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Abstract. We prove that a tensor norm α (defined on tensor products
of Hilbert spaces) is the Hilbert-Schmidt norm if and only if `2⊗· · ·⊗`2,
endowed with the norm α, has an unconditional basis. This extends a
classical result of Kwapień and Pe lczyński. The symmetric version of
that statement follows, and this extends a recent result of Defant, Dı́az,
Garćıa and Maestre.

1. Introduction

In [16], Kwapień and Pe lczyński proved that if we have a tensor norm
α defined on tensor products of Hilbert spaces such that `2⊗̂α`2 has an
unconditional basis, then α has to be (equivalent to) the Hilbert-Schmidt
norm. Their technique involves the Schmidt decomposition of a compact
bilinear form from Hilbert spaces. The problem is that, up to now, there is
no reasonable analogue of this decomposition for trilinear forms (the only
version is the normal form given in [2], which is too complicated to be useful
here). This is the reason we need new techniques to extend this result to
more than two spaces. Our main result is the following (Theorem 2.5)

Theorem. If α is a tensor norm (defined on tensor products of Hilbert
spaces) such that ⊗̂n

α,j=1`2 has an unconditional basis, then α is equivalent
to the Hilbert-Schmidt norm σ2.

The study of Hilbert-Schmidt operators (or bilinear forms) goes back to
the work of Hilbert and Schmidt about integral equations at the beginning
of the twentieth century. Since then, they have been constantly applied
both in pure and applied mathematics. The generalization of this class
to the multilinear setting goes back to Dwyer III [12] and was recovered
independently by Pietsch [23] and Janson, Peetre and Rochberg [15], where
it is shown how this class can be applied to the study of Hankel forms.
Motivated by this application Cobos, Kühn and Peetre continued the study
in a series of papers [2], [3], [4], [5], where they give a first solution to
the study of the Schmidt decomposition of a multilinear form (the normal
form). Very recently, Matos [17] gave a new step, relating the Hilbert-
Schmidt multilinear operators to the class of multiple summing operators.
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This work was finished in [19] where it is proved that these two classes are
exactly the same, giving a multilinear extension of the main theorem of [18].

In the context of the theory of polynomials in Banach spaces, the problem
of finding unconditional bases in symmetric tensor products has attracted
recently a lot of attention (see for instance [7] or [10] and the references
therein). The symmetric case of Kwapień and Pe lczyński’s result appeared
in [6], only for the case of two spaces. In Theorem 2.6 we extend it to the
general case.

Here we will take advantage of the results in [19]. Particularly, the key
result in our proof of the above Theorem will be the following result, proved
in [19] (see below for the definitions):

Theorem 1.1. Let T : `2 × · · · × `2 −→ K be a multilinear form. If T is
multiple 1-summing, then T is Hilbert-Schmidt and

‖T‖S2 ≤ 2
n
2 π1(T ).

The theory of multiple summing multilinear operators has been recently
developed by Bombal and both authors in [1], [19], [20], [21], [22], and
by Matos in [17], where it is shown how this class properly generalizes the
linear behavior of p-summing operators. This paper represents then another
application of this theory to the study of the structure of tensor products
(other applications can be found in the above references).

We remind the reader that, for a finite sequence (xi)m
i=1 ⊂ X and 1 ≤ p <

∞, we will write ‖(xi)m
i=1‖ω

p to denote

sup


(

m∑
i=1

|x∗(xi)|p
) 1

p

: x∗ ∈ BX∗

 .

Definition 1.2. Let 1 ≤ p < +∞. A multilinear operator T : X1 × · · · ×
Xn −→ Y is multiple p-summing if there exists a constant K > 0 such that,
for every choice of sequences (xj

ij
)mj

ij=1 ⊂ Xj , the following relation holds

(1)

m1,...,mn∑
i1,...,in=1

‖T (x1
i1 , . . . , x

n
in)‖p

 1
p

≤ K
n∏

j=1

‖(xj
ij

)mj

ij=1‖
ω
p .

In that case, we define the multiple p-summing norm of T by πp(T ) =
min{K : K verifies (1)}

We will use the following straightforward characterization of multiple 1-
summing operators

Lemma 1.3. A multilinear operator T : X1 × · · · × Xn −→ Y is multiple
1-summing if and only if there exists a constant K such that for every 1 ≤
j ≤ n, for every mj ∈ N and for every uj : `

mj
∞ −→ Xj with ‖uj‖ ≤ 1, we

have that
m1,...,mn∑
i1,...,im=1

|T (u1(ei1), . . . , un(ein))| ≤ K
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where (eij )mj

ij=1 is the canonical basis in `
mj
∞ . In that case we have that π1(T )

is just the infimum of such constants K.

The notation will be the standard in the context and [9], [11] will be our
basic references for unexplained notation.

All along this paper all the operators are supposed to be continuous.
Given X, Y Banach spaces, L(X, Y ) will denote the Banach space of linear
(and continuous) operators. BX will be the closed unit ball of the Banach
space X and K will denote the scalar field, either R or C. If λ ∈ Kk, we
write dλ : Kk −→ Kk for the diagonal operator dλ(x) = (λixi)k

i=1.
Let X be a Banach space and let I be either N or {1, . . . ,m}. A sequence

(xi)i∈I of non-zero vectors is an unconditional basic sequence in X if there
is a constant K such that∥∥∥∥∥∑

i∈I

εiµixi

∥∥∥∥∥ ≤ K

∥∥∥∥∥∑
i∈I

µixi

∥∥∥∥∥
for every εi, µi ∈ K with |εi| ≤ 1. The best of such constants K is called the
unconditional constant of (xi)i∈I . If a Banach space X has an unconditional
basis, we define ub(X) as the infimum of the unconditional constants of all
the unconditional basis of X.

In this paper, we will deal with tensor norms of order n defined on tensor
products of Hilbert spaces. We will call them simply tensor norms; that
is, for us, a tensor norm α will be a method of ascribing to each choice
H1,H2, . . . ,Hn of n Hilbert spaces, a norm (that we will also call α) in the
tensor product H1 ⊗ · · · ⊗Hn such that

i) ε ≤ α ≤ π, where ε and π are, respectively, the injective and projec-
tive norms.

ii) For every uj ∈ L(Hj ,Kj) (1 ≤ j ≤ n), where Hj ,Kj are Hilbert
spaces for 1 ≤ j ≤ n, we have that u1⊗ · · · ⊗ un is α−α continuous
with norm less or equal than

∏n
j=1 ‖uj‖.

We will write ⊗n
α,j=1Hj for the tensor product endowed with the norm α,

and ⊗̂n
α,j=1Hj for its completion.

We do not know of any general reference for tensor norms of order n,
though one can find the definition and some properties in [14]. However,
everything we are going to use is a straightforward generalization of the case
n = 2, for which we refer to [9] (specially to [9, Chapter 26], where the case
of tensor norms defined on Hilbert spaces is treated). If α is a tensor norm,
α′ will be its dual tensor norm.

We will need the following result that appeared in [7, Remark 1] (see [24]
and [25] for the case of two spaces). We write it in the case we are going to
use.

Theorem 1.4. If α is a tensor norm, we have that ⊗̂n
α,j=1`2 has an un-

conditional basis if and only if f1
i1
⊗ · · · ⊗ fn

in
is an unconditional basis in

⊗̂n
α,j=1`2 for any choice of orthonormal basis (f j

ij
)∞ij=1 ⊂ `2. In fact, in that
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case, the unconditional constant of f1
i1
⊗ · · · ⊗ fn

in
is bounded by

2n+1 ub(⊗̂n
α,j=1`2).

Finally, we recall the definition of the Hilbert-Schmidt norm σ2.

Definition 1.5. A multilinear form T : H1 × · · · × Hn −→ K defined on
Hilbert spaces is Hilbert-Schmidt if

(2)

 ∑
i1∈I1,...,in∈In

∣∣T (e1
i1 , . . . , e

n
in)
∣∣2 1

2

< ∞,

where (ej
ij

)ij∈Ij ⊂ Hj is an orthonormal basis (1 ≤ j ≤ n). It is easy to see
that the expression (2) does not depend on the choice of the orthonormal
basis [17, Proposición 5.1]. In that case, (2) is the Hilbert-Schmidt norm
of T and we will denote it by ‖T‖S2 . The class of Hilbert-Schmidt forms is
denoted by S2(H1, . . . ,Hn).

Now (see [17]) one can see the Hilbert-Schmidt norm σ2 as the tensor
norm that verifies (

⊗̂n
σ2,j=1Hj

)∗ = S2(H1, . . . ,Hn).

2. The Result

We need first some lemmas.

Lemma 2.1. If k ≤ m, each u in the unit ball of L(`k
2, `

m
2 ) can be written

as a convex combination of isometries. As a consequence, if k ∈ N, each u
in the unit ball of L(`k

2, `2) can also be written as a convex combination of
isometries.

Proof. By Krein-Milman’s Theorem, it is enough to show that every extreme
point of the unit ball of L(`k

2, `
m
2 ) is an isometry.

Let u : `k
2 −→ `m

2 be with ‖u‖ = 1. We consider its Schmidt decomposition
[11, Theorem 4.1]

u(·) =
k∑

i=1

λi(·|ei)fi,

where (ei)k
i=1 ⊂ `k

2, (fi)k
i=1 ⊂ `m

2 are orthonormal sequences and

‖u‖ = λ1 ≥ · · · ≥ λk.

If u is not an isometry we have that λk < 1 and then u can be written as
a convex combination of

k−1∑
i=1

λi(·|ei)fi + (·|ek)fk and
k−1∑
i=1

λi(·|ei)fi − (·|ek)fk,

which are also in the unit ball of L(`k
2, `

m
2 ). �
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Lemma 2.2. If u : `k
∞ −→ `2 verifies ‖u‖ ≤ 1, then we can find an ele-

ment λ ∈ B`k
2
, and a convex combination of isometries vr : `k

2 −→ `2, say∑R
r=1 µrvr, such that

u = π2(u)
R∑

r=1

µr(vr ◦ dλ),

where π2(u) is the 2-summing norm of u.

Proof. By Pietsch’ Factorization Theorem, there exists a regular probability
measure ν on {1, . . . , k} and an operator v : L2(ν) −→ `2, with ‖v‖ = π2(u),
such that the following diagram commute

`k
∞ `2

L2(ν)
?

id

-u

�
�

���
v

Now, the operator w : L2(ν) −→ `k
2 given by w(x) =

(
xi

√
ν(i)

)k

i=1
is an

isometry and so we can extend v to `k
2 with the same norm (we still denote

the extension by v). Then, if we call λ =
(√

ν(i)
)k

i=1
∈ B`k

2
, we obtain the

following diagram

`k
∞ `2

`k
2

?
dλ

-u

�
�

���
v

Finally, if we apply Lemma 2.1, we obtain that v
π2(u) can be written as a

convex combination of isometries v
π2(u) =

∑R
r=1 µrvr and we are done. �

Lemma 2.3. If T : `2 ×
n· · · × `2 −→ K is a multilinear form, we have that

(3) π1(T ) ≤ Kn
G sup


m1,...,mn∑
i1,...,in=1

∣∣λ1
i1 · · ·λ

n
inT

(
f1

i1 , . . . , f
n
in

)∣∣
where KG is Grothendieck’s constant and the supremum is taken among all
the orthonormal sequences (f j

ij
)mj

ij=1 of `2 and all the elements λj ∈ B
`
mj
2

.

Proof. Following Lemma 1.3 we consider an arbitrary ε > 0 and operators
uj : `

mj
∞ −→ `2 with ‖u‖ ≤ 1 such that

π1(T )− ε ≤
m1,...,mn∑
i1,...,in=1

|T (u1(ei1), . . . , un(ein))|
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where
(
eij

)
denotes the canonical basis of `

mj
∞ . Now we use Lemma 2.2 to

obtain, for each 1 ≤ j ≤ n, an element λj ∈ B
`
mj
2

and a convex combination

of isometries
∑Rj

rj=1 µj
rjv

j
rj such that

uj = π2(uj)
Rj∑

rj=1

µj
rj

(vj
rj
◦ dλj ).

By Grothendieck’s Theorem, π2(uj) ≤ KG for every j and therefore,

π1(T )− ε ≤
R1,...,Rn∑

r1,...,rn=1

µ1
r1
· · ·µn

rn
Kn

G

m1,...,mn∑
i1,...,in=1

∣∣λ1
i1 · · ·λ

n
in

T
(
v1

r1
(ei1), . . . , vn

rn
(ein)

)∣∣ .
Now, for each 1 ≤ j ≤ n and each rj , we have that

(
vj
rj (ej

ij
)
)mj

ij=1
is an

orthonormal sequence in `2. Then

Kn
G

m1,...,mn∑
i1,...,in=1

∣∣λ1
i1 · · ·λ

n
inT

(
v1
r1

(ei1), . . . , vn
rn

(ein)
)∣∣

is bounded by the right hand side of (3) and we are done. �

Lemma 2.4. If α is a tensor norm such that ⊗̂n
α,j=1`2 has an unconditional

basis, then we have that

α ≤ K ub
(
⊗̂n

α,j=1`2

)
σ2

in ⊗n
i=1`2, where K = 2

3
2
n+1Kn

G.

Proof. By Theorem 1.4, for any orthonormal sequence (f j
ij

)mj

ij=1 in `2 (1 ≤
j ≤ n), the unconditional constant of

(
f1

i1
⊗ · · · ⊗ fn

in

)m1,...,mn

i1,...,in=1
in ⊗̂n

α,j=1`2

is bounded by
2n+1 ub

(
⊗̂n

α,j=1`2

)
.

Therefore, if T : `2×· · ·×`2 −→ K belongs to the unit ball of
(
⊗̂n

α,j=1`2

)∗,
we have that

m1,...,mn∑
i1,...,in=1

∣∣λ1
i1 · · ·λ

n
inT

(
f1

i1 , . . . , f
n
in

)∣∣ ≤ 2n+1 ub
(
⊗̂n

α,j=1`2

) n∏
j=1

∥∥∥∥∥∥
mj∑

ij=1

λj
ij

f j
ij

∥∥∥∥∥∥
for every choice of scalars λj

ij
. Therefore, Lemma 2.3 tells us that T is

multiple 1-summing with

π1(T ) ≤ 2n+1Kn
G ub

(
⊗̂n

α,j=1`2

)
.

Theorem 1.1 gives us then that T is Hilbert-Schmidt with

‖T‖S2 ≤ 2
n
2 2n+1Kn

G ub
(
⊗̂n

α,j=1`2

)
and we are done.

�
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We can prove now our main result. We restate it as follows

Theorem 2.5. There exists positive constants K, K ′ > 0 that depends only
on n such that, if α is a tensor norm such that ⊗̂n

α,j=1`2 has an unconditional
basis, then

(4)
1

K ub
(
⊗̂n

α,j=1`2

)σ2 ≤ α ≤ K ′ ub
(
⊗̂n

α,j=1`2

)
σ2.

Proof. The existence of K ′ is given by Lemma 2.4. To obtain the other
inequality, we consider the dual tensor norm α′. By Theorem 1.4, we
have that the canonical tensor basis (ei1 ⊗ · · · ⊗ ein)∞i1,...,in=1 is unconditional
in ⊗̂n

α,j=1`2, with unconditional constant bounded by 2n+1 ub
(
⊗̂n

α,j=1`2

)
.

Therefore, for each N ∈ N, as(
⊗n

α′,j=1`
N
2

)
=
(
⊗n

α,j=1`
N
2

)∗
,

the unconditional constant of (ei1 ⊗ · · · ⊗ ein)N
i1,...,in=1 in ⊗n

α′,j=1`
N
2 is uni-

formly bounded by
2n+1 ub

(
⊗̂n

α,j=1`2

)
and, therefore, (ei1 ⊗ · · · ⊗ ein)∞i1,...,in=1 is an unconditional basis also in
⊗n

α′,j=1`2, with constant bounded by 2n+1 ub
(
⊗̂n

α,j=1`2

)
.

We can use now Lemma 2.4 to obtain that

α′ ≤ K ′ ub
(
⊗̂n

α′,j=1`2

)
σ2 ≤ K ′2n+1 ub

(
⊗̂n

α,j=1`2

)
σ2.

As σ′2 = σ2, we obtain the left inequality of (4) with K = K ′2n+1.
�

We can also give a symmetric version of Theorem 2.5. We just have to
reproduce the proof given in [6, Corollary 4] for the case of two spaces. For
definitions and notation on symmetric tensor products see [13].

Theorem 2.6. If α is a symmetric tensor norm such that ⊗n,s
α `2 has an

unconditional basis, then α is equivalent to the Hilbert-Schmidt symmetric
tensor norm.
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