check the accuracy of the VaR estimates, we have used five standard tests: unconditional 

(LRuc), backtesting criterion (BTC), independent and conditional coverage (LRind and LRcc) and 

dynamic quantile (DQ) tests.  

Kupiec (1995) shows that if we assume that the probability of obtaining an exception is 

constant, the number of exceptions 𝑥 = ∑ 𝐼𝑡+1 follows a binomial distribution 𝐵(𝑁,𝛼), where 𝑁 

represents the number of observations. An accurate measure VaR(α) should produce an 

unconditional coverage (𝛼� = ∑𝐼𝑡+1
𝑁

) equal to 𝛼 percent. The unconditional coverage test has a null 

hypothesis 𝛼� = 𝛼, with a likelihood ratio statistic: 

𝐿𝑅𝑢𝑐 = 2[𝑙𝑜𝑔(𝛼�𝑥(1− 𝛼�)𝑁−𝑥)− log(𝛼(1 − 𝛼)𝑁−𝑥)] (17) 

which follows an asymptotic  𝜒2(1) distribution. 

A similar test for the significance of the departure of 𝛼� from 𝛼 is the backtesting criterion 

statistic (BTC): 

    𝑍 = (𝑁𝛼� − 𝑁𝛼)/�𝑁𝛼(1 − 𝛼)     (18) 

which follows an asymptotic N(0, 1) distribution. 
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The conditional coverage test, developed by Christoffersen (1998), jointly examines whether 

the percentage of exceptions is statistically equal to the one expected (𝛼� = 𝛼) and the serial 

independence of the exception indicator. The likelihood ratio statistic of this test is given by 𝐿𝑅𝑐𝑐 =

𝐿𝑅𝑢𝑐 + 𝐿𝑅𝑖𝑛𝑑, which is asymptotically distributed as 𝜒2(2), and the 𝐿𝑅𝑖𝑛𝑑 statistic is the likelihood 

ratio statistic for the hypothesis of the serial independence against first-order Markov dependence5

Finally, the dynamic quantile test proposed by Engle and Manganelli (2004) examines if the 

exception indicator is uncorrelated with any variable that belong to the information set  Ω𝑡−1, 

available when the VaR is calculated. This test is a Wald test of the hypothesis that all slopes are 

zero in the regression: 

. 

𝐼𝑡 = 𝛽0 + �𝛽𝑖

𝑝

𝑖=1

𝐼𝑡−𝑖 + �𝜇𝑗

𝑞

𝑗=1

𝑋𝑡−𝑗 
(19) 

where 𝑋𝑡−𝑗 are the explanatory variables contained in Ω𝑡−1. This statistic is introduced as five 

explanatory variable lags of VaR. Under the null hypothesis, the exception indicator cannot be 

explained by the level of VaR, i.e., 𝑉𝑎𝑅(𝛼) is usually an explanatory variable to test if the 

probability of an exception depends on the level of the VaR. 

b) Backtesting ES 

In this paper, we use two backtests for the conditional expected shortfall. The first is the 

McNeil and Frey (2000) test, which is likely the most successful in the literature. These authors 

develop a test to verify that a model provides much better estimates of the conditional expected 

shortfall than another. The authors are interested in the size of the discrepancy between the 

return 𝑟𝑡+1 and the conditional expected shortfall forecast 𝐸𝑆𝑡(𝛼) in the event of quantile violation. 

The authors define the residuals as follows:   

𝑌𝑡+1 = (𝑟𝑡+1 − 𝐸𝑆𝑡+1(𝛼))/𝜎𝑡+1 (20) 

Replacing equation (13) and equation (16) in equation (20), we have the next expression: 

𝑦𝑡+1 = 𝑧𝑡+1 − 𝐸(�𝑧|𝑧 < 𝑞𝛼) (21) 

It is clear that, under model (5), these residuals are i.i.d. and that, conditional on  {𝑟𝑡+1 <

𝑉𝑎𝑅𝑡+1(𝛼) or equivalent 𝑧𝑡+1<𝑞𝛼, they have an expected value of zero. Suppose we again 

backtest on days in the set 𝑇. We can form empirical versions of these residuals on days when 

violations occur, i.e., days in which {𝑟𝑡+1 < 𝑉𝑎𝑅𝑡+1(𝛼)}. The authors call these residuals 

exceedances and denote them by  

{𝑦�𝑡+1: 𝑡 𝜖 𝑇.   𝑟𝑡+1 < 𝑉𝑎𝑅𝑡+1(𝛼)}   where 𝑦�𝑡+1 = 𝑟𝑡+1−𝐸𝑆
�𝑡+1(𝛼)
𝜎�𝑡+1

  (22) 

                                                           
5 The LRind statistic is  and has an asymptotic  distribution. The likelihood function under 

the alternative hypothesis is , where Nij denotes the number of observations in state 

j after having been in state i in the previous period,  and . The likelihood 

function under the null hypothesis ( ) is . 

[ ]02 log log= −ind ALR L L 2 (1)χ

( ) ( )00 1001 11
01 01 11 111 1= − −N NN N

AL π π π π

01 01 00 01/( )= +N N Nπ 11 11 10 11/( )= +N N Nπ

01 11 11 01( ) /= = = +N N Nπ π π ( ) 00 01 01 11
0 1 + += − N N N NL π π
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where 𝐸𝑆�𝑡+1(𝛼) 𝑖s an estimation of the conditional expected shortfall. Under the null hypothesis, in 

which we correctly estimate the dynamic of the process 𝜇𝑡+1 and 𝜎𝑡+1 and the first moment of the 

truncated innovation distribution 𝐸(�𝑧|𝑧 < 𝑞𝛼), these residuals should behave such as an i.i.d sample 

with a mean of zero. Thus, for testing whether the estimates of the expected shortfall are correct, we 

must test if the sample mean of the residual is equal to zero against the alternative that the mean of 𝑦 

is negative. Indeed, given a sample {𝑦𝑡+1} of size 𝑁 (where 𝑁 is the number of violations in the 𝑇 

period), the sample mean 𝑦� converges in distribution to standard normality, as 𝑁 tends to ∞ by the 

central limit theorem. In other words, given population mean 𝜇𝑦 and variance 𝜎𝑦,  

  √𝑁 �
𝑦�−𝜇𝑦
𝜎𝑦

� → 𝑁(0, 1)      (23) 

By applying the central limit theorem, the statistics for testing the null hypothesis are given 
by  

𝑡 = 𝑦�
𝑆𝑦/√𝑁

~𝑡𝑁−1    (24) 

where 𝑦� and 𝑆𝑦 are the sample mean and the sample standard deviation, respectively, of the 

exceedance residuals. As Wong (2010) notes, the above result will generally never be valid for 

sample sizes encountered in practice, due to the inherent nature of the test statistic. Therefore, we 

approximately interpret this backtest.  

The other backtest used for the expected shortfall is the test proposed by Righi and Ceretta 

(2015). These authors propose an adaptation of the McNeil and Frey (2000) procedure. The authors 

consider the residual series (𝑦 ′), which is similar to 𝑦 except that they consider dispersion only for 

the exceptions rather than for the full sample. The dispersion is the standard deviation truncated by 

the VaR. The authors refer to this dispersion as shortfall deviation (𝑆𝐷). The 𝑆𝐷 is the square root of 

the truncated variance for a certain quantile conditional to the probability 𝛼, i.e., 

𝑆𝐷𝑡+1𝛼 =(𝑣𝑎𝑟(�𝑟𝑡+1|𝑟𝑡+1 < 𝑉𝑎𝑅𝑡+1(𝛼)))1/2, and since 𝑟𝑡+1 = 𝜇𝑡+1 + 𝜎𝑡+1𝑧𝑡+1, by standardization, 

we obtain 𝑆𝐷𝑡+1𝛼 =( 𝜎𝑡+12 𝑣𝑎𝑟[�𝑧𝑡+1|𝑧𝑡+1 < 𝑞(𝛼) ])1/2, where 𝑞(𝛼) is the 𝛼 percentile of the 

innovation distribution. In this particular case, in which we assume a GPD for the innovations, the 

truncated variance of the innovations is given by 

𝑣𝑎𝑟[�𝑧|𝑧 < 𝑞(𝛼) ] = 1
𝛼 ∫ (𝑞(𝑠)− 𝐸𝑆(𝑠))2𝛼

0 𝑑𝑠   (25) 

Thus, given significance level 𝛼, we can formally represent 𝑦 ′ as follows: 

𝑦 ′ = � 𝑆𝐷𝑡𝛼
−1(𝑟𝑡 − 𝐸𝑆𝑡𝛼).               𝑟𝑖 < 𝑉𝑎𝑅𝑖𝛼

        0.                                              𝑟𝑖 ≥ 𝑉𝑎𝑅𝑖𝛼       
�  (26) 

Similar to its traditional counterpart, the Righi and Ceretta (2015) test has the null hypothesis 

that 𝑦 ′ has a zero mean against the alternative that the mean of 𝑦 ′ is negative. To avoid making any 

assumption about the distribution of the residuals 𝑦′, the distribution of the mean ( 𝑦�′ ) is found using 

the standard bootstrap simulation of Efron and Tibshirani (1993).  
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3. Case study 

3.1 Dataset overview  

The data consist of the S&P 500 stock index extracted from the Thomson-Reuters-Etkon 

database. The index is transformed into returns by taking the logarithmic differences of the closing 

daily price (in percentage). We use daily data for the period January 3, 2000, through December 31, 

2015. The full data period is divided into a learning sample (January 3, 2000 to December 31, 2010) 

and a forecast sample (January 3, 2011 to December 31, 2015). Thus, we work with 4025 

observations and generate 1258 out-of-sample VaR and ES forecasts. Figure 2 presents the evolution 

of the daily index and returns of the S&P 500. The index shows a sawtooth profile alternating 

periods with upward slope with a period of sudden decreases. In addition, we can observe that the 

range fluctuation of daily returns is not constant, which means that the variance of the returns 

changes over time. The volatility of S&P 500 was particularly high from 2008 to 2009, coinciding 

with the period known as the Global Financial Crisis. In the last years of the sample, we observe a 

period that is more stable. The basic descriptive statistics are provided in Table 1. The unconditional 

mean daily return is very close to zero (0.008%).  

[Insert Table 1] 

[Insert Figure 2] 

The skewness statistic is negative, implying that the distribution of daily returns is skewed to 

the left. The kurtosis coefficient shows that the distribution has much thicker tails than the normal 

distribution. Similarly, the Jarque-Bera statistic is statistically significant, rejecting the assumption of 

normality. All this evidence shows that the empirical distribution of daily returns cannot be fit by a 

normal distribution, as it exhibits a significant excess of kurtosis and asymmetry (fat tails and 

peakness).  

3.2 Parameter estimation by the maximum likelihood method  

In this section, we analyse both the sensitivity of the parameters and the quantiles of the 

generalized Pareto distribution (GPD) to changes in threshold.  

For this study, we have selected a set of 22 thresholds that correspond with the 𝛽 percentiles 

of the S&P 500 return, for 𝛽 equal to 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 

89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% and 99%. The value of these thresholds is 

presented in Table 2.  

[Insert Table 2] 

Let 𝑢1, 𝑢2, …, 𝑢𝑛 be the set of thresholds selected (𝑛 = 22). For 𝑗 = 1, … , 𝑛, let 𝑘�𝑢𝑗 and 𝜉𝑢𝑗 

be the estimators of the shape and scale parameters based on the exceedances over the threshold 𝑢𝑗. 

The parameters have been estimated by maximum likelihood. In Table 3, we present the estimators 

of those parameters in addition to their standard deviations. Figures 3 and 4 display the estimation of 

𝑘 and 𝜉, respectively, as a function of the threshold 𝑢. We observe that as the threshold increases, the 
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value of 𝑘 increases. In the case of the scale parameter, the opposite occurs; as the threshold 

increases, the value of 𝜉 is reduced. As we expected, in both cases, the accuracy of the estimations 

decreases as the threshold increases. The estimation of the shape parameter, which determines the 

weight of the tail in the distribution, is very sensitive to changes in the threshold. For instance, the 

value of 𝑘 increases by 76% when the threshold moves from the 60th percentile to the 90th 

percentile. From the 60th percentile to the 99th percentile, the increase is equal to 125%. The value 

of the scale parameter is also sensitive to changes in the threshold; however, in this case, the changes 

are not that striking. When the threshold moves from the 60th percentile to the 90th percentile, the 

value of 𝜉 is reduced by 27%. From the 60th percentile to the 99th percentile, the decrease is 29%. 

Thus, in accordance with the literature, we find that the parameter estimations are very sensitive to 

the threshold we selected for estimating PGD.  

[Insert Table 3] 

[Insert Figures 3 and 4] 

Second, we analyse the sensitivity of the 𝛼 quantiles’ generalized Pareto distribution to 

changes in the threshold (for 𝛼 equal to 80%, 85%, 90%, 95%, 96%, 97%, 98% and 99%). These 

quantiles have been calculated using the expression (6). Figure 5 displays these quantiles as a 

function of the threshold 𝑢.  

[Insert Figure 5] 

 At first sight, it appears that the 𝛼 quantile of the GPD does not depend on the choice 

threshold. We observe certain differences in the quantiles calculated from the threshold 

corresponding to the 60th, 70th, 80th, and 99th percentiles. In Table 4, we present the differences 

between the 𝛼 quantile obtained below the optimal threshold and the 𝛼 quantile obtained for the set 

of thresholds selected. To calculate the optimal threshold, we have used the “excess mean plot” 

method (see section 2.2). Applying this technique, we find that for the S&P 500, the optimal 

threshold is a 1.1% return, which corresponds to the 90th percentile. 

For a large set of thresholds, from a return corresponding to the 85th percentile to a return 

corresponding to the 93rd percentile, the differences in quantile estimation do not exceed the 2 basis 

points. For the thresholds corresponding to the 60th, 70th, 80th and 99th percentiles, the differences 

are more pronounced, achieving 20 basis points in certain quantiles. However, focusing on the higher 

quantiles (95th, 96th, 97th, 98th and 99th), which are relevant for risk measuring, the differences for 

the cited percentiles do not exceed 11 basis points. This preliminary analysis may suggest that the 

choice of the threshold in the framework of the POT method is not relevant in quantifying risk.  

[Insert Table 4] 

3.3 Sensitivity of the risk measures to changes in the threshold  

From the analysis presented in the previous section, we can conclude that it is in accordance 

with the literature; we observe that the estimates of the parameters that describe the generalized 

Pareto distribution depend significantly on the threshold selected for the estimation. Thus, the results 
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presented in the previous section justify the numerous efforts made in the literature to develop 

techniques to detect the optimal threshold. However, in this section, we want to go a step further by 

assessing the extent to which the selection of the threshold affects the quantification of financial risk. 

With this objective, a set of 22 thresholds has been selected. The parametric estimates corresponding 

to these thresholds were presented in the previous section.  

To quantify the risk, we use VaR and ES measures, which were presented in section 2.3. The 

expression for these measures is given by:  

 𝑉𝑎𝑅𝑡(𝛼) = 𝐹−1(𝛼) = 𝜇𝑡 + 𝜎𝑡𝐺−1(𝛼)      𝐸𝑆𝑡(𝛼) = 𝜇𝑡 + 𝜎𝑡𝐸[�𝑧| 𝑧 < 𝐺−1(𝛼)]        (27) 

where 𝜎𝑡 represents the conditional standard deviation of the return, 𝐺−1 (α) is the percentile 𝛼 of the 

GPD, and 𝜇𝑡 is the conditional mean return that is assumed constant (𝜇𝑡 = 𝜇). For the estimation of 

the conditional standard deviation of the yields, we use an APARCH model (eq. (15)). 

For calculating the VaR and ES measures, the sample period is divided into a learning 

sample from January 3, 2000 to December 31, 2010 and a forecast sample from January 3, 2011 to 

the end of December 2015. For each day of the forecast period, we will generate estimations of the 

value at risk measure and the expected shortfall measure. These forecasting measures are obtained 

one day ahead at the 95% and 99% confidence levels.  

In Table 5, we present the descriptive statistics of the differences between the VaR estimates 

from the optimal threshold (90th percentile) and VaR estimates we obtain from the remainder of the 

thresholds selected.  

For a large set of thresholds, from a return corresponding to the 80th percentile to a return 

corresponding to 96th percentile, the mean of the differences does not exceed the 3 basis points with 

a standard deviation between 1 and 2 basis points. For  the thresholds correspond to the 60th, 70th, 

97th and 99th percentiles the mean of the differences in the VaR estimate at 95% confidence level, 

increases moving between 6 and 11 basis points. The standard deviation of these differences also 

increases, moving between 4 and 14 basis points. For these percentiles, the minimum difference 

becomes 28 basis points (60th percentile), while the maximum difference becomes 76 basis points 

(99th percentile). For VaR estimates at the 99% confidence level, we find similar results.  

In Table 6, we present certain descriptive statistics of the differences between the ES 

estimates obtained from the optimal threshold (90th percentile) and the ES estimates we obtain from 

the rest of the thresholds selected. The results are very similar to those obtained for the VaR 

measure. For a large set of thresholds (from the 82nd percentile to the 96th percentile), the mean and 

standard deviation of the differences are very reduced, not exceeding 2 basis points. Only in the case 

of the threshold corresponding to the 60th, 70th and 99th percentiles, the differences are more 

striking.  

As a resume, we find that for a large set of thresholds (the return corresponding to the 80th 

percentile to the 96th percentile) the quantification of risk that we obtain from VaR measures is 

similar. This result is keeping on for the ES measure. Thus, we can conclude that in the range noted, 
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the choice of threshold in the framework of the POT method may not be relevant in quantifying 

market risk.  

3.4 Analysing the quality of the risk estimates 

In this section, we are interested in analysing the accuracy of the risk measures (VaR and 

ES) obtained from the conditional extreme value theory. In addition, we will analyse if the quality of 

these measures depends on the threshold selected for applying EVT. Therefore, we will use the 

backtesting techniques presented in section 2.4. 

To evaluate the accuracy of the VaR estimates, we have used five standard tests: 

unconditional (LRuc), backtesting criterion (BTC), independent (LRind), conditional coverage 

(LRcc) and dynamic quantile (DQ) tests. The results of these tests are presented in Table 7. In this 

table, we also present the number and the percentage of exception.  

The first thing that pay our attention when viewing Table 7 is that for a large set of 

thresholds (from the 82th percentile to the 93th percentile), the number of exceptions is exactly equal 

to the expected one6

To test statistically whether the number of exceptions is equal to the theoretical one, we use 

the aforementioned test. We cannot reject the null hypothesis “that the VaR estimates are accurate” 

for any of the thresholds selected. Only for the threshold corresponding to the 99th percentile, the 

backtesting criterium test (BTC) rejects this hypothesis at the 95% confidence level.  

. In the cases in which the number of the exception differs from the theoretical 

one, the differences are very reduced. Thus, at the 95% confidence level, the percentage of 

exceptions ranges from 4.45% to 6.04%, corresponding to the 60th percentile and the 99th 

percentile. At the 99% confidence level, the percentage of exceptions ranges from 0.95% to 1.19%, 

also very similar to the expected one (1%).  

To test whether the ES estimations are correct, we use the procedure proposed by McNeil 

and Frey (2000) and the Righi and Ceretta (2015) test. The results of these tests are displayed in 

Table 8. In no case do we find evidence against the null hypothesis that the average of the 

discrepancy measure is equal to zero.  

The results presented in this section indicate that the choice of threshold in the framework of 

the POT method may not be relevant in quantifying market risk when we use the VaR and ES 

measures for this task.  

4. Robustness Analysis   

In the above section, we show that the choice of threshold in the framework of the POT 

method may not be relevant in quantifying market risk. To corroborate the validity of this result, we 

carry out two robustness exercises. It appears reasonable to think that in a small sample, the 

                                                           
6 For the forecasting period considered in this study, which has 1258 observations, the expected 

number of exceptions is 62 at a 95% confidence level and 13 at a 99% confidence level.  
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quantification of risk may be more sensitive to the selected threshold. Therefore, initially, we analyse 

the validity of this result in a smaller sample (section 4.1). Then, we extend the S&P 500 index study 

to a set of 14 assets: 7 stock market indexes (CAC40, DAX30, FTSE100, HangSeng, IBEX35, 

Merval and Nikkey), four commodities (Copper, Gold, Crude Oil Brent and Silver) and three rates of 

exchange (₤ /€, $/€ and ¥/€) (section 4.2). 

4.1 Sample size robustness 

In this section, we repeat the study of the S&P 500 in a smaller sample. The sample used in 

this section runs from January 2010 to the end of December 2015. The full period is split into a 

learning sample (2010 to 2013) and a forecast period (2014 to 2015). In this case, we work with 

1058 observations and generate 504 VaR and ES forecasting measures. In section 3, we worked with 

4025 observations and generated 1258 VaR and ES forecasting measures. 

We choose this sample size because, in market risk, there are usually no problems in 

obtaining the asset price data, such that to work with a very small sample is not usual. However, in 

other areas of risk management, such as in operational risk where one of the problems is the small 

sample size, it may be interesting to extend this study to much smaller samples. 

Overall, the results obtained in this section are very similar to those presented in section 3. 

First, related to the parameter estimates, we find that the shape parameter increases as the threshold 

increases, while the scale parameter decreases as the threshold increases. As expected, independently 

of the threshold selected, the accuracy of the estimate is now lower and decreases as the threshold 

increases. Second, we analyse the sensitivity of the 𝛼 quantile generalized Pareto distribution to 

changes in the threshold (for 𝛼 equal to 80%, 85%, 90%, 95%, 96%, 97% 98% and 99%). Focusing 

on the higher quantiles (95th, 96th, 97th, 98th and 99th), which are relevant for risk measuring, we 

find that for a large set of thresholds, from the return corresponding to the 60th percentile to the 

return corresponding to the 97th percentile, the differences in the quantiles do not exceed 6 basis 

points7

                                                           
7 We do not include the tables with the results to save space, but they can be obtained from the authors upon 
request.  

. Again, this preliminary analysis suggests that the selection of the threshold may not be 

relevant in quantifying market risk. Lastly, we quantify risk through VaR and ES measures and 

evaluate the quality of these forecasting measures. In Tables 9 and 10, we present the results of the 

backtesting for the ES and VaR measures. For all the thresholds considered and for the 95% 

confidence level, the number of exceptions is very similar to the theoretical one, which is 25 (see 

Table 10). In the cases where we find certain differences, those are very reduced. In addition, for 

confidence levels of 95% and 99%, the accuracy test indicates that the VaR measures are all 

accurate, independent of the threshold selected. The results obtained for the ES measure are also 

robust to the threshold chosen. According to the Righi and Ceretta (2015) test, all ES measures are 

correct, independent of the confidence level and the threshold chosen. However, when we use 

McNeil and Frey’s (2000) test, the results depend on the confidence level. The measures obtained at 
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the 99% confidence level are all correct, as there are no cases in which the null hypothesis that the 

average of the discrepancy measure is equal to zero is rejected. However, at the 95% confidence 

level, this hypothesis is rejected in all cases8

Thus, the results presented in this section corroborate those obtained in section 3, indicating 

that in the case of small samples, the choice of the threshold in the framework of the POT method 

may not be relevant in quantifying market risk. 

. Regardless of whether the estimates are good or bad, 

the important thing is that the results are robust to the selected threshold.  

4.2 Asset robustness 
In this section, we extend the S&P 500 index study to a set of 14 assets. The sample period 

considered for these assets ranges from January 2000 through December 2015. The full data period 

is divided into a learning sample (January 3, 2000 to December 31, 2010) and a forecast sample 

(January 3, 2011 to December 31, 2015).  

In accordance with the performed study for the S&P 500, for each of these assets, we select a 

set of 22 thresholds and apply the conditional extreme value theory for forecasting, 1 day ahead, the 

value of the risk measure and the expected shortfall measure. Both measures have been calculated at 

the 95% and 99% confidence levels.  

For evaluating the accuracy of the VaR estimates, we use the standard tests that we presented 

in section 2.4: LRuc, BTC, LRind, LRcc and DQ. For each asset, Table 11 displays the number of 

times that each of these tests is rejected for the 22 thresholds selected. In a footnote, we indicate the 

set of thresholds for which the null hypothesis is rejected. For instance, for CAC40, the backtesting 

criterium (BTC) test is rejected once for the threshold corresponding to the 99th percentile. The 

results obtained for VaR are as follows. According to LRuc tests, in 10 of the 14 considered assets, 

we do not find evidence against the null hypothesis that the “VaR(5%) estimate is accurate”. This 

result is independent of the selected threshold, although for certain indexes, this hypothesis is 

rejected for certain tests for the threshold corresponding to the 99th percentile. Conversely, in certain 

cases, the accuracy tests provide evidence against the null hypothesis; however, in these cases, the 

rejection does not depend on the threshold selected. For instance, for the NIKKEY index, the DQ test 

rejects the null hypothesis in 21 occasions. In another example, the backtesting criterium test is 

rejected 21 times for gold and 18 times for current exchange £/€. Again, we find that the results 

obtained with respect to the accuracy of the VaR estimates do not depend on the threshold selected. 

Only in two punctual cases, for the silver and the current exchange $/€, the BCT test provides 

different results as a function of the selected threshold. For the silver, the BCT test is rejected in 12 

cases, which correspond to the range percentiles [85th, 95th] plus the 99th percentile. For the current 

exchange $/€, the BCT test is rejected in 7 cases, which correspond to the range percentiles [88th, 

                                                           
8 In contrast to McNeil and Frey (2000) using the central limit theorem to test if the mean of the discrepancy 
measures is zero, the results obtained with this test are less reliable than those obtained by the Righi and 
Ceretta (2015) test.  
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93th] and the 98th percentile. The results found for VaR at the 99% confidence level are very similar 

to those for VaR at the 95% confidence level. These results suggest that the quantification of the risk 

through the VaR measure does not depend on the threshold selected for this objective.  

To test whether the ES estimations are correct, we use the procedure proposed by McNeil 

and Frey (2000) and the Righi and Ceretta (2015) test. Table 12 displays for each asset the number of 

the times that each of these tests is rejected for the 22 thresholds selected. Overall, we do not find 

evidence against the null hypothesis that the average of the discrepancy measure is equal to zero 

from any of these tests. Only for DAX, gold and the rate exchange ¥/€, Student’s t test rejects the 

null hypothesis for a threshold corresponding to the 99th percentile.  

The results presented in this section corroborate those obtained in the previous section, 

indicating that the quantification of market risk through the VaR and ES measures does not depend 

on the threshold selected for applying the POT method.  

5. Conclusions 
 The conditional extreme value theory has been proven to be one of the most successful in 

estimating market risk. The implementation of this method in the framework of the POT model 

requires choosing a threshold return for fitting the generalized Pareto distribution. Threshold choice 

involves balancing bias and variance. To determine the optimal threshold, several techniques have 

been proposed such as graphic methods, ad hoc methods or methods based on goodness-of-fit 

contrasts. However, none of these techniques have been proven to provide better results than others.  

Although many proposals have been made to determine the optimal threshold in the 

framework of the POT method, in this paper, we ask whether, in the financial field and specifically 

in measuring market risk, it is important to choose the threshold. In other words, in this study, we 

assess to what extent the selection of the threshold is decisive in quantifying the market risk. To 

measure market risk, we have used the value at risk (VaR) and expected shortfall (ES) measures. The 

study has been done for the S&P 500 index.  

To answer the aforementioned question, how the selection of the threshold affects the 

estimates of the parameters of the generalized Pareto distribution and the percentiles of that 

distribution have been previously studied. The results obtained are as follows. First, we find that in 

accordance with the literature, the parameter estimations are very sensible to the selected threshold 

for estimating GPD. However, the quantiles of the GPD do not change much when the threshold 

changes, particularly for high quantiles (95th, 96th, 97th, 98th and 99th), which are relevant in risk 

estimation. Third, for a large set of thresholds (from the 80th percentile to the 96th percentile), the 

VaR estimations are practically equivalent. A similar finding occurs for the expected shortfall 

measure. This last result shows that in the framework of the POT method, the choice of the threshold 

is not relevant in the estimation of risk. When we analyse the validity of the risk measures (VaR and 

ES), the results are highlighted more. With the exception of certain thresholds, such as the return 
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corresponding to the 99th percentile, all the thresholds considered provide correct estimations of 

VaR and ES. This result is robust to the sample size, at least for a sample size that is not inferior to 

1000 data points. Consequently, we can conclude that in market risk estimation, where there is 

usually no problem in obtaining historical data, the researchers and practitioners should not focus 

excessively on the threshold choice, as a wide range produces the same risk estimates.  

To corroborate these results, we have extended the S&P 500 index study to a set of 14 assets 

(stock market indexes, commodities and rate exchange). The results obtained for these assets 

corroborate the results obtained for S&P 500, indicating that the quantification of market risk 

through the VaR and ES measures does not depend on the threshold selected to apply the POT 

method.  
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Figure 1. Shape of the generalized Pareto distribution and the corresponding density function for ξ=1. 

  

 

 

 

 
 

Note: The dot lines represent the confident interval at 95% confidence level 
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Table 1. Descriptive Statistics 

 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Jarque 
Bera 

S&P 500 0.0084 0.0535 10.957 -9.469 1.267 -0.1859* 
(0.039) 

11.01* 
(0.077) 

10781 
(0.001) 

Note: This Table presents the descriptive statistics of the daily returns of S&P 500. The sample period is from January 3rd, 2000 to 
December 31th, 2015. The index return is calculated as Rt=100(ln(It)-ln(It-1)) where It is the index level for period t. Standard errors 
of the skewness and excess  kurtosis are calculated as n/6  and n24  respectively. The JB statistic is distributed as the Chi-
square with two degrees of freedom. (*) denotes significance at the 5% level. 
 
 

Table 2. Thresholds selected 
Percentiles 60% 70% 80% 81% 82% 83% 84% 85% 86% 87% 88% 

Returns 0.11 0.31 0.60 0.63 0.67 0.70 0.76 0.80 0.84 0.89 0.95 
Percentiles 89% 90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 

Returns 1.02 1.10 1.16 1.24 1.32 1.44 1.57 1.72 1.95 2.26 2.78 
Note: The returns are standardized  (%) 

 

Table 3. Maximum likelihood estimations 
Percentiles 60% 70% 80% 81% 82% 83% 84% 85% 86% 87% 88% 

𝒌 
-0.104 -0.101 -0.079 -0.067 -0.063 -0.064 -0.056 -0.037 -0.026 -0.028 -0.036 
(0.015) (0.017) (0.023) (0.026) (0.027) (0.027) (0.029) (0.034) (0.037) (0.037) (0.037) 

𝝃 
0.869 0.826 0.752 0.724 0.712 0.712 0.695 0.660 0.641 0.643 0.654 

(0.025) (0.027) (0.032) (0.032) (0.033) (0.033) (0.034) (0.035) (0.036) (0.037) (0.038) 
Percentiles 89% 90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 

𝒌 
-0.030 -0.025 -0.014 -0.029 -0.019 0.002 -0.006 0.022 0.035 0.048 0.026 
(0.039) (0.042) (0.046) (0.045) (0.049) (0.057) (0.058) (0.071) (0.083) (0.105) (0.129) 

𝝃 
0.064 0.635 0.616 0.636 0.618 0.588 0.599 0.561 0.553 0.557 0.614 

(0.040) (0.041) (0.043) (0.045) (0.048) (0.050) (0.055) (0.059) (0.068) (0.085) (0.125) 
Note: 𝑘: Shape parameter; 𝜉: scale parameter. The standard deviation is given in parenthesis.   
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Table 4. Differences in quantiles 

    
Quantiles 

    Threshold 80% 85% 90% 95% 96% 97% 98% 99% 
60% -11(*) -6 -1 6 7 9 10 11 
70% -10 -6 -1 5 6 7 9 9 
80% -8 -5 -2 3 4 5 6 6 
81% -6 -4 -2 2 3 3 4 4 
82% -6 -4 -2 1 2 3 4 4 
83% -6 -4 -2 2 2 3 4 4 
84% -5 -3 -1 1 2 2 3 3 
85% -2 -1 -1 0 1 1 1 1 
86% 0 0 0 0 0 0 0 0 
87% -1 0 0 0 0 0 0 0 
88% -2 -1 -1 0 0 1 1 1 
89% -1 -1 0 0 0 0 0 0 
90% 0 0 0 0 0 0 0 0 
91% 2 2 1 0 0 0 -1 -1 
92% -1 -1 0 0 0 0 0 0 
93% 2 2 1 0 0 0 0 -1 
94% 8 6 4 1 1 0 -1 -2 
95% 5 4 3 1 0 0 -1 -2 
96% 15 12 9 4 2 1 -1 -3 
97% 19 15 11 4 2 0 -2 -4 
98% 20 16 11 3 2 -1 -3 -6 
99% 1 -1 -4 -7 -8 -8 -9 -8 

(*) For the case of the S&P500, the difference in the percentile 80th of the generalized Pareto distribution obtained for a threshold 
corresponding to the 60th percentile and the optimal threshold is equal to 11 basis points. The optimal threshold corresponds to the 
90th percentile. We shaded in light gray the differences that oscillate between 3 and 4 basis points. Differences greater than 4 basis 
points are shaded in dark gray. 

Table 5. Differences between VaR estimates. Descriptive statistics.  

Threshold (u) 
95%  confidence level 99% confidence level 

Mean S.D. Max Min Mean S.D. Max Min 
60% -7 4 -3 -28 -7 4 -1 -28 
70% -6 3 -2 -26 -5 3 -1 -23 
80% -3 1 -1 -8 -1 1 0 -4 
81% -2 1 -1 -8 -1 0 0 -3 
82% -2 1 -1 -5 0 0 0 -2 
83% -1 1 -1 -4 0 0 1 -2 
84% -1 1 0 -4 0 0 1 -1 
85% -1 1 0 -3 0 0 1 0 
86% 0 0 0 -2 0 0 1 0 
87% 0 0 1 0 0 0 0 -1 
88% 0 0 0 0 0 0 0 -1 
89% 0 0 0 0 0 0 0 0 
90% 0 0 0 0 0 0 0 0 
91% 0 0 1 0 0 0 1 -2 
92% 0 0 1 0 0 0 0 -1 
93% 0 0 2 -1 0 1 1 -3 
94% -2 1 -1 -7 2 1 6 1 
95% -2 2 0 -15 2 1 9 0 
96% -3 2 0 -10 2 1 7 1 
97% -8 5 -3 -36 4 2 12 2 
98% -8 3 -2 -18 4 1 10 2 
99% 11 14 76 -5 3 1 9 1 

In this Table we present some descriptive statistics of the differences between the VaR estimations 
obtained under the threshold 𝑢𝑗  (𝑗 = 1,2, … ,22) and the VaR estimates obtained under the optimal 
threshold. The optimal threshold is given by the 90th percentile. We shaded in light gray the 
differences that oscillate between 3 and 4 basis points. Differences greater than 4 basis points are 
shaded in dark gray. 
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Table 6. Differences between ES estimates. Descriptive statistics.  
 

 Threshold (u) 
95%  confidence level 99% confidence level 

Mean s.d. Max Min Mean s.d. Max Min 
60% -10 5 0 -39 -7 4 -1 -28 
70% -8 4 0 -35 -5 3 -1 -23 
80% -4 2 0 -11 -1 1 0 -4 
81% -3 2 0 -11 -1 0 0 -3 
82% -2 1 0 -7 0 0 0 -2 
83% -2 1 0 -6 0 0 1 -2 
84% -1 1 0 -5 0 0 1 -1 
85% -1 1 0 -4 0 0 1 0 
86% 0 0 1 -2 0 0 1 0 
87% 0 0 2 0 0 0 0 -1 
88% 0 0 1 -1 0 0 0 -1 
89% 0 0 1 -1 0 0 0 0 
90% 0 0 0 0 0 0 0 0 
91% 0 0 1 -2 0 0 1 -2 
92% 0 0 0 -1 0 0 0 -1 
93% 0 0 1 -2 0 1 1 -3 
94% 1 0 2 0 2 1 6 1 
95% 0 0 2 0 2 1 9 0 
96% 0 0 3 0 2 1 7 1 
97% -1 1 1 -5 4 2 12 2 
98% 0 1 6 -3 4 1 10 2 
99% 9 9 48 0 3 1 9 1 

In this Table we present some descriptive statistics of the differences between the ES estimations 
obtained under the threshold 𝑢𝑗  (𝑗 = 1,2, … , 22) and the ES estimates obtained under the optimal 
threshold. The optimal threshold is given by the 90th percentile. We shaded in light gray the 
differences that oscillate between 3 and 4 basis points. Differences greater than 4 basis points are 
shaded in dark gray. 
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Table 7. Backtesting VaR S&P500 (2011-2015) 

 
VaR 95% VaR 99% 

Threshold Nº excep % excep LRuc BTC LRind LRcc DQ Nº excep % excep LRuc BTC LRind LRcc DQ 

60% 56 4.45 0.549 0.814 0.823 0.815 0.185 12 0.95 0.913 0.565 0.751 0.945 0.248 

70% 56 4.45 0.549 0.814 0.823 0.815 0.183 12 0.95 0.913 0.565 0.751 0.945 0.247 

80% 59 4.69 0.737 0.693 0.738 0.894 0.124 12 0.95 0.913 0.565 0.751 0.945 0.247 

81% 61 4.85 0.871 0.597 0.683 0.908 0.147 13 1.03 0.938 0.453 0.731 0.940 0.330 

82% 62 4.93 0.939 0.546 0.656 0.903 0.159 13 1.03 0.938 0.453 0.731 0.940 0.330 

83% 62 4.93 0.939 0.546 0.656 0.903 0.158 13 1.03 0.938 0.453 0.731 0.940 0.329 

84% 62 4.93 0.939 0.546 0.656 0.903 0.159 13 1.03 0.938 0.453 0.731 0.940 0.330 

85% 62 4.93 0.939 0.546 0.656 0.903 0.159 13 1.03 0.938 0.453 0.731 0.940 0.331 

86% 62 4.93 0.939 0.546 0.656 0.903 0.158 13 1.03 0.938 0.453 0.731 0.940 0.330 

87% 62 4.93 0.939 0.546 0.656 0.903 0.159 13 1.03 0.938 0.453 0.731 0.940 0.330 

88% 62 4.93 0.939 0.546 0.656 0.903 0.158 13 1.03 0.938 0.453 0.731 0.940 0.329 

89% 62 4.93 0.939 0.546 0.656 0.903 0.158 13 1.03 0.938 0.453 0.731 0.940 0.329 

90% 62 4.93 0.939 0.546 0.656 0.903 0.158 13 1.03 0.938 0.453 0.731 0.940 0.330 

91% 62 4.93 0.939 0.546 0.656 0.903 0.158 13 1.03 0.938 0.453 0.731 0.940 0.330 

92% 62 4.93 0.939 0.546 0.656 0.903 0.158 13 1.03 0.938 0.453 0.731 0.940 0.329 

93% 62 4.93 0.939 0.546 0.656 0.903 0.158 13 1.03 0.938 0.453 0.731 0.940 0.331 

94% 61 4.85 0.871 0.597 0.683 0.908 0.147 14 1.11 0.795 0.344 0.711 0.903 0.411 

95% 61 4.85 0.871 0.597 0.683 0.908 0.147 14 1.11 0.795 0.344 0.711 0.903 0.410 

96% 60 4.77 0.803 0.646 0.710 0.905 0.133 14 1.11 0.795 0.344 0.711 0.903 0.410 

97% 54 4.29 0.437 0.875 0.882 0.732 0.219 15 1.19 0.661 0.246 0.692 0.840 0.466 

98% 55 4.37 0.492 0.847 0.853 0.776 0.483 15 1.19 0.661 0.246 0.692 0.840 0.466 

99% 76 6.04 0.279 0.045 0.896 0.552 0.208 15 1.19 0.661 0.246 0.692 0.840 0.467 
Note: The table shows p-value for the following statistics: (i) the unconditional coverage test (LRuc); (ii) the back-testing criterion (BTC); (iii) statistics for serial independence 
(LRind); (iv) the Conditional Coverage test (LRcc) and (v) the Dynamic Quantile test (DQ). Shaded cell indicates that the null hypothesis is rejected at 5% level of significance. 
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Table 8. Backtesting ES.  
S&P500 (2011-2015) 

 ES(95%) ES(99%) 

Threshold 
McNeil and Frey  

(2000)  
Righi and Ceretta  

(2015) 
McNeil and Frey  

(2000) 
Righi and Ceretta  

(2015) 
60% 0.60 0.61 0.34 0.67 
70% 0.69 0.57 0.42 0.65 
80% 0.66 0.54 0.55 0.62 
81% 0.62 0.52 0.47 0.62 
82% 0.60 0.52 0.49 0.61 
83% 0.62 0.51 0.50 0.60 
84% 0.64 0.49 0.50 0.59 
85% 0.67 0.49 0.51 0.60 
86% 0.69 0.49 0.51 0.62 
87% 0.72 0.48 0.51 0.63 
88% 0.71 0.48 0.51 0.59 
89% 0.72 0.49 0.51 0.59 
90% 0.71 0.47 0.51 0.60 
91% 0.70 0.47 0.50 0.60 
92% 0.69 0.50 0.50 0.61 
93% 0.70 0.44 0.50 0.62 
94% 0.78 0.42 0.45 0.63 
95% 0.78 0.37 0.46 0.63 
96% 0.81 0.36 0.46 0.61 
97% 0.97 0.32 0.41 0.59 
98% 0.91 0.19 0.41 0.60 
99% 0.39 0.32 0.38 0.52 

Not: The table display the p-value of the tests.  

Table 9. Backtesting ES. 
 S&P500 (2014-2015) 

 ES(95%) ES(99%) 

Threshold 
McNeil and Frey  

(2000)  
Righi and Ceretta  

(2015) 
McNeil and Frey  

(2000) 
Righi and Ceretta  

(2015) 
60% 0.00 0.84 0.13 0.83 
70% 0.01 0.80 0.13 0.83 
80% 0.00 0.77 0.13 0.83 
81% 0.00 0.78 0.13 0.83 
82% 0.00 0.81 0.13 0.84 
83% 0.00 0.82 0.13 0.84 
84% 0.01 0.83 0.13 0.85 
85% 0.01 0.82 0.13 0.85 
86% 0.00 0.83 0.13 0.84 
87% 0.00 0.81 0.12 0.85 
88% 0.01 0.81 0.12 0.84 
89% 0.01 0.82 0.12 0.83 
90% 0.01 0.84 0.12 0.85 
91% 0.01 0.83 0.12 0.84 
92% 0.01 0.82 0.12 0.80 
93% 0.01 0.81 0.12 0.79 
94% 0.01 0.80 0.12 0.82 
95% 0.01 0.82 0.12 0.84 
96% 0.03 0.84 0.12 0.85 
97% 0.02 0.50 0.13 0.83 
98% 0.04 0.37 0.11 0.81 
99% 0.00 0.88 0.12 0.74 

Note: The table display the p-value of the tests. Shaded cell indicates that the null hypothesis is rejected at 5% 
level of significance. 
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Table 10: Backtesting VaR  

S&P500 (2014-2015) 
  VaR 95% VaR 99% 

Threshold Nº excep. %  excep. LRuc        BTC         LRind       LRcc        DQ          Nº excep. %  excep. LRuc        BTC         LRind       LRcc        DQ          

60% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

70% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

80% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

81% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

82% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

83% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

84% 25 4,96 0.98 0.60 0.67 0.91 0.36 2 0.40 0.31 0.84 0.93 0.59 1.00 

85% 25 4,96 0.98 0.60 0.67 0.91 0.36 2 0.40 0.31 0.84 0.93 0.59 1.00 

86% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

87% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

88% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

89% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

90% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

91% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

92% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

93% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

94% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

95% 26 5,16 0.91 0.61 0.73 0.94 0.41 2 0.40 0.31 0.84 0.93 0.59 1.00 

96% 23 4,56 0.76 0.64 0.56 0.81 0.24 2 0.40 0.31 0.84 0.93 0.59 1.00 

97% 24 4,76 0.87 0.61 0.62 0.87 0.30 2 0.40 0.31 0.84 0.93 0.59 1.00 

98% 22 4,37 0.66 0.68 N.C. 0.92 0.61 2 0.40 0.31 0.84 0.93 0.59 1.00 

99% 29 5,75 0.62 0.70 0.51 0.71 0.52 2 0.40 0.31 0.84 0.93 0.59 1.00 
Note: The table shows p-value for the following statistics: (i) the unconditional coverage test (LRuc); (ii) the back-testing criterion (BTC); (iii) statistics for serial independence 
(LRind); (iv) the Conditional Coverage test (LRcc) and (v) the Dynamic Quantile test (DQ).  
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Table 11. Backtesting VaR 

 
95% confidence level 99% confidence level 

 
LRuc        BTC         LRind       LRcc        DQ          LRuc        BTC         LRind       LRcc        DQ          

CAC40 0 1(1) 0 0 1(1) 0 0 0 0 0 
DAX30 1(1) 1(1) 0 1(1) 0 0 0 0 0 0 
FTSE100 0 0 0 0 0 0 0 0 0 13(8) 
HANG SENG 0 1(1) 0 0 0 0 0 0 0 0 
IBEX35 0 0 0 0 0 0 0 0 0 0 
MERVAL 0 0 0 0 0 0 0 0 0 0 
NIKKEY 0 0 0 0 21(2) 0 0 0 0 0 
S&P500 0 1(1) 0 0 0 0 0 0 0 0 
COPPER 0 0 1(1) 0 1(1) 0 0 5(9) 0 22 
GOLD 2 21(3) 1(1) 2(4) 1(1) 0 10(10) 0 0 12(11) 
OIL BRENT 1(1) 0 0 1(1) 0 0 0 0 0 0 
SILVER 0 12(5) 0 0 0 0 2(4) 0 0 20(12) 
$/€ 0 7(6) 0 0 0 0 10(13) 0 0 22 
₤/€ 0 18(7) 0 0 0 0 15(14) 0 0 0 
¥/€ 1(1) 1(1) 0 1(1) 1(1) 0 0 0 0 0 
Note: The table counts the number of rejections for the 22 thresholds (u) considered. Reject for: (1) ) threshold corresponding to 
99th percentile (u=99%); (2) all thresholds except for 99th percentile; (3) all except for 60th percentile; (4) thresholds 
corresponding to 98th and 99th percentiles; (5) thresholds in the percentiles range [85th, 95th] and the 99th percentile; (6)  
thresholds in the percentiles range [88th, 93th]; (7) all thresholds expect 60th, 95th, 97th and 99th; (8) thresholds in the 
percentiles range [60th, 90th]; (9) thresholds corresponding to percentiles 80th, 81th, 82th and 83th; (10) thresholds in the 
percentiles range [88th, 94th] and 96th, 97th and 98th; (11) thresholds in the percentiles range [88th, 99th]; (12) all thresholds 
except for 98 and 99th; (13)  thresholds corresponding to percentiles 89th and  90th and the range [92th, 99th]; (14) threshold 
corresponding to the range percentiles [85th, 99th]. 
 
 
 

Table 12. Backtesting ES 

 95% confidence level 99% confidence level 

 
McNeil and Frey  

(2000) 
Righi and Ceretta  

(2015) 
McNeil and Frey  

(2000) 
Righi and Ceretta  

(2015) 
CAC40 0 0 0 0 
DAX30 1(1) 0 0 0 
FTSE100 0 0 0 0 
HANGSENG 0 0 0 0 
IBEX35 0 0 0 0 
MERVAL 0 0 0 0 
NIKKEY 0 0 0 0 
S&P500 0 0 0 0 
COPPER 0 0 0 0 
GOLD 1(1) 0 0 0 
OIL BRENT 0 0 0 0 
SILVER 0 0 0 0 
$/€ 0 0 0 0 
₤/€ 0 0 0 0 
¥/€ 1(1) 0 0 0 
Note: The table counts the number of rejections for all thresholds (u) considered. (1) Rejected for the 
threshold corresponding to the 99th percentile.  
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