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Slow growth of magnetic domains helps fast evolution routes for out-of-equilibrium dynamics
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Cooling and heating faster a system is a crucial problem in science, technology, and industry. Indeed, choosing
the best thermal protocol to reach a desired temperature or energy is not a trivial task. Noticeably, we find that the
phase transitions may speed up thermalization in systems where there are no conserved quantities. In particular,
we show that the slow growth of magnetic domains shortens the overall time that the system takes to reach a
final desired state. To prove that statement, we use intensive numerical simulations of a prototypical many-body
system, namely, the two-dimensional Ising model.
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I. INTRODUCTION

Nonequilibrium relaxation processes have been exten-
sively studied during the last decades. One important scope
in this research is shortening the duration of the heating (or
cooling) transient process that precedes thermalization. In-
deed, annealing techniques are a popular tool to accelerate
the evolution towards the equilibrium—or stationary—state
through a slow temperature decrease (not only in physics: the
famous simulated annealing algorithm mimics in a computer
the annealing strategy followed in the laboratory [1]). Thus, it
is not surprising that recent extensions of the counterintuitive
Mpemba Effect [2], allowing to cool down faster the hotter of
two systems (or heat up faster the cooler system), have stirred
considerable attention. Indeed, we now understand which are
the general conditions allowing for faster coolings, or faster
heatings, in Markovian systems [3,4], granular matter [5,6],
spin glasses [7], water [8], the quantum Ising spin model
[9], and very recently the generalization to Markovian open
quantum systems [10]. On these grounds, Amit and Raz have
designed a novel strategy, useful in systems with timescale
separation, in which precooling the system results in a faster
heating [11].

Yet timescale separation is not possible at a second-order
phase transition, where critical slowing down [12,13] evinces
a continuum of timescales [see, e.g., Eq. (3) below]. Under
these circumstances, unraveling the mechanism that drives
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the dynamics is the key to potentially control the evolu-
tion. The growth of the ordered domains when the system
enters the symmetry-broken phase [14–16] emerges as a
natural candidate for this mechanism. Energy is stored in
ordered domains whose size and growth arrest or acceler-
ates the dynamics. In particular, the relevance of the domain
growth for the dynamic slowdown in spin glasses is now
clear [17–24].

Here we show that the overall relaxation time can be short-
ened in the absence of timescale separation by manipulating
the system’s internal structure of ordered domains. We focus
on the study of the ferromagnetic two-dimensional (2D) Ising
spin model. In particular, we study through numerical simu-
lations an unexplored out-of-equilibrium heating protocol, in
which the bath temperature starts below the critical tempera-
ture and is later heated above the critical point. Surprisingly,
we find that this manipulation of the bath temperature induces
a speed-up in the energy evolution of the system, which is
due to a slow domain-growth process. The mechanism is
illustrated by comparing different initial preparation of the
system.

This paper is organized as follows: In Sec. II we recall
some essential facts about the 2D Ising model and the quan-
tities of interest. The one- and two-step thermal protocols are
described in Sec. III, where we also show the number of simu-
lations performed for each protocol. In Sec. IV we discuss the
isothermal evolution of a system in both the ferromagnetic and
paramagnetic phases. Section V is devoted to show how the
leading time corrections can be canceled out in the two-step
protocol. In Sec. VI we discuss the speed-up of the equilibra-
tion procedure for the two-step protocol. The conclusions are
contained in Sec. VII. The most technical parts of our work are
explained in two Appendixes: In Appendix A we show how
we have implemented the Monte Carlo (MC) dynamics, and
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in Appendix B we explain how to perform the spatial integrals
of the two-point correlation function.

II. MODEL AND QUANTITIES OF INTEREST

We consider the ferromagnetic Ising model in two dimen-
sions, one of the most thoroughly studied models in statistical
mechanics [25]. Specifically, the spins σx = ±1 occupy the
nodes x of a square lattice of size L × L with periodic bound-
ary conditions. In our Hamiltonian, the spins interact with
their lattice nearest neighbors as

H = −J
∑
〈x,y〉

σxσy. (1)

The thermal bath is described through the (dimensionless)
inverse temperature κ = J/(KBT ). We have set J = 1 energy
units. A second-order phase transition at κc = log(1 + √

2)/2
separates the paramagnetic phase at κ < κc, from the ferro-
magnetic phase at κ > κc.

We simulate two dynamic rules for the model in Eq. (1): the
Metropolis and heat bath (HB) algorithms (see, e.g., [26,27]).
Both belong to the so-called model A dynamic universality
class [28], where conserved quantities are lacking. We choose
L = 4096 in our simulations [29], large enough to represent
the thermodynamic limit. Our time step corresponds to a
full-lattice sweep. The technical details about how we have
implemented both dynamics are contained in Appendix A.

Special attention will be payed to the time evolution of
the coherence length ξ (t ), namely, the typical linear size of
the ferromagnetic domains at time t . Note that the correlation
length ξcorr indicates the spatial range of correlations within a
domain. Only in the paramagnetic phase ξ = ξcorr. The classi-
fication of length scales in the ferromagnetic phase would be
even subtler in the presence of Goldstone bosons [30].

Our second important quantity is the energy density E (t ),
a thermometric quantity [7] for which the equilibrium value
Eeq ≡ E (t → ∞) is given by the well-known Onsager result.
Both E (t ) and ξ (t ) are obtained from the correlation function

C(r; t ) = 1

L2

∑
x

〈 σx(t )σx+r(t ) 〉, (2)

where 〈. . .〉 indicates the average over NR independent trajec-
tories or replicas obtained with the same thermal protocol (see
next section for the number of replicas used in practice).

Indeed, E (t ) = −2C(r◦; t ), where r◦ = (0, 1) [or (1,0), be-
cause these are the two vectors spanning the square lattice],
and ξ (t ) is computed from space integrals of C(r; t ) [31] (see
also Appendix B).

III. THERMAL PROTOCOLS

We consider two distinct thermal protocols, and each of
them is simulated twice (with the Metropolis and HB dy-
namics). In our one-step protocol, a fully disordered spin
configuration (corresponding to infinite temperature) is put in
contact with a thermal bath at inverse-temperature κ , at the
initial time t = 0. The coherence length ξ (t ) grows with time
(see Fig. 1) until (in the paramagnetic phase) its t → ∞ limit
is approached.

FIG. 1. Coherence length ξ as a function of time t , as computed
with the Metropolis algorithm for our one-step protocol and several
values of κ (the width of the curves is twice the statistical error; κ

increases from bottom to top). Only in the paramagnetic phase, κ <

κc ≈ 0.44068679, the coherence length reaches its equilibrium value
at long times. In the ferromagnetic phase ξ (t ) ∼ √

t at long times
(dashed line). Inset: Comparison of the HB and Metropolis dynamics
in the paramagnetic phase. Although ξ (t ) grows significantly faster
for Metropolis, the equilibrium limit at long times is the same for
both dynamics.

In the two-step protocol, a fully disordered spin config-
uration is initially placed at an inverse temperature in the
ferromagnetic phase, κstart > κc, where it evolves until ξ (t )
reaches a target value ξstart. At that point, which corresponds
with our initial time t = 0, the bath temperature is instanta-
neously raised to enter the paramagnetic phase, κend < κc, and
kept fixed afterwards. Note that ξstart may be larger than ξend ≡
ξ (t → ∞; κend), and that a one-step protocol with κ < κc is
a particular case of the two-step protocol with ξstart = 0 and
κend = κ .

We take κend = 0.435 and 0.4378, where ξend is very large
(see Fig. 1). Indeed, the product (κc − κend) ξend(κend) remains
constant as κend → κc [25]. This behavior is explained by
the fact that the correlation length coincides with the coher-
ence length ξ in the paramagnetic phase, and the value ν = 1
of the thermal critical exponent (remember that ξend is the
coherence length at κend for long times, when the equilibrium
is reached). Of course, this scale invariance is found only close
enough to the critical point (in the so-called scaling region).
Figure 2 shows that we are indeed working in the scaling
region.

For each one of our thermal protocols, and our two dy-
namics (Metropolis and HB), we have simulated NR = 256
replicas with a few exceptions:

(1) The one-step protocol with κ = 0.435 (resp. κ =
0.4378), where we have made 1536 (resp. 4096) replicas.

(2) The two-step protocol with κstart = 0.46, κend =
0.4378 and ξstart = 120, where we simulate 1024 replicas.

We have chosen to simulate a larger number of replicas
in the paramagnetic phase in order to reduce the statistical
error in the correlation function C(r; t ). This error reduc-
tion is fundamental for computing the spacial integrals of
C(r; t ), from which we compute the coherence length (see
Appendix B).
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FIG. 2. Time evolution of the coherence length in the paramag-
netic phase for the one-step protocol for the Metropolis dynamics.
The data for κ = 0.435 are multiplied by the scale factor (κc −
0.435)/(κc − 0.4378). Indeed, after the rescaling, the κ = 0.435 data
agree at long times with the κ = 0.4378 data, showing that we are in
the scaling region (indeed, the thermal critical exponent is ν = 1).
For later reference, let us quote the value ξend = 135(2) for the
long-time limit at κ = 0.4378.

IV. THE ISOTHERMAL EVOLUTION

As shown in Fig. 1, the dynamic behavior in the two phases
is very different. In the paramagnetic phase, κ < κc, both
ξ (t ) and E (t ) approach exponentially their equilibrium value
[12,32]:

O(t ; κ ) = O∞(κ )

[
1 −

∫ τκ

1
ρO(τ, κ ) e−t/τ dτ

]
, (3)

where O(t ; κ ) stands for E (t ; κ ) or ξ (t ; κ ), and ρO(τ, κ ) is a
continuous distribution of autocorrelation times τ . The largest
timescale τκ (which diverges at κc) ensures that finite-time
corrections decay as e−t/τκ , or faster. Although using Metropo-
lis or HB does make a difference, see the inset of Fig. 1, the
equilibrium value at large t is independent of the dynamics.

Instead, in the ferromagnetic phase, the largest timescale
exists only as a finite-size effect. Indeed, when κ > κc and
barring short-time corrections, domains grow as ξ ∼ √

t [14]
until ξ ∼ L (see Fig. 1).

Now, it is well known that in the ferromagnetic phase, and
excluding fast initial relaxations, E (t ) and ξ (t ) are tightly
connected [12]: (E (t ) − Eeq) ∝ 1/ξ (t ), because the excess
energy is located at the boundaries of the magnetic domains
(and moreover, the lower critical dimension is 1 for Ising
systems). This is the behavior found for κ > κc: see Fig. 3(a)
and the lower three curves in the inset of that figure. Perhaps
more surprisingly, we find that this strong connection extends
to the paramagnetic phase where, close to the equilibrium, the
magnetic domains grow without changing the system energy
[see the top two curves displayed in the inset of Fig. 3(a)].
Indeed [see Fig. 3(b)], if one represents E (t ) as a function
of 1/ξ (t ) for κ < κc, the data from Metropolis and HB dy-
namics fall on a single curve (yet the two time behaviors are
remarkably different; see the inset of Fig. 1). Furthermore,
notice the null slope of such a curve at equilibrium endpoint
[see Fig. 3(b)], which implies that the growth of the magnetic
domains does not affect the energy.

FIG. 3. Energy density E (t ) from our one-step protocol as a
function of 1/ξ (t ). (a) Data for κ = 0.6 and both Metropolis and HB
dynamics. Both data sets fall on a single curve. The continuous line
is a fit to the Ansatz E (t ) = Eeq + b/ξ (t ). The only free parameter is
the slope b, and we include only data with ξ (t ) > 200. Inset: Data for
several values of κ , whose value increases from top to bottom. Notice
that for a given value of κ , the Metropolis and HB data sets fall on
the same curve. The continuous lines for values of κ in the ferromag-
netic phase are fits to the Ansatz E (t ; κ ) = Eeq(κ ) + bκ/ξ (t ; κ ) for
κ . Again, the only free parameters are the slopes bκ , and in each
fit, we include only data with ξ (t ) > 20. (b) Data for κ = 0.435
(paramagnetic phase). The solid horizontal line is the exact Onsager
solution. The error bars are smaller than the symbols. Notice the null
slope at equilibrium, which implies that the growth of the magnetic
domains does not affect the energy.

The connection between E (t ) and ξ (t ) suggests an in-
triguing possibility. Given that ξ (t ) grows faster in the
ferromagnetic phase (see Fig. 1), it is conceivable that E (t )
could equilibrate faster in the paramagnetic phase through an
excursion to the ferromagnetic phase.

V. CANCELING LEADING TIME CORRECTIONS

As suggested by Eq. (3), in the paramagnetic phase, the
two-step protocol behaves at long times as (see Fig. 4 for the
Metropolis dynamics and Fig. 5 for the HB one)

E (t ) − Eeq = A (ξstart ) e−t/τκ , (4)

where A(ξstart ) is an amplitude (the one-step protocol is re-
covered for ξstart = 0). Interestingly enough, A(ξstart ) changes
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FIG. 4. Excess energy E (t ) − Eeq vs e−t/τκ , as obtained with
Metropolis dynamics for our two-step protocol. (a) Data for κstart =
0.46 and κend = 0.435, as computed for several values of ξstart.
(b) Data for ξ ∗

start = 39.5 and κend = 0.435, as computed for several
values of κstart. (c) As in panel (a), for κstart = 0.46 and κend = 0.4378.
(d) As in panel (b), for ξ ∗

start = 78 and κend = 0.4378.

sign as the initial coherence length grows. This phenomenon
is clearly seen in Figs. 4(a)–4(c) and 5(a)–5(c). It follows that
there exists a ξ ∗

start such that A(ξ ∗
start ) = 0, which entails an

exponential speed-up. It turns out that ξ ∗
start is independent of

κstart [see Figs. 4(b)–4(d) and 5(b)–5(d)]. However, comput-
ing ξ ∗

start is difficult because of the statistical uncertainty in
A(ξstart ).

In order to estimate ξ ∗
start we have taken several values of

ξstart around our initial guess for ξ ∗
start, obtained from Fig. 4

(Metropolis) and Fig. 5 (HB). The value of τκ in Eq. (4) is
estimated by fitting to the Ansatz (4) our most accurate data,
namely, that with ξstart = 0. We then estimate A(ξstart ) using
the same Ansatz (4) with τκ fixed to the previously obtained
value. We have chosen the fitting window as 0 � e−t/τκ � 0.2.

Our strategy consists in finding an interval (ξ+
start, ξ

−
start )

where ξ ∗
start is contained (see Tables I and II). We require A to

be positive (resp. negative) with high probability (i.e., larger
in absolute value than twice its statistical error) at ξ+

start (resp.
ξ−

start). Finally, we estimate the value of ξ ∗
start as the average of

ξ+
start and ξ−

start, and its error as the semidifference of ξ+
start and

ξ−
start (see Table III).

The final results for ξ ∗
start shows a compatibility between

both dynamics (see Table III). The values of ξ ∗
start should be

compared with the coherence length at equilibrium ξend(κ ),

FIG. 5. Excess energy E (t ) − Eeq vs e−t/τκ , as obtained with the
HB dynamics for our two-step protocol. (a) Data for κstart = 0.46 and
κend = 0.435, as computed for several values of ξstart. (b) Data for
ξ ∗

start = 39.5 and κend = 0.435, as computed for several values of κstart.
(c) As in panel (a), for κstart = 0.46 and κend = 0.4378. (d) As in panel
(b), for ξ ∗

start = 78 and κend = 0.4378.

TABLE I. Values of A(ξstart ) obtained with κstart = 0.46 and
κend = 0.435 for the Metropolis (a) and HB (b) dynamics. �A is
the statistical error obtained from the fit to Eq. (4). The value of τκ

used to fit the data is 433(14) for Metropolis, and 1470(50) for HB.

(a) Metropolis (b) Heat bath

ξstart A × 104 |A|/�A ξstart A × 104 |A|/�A

37 10.6(18) 5.9 36 13(2) 6.5
39.5 0.8(20) 0.4 39.5 3(2) 1.5
42 −4.6(18) 2.6 50 −26.3(19) 13.8

TABLE II. Values of A(ξstart ) obtained with κstart = 0.46 and
κend = 0.4378 for the Metropolis (a) and HB (b) dynamics. �A is
the statistical error obtained from the fit to Eq. (4). The value of
τκ used to fit the data is 2000(100) for Metropolis, and 6500(300)
for HB.

(a) Metropolis (b) Heat bath

ξstart A × 104 |A|/�A ξstart A × 104 |A|/�A

70 5(2) 2.5 70 9(2) 4.5
79 −2(2) 1 81.5 −1(3) 0.3
87 −5.0(19) 2.6 92 −8(3) 2.7
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TABLE III. ξ ∗
start estimate for the Metropolis (MET) and HB

dynamics for each value of κend. The center value and its error are
obtained from the semisum and semidifference of the extreme values
from the Tables I and II.

κend = 0.435 κend = 0.4378

MET HB MET HB
40(3) 43(7) 79(9) 81(11)

namely, ξend(0.435) = 69(1) and ξend(0.4378) = 135(2), both
for the Metropolis dynamics.

Furthermore, when κend is varied, both ξ ∗
start and the equi-

librium coherence length ξend scale as 1/(κc − κend).
These two traits, namely, independence of κstart and the cor-

rect scaling dimension for ξ ∗
start, are hallmarks of universality.

Indeed, we speculate that the scale-invariant ratio that we find
for the Metropolis dynamics

lim
κ→κ−

c

ξ ∗
start

ξend
= 0.59(7) (5)

will be common to all models with scalar order parameter in
the model A dynamic universality class [28]. Our results for
the HB dynamics are indeed consistent with this speculation.

VI. EQUILIBRATION SPEED-UP

Let us put to use the existence of an exponential speed-
up. From now on, we shall be referring to ttotal, namely, the
time spent by the system at both κstart and κend. In fact, we
operationally define the equilibration time t0.1%

eq as the time
such that E (ttotal ) differs from Eeq by less than 0.1% for any
ttotal > t0.1%

eq ; see Fig. 6 [33]. In other words, the equilibration
time t0.1%

eq corresponds to the last time the energy crosses
either the line 1.001Eeq or the line 0.999Eeq (see Fig. 7).
We need this operational definition because, strictly speaking,
thermal equilibrium is unreachable in any finite time.

Now, let us consider the situation for the two-step protocol
with ξstart < ξ ∗

start and where A(ξstart ) > 0 [cf. Eq. (4)]. In
this range of small ξstart we encounter ξstart = ξKovacs

start where
the energy at the time of the temperature change equals Eeq

(this is the appropriate situation to study the Kovacs effect
[18,34]). Now, for those protocols with ξKovacs

start < ξstart < ξ ∗
start,

the energy at the time the temperature changes is smaller
than Eeq [35] but, at long times, E (ttotal ) tends to Eeq from
above because A(ξstart ) > 0. It follows that E (ttotal ) cannot be
monotonic. In fact (see Fig. 6), E (ttotal ) for those protocols
first grow to a local maximum, then decrease towards Eeq.

The local maximum of E (ttotal ) entails a discontinuity for
the equilibration time t0.1%

eq (cf. Fig. 7) at the value of ξstart for
which the height of the local maximum of E (ttotal ) coincides
with the upper limit of the 0.1% band around Eeq [36]. There-
fore, the equilibration time t0.1%

eq for the two-step protocols
just after the discontinuity could be shorter than its one-step
counterpart by a factor of three.

We can repeat the above computations for the HB dynam-
ics. If we represent the energy density vs the total simulation
time ttotal, we obtain Fig. 8. The plot of the equilibration time
t0.1%
eq as a function of ξstart is given by Fig. 9. The behavior

FIG. 6. Energy density as a function of the total time ttotal elapsed
since the beginning of the two-step protocol, as computed with the
Metropolis dynamics for κstart = 0.46, κend = 0.4378, and several
values of ξstart. These values of ξstart increase from top to bottom.
The width of the curves is twice the statistical errors. We show
only the evolution during the second step of the protocol. The three
horizontal lines correspond to Eeq multiplied by 1.001, 1 and 0.999.
Inset: Coherence length during the two-step protocol (κstart = 0.46,
κend = 0.4378) as a function of the time t elapsed since the tem-
perature changed. We show data for ξKovacs

start ≈ 7.92 (lower curve), as
well as for ξstart = 50 (upper curve; this value yields the minimum
equilibration time; see Fig. 7).

of these two quantities is analogous to the one found for
Metropolis. The main difference is the timescale. Indeed,
Metropolis approaches equilibrium faster than HB.

VII. CONCLUSIONS

We have shown that precooling may result in faster equi-
libration at higher temperatures in a prototypical system
without timescale separation (namely, the ferromagnetic 2D
Ising model at its critical point). The driving mechanism
is the tight connection between the internal energy and the

FIG. 7. Equilibration time t0.1%
eq versus ξstart for the two-step pro-

tocol with κend = 0.435 (a) and κend = 0.4378 (b). We show data
for three values of κstart and the Metropolis dynamics. The width of
the curves is twice the statistical errors. The discontinuity is due to
the nonmonotonic time behavior of E (ttotal ); see Fig. 6. Note that,
after the discontinuity, the curves for κstart = 0.46 and κstart = 0.48
are very close.
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FIG. 8. Energy density as a function of the total time ttotal elapsed
since the beginning of the two-step protocol, as computed with the
HB dynamics for κstart = 0.46, κend = 0.4378, and several values of
ξstart. Plot definitions are as in Fig. 6. Inset: Coherence length during
the two-step protocol (κstart = 0.46, κend = 0.4378) as a function of
the time t elapsed since the temperature changed. We show data for
ξKovacs

start 
 8 (lower curve), as well as for ξstart = 50 (upper curve; this
value yields the minimum equilibration time; see Fig. 9).

size of the ferromagnetic domains, characteristic of a broken-
symmetry phase [12]. Indeed, the size of the domains can
be manipulated to our advantage through a nonequilibrium
protocol. In particular, we have found an exponential speed-up
in the equilibration of the energy. The speed-up arises when
the size of the magnetic domains formed during the excursion
to the low-temperature phase is a well-defined fraction of the
equilibrium correlation-length at the higher temperature. We
have found numerical evidence for the universality of this
fraction (presumably, the universality is restricted to model
A dynamics with scalar order parameter [28]). Namely, we
have shown how to design a practical protocol that exploits
this universal mechanism.

FIG. 9. Equilibration time t0.1%
eq as function of ξstart for the two-

step protocol with κend = 0.435 (a) and κend = 0.4378 (b). We show
data for three values of κstart and the HB dynamics. Plot definitions
are as in Fig. 7. The discontinuity is due to the nonmonotonic time
behavior of E (ttotal ); see Fig. 8. Note that, after the discontinuity, the
curves for κstart = 0.48 and κstart = 0.60 are very close in (a), and the
curves for κstart = 0.46 and κstart = 0.48 are very close in (b).
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APPENDIX A: IMPLEMENTATION OF MULTISITE
MULTISPIN ALGORITHM

Nowadays, many CPUs support 256-bit words in their
streaming extensions. This allows us to perform basic Boolean
operations (AND, XOR, etc.) in parallel for all the 256 bits,
in a single clock cycle. We can take advantage from this
parallelization by codifying 256 distinct spins in the same
256-bit word. This strategy is called multispin coding [37].
Furthermore, we simulate a single system, so we pack 256
spins from the same lattice. This is known as MUlti-SIte
(MUSI) multispin coding (or synchronous multispin coding
[38]). The main problem with MUSI multispin coding is gen-
erating 256 independent random numbers for the 256 spins
coded in a word. A careless approach to the generation of
these 256 random numbers would break the parallelism, thus
making MUSI multispin coding useless.

For the sake of clarity, we explain first our geometrical
set up, and then describe how we solved the problem of the
independent random number for each spin in the 256-bit word.

1. Our multispin coding geometry

In our MUSI simulation, we packed 256 spins, from the
same lattice, in a single 256-bits word, forming a superspin
[39]. Specifically, we employed the packing introduced in
Ref. [32]. We present the packing for a M2-bit computer word
(we shall specialize to M = 16, and M2 = 256 bits). This
packing transforms the original square lattice of size L × L
into a superspin lattice of size (L/M ) × (L/M ). The physical
coordinates x = (x, y) and the superspin coordinates (ix, iy)
are related by

x = bx
L

M
+ ix, where

bx = 0, 1, . . . , M − 1 and

ix = 0, 1, . . . ,
L

M
− 1,

(A1)
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FIG. 10. Graphical representation of the packing process of a
square lattice of size 16 × 16 using 16-bit computer word (hence,
M = 4 in this example). The packing results into a 16/4 × 16/4
superspin lattice. The symbols represent the ix coordinate, and the
colors represent the iy coordinate. Therefore, all spins with same
symbol and color are codified in the same superspin. The number
inside the symbol is the bit index ib = Mby + bx . Consider the spin
at site (x, y) and its neighbor along the (say) forward x-direction,
with x coordinate (x + 1) mod L. This neighbor is packed in the
forward x-direction neighbor superspin, with (ix + 1) mod (L/M )
coordinate. If ix < L/M − 1, the coordinates iy, bx and by remain
unchanged [if ix = L/M − 1, bx changes when going forward along
the x-direction as bx → (bx + 1) mod M].

y = by
L

16
+ iy, where

by = 0, 1, . . . , M − 1 and

iy = 0, 1, . . . ,
L

M
− 1.

(A2)

As a consequence, M2 physical coordinates (x, y) are as-
signed to the very same superspin coordinates (ix, iy). The bit
index ib = Mby + bx is the position inside the superspin (so
0 � ib < M2), and unambiguously identifies the physical co-
ordinates (see Fig. 10 for a graphical example of the packing
process of a L = 16 square lattice using M = 4).

There is a crucial feature of our chosen geometry. Take a
superspin (ix, iy). Each of the M2 spins packed in the super-
spin (ix, iy) has a nearest neighbor along the (say) forward
x-direction in the original lattice. All these M2 neighboring
spins are themselves packed in the same superspin, namely,
the nearest neighbor in the forward x-direction in the super-
spin lattice (see Fig. 10).

Another important property of Eqs. (A1) and (A2) is that
the parity of the superspin site ix + iy and the original site
parity x + y coincide (provided that L/M = 2n, with n ∈ N).

Note that the square lattice is bipartite: with our nearest-
neighbor interactions, sites of even parity interact only with
odd-parity sites (and vice versa). This feature suggests a
checkerboard updating scheme, in which all even sites are
update in the first step and odd sites are updated afterwards.
Indeed, keeping the (say) odd spins fixed, the ordering of
the update of the even spins is immaterial. In particular, we
may update simultaneously the 256 spin that we pack in a
superspin.

We define our time unit as a full-lattice sweep, in which
the even sublattice is updated first and the odd superspins are
updated afterwards.

2. Random numbers

For reasons of clarity, we shall be referring always to a
single bit, sx(t ), in the superspin [sx(t ) = 1 if the spin it
codes is 1 at time t , while the bit is zero if the spin is −1].
All the Boolean operations that we shall explain below are
performed simultaneously on the 256 bits sx(t ) contained in
the superspin.

The scope of the game is obtaining a change bit Bx(t ),
which is one if (and only if) the spin at site x is to be flipped
at MC time t :

sx(t + 1) = sx(t ) XOR Bx(t ). (A3)

The computation of Bx(t ) is naturally decomposed in two
steps (the first is a deterministic step, while the second step
involves randomness):

(1) In the first step, we compute the energy change
�E that flipping spin sx(t ) would cause. Now, �E
can take five values, �E ∈ {−8,−4, 0, 4, 8}. Hence us-
ing standard Boolean operations, one computes five bits
{c−8

x (t ), c−4
x (t ), c0

x(t ), c4
x(t ), c8

x(t )} in such a way that only
the bit with superscript equal to �E is one. The remaining
four bits are, of course, zero.

(2) The second step depends on the dynamics, either
Metropolis or HB, and determines whether or not the
spin-flip is allowed. This is represented by other five bits
{b−8

x (t ), b−4
x (t ), b0

x(t ), b4
x(t ), b8

x(t )}, which are set to one
with probability p(�E ), as we explain below.

We obtain Bx(t ) from these bits as (for brevity, we will omit
their dependence on x and t):

B = [c8 AND b8] OR [c4 AND b4]

OR [c0 AND b0] OR [c−4 AND b−4]

OR [c−8 AND b−8].

(A4)

a. The probabilities

The probabilities for setting to one the random bits b de-
pend on the precise algorithm we are using:

a) Metropolis:

pMET(�E ) = min{1, e−�E/T }, (A5)

b) Heat bath:

pHB(�E ) = e−�E/T

1 + e−�E/T
. (A6)
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b. Some remarks on statistical independence

Equation (A4) tells us that we are going to use only one
of the five bits b, although we cannot know in advance which
one. Indeed, the AND conditions make irrelevant those bits b
whose superscript differ from �E . Hence, the five b bits do
not need to be mutually independent (instead the b bits corre-
sponding to different x or t must be statistically independent).
We can make use of this observation to reduce the number of
b bits that we need to compute:

a) In the Metropolis dynamics, we only need two bits
because pMET(�E ) = 1 for �E � 0. Therefore, we set b−8 =
b−4 = b0 = 1.

b) In the HB dynamics, because pHB(�E ) =
1 − pHB(−�E ), we set b−8 = NOT b8 and b−4 = NOT b4.

c. Generating independent random bits with arbitrary probability

As we have seen, we need to generate a stream of inde-
pendent random bits, which are set to one with a probability
p given by Eq. (A5) or (A6). The textbook solution [38]
fails the independence requirement (unless p can be exactly
represented with a small number of bits). On the other hand,
the rather high critical temperature in our problem makes the
Gillespie method [39] inefficient because p is too large. We
solve this problem by adapting a strategy [40] that somewhat
interpolates between the textbook and the Gillespie methods.

To simplify the explanation, let us consider only one of the
five bits {b−8, b−4, b0, b4, b8}, for example b4. We obtain
b4 as b4 = d1 OR d2, where d1 and d2 are two independent
random bits which are set to one with probabilities p1 and
p2, respectively. It is easy to check that the probability p(4)
for having b4 = 1 is p(4) = p1 + p2(1 − p1). Hence, if we
choose p1 in some convenient way (see below), we need to
set p2 as

p2 = p(4) − p1

1 − p1
. (A7)

The overall idea is the following: if we can efficiently generate
d1 with a probability p1 very close to (but smaller than) p(4),
we will find ourselves with a p2 small enough for an efficient
use of the Gillespie method.

Specifically, we require that p1 be exactly representable
with m bits

p1 = k∗ + 1

2m
, with k∗ ∈ N, 0 � k∗ < 2m, and

k∗ + 1

2m
� p(4) <

k∗ + 2

2m
.

(A8)

We obtain d1 by generating an integer-valued random num-
ber k, 0 � k < 2m, with uniform probability. We set d1 =
1 if k � k∗.

Notice that m determines the efficiency of the algorithm.
On one hand, enlarging m can be detrimental because we
generate k by obtaining m independent random bits which are
set to one with 50% probability. On the other hand, a large m
allows us to have p1 very close to p(�E ), and hence a very
small p2. A tradeoff needs to be found, by minimizing the total
number of calls to our random number generator.

An important simplification is that we are allowed to use
the same random integer k for all the �E , only the threshold

k∗(�E ) varies. In this way, we obtain all the bits d1 for every
b8 and b4.

As for the second bit d2, we have two different proba-
bilities p2, one for b8 [p2(8)], and other for b4 [p2(4)]. Let
pmax = max{p2(4), p2(8)} and pmin = min{p2(4), p2(8)}, so
we can implement the Gillespie method for pmax, which gives
the bits d2 for the �E with bigger p2 probability. The bit
d2 corresponding to pmin is set to one if two conditions are
met: (1) the bit d2 corresponding to pmax is set to one and
(2) an independent random number r, extracted with uniform
probability in [0,1), turns out to be smaller than pmin/pmax.

Finally, we need to discuss our computation of the random
integers k. In fact, we need to generate 256 independent k
numbers, because we codify 256 spins in our superspins.
After some reflection, we decided to use the xoshiro256++
generator [41], which ensures the same level of randomness
on each of its 64 bits. We employed a 256-bits streaming
extension to implement a parallel version of xoshiro256++,
composed of four independent xoshiro256++ random se-
quences. Hence, each call to our generator produces 256
independent random bits which are 1 with 50% probability.
Therefore, m calls to xoshiro256++ produces 256 indepen-
dent k random numbers.

In our simulations, the optimal value of m has turned out to
be m 
 10. In this way, we have found it possible to compute
the spin-flip bit for 1024 spins with approximately 42 calls to
our random number generators (namely, 40 calls for d1 and
two calls for the computation of d2).

APPENDIX B: SPACE INTEGRALS OF C(r; t )
CORRELATION

At long distances, the correlation function C(r; t ) decays
as f (−r/ξ (t ))/ra, where ξ is the coherence length, f (x) is
a cut-off function, and a is an exponent. Out of equilibrium,
the function f (x) decays superexponentially, while, at equi-
librium, the decay is only exponential. Unfortunately, the
exponent a and the precise form of the function f (x) are
known only at equilibrium. Nevertheless, following Ref. [19],
we can obtain ξ (t ) from an integral estimator.

Hereafter, we shall use C(r; t ) as a shorthand for C(r; t )
with r = (r, 0) or r = (0, r). Introducing the integrals

Ik (t ) =
∫ ∞

0
rkC(r; t ) dr, (B1)

we can define ξk,k+1(t ) ≡ Ik+1(t )/Ik (t ), which is proportional
to ξ (t ). In our case, we have chosen as an estimator of ξ (t ) the
ratio ξ1,2(t ), which has been well studied in the literature (see
e.g., Refs. [22,32,42], and references therein).

The difficulty in the computation of this integrals arises
from the big relative errors [�C(r; t )/C(r; t )] present in the
large-r tail of C(r; t ) (this problem is well known in the con-
text of the analysis of autocorrelation times in MC simulations
[26]). Our solution, which is inspired by Ref. [22,32,42],
combines two strategies: (1) reduction of the relative error
in the correlation function by considering a sufficiently large
number of replicas (see Sec. III), and (2) the use of a smart
way to estimate Ik (t ). Our estimation of Ik (t ) is the sum of
two contributions: the numerical integral of our measured
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C(r; t ) up to a noise-dependent cut-off, and a tail contribution
estimated by using a smooth extrapolation function, namely,
F (r) = Ae−(r/ξF )β /rb with b = 1/2.

Strictly speaking, the functional form of F (r) is only valid
in the paramagnetic phase [42]. In the ferromagnetic phase,
the exponent of the algebraic term rb is not known. However,
because the exponential term decays very fast (β ≈ 2), the
precise value of b is not very relevant. On the other hand, when
the equilibrium is reached in the paramagnetic phase, where
β = 1, the slow decay of C(r, t ) makes the tail contribution
very relevant (this is why we have needed a large number
of replicas in order to have a good estimation of the tail
contribution in the paramagnetic phase).

The complete procedure to compute Ik is as follows:
(1) We obtain a spatial cut-off determined by the size of

our statistical errors. The noise-dependent distance rcut is the
shortest distance such that C(rcut + 1; t ) is smaller than three
times its error. Of course, rcut is time-dependent.

(2) Estimate the region [rmin, rmax] employed in the fit
to F (r). We start by locating the position r∗ of the maxi-

mum of the quantity r2C(r; t ); the value of such maximum
is ρ = r∗2C(r∗; t ). Next, we determine rmin and rmax, which
must verify the inequalities r∗ < rmin < rmax < rcut. We de-
fine rmin (resp. rmax) as the first r where r2C(r; t ) < aminρ

(resp. r2C(r; t ) < amaxρ). We take amin = 0.9 and amax =
1/3. We regard a failure to meet the condition rmax < rcut as a
sure-tell sign of the need of increasing the number of replicas.

(3) Finally we calculate the integrals. There are two pos-
sibilities (in both cases we estimate errors with the jackknife
method [43,44]):

(a) If rmax − rmin > 8, we fit C(r; t ) in the interval
[rmin, rmax] to F (r) (the fit parameters are the amplitude A,
the length scale ξF , and the exponent β). We estimate the
integral as the sum of two contributions, namely, the integral
of C(r; t ) from r = 0 to rmax and the integral of F (r) from rmax

to r = 20ξF . In both terms, we use a second-order Gaussian
quadrature (when an interpolation of C(r; t ) is needed, we
employ a cubic spline interpolation).

(b) If the region [rmin, rmax] is small (i.e. rmax − rmin � 8),
we integrate only numerically C(r; t ) up to rcut.
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