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Abstract (English) 

Background: This paper examines the implicit healthy life expectancy (HLE) used for 
actuarial calculations in some selected biometric data sets from Australia, China, 
Portugal, Spain and the US. We are interested in checking the demographic and 
epidemiological coherence of these data sets because this health indicator is rarely 
presented when authors build their biometric data sets, nor when they are used to calculate 
long-term care insurance (LTCI) and life care annuity (LCAs) premiums, nor when they 
are employed in research articles to estimate the future demand for LTC services in a 
particular country.  
Methods: We follow a methodology based on multistate life table methods (MLTM) that 
enables us to obtain a life expectancy matrix for individuals on the basis of their initial 
health state. Multistate models provide an easy-to-apply procedure for life and health 
insurance contracts, including LTC. We also present some additional indicators of 
longevity, mortality and morbidity, these being the median age at death, the interquartile 
range, the weighted modal age at death, the mortality ratio, the implicit LTC prevalence 
rates and the survivorship curves broken down by health state.  
Results: We find several weaknesses that highlight the difficulty involved in building the 
biometric data sets needed to make an actuarially fair valuation of the premiums for LTCI 
and LCAs. We also verify the existence of the so-called “male-female health-survival 
paradox”, i.e. the fact that women have greater longevity than men but are also likely to 
spend proportionally more time in some state of dependence, irrespective of the initial 
health state.   
Conclusion: It is not surprising that insurance companies are becoming less willing to 
offer LTCI and LCA contracts given that they face a serious problem with the biometric 
aspect when it comes to calculating actuarially fair premiums with any degree of 
certainty. From the perspective of a potential purchaser of this type of insurance product, 
disclosing and explaining the summary measures of health and longevity would make it 
easier for them to understand the need to protect themselves against the cost of possible 
LTC services and also make the computation of the premiums more transparent. 

https://orcid.org/0000-0002-7227-5076
https://orcid.org/0000-0002-4510-7499
https://orcid.org/0000-0002-5630-9635
mailto:Carlos.Vidal@uv.es
mailto:Manuel.Ventura@uv.es
mailto:Anne.Garvey@uah.es


Keywords: Activity limitations, Dependence states, Healthy life expectancy, Life care 
annuity, Long-term care insurance. 
JEL: G22, G5, I13, J14, J26 

Resumen (español) 

Antecedentes: En este artículo se examina la esperanza implícita de vida en buena salud 
(EVS) que se desprende de un conjunto de datos biométricos seleccionados de Australia, 
China, Portugal, España y Estados Unidos. Nos interesa comprobar la coherencia 
demográfica y epidemiológica de estas tablas de mortalidad/morbilidad porque este 
indicador rara vez se presenta cuando son construidas, ni cuando se utilizan para calcular 
las primas de los seguros de dependencia (LTCI) y las rentas con cobertura de 
dependencia (Life care annuities), ni cuando se emplean en artículos de investigación para 
estimar la demanda futura de servicios asociados a la dependencia en un país concreto.  
Métodos: Se desarrolla una metodología basada en tablas de mortalidad/morbilidad 
multiestado (MLTM) que nos permite obtener una matriz de esperanzas de vida de los 
individuos en función de su estado de salud inicial. También presentamos algunos 
indicadores adicionales de longevidad, mortalidad y morbilidad como son, la mediana de 
la edad de fallecimiento, el recorrido intercuartílico, la edad modal ponderada de 
fallecimiento, el ratio de mortalidad, las tasas implícitas de prevalencia de la dependencia 
y las curvas de supervivencia desglosadas por estado de salud.  
Resultados: Encontramos varios puntos débiles en los datos analizados que ponen de 
manifiesto la dificultad que entraña la construcción de los datos biométricos necesarios 
para realizar una valoración actuarialmente justa de las primas de los seguros de 
dependencia y las rentas vitalicias con cobertura de dependencia. También verificamos la 
existencia de la llamada "paradoja salud-supervivencia hombre-mujer", es decir, el hecho 
de que las mujeres tienen mayor longevidad que los hombres, pero también es probable 
que pasen proporcionalmente más tiempo en los estados de dependencia, 
independientemente del estado de salud inicial.   
Conclusión: No es de extrañar que las compañías de seguros estén cada vez menos 
dispuestas a ofrecer contratos de seguros de dependencia y rentas vitalicias de 
dependencia, dado que se enfrentan a un grave problema con el aspecto biométrico a la 
hora de calcular primas actuarialmente justas con cierto grado de certeza. Desde la 
perspectiva de un potencial comprador de este tipo de producto de seguro, divulgar y 
explicar las medidas resumidas de salud y longevidad le facilitaría comprender la 
necesidad de protegerse contra el coste asociado a la situación de dependencia y también 
haría más transparente el cálculo de las primas. 
Palabras clave: Esperanza de vida libre de discapacidad, Estados de dependencia, 
Limitaciones de la actividad, Renta vitalicia con cobertura de dependencia, Seguro de 
dependencia. 
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The implicit (un)healthy life expectancy used for pricing long-term care insurance 
and life care annuities. 

1.-Introduction 

The development of health measures that include detailed information on both the 
mortality and morbidity conditions of the population has been a focus of study since the 
1960s (Molla et al., 2001), when the concept of health expectancy was first introduced 
by Sanders (1964) and Sullivan (1965). Given that life expectancy is not inextricably 
bound to health, researchers and policy makers were searching for a population health 
indicator that would combine both mortality and morbidity (Saito et al., 2014) and could 
be used for assessing and monitoring population health. 
Sullivan (1971) developed a method for combining mortality and morbidity rates in a 
single summary measure of population health known as disability-free life expectancy 
(DFLE), today also referred to as healthy life expectancy (HLE) or active life expectancy 
(ALE). Two new concerns then grew in importance in the 1980s: the relationship between 
changes in mortality and morbidity, and the relatively greater burden of morbidity in older 
ages (Molla et al., 2001). In 1993 the DFLE measure became one of the health indicators 
used by the Organisation for Economic Co-operation and Development (OECD) (Di 
Lego, 2021).  
Healthy life expectancy (HLE) typically combines mortality and morbidity information 
to represent overall population health in a single indicator (Imai and Soneji, 2007; Majer 
et al., 2013). It measures the number of remaining life years that a person of a certain age 
is likely to enjoy without activity limitations, assuming current disability and mortality 
conditions continue to apply, and is increasingly used to complement the conventional 
measure of life expectancy. HLE was developed to reflect the fact that people do not 
generally live in perfect health during all the years of their lives, and estimates of health 
expectancies were very attractive judging by the results obtained by popular tools for 
monitoring trends in population health.  
It is difficult to ignore how important and useful summary measures for population health 
are because, among other things, they can describe life expectancy, perform cross-
national health comparisons, quantify changes in quality of life (QoL) across a country 
or over time, contribute to decision-making for health policies, facilitate health planning, 
supply a comprehensive reference for epidemiological estimates and help guide research 
priorities (Murray et al., 2002). Findings from HLE analyses are increasingly being used 
to shape policies and programmes, not only in the health sector but also in areas such as 
pension policy and sustainable development (Bogaert et al., 2020). Such measures are 
also important in the actuarial field. 
Long-term care (LTC) involves a range of services including medical and nursing care, 
personal care services, assistance services and social services that help people live either 
independently or in residential settings when they can no longer carry out routine 
activities on their own (Barber et al., 2021). The costs of caring are increasing since it is 
labour-intensive and benefits little from technological change. The traditional providers 
of LTC are the state, the market (private insurance) and the family (Klimaviciute and 
Pestieau, 2022). This paper deals with the private insurance aspect. 
From the perspective of long-term care insurance (LTCI), the key indicators are HLE and 
life expectancy with activity limitation. LTCI collectively refers to the range of private 
insurance plans and public schemes that are intended to cover the costs of care for long-
term disability resulting from a person’s inability to perform the everyday activities of 
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daily living (SAS, 2020). LTCI is not life insurance, disability or health insurance and 
should not be confused with them, although they may sometimes be marketed together as 
hybrid products. 
Under an LTCI scheme, a healthy insured person (contributor) pays a premium (or 
contributes) up to a certain age (usually the statutory retirement age) or until disability 
occurs, at which point they may receive regular benefit payments to cover the costs 
associated with LTC. Such monthly benefits are usually payable while the individual is 
care-dependent and will cease upon their death or recovery from disability or when the 
maximum payout limit, if any, is reached. These regular payments can take the form of 
cash (cash-for-care benefits which might be indexed to inflation) or in-kind benefits 
involving the partial or total disbursement of actual recurring LTC costs. According to 
the American Association for Long-Term Care Insurance (AALTCI, 2022) with reference 
to traditional LTCI reimbursement policies in the US in 2021, 67% of LTCI benefits end 
because the policyholder dies, 20% end because the individual 'recovers1', and 13% end 
because the policy benefits are exhausted (i.e. all the available benefits are used up).  
A life care annuity (LCA) is a lifetime annuity in which the LTC benefit is defined in 
terms of an uplift with respect to the basic amount. In return for the payment of a premium 
(either in the form of a lump sum or an amount collected over time), the LCA provides a 
stream of fixed-income payments for the lifetime of the annuitant. It also provides an 
extra stream of payments if the annuitant requires LTC. In other words, an LCA is a 
combined annuity and LTCI policy in a single product (Pla-Porcel et al., 2016; Vidal-
Meliá et al., 2020). In the US it is also known as a long-term care annuity. 
In this paper we are very interested in investigating the biometric assumptions made by 
the insurers/sponsors of LTCI schemes. The inclusion of information showing the 
breakdown of life expectancy by health state is invaluable for illustrating the actuarial 
calculations used for pricing LTCI and LCAs.  
We examine the implicit healthy life expectancy (HLE) used for actuarial calculations in 
some selected biometric data sets from Australia, China, Portugal, Spain and the US. It is 
very difficult to find this health indicator explicitly presented in the actuarial literature on 
LTC, and even more difficult to find it for LCAs. It is for this reason that we check the 
demographic/epidemiological coherence of the biometric data sets in two ways. First, we 
use each data set to compute the life expectancy values for both healthy and dependent 
individuals and then for dependent people in each of the different states of dependence. 
We then verify the existence of the so-called “male-female health-survival paradox”, a 
phenomenon seen in developed countries where women have greater longevity but higher 
rates of disability and poorer health than men (Nusselder et al., 2019; Nielsen et al., 2021; 
Sherris and Wei, 2021). And second, we present some additional longevity, mortality and 
morbidity indicators, namely the median age at death, the interquartile range, the 
weighted modal age at death, the mortality ratio, the implicit LTC prevalence rates and 
the survivorship curves broken down by health state. Finally, we also want to find out 
how close the HLEs used for theoretically pricing these insurance products and the 
information used in academic research are to officially published figures and/or those 
used in similar investigations. In Europe, this indicator is calculated2 annually by Eurostat 

                                                           
1 They may make another claim at some time in the future. 
2 The variable used for health states in cases of disability: 
Variable PH030 (limitation in the activities people usually do because of health problems for at least the 
last 6 months) in the EU Statistics on Income and Living Conditions (EU-SILC Survey). The EU-SILC 
question is: For at least the past six months, to what extent have you been limited because of a health 
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for EU countries and also for some European Free Trade Association countries (OECD, 
2021; OECD/European Union, 2022). 
To the best of our knowledge, our paper is original and makes a real contribution to the 
literature given that the demographic/epidemiological coherence of the selected biometric 
data sets has not yet been checked by looking at the life expectancy values for both healthy 
and dependent individuals and also for dependent people in each of the different states of 
dependence, and then following this up by presenting a number of additional longevity, 
mortality and morbidity indicators.  
Our approach should enable us to answer the following research questions: What is the 
implicit HLE used for pricing LTCI and LCA contracts? Is this HLE in line with official 
published information and/or similar investigations? Does the male-female health-
survival paradox hold true in the data sets analysed? Are the implicit summary measures 
for longevity and morbidity that are embedded in the biometric data sets coherent from a 
demographic/epidemiological point of view?  Should it be compulsory to disclose 
information about the HLE and other longevity risk and morbidity indicators used in the 
technical bases for computing premiums for LTCI and LCA contracts? 
The rest of the paper is structured as follows. Section 2 briefly describes the selected 
biometric data sets from Australia, China, Portugal, Spain and the US and the 
methodology used to compute the implicit healthy life expectancy (HLE) and check the 
demographic/epidemiological coherence of the data sets. Section 3 presents the main 
results. Section 4 discusses some issues arising from the results. We focus especially on 
the impact of the biometric assumptions on the pricing of LTCI and LCA contracts, the 
problem of increasing premiums (which is especially serious in the US LTCI market) and 
the advantages of LCAs for retirement planning given the uncertainty surrounding the 
need for LTC services and the costs involved. We also discuss whether it should be made 
compulsory to disclose information about the HLE and other longevity risk and morbidity 
indicators used in the technical bases for computing the premiums for LTCI and LCA 
policies. The paper ends with our concluding comments, future research possibilities and 
a technical appendix, which explains the methodology used to compute the life 
expectancy matrix based on the individual’s initial health state. It also describes the 
mathematical expressions used to compute the additional indicators of longevity, 
mortality and morbidity mentioned earlier. 

2.- Data and Methodology  

2.1.-Data  
In this section we briefly describe the biometric data sets analysed and explore their 
impact in the literature by examining the number of citations and the quality/ranking of 
the relevant journals. It is not our aim to include all the existing biometric data sets from 
all the countries we have selected. We could have included more, but for various reasons 
(difficulties in data collection, non-Markovian structure...) we decided not to. 

                                                           
problem in activities people usually do? Would you say you have been: (a) severely limited? (b) limited 
but not severely? or (c) not limited at all? 
On the basis of this variable, the proportions of population in healthy (answer code: "not limited at all") 
and unhealthy conditions (answer codes: "severely limited" and "limited but not severely") are calculated 
by sex and age. The comparability of the data on healthy life years is limited by the fact that the indicator 
is derived from self-reported information that can be affected by people’s subjective assessment of their 
activity limitation (disability) and by social and cultural factors. There are also differences between 
countries in the formulation of the survey question on disability in the EU-SILC. 
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Table 1 summarizes the main features of the biometric data sets selected: 
Table 1: Main features of the biometric data sets selected 

Data set Country Data 
years 

Levels of 
dependence 

Gender 
distinction 

Recovery 
from 

illness state 
Citations 

Artís et al. (2007) Spain 1999 1 Yes No 35 
Albarrán-Lozano et 

al. (2021) Spain 2008 4 Yes No 0 

Esquivel et al. (2021) Portugal 2015 3 No Yes 5 
Robinson (1996) US 1982-89 6 Yes Yes 61 
Friedberg et al. 

(2014) US 1982-
2010 6 Yes Yes 56 

Hariyanto et al. 
(2014a, 2014b) Australia 1998-

2003 4 Yes Yes 40 

Cui et al. (2022) China 2014-17 2 Yes Yes 0 
Source: Own 

2.1.1.-Spain 

2.1.1.1.-Data from Artís et al. (2007). 

To build their biometric data set the authors used information from the Spanish general 
population survey (1999) and prevalence rates from the Disability, Deficiency and Health 
Condition Survey conducted in 1999 by the Spanish National Statistics Institute (Instituto 
Nacional de Estadística - INE). The mortality rates for dependent people were calculated 
using data from the Society of Actuaries (2002). Only one level of dependence is 
considered and the figures are broken down by gender.  

This biometric data set and/or the paper in which it was originally used has attracted the 
interest of numerous researchers. This can be seen from the number of citations in Google 
Scholar (35) and the importance of some of the journals in which they are found, e.g. the 
Astin Bulletin, the European Journal of Finance and Ageing International. 

2.1.1.2.-Data from Albarrán-Lozano et al. (2021). 

Using data from the EDAD 2008 survey conducted by the INE, Albarrán-Lozano et al. 
(2021) estimate transition probabilities for the dependent population. They consider five 
health states (four dependent and one exit state), namely:  
1.- Dependent person with no entitlement to state benefits. 2.- Moderate dependence: a 
person who needs help to perform various basic activities of daily living (ADLs) at least 
once a day or periodically and/or needs limited support for their personal autonomy. 3.-
Severe dependence: a person who needs help to perform various ADLs two or three times 
a day but does not need/want permanent help from a caregiver or extensive support 
services for their personal autonomy. 4.-Major dependence: a person who needs help with 
various ADLs several times a day and/or needs continued assistance from another person 
due to their total loss of physical, mental, intellectual or sensorial autonomy. And finally 
5.-Death. 
The authors present transition probabilities by gender and age. 
At the time of writing this paper (March 2023), we were unable to find any citation in the 
literature for this biometric data set and/or the paper in which it was originally used. 
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2.1.2.-Portugal 

2.1.2.1.- Data from Esquivel et al. (2021) 

The transition probabilities of a Markovian multistate model are estimated using data 
from the 2015 Portuguese National Network of Continuous Care database (Esquivel et 
al, 2021). In this model the authors consider five health states: one autonomous, three 
dependent and one exit state, namely: 1.-autonomous, 2.-light dependence, 3.-moderate 
dependence, 4.-severe dependence and 5.-death. They do not provide much information 
about how individuals are assigned to each of these states of dependence. According to 
the authors: “The choice of the five-state model is loosely justified by the widespread use 
of a reduced Barthel index, allowing for a general classification of elders in roughly three 
states of dependence, according to the performance achieved in their daily tasks”. 
Transition probabilities are not presented yearly by gender but for different non-uniform 
age intervals.  
At the time of writing this paper we found five citations in the literature for this biometric 
data set and/or the paper in which it was originally used. 

2.1.3.-USA 

2.1.3.1.- Data from Robinson’s (1996) care transition model (CTM) 

The “life transitions” demonstrated by Chandler (2011) using mathematical software 
provided the basic data needed to compute the transition rates between the seven health 
states that make up Robinson’s (1996) care transition model (CTM).  

Based on data from the National Long-Term Care Survey (NLTCS) 1982-89, the seven 
health states contained in this CTM differ according to three variables: (a) the number of 
instrumental activities of daily living (IADLs) impaired, (b) the number of activities of 
daily living (ADLs) impaired, and (c) whether there is "cognitive impairment" (CI).  

In state 𝑎𝑎, the individual has no impaired IADLs, no impaired ADLs and no cognitive 
impairment (i.e. they are able or healthy). In state 𝑑𝑑1 the individual has one impaired 
IADL, no impaired ADLs and no CI. In state 𝑑𝑑2, the individual has one impaired ADL 
and no CI. In state 𝑑𝑑3 the individual has two impaired ADLs and no CI. In state 𝑑𝑑4 the 
individual has three or more impaired ADLs and no CI. In state 𝑑𝑑5 the individual has at 
most one impaired ADL but has CI. In state 𝑑𝑑6 the individual has more than one impaired 
ADL and CI. In state 8 (𝑓𝑓) the individual is dead. 
Robinson’s (1996) CTM and its derivatives have been used in the US insurance industry, 
and particularly in LTC insurance, to calculate premiums and reserves and to perform 
other essential computations (Chandler, 2011).  
This biometric data set and/or the paper in which it was originally used has proven to be 
very popular in the academic literature. At the time of writing this paper, Robinson’s 
(1996) CTM has a total of 61 Semantic Scholar citations, most of them in prestigious 
journals including the American Economic Review, the Journal of Public Economics, the 
Journal of Finance, Insurance: Mathematics and Economics, the Journal of Risk and 
Insurance and the Scandinavian Actuarial Journal. 

2.1.3.2.-Data from Friedberg et al. (2014) 

Friedberg et al. (2014) revised and updated Robinson’s CTM by adding a linear time 
trend. They used data from the 1982-2004 National Long-Term Care Survey (NLTCS) 
and the 1998-2010 Health and Retirement Study (HRS). On the basis of their LTC 
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transition rate parameter estimate (Table 5 in their paper), a new set of health transition 
matrices were built. 

This biometric data set and/or the paper in which it was originally used has a total of 56 
Google Scholar citations, most of them in prestigious journals. 

2.1.4.-Australia 

2.1.4.1.-Data from Hariyanto et al. (2014a, 2014b) 

Hariyanto et al. (2014a, 2014b) estimate transition probabilities between levels of 
disability as defined by the Australian Survey of Disability, Ageing and Carers, produced 
by the Australian Bureau of Statistics for the period 1998-2003. They assume that an 
individual in any state involving core activity limitation can only improve by one category 
over a one-year interval, if and only if they survive the year and do not deteriorate to a 
more severe state of dependence. 

Their model provides five health states: one healthy and four dependent (with core 
activity limitation in their terminology). In state 𝑟𝑟, the individual is able or healthy with 
no activity limitation. 

The four levels of core activity limitation are determined according to whether a person 
needs help with, has difficulty with or uses aids or equipment for any of the core activities 
(communication, mobility and self-care). A person's overall level of core activity 
limitation is determined by their highest level of limitation in these activities. 

In state 𝑑𝑑1, the individual has mild limitations. They need no help and have no difficulty 
with any of the core activity tasks, but they use aids and equipment and cannot easily 
walk 200 meters, cannot walk up and down stairs without a handrail, cannot easily bend 
to pick up an object from the floor, cannot use public transport, can use public transport 
but need help or supervision, or need no help or supervision but have difficulty using 
public transport. In state 𝑑𝑑2, the individual has moderate limitations. They need no help 
but have difficulty with a core activity task. 

In state 𝑑𝑑3, the individual has severe limitations. They sometimes need help with a core 
activity task, have difficulty understanding or being understood by family or friends or 
can communicate more easily using sign language or other non-spoken forms of 
communication, have impaired ADLs and no cognitive impairment. In state 𝑑𝑑4, the 
individual has profound limitations. They are unable to do, or always need help with, a 
core activity task. In state 5 (𝑓𝑓) the individual is dead. 
This biometric data set and/or the paper in which it was originally used has a total of 40 
Google Scholar citations, most of them in prestigious journals including the Journal of 
Population Ageing, the Journal of Pension Economics and Finance, the Multiple Sclerosis 
Journal, Accounting & Finance and Population Studies. 

2.1.5.-China 

2.1.5.1.-Data from Cui et al. (2022) 

Two types of data are used in this study. The first comes from the sixth and seventh waves 
of the Chinese Longitudinal Healthy Longevity Survey (CLHLS) in 2014 and 2017. The 
CLHLS follows the principle of strict random sampling and covers 23 of the 31 provinces 
in China. The second comes from the China Life Insurance Mortality Table, which is used 
to calculate the survival rate for all age groups. 
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To classify dependent people the authors use three indexes – ADLs, IADLs and CI – to 
define four health states corresponding to four levels: health (state 1), health impairment 
(state 2), disability (state 3) and death (state 4). State 1 means no health obstacle in any 
of the three indexes, state 3 is defined as having three or more obstacles in daily activities 
or scoring less than 16 in cognitive function, and the complementary state is defined as 
state 2. 

Using a Markov model with piecewise constant transition probabilities, they provide one-
year state transition matrices by gender and health state for various open-ended age 
intervals. These transition probabilities are a function of the age interval and unrelated to 
the initial age.  
As far as we know at the time of writing this paper, this biometric data set and/or the 
paper in which it was originally used has not been cited in the literature. 

2.2.-Methodology 

2.2.1.- The life expectancy matrix based on the individual’s initial health state 

Healthy life expectancy (HLE) can be estimated using a variety of health attributes, and 
we should bear in mind that its values vary by definition, by measures of health and by 
methods of calculation (Saito et al., 2014). Health expectancy is defined as the “general 
term referring to the entire class of indicators expressed in terms of life expectancy in a 
given state of health (however defined). Health expectancies are hypothetical measures 
and indicators of current health and mortality conditions. Health expectancies include 
both ‘positive’ and ‘negative’ health states, which may be defined in terms of impairment, 
disability, handicap, self-rated health, or other concepts. The sum of health expectancies 
in a complete set of health states should always equal total life expectancy” (Robine, 
2002). 
Health expectancy is thus an analysis of both healthy and unhealthy years of life in which 
health can be defined across various dimensions. Life expectancy can also be divided into 
more than two health states, such as healthy years, mildly disabled and severely disabled 
years, as long as the states involved are mutually exclusive. Commonly used terms for 
healthy years are disability-free life expectancy, active life expectancy, healthy life years 
and healthy life expectancy (Saito et al., 2014). 
The most widely used measure is disability, from which we get disability-free life 
expectancy (DFLE), the most classic of all healthy life expectancy indicators. The 
measurement of disability can vary, however, and indeed does vary considerably from 
one study to another. This means that comparability between some estimates and others, 
even when dealing with the same indicator, cannot be assured (Gutiérrez-Fisac et al. 
2010).  
Three commonly used methods for estimating DFLE (or “healthy life-years”) are the 
Sullivan method, the multistate life table method (MLTM) and the double decrement 
method (DDM) (Imai and Soneji, 2007; Majer et al., 2013; Di Lego, 2021). However, 
they require different kinds of data and can yield different results (Barendregt et al. 1994).  
The simpler Sullivan method estimates health expectancy by combining mortality data 
with external information on cross-sectional prevalence for each health state (Sullivan 
1971). The key idea is to combine the period life table, which is the main way of 
calculating life expectancy, with the age-specific disability prevalence estimated from 
cross-sectional survey data. The Sullivan method simply breaks down the total number 
of person-years lived, which is obtained from the period life table, into disability years 
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and DFLE based on the proportions of time spent with and without disability, which is in 
turn measured from the cross-sectional disability survey (Imai and Soneji, 2007).  

The actuarial approach used to compute the life expectancy of active people broken down 
into healthy and unhealthy life years is clearly linked to the multistate life table method 
(MLTM). Multistate models provide an easy-to-apply procedure for life and health 
insurance contracts, including LTC. Each state represents a particular state for the policy 
holder. The benefits considered in an LCA are associated with sojourns in or transitions 
between states (Denuit et al., 2019). The usual approach to the representation of LTC 
covers is multistate modelling, which is especially valuable for pricing LCAs.  
The double decrement method (DDM) is a special type of MLTM where the only possible 
transition is from disability to death, and thus the probability of remission from any given 
health state is zero. It is used when the disability state is considered irreversible or the 
probabilities of recovery are negligible (Di Lego, 2021). In actuarial terminology this 
method is also known as the “inception and annuity model” (SAS, 2020). 
A multiple state transition model applied to compute annuity rates for LTCI contracts 
describes a subject's movements within a set of various states: active (healthy) (𝑎𝑎), 
disabled (𝑗𝑗 ∈ {1,2, … ,𝑛𝑛}-level dependent) (𝑑𝑑𝑗𝑗 , 𝑗𝑗 ∈ {1,2, … ,𝑛𝑛}) and deceased (𝑓𝑓). 

This discrete-time Markov multistate model takes into account 𝑛𝑛 levels of dependence 
where no more than one transition in a year is assumed, with level 1 being the least severe 
and level 𝑛𝑛 the most. The individual’s health dynamics depend on the reversible illness-
death (RID) model, in which transitions are modelled from the initial healthy state to the 
absorbing death state. The RID model allows recovery from the illness state. 
Considering time to be discrete has the advantage of simplifying the inferential 
procedures for processes with time-dependent transition probabilities because it is easier 
to deal with matrix multiplication than with differential or difference equations with non-
homogeneous coefficients (Lièvre et al., 2003). 
Although the Markov model (like any other) might be accused of oversimplification, for 
models that use variations in state space and intensities, the Markov set-up can deal with 
extremely complex phenomena (Norberg, 2002). 
Figure 1 shows the transitions into and out of the various states that will be considered in 
the model for computing life expectancies based on a multistate model for valuing 
LCAs/LTCI with n levels of disability (Haberman and Pitacco, 1999; Pitacco, 2014; Pla-
Porcel et al., 2017). The relationships denoted by the dotted lines in the diagram represent 
the different paths to the absorbent state. 
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Figure 1: A multistate model for valuing LCAs/LTCI with n levels of disability 

 

Source: Own 

From an actuarial point of view, the model for calculating annuity factors can be seen as 
a multistate non-homogeneous discrete Markov process, {𝑆𝑆(𝑡𝑡), 𝑡𝑡 ∈ ℤ+}, where 𝑆𝑆(𝑡𝑡) is the 
random variable that represents the current state of the process at time 𝑡𝑡 with values in a 
finite state space, 𝒮𝒮 = {𝑎𝑎,𝑑𝑑1, … … ,𝑑𝑑𝑛𝑛,𝑓𝑓}, with just one state at any time along with a set 
of direct possible unidirectional ordered pair transitions: 

𝒯𝒯 =  

⎩
⎪
⎨

⎪
⎧

(𝑎𝑎,𝑑𝑑1), . . (𝑎𝑎,𝑑𝑑𝑛𝑛), (𝑎𝑎, 𝑓𝑓),
(𝑑𝑑1,𝑎𝑎), … , (𝑑𝑑1,𝑑𝑑𝑛𝑛), (𝑑𝑑1,𝑓𝑓),
(𝑑𝑑2,𝑎𝑎), … (𝑑𝑑2,𝑑𝑑𝑛𝑛), (𝑑𝑑2,𝑓𝑓),

… … … … … … …
(𝑑𝑑𝑛𝑛−1,𝑎𝑎), (𝑑𝑑𝑛𝑛−1,𝑑𝑑1), … , (𝑑𝑑𝑛𝑛−1,𝑓𝑓),

(𝑑𝑑𝑛𝑛,𝑎𝑎), (𝑑𝑑𝑛𝑛,𝑑𝑑1) … (𝑑𝑑𝑛𝑛,𝑓𝑓) ⎭
⎪
⎬

⎪
⎫

 

The process is non-homogeneous if we take into account the age of the individuals. 
In this type of model the transition probabilities depend only on the current state of the 
process. Therefore pair (𝒮𝒮,𝒯𝒯) is the multiple state model used. It can be said that this 
framework modelled using Markov assumptions makes it easy to compute relevant 
probabilities and expected values (Norberg, 2002). 
In short, this methodology (see the Technical Appendix) enables us to obtain the 
following life expectancy matrix based on the individual’s initial health state (Table 2). 
The diagonal line of shaded cells in Table 2 shows the life expectancy likely to be lived 
in that same (initial) health state. The last column shows the individual’s total life 
expectancy linked to the initial health state, i.e. each cell in this column is the sum of the 
cells in its corresponding row. 
  

Deceased ( )

Dependent

( )

Dependent

( )

Dependent

( )

Able ( )
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Table 2: Life expectancies at age 𝒙𝒙 broken down into health states 

Initial health 
state 

States 
Total 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 … … …. 𝒅𝒅𝒏𝒏 

𝒂𝒂 𝑒𝑒𝑥𝑥𝑎𝑎𝑎𝑎 𝑒𝑒𝑥𝑥
𝑎𝑎𝑑𝑑1 𝑒𝑒𝑥𝑥

𝑎𝑎𝑑𝑑2 … … …. 𝑒𝑒𝑥𝑥
𝑎𝑎𝑑𝑑𝑛𝑛 𝑒𝑒𝑥𝑥𝑎𝑎 

𝒅𝒅𝟏𝟏 𝑒𝑒𝑥𝑥
𝑑𝑑1𝑎𝑎 𝑒𝑒𝑥𝑥

𝑑𝑑1𝑑𝑑1 𝑒𝑒𝑥𝑥
𝑑𝑑1𝑑𝑑2 … 𝑒𝑒𝑥𝑥

𝑑𝑑1𝑑𝑑𝑛𝑛 𝑒𝑒𝑥𝑥
𝑑𝑑1 

𝒅𝒅𝟐𝟐 𝑒𝑒𝑥𝑥
𝑑𝑑2𝑎𝑎 𝑒𝑒𝑥𝑥

𝑑𝑑2𝑑𝑑1 𝑒𝑒𝑥𝑥+𝑘𝑘
𝑑𝑑2𝑑𝑑2 … … …. 𝑒𝑒𝑥𝑥

𝑑𝑑2𝑑𝑑𝑛𝑛 𝑒𝑒𝑥𝑥
𝑑𝑑2 

… … … .. … .. … .. … … …. … .. … .. 
𝒅𝒅𝒏𝒏 𝑒𝑒𝑥𝑥

𝑑𝑑𝑛𝑛𝑎𝑎 𝑒𝑒𝑥𝑥
𝑑𝑑𝑛𝑛𝑑𝑑1 𝑒𝑒𝑥𝑥

𝑑𝑑𝑛𝑛𝑑𝑑2 … … …. 𝑒𝑒𝑥𝑥
𝑑𝑑𝑛𝑛𝑑𝑑𝑛𝑛 𝑒𝑒𝑥𝑥

𝑑𝑑𝑛𝑛 

Source: Own 

where: 

𝑒𝑒𝑥𝑥𝑎𝑎 is the life expectancy for active people aged (𝑥𝑥). This can be broken down into the 
health states (active or dependent) they can expect to experience. It should be stressed 
that this relationship is only true at the initial age.  

𝑒𝑒𝑥𝑥𝑎𝑎𝑎𝑎 is the dependence-free life expectancy (or “healthy life years”). This indicates how 
many years of their total remaining life an active person aged (𝑥𝑥) can expect to live free 
of activity limitation. 

𝑒𝑒𝑥𝑥
𝑎𝑎𝑑𝑑𝑗𝑗  is the life expectancy for a 𝑗𝑗 ∈ {1,2, . . 𝑛𝑛}-level dependent person. This can be defined 

as the number of years an active person aged (𝑥𝑥) can expect to spend with (𝑗𝑗) ∈
{1,2, . .𝑛𝑛}-level activity limitation.  

𝑒𝑒𝑥𝑥
𝑑𝑑𝑗𝑗  is the life expectancy for a 𝑗𝑗 ∈ {1,2, . .𝑛𝑛}-level dependent person aged (𝑥𝑥). This can 

be broken down into the health states (active or dependent) that they can expect to 
experience. It should be stressed that this relationship is only true at the initial age. 

𝑒𝑒𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖 indicates how many years of their total remaining life expectancy a person aged (𝑥𝑥) 

in state (𝑖𝑖) of dependence can expect to live in the same state of dependence. 

𝑒𝑒𝑥𝑥
𝑑𝑑𝑖𝑖𝑎𝑎 is the life expectancy expected to be spent free of activity limitation for a person 

aged (𝑥𝑥) in state (𝑖𝑖) of dependence. 

2.2.2.- Other lifespan variation indexes: median age at death, the interquartile range 
(IQR) and the (weighted) adult modal age at death. 
There are several indexes for calculating lifespan variation and each has different 
underlying properties (Van Raalte and Caswell, 2013). Median and modal ages at death 
are seldom proposed as measures for studying longevity. The mean age at death, or life 
expectancy, is generally preferred. However, all three measures show central tendencies 
and are therefore important. They complement one another with information on the 
“centre” of the distribution of deaths. (Canudas-Romo, 2010). 

The median age at death, 𝑀𝑀𝑑𝑑, is the age when half of the hypothetical cohort members 
have died, i.e. when the number of people surviving to the exact age of 𝑥𝑥 (𝑙𝑙𝑥𝑥) in any 
health state is equal to half the initial cohort aged 𝑥𝑥𝑒𝑒, 𝑙𝑙𝑀𝑀𝑑𝑑 = 𝑙𝑙𝑥𝑥𝑒𝑒

2
. In our case the cohort is 

aged 65 or older and the health state is able (or with j-level activity limitation). 
The interquartile range (IQR), also known as the middle 50% (Wilmoth and Horiuchi, 
1999), is a measure that equals the distance between the lower and upper quartiles of the 
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age distribution of death in a life table. The measure decreases as age at death becomes 
less variable. The IQR has a twofold appeal as a single measure of variability in the life 
table. Firstly, it is very simple to calculate because it equals the difference between the 
ages where the survivorship curve, S(x), crosses 0.25 and 0.75, and secondly, it is easy to 
interpret as it is the length of the span of ages containing the middle 50% of deaths. 
The adult modal age at death, M, i.e. the age (beyond infancy) at which the largest single 
number of deaths occur, is used as an indicator to analyse mortality disparities at older 
ages. The mode is both a natural measure of the length of life and a good basis for 
measuring its dispersion (Kannisto, 2001). Under a given mortality regime, M represents 
the most common or “typical” length of life among adults (Diaconu et al, 2022).  
When the individuals that form part of a group can exit for reasons other than death (i.e. 
move from one group to another) as in our case, an improvement or worsening of their 
state of health is considered, and therefore the previous indicator needs to be modified. 
Given a starting age and an initial health state (able or disabled), there is a mode for each 
state (𝑀𝑀𝑥𝑥𝑒𝑒

𝑖𝑖𝑗𝑗 ). By taking into account the percentages of deaths in the various states, we get 
the weighted adult modal age at death (𝑀𝑀�𝑥𝑥𝑒𝑒

𝑖𝑖 ). In our setting this new indicator is more 
consistent and informative than the unweighted adult modal age at death, especially in 
relation to life expectancy and the median. 
Life expectancy statistics are hardly ever presented as interval estimates (i.e. with 
confidence bounds). For national-level populations, life expectancy is very accurately 
estimated. Apart from the smallest countries, population size and deaths are large enough 
to ensure that the confidence intervals are so narrow that they become unhelpful and can 
therefore be omitted (Deville et al., 2015). Given that the biometric data we are going to 
use later in this paper do not provide information about deaths and exposures to risk, we 
cannot properly calculate the confidence intervals of life expectancy (Hanley, 2022). 

2.2.3.- Further indicators of mortality and morbidity. 
There are a number of other mortality and morbidity indicators that are very interesting 
from an LTC perspective when analysing biometric data sets. They can give us additional 
information about how realistic the data set is.  

We show the implicit LTC prevalence rate3, 𝜆𝜆𝑥𝑥+𝑘𝑘
𝑗𝑗  – which is the ratio between the number 

of dependent people in dependence level 𝑗𝑗 and the number of individuals aged 𝑥𝑥 + 𝑘𝑘  – 
and the average LTC prevalence rate, �̅�𝜆𝑥𝑥

𝑗𝑗 . The total prevalence rate is a key element in the 
public field, where there is a need to assess how the demand and cost burden of LTC will 
evolve over the coming years under a given set of biometric assumptions. 

We also explore the mortality ratio, 𝛿𝛿𝑥𝑥+𝑘𝑘
𝑗𝑗 , for dependent people aged 𝑥𝑥 + 𝑘𝑘 in dependence 

level 𝑗𝑗. This is the ratio between the mortality rates for dependent people and active people 
and the average mortality ratio (𝛿𝛿�̅�𝑥

𝑗𝑗). Generally speaking, disabled people have a lower 
life expectancy than active people, but the difference in longevity tends to decrease 
notably as individuals get older. However, the real situation is much more complex given 
that the mortality of disabled people basically depends on the cause and severity of their 
disability (Pitacco, 2014; Biessy, 2017). 
Finally, we also show the family of survivorship curves (Mathers, 2002; Cheung et al., 
2005; Ebeling et al., 2018) so as to provide a visual representation of the multistate life 
                                                           
3 From an epidemiological point of view, this can be defined as the ratio between the number of cases of a 
disease divided by the number of exposures to risk in a specific population over a particular period. 
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tables. A survivorship curve indicates, for each age along the x-axis, the proportion of an 
initial cohort that will still be alive at that age. The area below the curve represents life 
expectancy. In our case we will show several survivorship curves indicating life 
expectancy at a given age broken down by health state. 

3.-Results 
The procedure followed in this section is: 
1.-The results are presented by country/authors and summarized in tables or graphs. 
2.-The consistency of the results is studied via a series of questions: Is life expectancy in 
line with what would be expected according to official data and/or other similar studies? 
Is the percentage of time expected to be spent in a dependent health state reasonable? Is 
the mortality of dependents realistic? Is the life expectancy according to health state 
consistent? Is the male-female health-survival paradox fulfilled? Are the resulting age-
specific prevalence rates consistent with the empirical evidence? 
3.-The main weaknesses are highlighted. 

3.2.1.-Spain 

The biometric data from Artís et al. (2007) (Tables 3 and 4 and Figures 2, 3 and 4) have 
a standard structure relating to life expectancy broken down by gender for both the active 
and the dependent population. Life expectancy in both cases is higher for women than for 
men, and the amount of time that an initially active individual might expect to spend in a 
dependent state is also higher for women than for men. Life expectancy in 1999 for active 
individuals at age 65 was higher than that for the general population by a margin of 1.85 
and 1.48 years for men and women respectively. The amount of time likely to be spent in 
a dependent state (22.93% and 26.89% for men and women respectively) is much lower 
than that calculated using the data in Gutiérrez-Fisac et al. (2010) (29.94% and 38.86% 
for men and women respectively for 1999).  

Table 3: Life expectancy matrix in years at age 65 and percentage 
 of life expectancy likely to be spent in each health state  

Gender Males Females 
States 𝒂𝒂 𝒅𝒅𝟏𝟏 Total 𝒂𝒂 𝒅𝒅𝟏𝟏 Total 

𝒂𝒂 13.89 4.13 18.02 15.85 5.83 21.68 
77.07% 22.93% 100% 73.11% 26.89% 100% 

𝒅𝒅𝟏𝟏 --- 8.03 8.03 --- 13.74 13.74 
--- 100% 100% --- 100% 100% 

Source: Own based on data from Artis et al. (2007) 

In this case the structure of longevity for men and women is notably different for 
dependent people. For men, the mode (𝑀𝑀�65𝑖𝑖 ) value is surprisingly low. The mortality ratio 
(between 7 and 9) is in line with that reported by the SOA (2002).  

Table 4: Further indicators of mortality and morbidity 
Gender Males Females 

Indicators/states 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒂𝒂 𝒅𝒅𝟏𝟏 
𝑨𝑨𝒊𝒊 �= 𝟔𝟔𝟔𝟔 + 𝒆𝒆𝟔𝟔𝟔𝟔𝒊𝒊 �3F

4 (years) 83.02 73.03 86.68 78.74 
𝑴𝑴𝒅𝒅𝒊𝒊 (years) 83.27 71.66 87.28 78.34 
𝑸𝑸𝟑𝟑
𝒊𝒊  (years) 88.35 76.76 91.66 84.80 

𝑸𝑸𝟏𝟏
𝒊𝒊   (years) 77.74 67.97 82.32 72.01 

𝑰𝑰𝑸𝑸𝑰𝑰𝟔𝟔𝟔𝟔𝒊𝒊  (years) 10.61 8.79 9.34 12.79 
𝑴𝑴�𝟔𝟔𝟔𝟔

𝒊𝒊  (years) 84.20 65.95 88.35 77.83 
                                                           
4 The average age at death for people still alive at age 65. 
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Table 4: Further indicators of mortality and morbidity 
Gender Males Females 

Indicators/states 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒂𝒂 𝒅𝒅𝟏𝟏 
𝝀𝝀�𝟔𝟔𝟔𝟔𝒊𝒊 % 77.7 22.3 73.74 26.26 
𝜹𝜹�𝟔𝟔𝟔𝟔𝒅𝒅 % --- 8.75 --- 7.28 

Source: Own based on data from Artis et al. (2007) 

The result of the interquartile range (𝑰𝑰𝑸𝑸𝑰𝑰𝟔𝟔𝟔𝟔𝒊𝒊 ) seems to indicate that the female group of 
dependent individuals has greater heterogeneity because, despite the fact that life 
expectancy at age 65 falls from 21.68 to 13.74 years when moving from active to 
dependent, the interquartile range value increases from 9.34 to 12.79 years. This is not 
the same as the pattern observed for men, where the transition from active to dependent 
brings a decrease in both life expectancy and the interquartile range. 
The following figures will help us to verify the demographic coherence and different 
behaviours in mortality and morbidity for both men and women. 

  
Figure 2: Mortality ratios and survivorship curves by health state 

Source: Own based on data from Artís et al. (2007) 

Graph 1 in Figure 2 shows mortality ratios by age and gender (green curve for females 
and yellow for males). The mortality ratio (dependent/healthy population) shows that 
dependent people have a higher (much higher) yearly probability of dying than healthy 
people, but the difference tends to decrease notably as people get older. 
Graph 2 in Figure 2 shows survivorship curves by age, gender and initial health state. 
Active females are represented by the solid green line and males by the dotted green line. 
Black curves represent the total population (active and dependent together). As mentioned 
above, the area below the survivorship curve represents life expectancy. The difference 
between the two curves (for the same gender) expresses the number of years that an active 
individual of a given age will spend in a dependent state.    

  
Figure 3: LTC morbidity rates. 

Source: Own based on data from Artís et al. (2007) 
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Graph 1 in Figure 3 shows the LTC incidence rates5 for active people by age and gender 
(green for females, yellow for males). Both rates increase with age, but the patterns are 
different. At lower ages the incidence rates are higher for men than for women, but after 
a certain age – in this case 85 – the trend reverses and the rates become much higher for 
women than for men.  
Graph 2 in Figure 3 shows the specific LTC prevalence rates by age that would result 
from combining the mortality and incidence rates. As expected, and given that there is no 
possibility of recovery, the rates are particularly high for the very elderly. Up to age 79 
the prevalence rates would be higher for men than for women. 
As Table 4 indicates, between 22.3% (males) and 26.3% (females) of the population aged 
65 and over would be receiving LTC benefits according to the hypothetical (public) 
pension scheme.  
Figure 4 shows the evolution of the synthetic population by age and health states, with 
Graph 1 for women and Graph 2 for men. The proportion of dependent females (dotted 
red lines) by age would reach a peak of nearly 30% (21% for males) of the initial group 
of active people for those aged 84 (80 in the case of males). The number of dependent 
people would exceed the number of active individuals for age groups 86 and 89 onwards 
for females and males respectively.   
 

  
Figure 4: Comparison of population by health state and gender.  

Source: Own based on data from Artís et al. (2007) 

Next we analyse the biometric data from Albarrán-Lozano et al. (2021) (Tables 5, 6 and 
7).  

Table 5: Life expectancy matrix in years at age 65 and percentage of life expectancy 
 likely to be spent in each health state  

States Males Females 
𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 T 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 T 

𝒅𝒅𝟏𝟏 7.16 0.53 0.36 1.06 9.11 6.26 0.53 0.34 0.87 8 
78.59% 5.84% 3.93% 11.63% 100% 78.28% 6.62% 4.19% 10.91% 100% 

𝒅𝒅𝟐𝟐 --- 4.51 0.53 2.06 7.1 --- 6.36 0.85 3.54 10.75 
--- 63.51% 7.46% 29.02% 100% --- 59.16% 7.9% 32.94% 100% 

𝒅𝒅𝟑𝟑 --- --- 3.71 2.38 6.09 --- --- 5.4 2.92 8.32 
--- --- 60.87% 39.13% 100% --- --- 64.88% 35.12% 100% 

𝒅𝒅𝟒𝟒 --- --- --- 5.39 5.39 --- --- --- 6.99 6.99 
--- --- --- 100% 100% --- --- --- 100% 100% 

Source: Own based on data from Albarrán-Lozano et al. (2021) 

                                                           
5 The ratio of new cases of a disease divided by the number of exposures to risk in a specific population 
over a particular period. 
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At first glance, the demographic parameters that result from this data set appear to be 
fairly coherent given the amount of time dependent people will spend in the same state. 
However, there is one piece of information that seems to be clearly inconsistent, insofar 
as women with a 𝑑𝑑1 activity level limitation have a lower life expectancy at age 65 (8.00 
years) than those with a 𝑑𝑑2 activity level limitation (10.75 years). This is not so in the 
case of men. 

It is also striking that for men with a 𝑑𝑑1 activity level limitation, life expectancy at age 65 
is greater (9.11 years) than for women (8 years) with the same level of dependence. 
The data in Table 6 confirm this inconsistency. 

Table 6: Further indicators of mortality and morbidity 

Indicators/states Males Females 
𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 

𝑨𝑨𝒊𝒊 (years) 74.11 72.1 71.09 70.39 73 75.75 73.32 71.99 
𝑴𝑴𝒅𝒅𝒊𝒊 (years) 73.1 70.91 69.79 69.04 72.28 75.6 71.76 70.38 
𝑸𝑸𝟑𝟑
𝒊𝒊  (years) 78.29 75.28 73.78 72.74 75.78 81 77.03 74.81 

𝑸𝑸𝟏𝟏
𝒊𝒊   (years) 68.93 67.73 67.11 66.73 69.14 69.18 68.06 67.40 

𝑰𝑰𝑸𝑸𝑰𝑰𝟔𝟔𝟔𝟔𝒊𝒊  (years) 9.36 7.55 6.67 6.01 6.64 11.82 8.97 7.41 
𝑴𝑴�𝟔𝟔𝟔𝟔

𝒊𝒊  (years) 70.53 68.92 68.35 65.88 72.38 72.08 68.81 65.93 
𝝀𝝀�𝟔𝟔𝟔𝟔𝒊𝒊 % 79.7 5.54 3.73 11.03 79.46 6.23 3.94 10.27 
𝜹𝜹�𝟔𝟔𝟔𝟔𝒅𝒅 % 3.8 3.74 4.69 4.66 12.27 2.81 6.91 6.87 

Source: Own based on data from Albarrán-Lozano et al. (2021) 

Finally, the two graphs presented in Figure 5 below will help us to better understand the 
situation. 

  
Figure 5: Comparison of mortality ratios: dependent people/general population.  

 Source: Own based on Albarrán-Lozano et al. (2021) 

Figure 5 shows the mortality ratios (Graph 1 for females and Graph 2 for males). In this 
case the ratio between the dependent and the general population shows a pattern for 
females – especially for d1 and d2 – that reveals anomalies that are difficult to explain or 
justify. For dependence level 1 (d1), the mortality ratio presents irregularities and 
increases until approximately age 79, then it practically coincides with level d2 from age 
88. The behaviour of the ratio for d2 could be labelled as erratic, with a very pronounced 
decrease during the early years, reaching values of less than one for the age range 72-74. 
Then there comes an inexplicable growth phase until age 87, followed by another 
decrease in the ratio. As can be seen in Graph 2, the profile of the mortality ratio for men 
is fairly standardized except in the later ages, and the ratio decreases according to the age 
reached.  
Figure 6, which partially reproduces the mortality data shown in Table 6, helps us to 
understand the different behaviour observed in both the female group (Graph 1) and the 
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male group (Graph 2). It enables us to clearly visualize the information provided in Table 
6 relating to the interquartile range (IQR), also known as the middle 50%. While in Graph 
2 the representation might be considered to fall within the limits of what could be 
expected, i.e. that an increase in the level of dependence reduces both life expectancy and 
the IQR, in Graph 1 this is not true for level d2, where both life expectancy and the IQR 
increase, indicating more variability and uncertainty. 

  

Figure 6: 𝐼𝐼𝐼𝐼𝐼𝐼65𝑑𝑑 .  

Source: Own based on data from Albarrán-Lozano et al. (2021) 

3.2.2.-Portugal 

The biometric data from Esquivel et al. (2021) (Tables 7 and 8) show both a lower life 
expectancy for the active population (12.78 years) and a relatively small percentage of 
time that they can expect to spend in a state of dependence (36.37%) compared to the data 
provided by Eurostat (2022) for the general population. For 2015, which is the data 
reference year for compiling the homogeneous probability transition matrices, Eurostat 
(2022) estimates a life expectancy of 20 years with 69.50% of total life expectancy spent 
in poor health6. 

Table 7: Life expectancy matrix in years at age 65 and percentage 
of life expectancy likely to be spent in each health state 

States 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 Total 

𝒂𝒂 7.8 3.45 0.81 0.72 12.78 
61.03% 26.99% 6.31% 5.67% 100% 

𝒅𝒅𝟏𝟏 4.89 5.05 0.92 0.92 11.78 
41.52% 42.91% 7.78% 7.79% 100% 

𝒅𝒅𝟐𝟐 3.19 3.02 2.1 1.58 9.89 
32.31% 30.51% 21.19% 15.99% 100% 

𝒅𝒅𝟑𝟑 1.91 1.98 0.99 3.22 8.1 
23.56% 24.4% 12.29% 39.75% 100% 

Source: Own based on data from Esquivel et al. (2021) 

 

Table 8: Further indicators of mortality and morbidity 
Indicators/states 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 

𝑨𝑨𝒊𝒊 (years) 77.78 76.78 74.89 73.09 
𝑴𝑴𝒅𝒅𝒊𝒊 (years) 77.8 76.22 73.26 70.63 
𝑸𝑸𝟑𝟑
𝒊𝒊  (years) 83.53 82.83 80.94 78.16 

𝑸𝑸𝟏𝟏
𝒊𝒊   (years) 71.7 70.17 68.07 66.95 

                                                           
6 The comparisons made throughout the Eurostat study should be considered with great caution, since poor 
health is not necessarily equivalent to being dependent or having activity limitations. 
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Table 8: Further indicators of mortality and morbidity 
Indicators/states 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 
𝑰𝑰𝑸𝑸𝑰𝑰𝟔𝟔𝟔𝟔𝒊𝒊  (years) 11.83 12.66 12.87 11.21 
𝑴𝑴�𝟔𝟔𝟔𝟔

𝒊𝒊  (years) 78.33 74.69 69.02 68.45 
𝝀𝝀�𝟔𝟔𝟔𝟔𝒊𝒊 % 59.45 28.09 6.56 5.9 
𝜹𝜹�𝟔𝟔𝟔𝟔𝒅𝒅 % --- 1.42 2.91 4.52 

Source: Own based on data from Esquivel et al. (2021) 

Esquivel et al. (2021) calculate through simulation that the life expectancy at 65 of active 
individuals is 15.21 years and compare this figure to that of the general population in 
Portugal for 2015. They admit that it is much lower but justify it by saying that "The 
population in the RNCCI system is mostly a population with comorbidities, which induces 
higher mortality and, as a consequence, reduces the life expectancy. We remark that we 
are considering a sub-population of Portuguese individuals that, during 2015, used the 
National Network of Continuing Care.” Certainly the justification would be valid for 
dependent individuals but not for active individuals, and our figure is almost 2.5 years 
lower than that calculated by the authors. 
As far as the life expectancy of people in states of dependence is concerned, we do not 
have the necessary data to estimate whether the figure given would fall within what might 
be considered acceptable, but we can at least say that it has a certain coherence since the 
higher the level of activity limitation the lower the life expectancy. However, the very 
low percentage of time that dependent people with activity limitation 𝑑𝑑3 would be 
expected to spend in that state (39.75%) is surprising, when the rest of the time would be 
spent in states with less limitation. Indeed, for 23.56% of the time they would be 
considered active. This is clearly not in line with what has been observed for other 
European countries, where the possibility of recovery is generally disregarded given the 
prevailing chronic character of LTC disability in most of the severe states of dependence 
(see for example Van der Gaag et al., 2013; Pitacco, 2014 and 2016; Albarrán-Lozano et 
al., 2017). More recently, using Swiss data, Fuino and Wagner (2018) reported very low 
probabilities (less than 0.05%) of recovery transition. 
A similar observation could be made considering populations with levels of activity 
limitation 𝑑𝑑2 and 𝑑𝑑1. 

  
Figure 7: Yearly probability of dying and mortality ratios 

Source: Own based on data from Esquivel et al. (2021) 

Figure 7 shows the yearly probability of dying by age and health state (Graph 1) and the 
mortality ratios (Graph 2). The yearly probability of dying is increasing by age for all the 
health states considered, and the higher the level of dependence, the higher the probability 
of dying by age.  
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In general it can be said that the mortality ratios are relatively low (between 1.42 and 
4.52) and irregular and that the ratios corresponding to dependence levels 𝑑𝑑2 and 𝑑𝑑3 
present a pattern that is difficult to explain, as can be seen in Figure 7, Graph 2. 

  
Figure 8: Population and LTC prevalence rates by health state 

Source: Own based on data from Esquivel et al. (2021) 

Figure 8 shows the evolution of the synthetic population (Graph 1) and the LTC 
prevalence rates (Graph 2), both of them by age and health states. According to Graph 1, 
the proportion of dependent people (solid orange line) by age would reach a peak at 
around 30% of the original group of active individuals (at age 65) once they reach age 
79, when dependent individuals would outnumber active. For the entire range of ages 
considered, the group with the most individuals is always the one with the lowest level of 
dependence 𝑑𝑑1. As can be seen in Graph 2, the prevalence rates for the most advanced 
ages would be relatively high (solid orange line), more than 60% from age 84, but still 
above 40% for age 88 and upwards (dotted red line) in the case of those with dependence 
level 𝑑𝑑1. All this is clearly related to the comments made earlier regarding the high 
recovery rates observed. 

3.2.3.-USA 

Tables 10 and 11 give detailed information about life expectancy broken down into the 
various health states, while Tables 12 and 13 add further mortality and morbidity 
indicators. The diagonal of the matrices (shaded cells) embedded in the tables shows life 
expectancy in years and how much of it is likely to be spent in that same health state. The 
expected number of years allocated to the possible range of health states depends on the 
starting state by age. The data shown for the life expectancy of active individuals (15.35 
years and 19.02 years respectively for men and women) almost coincide with those 
calculated by Crimmins et al. (2016). However, there is a sizeable divergence in the time 
that active individuals are expected to spend in a state of dependence. In Robinson's model 
(1996), active life expectancy is 79.14% and 72.22% of total life expectancy for males 
and females respectively, whereas Crimmins et al. (2016) estimate 49.06% and 52.10% 
for males and females respectively. 

Table 10: Life expectancy matrix in years at age 65 and percentage 
 of life expectancy likely to be spent in each state (males) 

States 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒅𝒅𝟔𝟔 𝒅𝒅𝟔𝟔 Total 

𝒂𝒂 12.15 1.85 0.30 0.12 0.33 0.36 0.24 15.35 
79.14% 12.06% 1.98% 0.75% 2.12% 2.37% 1.57% 100% 

𝒅𝒅𝟏𝟏 4.72 5.87 0.72 0.30 0.93 0.64 0.61 9.88 
37.35% 45.02% 4.62% 1.79% 4.40% 4.16% 2.66% 100% 

𝒅𝒅𝟐𝟐 3.13 3.50 1.12 0.21 0.51 0.39 0.26 9.12 
34.26% 38.42% 12.28% 2.26% 5.64% 4.32% 2.82% 100% 

2.11 2.62 0.64 1.12 0.83 0.33 0.32 7.95 
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Table 10: Life expectancy matrix in years at age 65 and percentage 
 of life expectancy likely to be spent in each state (males) 

States 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒅𝒅𝟔𝟔 𝒅𝒅𝟔𝟔 Total 
𝒅𝒅𝟑𝟑 26.48% 32.89% 7.99% 14.05% 10.38% 4.17% 4.03% 100% 

𝒅𝒅𝟒𝟒 0.81 1.12 0.30 0.36 2.34 0.17 0.33 5.44 
14.94% 20.64% 5.60% 6.61% 42.95% 3.14% 6.12% 100% 

𝒅𝒅𝟔𝟔 2.15 2.63 0.55 0.28 0.80 1.53 0.44 7.95 
25.65% 31.45% 6.54% 3.36% 9.52% 18.26% 5.25% 100% 

𝒅𝒅𝟔𝟔 0.68 0.94 0.25 0.26 1.46 0.24 1.30 5.13 
13.29% 18.33% 4.93% 5.02% 28.43% 4.69% 25.30% 100% 

Source: Own based on data from Robinson’s (1996) care transition model (CTM) 
 

Table 11: Life expectancy matrix in years at age 65 and percentage 
 of life expectancy likely to be spent in each state (females) 

States 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒅𝒅𝟔𝟔 𝒅𝒅𝟔𝟔 Total 

𝒂𝒂 13.76 2.69 0.51 0.21 0.72 0.58 0.59 19.02 
72.22% 14.14% 2.67% 1.08% 3.79% 3.02% 3.09% 100% 

𝒅𝒅𝟏𝟏 4.72 5.87 0.72 0.30 0.93 0.64 0.61 13.79 
34.22% 42.57% 5.19% 2.18% 6.77% 4.67% 4.40% 100% 

𝒅𝒅𝟐𝟐 4.12 4.90 1.41 0.34 1.05 0.63 0.60 13.04 
31.55% 37.58% 10.84% 2.59% 8.05% 4.79% 4.59% 100% 

𝒅𝒅𝟑𝟑 2.91 3.84 0.93 1.33 1.50 0.55 0.68 11.72 
24.80% 32.79% 7.90% 11.30% 12.78% 4.66% 5.77% 100% 

𝒅𝒅𝟒𝟒 1.30 1.96 0.53 0.56 3.44 0.33 0.69 8.83 
14.73% 22.25% 6.03% 6.39% 38.97% 3.78% 7.86% 100% 

𝒅𝒅𝟔𝟔 2.90 3.80 0.81 0.43 1.48 1.82 0.82 12.06 
24.01% 31.49% 6.76% 3.60% 12.23% 15.08% 6.83% 100% 

𝒅𝒅𝟔𝟔 1.12 1.71 0.47 0.44 2.50 0.41 1.79 8.44 
13.28% 20.29% 5.51% 5.25% 29.61% 4.90% 21.16% 100% 

Source: Own based on data from Robinson’s (1996) care transition model (CTM) 
 

Table 12: Further indicators of mortality and morbidity (females) 
Indicators/states 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒅𝒅𝟔𝟔 𝒅𝒅𝟔𝟔 

𝑨𝑨𝒊𝒊 (years) 84.05 78.79 78.04 76.72 73.83 77.06 73.44 
𝑴𝑴𝒅𝒅𝒊𝒊 (years) 84.67 77.76 76.75 74.77 70.99 74.97 70.83 
𝑸𝑸𝟑𝟑
𝒊𝒊  (years) 90.80 85.93 85.54 83.56 78.62 83.65 77.76 

𝑸𝑸𝟏𝟏
𝒊𝒊   (years) 77.78 70.81 69.90 68.94 67.68 69.74 67.61 

𝑰𝑰𝑸𝑸𝑰𝑰𝟔𝟔𝟔𝟔𝒊𝒊  (years) 13.02 15.12 15.64 14.62 10.94 13.91 10.15 
𝑴𝑴�𝟔𝟔𝟔𝟔

𝒊𝒊  (years) 84.73 72.76 72.05 68.48 67.70 68.78 67.91 
𝝀𝝀�𝟔𝟔𝟔𝟔𝒊𝒊 % 71.55 14.51 2.73 1.11 3.87 3.09 3.13 
𝜹𝜹�𝟔𝟔𝟔𝟔𝒅𝒅 % --- 3.32 4.53 4.39 7.22 2.77 7.12 

Source: Own based on data from Robinson’s (1996) care transition model (CTM) 
 

Table 13: Further indicators of mortality and morbidity (males) 
Indicators/states 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒅𝒅𝟔𝟔 𝒅𝒅𝟔𝟔 

𝑨𝑨𝒊𝒊 (years) 80.35 74.88 74.12 72.95 70.44 73.38 70.13 
𝑴𝑴𝒅𝒅𝒊𝒊 (years) 80.60 72.90 71.92 70.77 68.67 71.56 68.57 
𝑸𝑸𝟑𝟑
𝒊𝒊  (years) 86.62 80.53 78.97 76.87 72.67 77.60 71.91 

𝑸𝑸𝟏𝟏
𝒊𝒊   (years) 74.55 68.65 67.83 67.64 66.69 67.88 66.66 

𝑰𝑰𝑸𝑸𝑰𝑰𝟔𝟔𝟔𝟔𝒊𝒊  (years) 12.07 11.88 11.14 9.23 5.98 9.72 5.25 
𝑴𝑴�𝟔𝟔𝟔𝟔

𝒊𝒊  (years) 78.71 68.61 68.19 67.95 67.05 68.25 67.19 
𝝀𝝀�𝟔𝟔𝟔𝟔𝒊𝒊 % 78.46 12.47 2.05 0.77 2.19 2.45 1.62 
𝜹𝜹�𝟔𝟔𝟔𝟔𝒅𝒅 % --- 3.38 4.56 4.48 7.32 2.87 7.20 

Source: Own based on data from Robinson’s (1996) care transition model (CTM) 
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The discrepancies are even greater but in the opposite direction when we look at the 
values provided by Manton and Land (2000), who use the same database and a similar 
period of time (the National Long-Term Care Surveys of older Americans for the years 
1982 to 1996). These authors estimate 94.49% and 94.87% active life expectancy as a 
proportion of total life expectancy for males and females respectively. 

In both tables our attention is drawn to state 𝑑𝑑5 (those unable to perform one ADL and 
with cognitive impairment) because its associated total life expectancy is higher than that 
calculated for states 𝑑𝑑2, 𝑑𝑑3, 𝑑𝑑4 and, logically, for state 𝑑𝑑6 too. At first sight and from an 
epidemiological point of view, it might be said that this observation shows some kind of 
data anomaly because it is known that life expectancy decreases (or should decrease) 
when an individual’s disability state worsens. However, there may not be an anomaly 
(Biessy, 2017) if we consider the French experience, where two types of mortality were 
found in disabled people: the first due to severe illness causing entry into dependence 
with a very short life expectancy, and the second caused by capacity erosion due to age 
and conditions such as dementia, which has a much longer mean duration.  
The mortality ratio (dependent/healthy population) (Figure 10) shows that dependent 
people have a higher (much higher) yearly probability of dying than healthy people, but 
the difference tends to decrease notably as they get older. The extra mortality for 
dependent individuals is very noticeable and the “anomaly” involving the group of people 
labelled 𝑑𝑑5 is clear to see.  

  
Figure 10: Comparison of mortality ratios: dependent/active people  

 Source: Own based on data from Robinson (1996) 

The synthetic LTC prevalence rates by age and gender that would result from combining 
mortality and incidence rates are shown in Figure 11. The rates for the most severe states 
of dependence – 𝑑𝑑5 and 𝑑𝑑6 – would be particularly high for the very elderly (especially 
females). The highest average prevalence rate (�̅�𝜆65

𝑑𝑑1) (see Tables 10 and 11) would be for 
the least severe state of dependence, 12.47% for males and 14.51% for females, whereas 
the lowest would be for dependent people in state 𝑑𝑑3 (�̅�𝜆65

𝑑𝑑3), barely reaching 0.77% for 
males and 1.11% for females. The total average LTC prevalence rate (�̅�𝜆65

𝑑𝑑𝑗𝑗 ) would be 
21.54% and 28.45% for males and females respectively. 
  

1

3

5

7

9

11

13

65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

R
at

io

Age

Mortality ratio (females) 

d1 d2 d3 d4 d5 d6

1

3

5

7

9

11

13

65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

R
at

io

Age

Mortality ratio (males) 

d1 d2 d3 d4 d5 d6



 

21 
 

  
Figure 11: Comparison of LTC prevalence rates. 

Source: Own based on data from Robinson (1996) 

According to the above prevalence rates by age, the total number of dependent people 
would exceed that of the active population from age 87 in males and age 85 in females. 
For males, the least severe level of dependence 𝑑𝑑1 would predominate over the entire 
range of ages considered, while for females it would be the most important up to age 97, 
when level 𝑑𝑑6 would become most predominant. 
Another aspect that stands out in these data is the different range of values observed for 
𝐼𝐼𝐼𝐼𝐼𝐼65

𝑎𝑎/𝑑𝑑 for males and females. In the case of males, the increase in the level of activity 
limitation – apart from that mentioned in the case of 𝑑𝑑5 – implies a decrease in the average 
age of death for people still alive at 65. The same applies to the median, mode and 
𝐼𝐼𝐼𝐼𝐼𝐼65𝑖𝑖 values. For females, however, this is not the case, despite the fact that the increase 
in the level of activity limitation also implies a decrease in the average age of death for 
people still alive at 65, the median, the mode, and the interquartile range value increases, 
which would seem to indicate greater heterogeneity within each group. 

  
Figure 12: Mortality indicators. 

Source: Own based on data from Robinson (1996) 

Finally, Figure 12 shows the mortality indicators for females (Graph 1) and males (Graph 
2). It can be seen that for both groups in the able state, the average age of death for people 
still alive at 65 and the median and the mode have very close values. However, when 
states of dependence are taken into account, the weighted average mode is very close to 
Q1 (and well below the mean and median values) and the mean begins to differ from the 
median, which is higher in all cases. 
Friedberg et al. (2014) revised and updated Robinson’s CTM by adding a linear time 
trend. On the basis of their LTC transition rate parameter estimate (Table 5 in their paper), 
we have built a new set of health transition matrices. 
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Tables 14, 15, 16 and 17 respectively replicate Tables 10, 11, 12 and 13 above, and to a 
certain extent the results are unexpected because life expectancy is shorter, which is not 
in line with the trend observed in the US. Life expectancy there has improved steadily 
and substantially over the period from 1996 to 2014, but at a slower rate than in other 
high-income countries, particularly for women. The data obtained from the Friedberg et 
al. (2014) model also shows a greater amount of time likely to be spent in the same health 
state. 

Table 14: Life expectancy matrix in years at age 65 and percentage 
 of life expectancy likely to be spent in each state (males) 

States 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒅𝒅𝟔𝟔 𝒅𝒅𝟔𝟔 Total 

𝒂𝒂 10.94 1.39 0.23 0.09 0.30 0.23 0.19 13.69 
81.81% 10.42% 1.74% 0.67% 2.23% 1.74% 1.39% 100% 

𝒅𝒅𝟏𝟏 4.10 5.59 0.69 0.29 0.93 0.58 0.59 9.13 
35.66% 46.19% 4.80% 1.86% 4.67% 4.07% 2.75% 100% 

𝒅𝒅𝟐𝟐 2.73 3.26 1.11 0.20 0.51 0.36 0.25 8.43 
32.42% 38.68% 13.22% 2.39% 6.08% 4.27% 2.94% 100% 

𝒅𝒅𝟑𝟑 1.80 2.37 0.62 1.12 0.83 0.30 0.32 7.38 
24.46% 32.19% 8.36% 15.25% 11.28% 4.11% 4.35% 100% 

𝒅𝒅𝟒𝟒 0.68 0.98 0.28 0.34 2.21 0.15 0.34 5.08 
13.29% 19.23% 5.55% 6.76% 45.54% 3.01% 6.62% 100% 

𝒅𝒅𝟔𝟔 1.86 2.40 0.53 0.27 0.79 1.53 0.95 8.33 
22.29% 28.83% 6.34% 3.27% 9.48% 18.38% 11.41% 100% 

𝒅𝒅𝟔𝟔 0.56 0.81 0.23 0.24 1.41 0.22 1.32 4.80 
11.76% 16.89% 4.82% 5.01% 29.39% 4.68% 27.44% 100% 

Source: Own based on data from Friedberg et al. (2014)  

In short, the data obtained from the Friedberg et al. (2014) model show that life 
expectancy for active (and dependent) people would have decreased and that there would 
have been a clear compression of morbidity, which is not in line with the work carried 
out by Freedman et al. (2016), Freedman and Spillman (2016) or Jia and Lubetkin (2020).  

Table 15: Life expectancy matrix in years at age 65 and percentage  
of life expectancy likely to be spent in each state (females) 

States 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒅𝒅𝟔𝟔 𝒅𝒅𝟔𝟔 Total 

𝒂𝒂 12.28 2.23 0.43 0.18 0.71 0.41 0.50 16.71 
73.41% 13.32% 2.55% 1.08% 4.24% 2.44% 2.97% 100% 

𝒅𝒅𝟏𝟏 4.10 5.59 0.69 0.29 0.93 0.58 0.59 12.77 
32.10% 43.75% 5.40% 2.28% 7.21% 4.57% 4.58% 100% 

𝒅𝒅𝟐𝟐 3.54 4.60 1.40 0.33 1.06 0.57 0.58 12.08 
29.34% 38.03% 11.61% 2.75% 8.75% 4.73% 4.81% 100% 

𝒅𝒅𝟑𝟑 2.45 3.52 0.90 1.33 1.52 0.50 0.67 10.90 
22.51% 32.30% 8.24% 12.24% 13.94% 4.58% 6.19% 100% 

𝒅𝒅𝟒𝟒 1.07 1.73 0.50 0.54 3.43 0.30 0.70 8.27 
12.90% 20.97% 6.01% 6.57% 41.44% 3.64% 8.47% 100% 

𝒅𝒅𝟔𝟔 2.46 3.49 0.78 0.42 1.48 1.81 1.33 11.77 
20.88% 29.64% 6.67% 3.60% 12.53% 15.34% 11.34% 100% 

𝒅𝒅𝟔𝟔 0.92 1.50 0.43 0.42 2.45 0.38 1.82 7.92 
11.57% 18.93% 5.43% 5.30% 30.93% 4.86% 17.79% 100% 

Source: Own based on data from Friedberg et al. (2014) 
 

Table 16: Further indicators of mortality and morbidity (males) 
Indicators/states 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒅𝒅𝟔𝟔 𝒅𝒅𝟔𝟔 

𝑨𝑨𝒊𝒊 (years) 78.37 74.13 73.43 72.38 70.08 73.33 69.80 
𝑴𝑴𝒅𝒅𝒊𝒊 (years) 77.81 72.55 71.65 70.59 68.60 70.86 67.95 
𝑸𝑸𝟑𝟑
𝒊𝒊  (years) 84.70 78.75 77.75 75.81 71.91 76.55 71.73 

𝑸𝑸𝟏𝟏
𝒊𝒊   (years) 71.74 68.55 67.76 67.60 66.67 67.84 66.64 
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Table 16: Further indicators of mortality and morbidity (males) 
Indicators/states 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒅𝒅𝟔𝟔 𝒅𝒅𝟔𝟔 
𝑰𝑰𝑸𝑸𝑰𝑰𝟔𝟔𝟔𝟔𝒊𝒊  (years) 12.96 10.2 9.99 8.21 5.24 8.71 5.09 
𝑴𝑴�𝟔𝟔𝟔𝟔

𝒊𝒊  (years) 73.59 68.37 68.01 67.84 66.94 68.16 67.09 
𝝀𝝀�𝟔𝟔𝟔𝟔𝒊𝒊 % 81.12 10.82 1.81 0.70 2.31 1.80 1.44 
𝜹𝜹�𝟔𝟔𝟔𝟔𝒅𝒅 % --- 2.61 3.71 3.66 5.96 2.35 6.14 

Source: Own based on data from Friedberg et al. (2014) 
 

Table 17: Further indicators of mortality and morbidity (females) 
Indicators/states 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒅𝒅𝟔𝟔 𝒅𝒅𝟔𝟔 

𝑨𝑨𝒊𝒊 (years) 81.72 77.77 77.08 75.90 73.27 76.77 72.92 
𝑴𝑴𝒅𝒅𝒊𝒊 (years) 81.81 76.63 75.67 73.87 70.85 74.61 70.69 
𝑸𝑸𝟑𝟑
𝒊𝒊  (years) 88.80 84.57 83.67 81.76 77.62 81.82 76.80 

𝑸𝑸𝟏𝟏
𝒊𝒊   (years) 74.70 70.59 69.73 68.84 67.63 69.63 67.56 

𝑰𝑰𝑸𝑸𝑰𝑰𝟔𝟔𝟔𝟔𝒊𝒊  (years) 14.1 13.98 13.94 12.92 9.99 12.19 9.24 
𝑴𝑴�𝟔𝟔𝟔𝟔

𝒊𝒊  (years) 78.47 71.91 71.20 68.41 67.58 68.77 67.82 
𝝀𝝀�𝟔𝟔𝟔𝟔𝒊𝒊 % 72.65 13.73 2.62 1.11 4.36 2.51 3.03 
𝜹𝜹�𝟔𝟔𝟔𝟔𝒅𝒅 % --- 2.41 3.47 3.39 5.67 2.13 5.79 

Source: Own based on data from Friedberg et al. (2014) 

3.2.4.-Australia 

The structure of the information for Australia is identical to that of the US, but the 
biometric data include only four states of dependence, as can be seen in Tables 18, 19 and 
20. 

Table 18: Life expectancy matrix in years at age 65 and percentage 
 of life expectancy likely to be spent in each state (males) 

States 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 Total 

𝒂𝒂 10.32 2.99 1.38 0.98 1.95 17.62 
58.55% 16.96% 7.84% 5.56% 11.09% 100% 

𝒅𝒅𝟏𝟏 6.28 6.53 1.52 1.06 2.04 17.43 
36% 37.47% 8.71% 6.09% 11.73% 100% 

𝒅𝒅𝟐𝟐 3.26 4.54 5.66 1.25 2.26 16.97 
19.19% 26.76% 33.34% 7.38% 13.33% 100% 

𝒅𝒅𝟑𝟑 1.15 1.94 2.94 5.62 2.13 13.78 
8.35% 14.07% 21.3% 40.82% 15.46% 100% 

𝒅𝒅𝟒𝟒 0.35 0.69 1.13 2.7 5.17 10.04 
3.53%% 6.84% 11.26% 26.86% 51.5% 100% 

Source: Own based on data from Hariyanto et al. (2014) 

 
Table 19: Life expectancy matrix in years at age 65 and percentage  

of life expectancy likely to be spent in each state (females) 
States 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 Total 

𝒂𝒂 11.39 2.32 1.71 1.52 4.07 21.01 
54.25% 11.03% 8.13% 7.22% 19.37% 100% 

𝒅𝒅𝟏𝟏 6.8 6.13 1.93 1.66 4.24 20.76 
32.76% 29.54% 9.28% 7.99% 20.43% 100% 

𝒅𝒅𝟐𝟐 3.44 4.27 5.98 1.96 4.58 20.23 
16.99% 21.12% 29.56% 9.69% 22.64% 100% 

𝒅𝒅𝟑𝟑 1.24 1.9 3.18 6.32 4.55 17.19 
7.21% 11.05% 18.49% 36.76% 26.47% 100% 

𝒅𝒅𝟒𝟒 0.39 0.71 1.29 3.4 8.22 14.01 
2.77% 5.04% 9.23% 24.27% 58.69% 100% 

Source: Own based on data from Hariyanto et al. (2014) 
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These data show that active people in Australia have a higher life expectancy than those 
in the US and are likely to spend a smaller percentage of their life expectancy in the same 
health state. To some extent it is understandable that the life expectancies deriving from 
the data for Australia are appreciably higher than those for the US because they are based 
on much more recent observations. 
The data for the life expectancy of active people (17.62 and 21.01 years respectively for 
males and females) are surprisingly similar to those provided by the Australian Institute 
of Health and Welfare (2014) – to be found in Appendix A, Table A2 for 2003 (the 
reference year for the data in Hariyanto et al., 2004) – which are 17.6 years for men and 
21.00 for women. However, there is some divergence regarding the time that active 
people are likely to spend in a state of dependence. In the Hariyanto et al. (2004) model, 
active life expectancy is 54.55% and 54.25% of total life expectancy for males and 
females respectively, whereas AIHW (2014) report values of 43.18% and 41.90% for 
males and females respectively. 
Tables 18 and 19 clearly show that the so-called “male-female health-survival paradox” 
is verified for this biometric data set, i.e. women have greater longevity than men but are 
likely to spend more time in any state of dependence, irrespective of the initial health 
state.  
From a demographic/epidemiological point of view, the data from Australia are coherent 
because life expectancy decreases when an individual’s disability state worsens. 
However, the mortality ratios (𝜹𝜹�𝟔𝟔𝟔𝟔𝒅𝒅 ) are lower than those shown for the case of the US and 
their time structure (Figure 13) seems well graduated and decreases with age.  

Table 20: Further indicators of mortality and morbidity  

Indicators/states Males Females 
𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒅𝒅𝟒𝟒 

𝑨𝑨𝒊𝒊 (years) 82.62 82.44 81.97 78.78 75.04 86 85.74 85.22 82.19 79 
𝑴𝑴𝒅𝒅𝒊𝒊 (years) 82.77 82.66 81.87 78.53 72.9 86.77 86.65 85.87 82.88 77.98 
𝑸𝑸𝟑𝟑
𝒊𝒊  (years) 88.73 88.65 87.9 85.57 80.77 91.87 91.8 91.61 89.74 86.87 

𝑸𝑸𝟏𝟏
𝒊𝒊   (years) 76.78 76.65 75.88 71.69 67.97 80.88 80.67 79.78 74.74 70.63 

𝑰𝑰𝑸𝑸𝑰𝑰𝟔𝟔𝟔𝟔𝒊𝒊  (years) 11.95 12 12.02 13.88 12.8 10.99 11.13 11.83 15 16.24 
𝑴𝑴�𝟔𝟔𝟔𝟔

𝒊𝒊  (years) 82.10 79.54 79.91 75.04 68.61 87.56 85.70 85.65 80.90 68.31 
𝝀𝝀�𝟔𝟔𝟔𝟔𝒊𝒊 % 57.34 17.45 8.07 5.73 11.42 53.14 11.29 8.33 7.40 19.84 
𝜹𝜹�𝟔𝟔𝟔𝟔𝒅𝒅 % --- 1.00 1.12 2.45 3.10 --- 1.00 1.05 2.29 2.97 

Source: Own based on data from Hariyanto et al. (2014) 
 

  
Figure 13: Comparison of mortality ratios: dependent/active people  

 Source: Own based on data from Hariyanto et al. (2014) 
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The synthetic LTC prevalence rates by age and gender are shown in Figure 14. As in the 
case of the US, the rate for the most severe dependence state 𝑑𝑑4 would be highest for the 
very elderly (especially females). However, unlike for the US, the highest average 
prevalence rate for males (�̅�𝜆65

𝑑𝑑4) (see Table 23) would be in the most severe state of 
dependence at 19.87%, whereas for females it would be in the least severe state of 
dependence (�̅�𝜆65

𝑑𝑑1) at 17.45%. For both males and females, the lowest rate would be for 
dependent people in state 𝑑𝑑3 ( �̅�𝜆65

𝑑𝑑3). The total average LTC prevalence rate (�̅�𝜆65
𝑑𝑑𝑗𝑗 ) would 

be 42.66% and 46.86% for males and females respectively, which would be far higher 
than those calculated for the US.  

 

 
Figure 14: Comparison of mortality ratios: dependent/active people  

 Source: Own based on data from Hariyanto et al. (2014) 

In the case of men, the least severe level of dependence 𝑑𝑑1 would be predominant up to 
age 85, but from then on the highest prevalence rates would be for people at a more severe 
level of dependence (𝑑𝑑4). In the case of females, 𝑑𝑑1 would be the predominant level of 
dependence up to age 78, while from then on the most severe level 𝑑𝑑4would predominate.  
In the case of women, the highest dependence rate (when all levels are included) would 
be reached at age 107, around 97.18%, while for men it would be at age 100, with a total 
rate of dependence of 87.47%. 
With the above rates of prevalence by age, the total dependent population would exceed 
the active population from age 78 in both men and women. 

In contrast to the case of the US, the range of values for 𝐼𝐼𝐼𝐼𝐼𝐼65𝑖𝑖  is very similar for both 
men and women. In the case of males, the increase in the level of activity limitation 
implies a decrease in the average age of death for those still alive at 65, while a decrease 
is also observed in the median and the adult weighted average mode of death. However, 
an increase in the value of 𝐼𝐼𝐼𝐼𝐼𝐼65𝑖𝑖  is also observed, which means a significant increase in 
heterogeneity as far as the death of individuals is concerned. This also occurs in the case 
of females but is even more pronounced than for males, showing a change in value from 
10.99 (a) to 16.24 𝑑𝑑4. 
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Figure 15: Mortality indicators. 

Source: Own based on data from Hariyanto et al. (2014) 

Finally, Figure 15 shows the mortality indicators for females (Graph 1) and males (Graph 
2). It can be seen that for women in the first three states considered – 𝑎𝑎,𝑑𝑑1,𝑑𝑑2  –  the 
values are very similar for the average age of death for people still alive at 65, and for the 
median and the adult weighted average mode age of death. However, when the most 
severe states of dependence are considered, the mode moves away from these values and, 
even in the most severe state of dependence, is below Q1 (and well below the mean and 
median values). For men this behaviour is different, with the mode being close to the 
other two indicators only in the able state. From then on the divergence is more 
accentuated, although it does not fall below Q1 even when the mean and median values 
separate from each other in this particular state. 

 3.2.5.-China 

The structure of this information is identical to the cases of the US and Australia, although 
in the biometric data there are only two states of dependence, as can be seen in Tables 21 
and 22. 
The data shown for active life expectancy (14.24 years and 16.2 years respectively for 
men and women) are slightly lower than those presented for the 1940 cohort by Jiao 
(2019), according to whom life expectancy at age 65 would fluctuate between 16.45 and 
16.65 years for women and 14.74 and 15.06 years for men. For 2015 Zhen et al. (2022) 
estimate a life expectancy of 14.36 and 17.81 years for men and women respectively. 

Table 21: Life expectancy matrix in years at age 65 and percentage  
of life expectancy likely to be spent in each state 

States Males Females 
𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 Total 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 Total 

𝒂𝒂 7.44 4.99 1.81 14.24 5.97 6.44 3.79 16.2 
52.26% 35.03% 12.71% 100% 36.86% 39.76% 23.38% 100% 

𝒅𝒅𝟏𝟏 4.88 6.51 2.13 13.52 4.18 7.55 4.01 15.74 
36.13% 48.18% 15.69% 100% 26.58% 48% 25.42% 100% 

𝒅𝒅𝟐𝟐 3.6 5.2 3.59 12.39 2.93 6.12 5.46 14.51 
29.07% 41.99% 28.94% 100% 20.18% 42.18% 37.64% 100% 

Source: Own based on data from Cui et al. (2022) 

There is more divergence in the time that active people are likely to spend in a state of 
dependence. In the Cui et al. (2022) model, active life expectancy is 52.26% and 36.86% 
of total life expectancy for males and females respectively, whereas Jiao (2019) and Zhen 
et al. (2022) report a range of values between 86.60% and 94.60% for males and 89.44% 
and 96.53% for females as a proportion of total life expectancy. 
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Table 22: Further indicators of mortality and morbidity 

Indicators/states Males Females 
𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 

𝑨𝑨𝒊𝒊 (years) 79.24 78.52 77.39 81.19 80.74 79.5 
𝑴𝑴𝒅𝒅𝒊𝒊 (years) 78.82 77.91 76.82 80.98 80.8 79.71 
𝑸𝑸𝟑𝟑
𝒊𝒊  (years) 84.8 83.98 83.59 86.83 86.74 85.88 

𝑸𝑸𝟏𝟏
𝒊𝒊   (years) 73.73 72.66 70.86 75.76 75.46 72.93 

𝑰𝑰𝑸𝑸𝑰𝑰𝟔𝟔𝟔𝟔𝒊𝒊  (years) 11.07 11.32 12.73 11.07 11.28 12.95 
𝑴𝑴�𝟔𝟔𝟔𝟔

𝒊𝒊  (years) 79.00 73.55 72.50 80.79 81.72 69.10 
𝝀𝝀�𝟔𝟔𝟔𝟔𝒊𝒊 % 50.53 36.30 13.17 34.85 41.02 24.13 
𝜹𝜹�𝟔𝟔𝟔𝟔𝒅𝒅 % --- 1.26 3.50 --- 2.07 4.69 

Source: Own based on data from Cui et al. (2022) 

As we saw with the biometric data sets for other countries, Tables 19 and 20 again reflect 
the so-called “male-female health-survival paradox”. The paradox is verified for this data 
set, although in this case the large proportion of time that both men and women in 
dependence level 𝑑𝑑2 would likely spend in better health states is striking. In the case of 
men, 71.06% of life expectancy would be in a better level of activity limitation, while for 
women it would be 62.36%.  
From a demographic/epidemiological standpoint, the data for China are apparently 
coherent because life expectancy decreases when an individual’s disability state worsens. 
However, the mortality ratios (𝜹𝜹�𝟔𝟔𝟔𝟔𝒅𝒅 ) are lower than those shown for the US and higher than 
those for Australia, although the comparison is not entirely reliable because there are only 
two levels of dependence as opposed to 6 and 4 in the US and Australia respectively. The 
mortality ratio by age (Figure 16, Graph 1 for females and Graph 2 for males) shows large 
irregularities for some sections that are very difficult to understand and justify. 
Inexplicable jumps occur for both males and females.  

  
Figure 16: Comparison of mortality ratios: dependent/active people  

 Source: Own based on data from Cui et al. (2022) 

The synthetic LTC prevalence rates by age and gender are shown in Figure 17. The 
highest average rate for males and females (�̅�𝜆65

𝑑𝑑1) (see Table 20) would be for the least 
severe state of dependence at 36.60% and 41.42% for males and females respectively. 
The total average rate (�̅�𝜆65

𝑑𝑑𝑗𝑗 ) would be 49.47% and 65.15% for males and females 
respectively, which is far higher than the figures calculated in the case of Australia.  
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Figure 17: Comparison of mortality ratios: dependent/active people  

 Source: Own based on data from Cui et al. (2022) 

In the case of men, the least severe level of dependence 𝑑𝑑1would be predominant up to 
age 90, while for women it would be the most prevalent level up to age 82, with 𝑑𝑑2 
predominating from then on. 
In the case of women, those aged 83 and over would already have an LTC prevalence rate 
of over 90%, while for men this level would be reached at age 87. The highest dependence 
rate (for all levels) would be attained at age 100, being 96.18% and 99.44% for males and 
females respectively. 
According to the previous rates of LTC prevalence by age, the total number of dependent 
people would be greater than the active population after age 76 for men and age 70 for 
women. 

Like we saw in the case of Australia, the range of values for the 𝐼𝐼𝐼𝐼𝐼𝐼65𝑖𝑖  is very similar for 
both men and women (Table 22). The increase in the level of activity limitation means a 
decrease in the average age of death for people still alive at age 65, and also for the median 
and the mode. However, an increase in the 𝐼𝐼𝐼𝐼𝐼𝐼65𝑖𝑖  value is observed, which means a 
significant increase in heterogeneity as regards individuals’ deaths.   

  
Figure 18: Mortality indicators. 

Source: Own based on data from Cui et al. (2022) 

Finally, Figure 18 shows the mortality indicators for females (Graph 1) and males (Graph 
2). We can see that the main difference between them is the value of the mode in the 
active state. The average age of death for people still alive at 65 and the median and the 
mode have similar values. However, although the value of the mode for women remains 
close to the other two indicators in 𝑑𝑑1, in 𝑑𝑑2 it decreases sharply and reaches a value lower 
than Q1. The divergence in the case of men can already be observed in 𝑑𝑑1, but in 𝑑𝑑2 the 
mode stays clearly above the level of Q1. The explanation for the different mode values 
by gender lies in the average number of deaths in each state. It should be remembered 
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that the value is calculated as an average of the mode levels reached in each of the states 
separately (formulas 19 to 23 in the Technical Appendix). 

3.2.6.-Summary 

The analysis carried out in the previous sub-sections showed that the biometric data sets 
have several weaknesses that we summarize in Table 23. 

Table 23: Main weaknesses of the biometric data sets selected 
Data set Weaknesses 

Artís et al. (2007) 

There is only one level of dependence. 
US data are used to model the mortality of dependent individuals. 
The amount of time likely to be spent in a dependent state is nowhere 
near the figures estimated in official statistics. 

Albarrán-Lozano 
et al. (2021) 

This data set does not contain any information about active people. It 
deals only with dependent people. 
Anomalies in life expectancy are detected depending on the level of 
dependence. 
Mortality ratios for females present irregularities that are difficult to 
explain. 

Esquivel et al. 
(2021) 

Lower life expectancy for the active population and a relatively small 
amount of time that active people are likely to spend in a state of 
dependence. 
Incomplete definition for the classification of dependent individuals and 
no breakdown by gender. 
High recovery rates. 
Low mortality ratios with inexplicable irregularities. 
Lack of graduation in incidence and mortality rates. 
Very high prevalence rates for people in the least severe level of 
dependence. 

Robinson (1996) 

Different levels of heterogeneity at the same level of dependence for 
males and females. 
Big differences in the amount of time likely to be spent in a dependent 
state when compared to the official statistics and/or similar 
investigations. 

Friedberg et al. 
(2014) 

Same characteristics as the data in Robinson (1996) above. 
Lower life expectancy for active and dependent people and some 
compression of morbidity when official statistics present opposing 
trends. 

Hariyanto et al. 
(2014a, 2014b) 

People in any state of core activity limitation can only improve by one 
category over a one-year interval. 
Very high prevalence rates. 

Cui et al. (2022) 

Only two states of dependence. 
Unhealthy life expectancy very high in comparison with other recent 
studies. 
High recovery rates. 
The mortality ratio presents sizeable irregularities for sections that are 
very difficult to understand and justify. We see inexplicable jumps for 
both males and females. 
Lack of graduation in incidence and mortality rates. 
Very high prevalence rates. 

Source: Own elaboration 
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The above table shows how difficult it is to build the biometric data sets needed to carry 
out an actuarially fair valuation7 of the prices for LTCI and LCA contracts. 
It has long been known in LTC insurance that constructing bases of experience adapted 
to Markov or semi-Markov models is a delicate exercise due to the low volumes observed 
by insurers up to now and also due to the evolving nature of the field. The construction 
process becomes more complex as the number of considered states increases and when 
reversible states exist (Guibert and Planchet, 2019).  
Choosing which mortality table to use has a crucial impact on the pricing, reserving and 
management of LTC portfolios. Tomas and Planchet (2013) and Planchet and Tomas 
(2016) show that the construction of such tables is a difficult exercise given that the 
mortality law for LTC claimants consists of a mixture of pathologies, LTC portfolios are 
relatively small and the estimation of crude death rates is very volatile. 

4.-Discussion 
From an LTC insurance perspective, HLE and life expectancy with activity limitation are 
key indicators and we are therefore very interested in the biometric assumptions made by 
the LTC insurance scheme’s insurer or sponsor. Including information by breaking down 
life expectancy by health state is invaluable for illustrating the actuarial calculations used 
to price LTCI in general and LCAs in particular.  
According to the equivalence principle used in insurance, the expected present values of 
premiums and benefits should be equal. Roughly speaking, therefore, premiums and 
benefits will balance on average (Norberg, 2002). The main assumptions to be made when 
pricing LTCI are (Denuit et al., 2019; Dickson et al., 2019; Pitacco, 2014, 2016; SAS, 
2020; SOA, 2016):  

• longevity (the yearly rates of survival by age and health state);  

• morbidity/incidence rates (transition rates by age and gender from the healthy state to 
the different states of dependence);  

• recovery rates (transition rates by age and gender to better health states);  

• specific, detailed insurance data on health and living with illness. However, where the 
LTCI market is small or the national commercial insurance data needed for estimating 
premiums are unavailable, national health statistics can be a viable starting point for 
insurance ratemaking purposes, even if they cover the general population, are 
aggregate and reported at irregular intervals (Baione and Levantesi, 2014 and 2018); 

• lapse rates (although they may not apply to mandatory public schemes8 or contracts 
where premiums are paid as an upfront (lump sum) payment);  

• the interest rate (technical interest rate or wage bill growth depending on how LTC is 
financed: full funding or pay-as-you-go);  

• the loading for expenses on acquisition (with agents’ commission being the biggest 
expense in this category and medical examination costs in the case of LCAs, given 
that entitlement to LTC benefits depends on the result of a mandatory medical 

                                                           
7 A pricing scheme is "actuarially fair" if each insured individual pays a price for coverage that is equivalent 
to the risk they pose of having to draw from the insurance pool, given the available information at the 
inception of the contract.  
8 Compulsory LTCI has been introduced in Luxembourg, Singapore, Germany, Japan and the Republic of 
Korea. The Netherlands uses a mix of compulsory LTC and health insurance (Barber et al., 2021; SAS, 
2020; Pla-Porcel et al., 2016). 
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assessment when the insured person makes a transition from one health state to 
another), collection and administration;  

• inflation protection (especially relevant when the benefits claimed involve 
reimbursement or are linked to inflation and/or the indexation rate); and  

• indexation of benefits in payment.  
Why, then, are we so interested in LCAs? The uncertainty surrounding the need for LTC 
services presents a significant challenge in retirement planning. Preparing for the possible 
costs of future impairment and LTC is a task that everyone has to confront as they get 
older. The probability of losing physical functioning increases dramatically with age and 
is therefore a highly relevant consideration for the population aged 65 and above. 
According to the biometric data set for Australia that we analysed, for example, between 
42.66% (males) and 46.86% (females) of the over-65s will become care dependent to 
some extent. As regards the very elderly, the proportion of people aged 85 and above 
requiring LTC is expected to be between 73.88% (males) and 79.71% (females). 
To give another example, according to Robinson’s (1996) model that was used in the 
American insurance industry, for a healthy 65-year-old man, the probabilities of needing 
LTC services when he reaches the ages of 70, 80 and 90 are 8.39%, 30.91% and 60.75% 
respectively, whereas for a healthy woman at the same age the probabilities are 10.19%, 
31.32% and 64.37%. These figures are fairly close to those provided by AALTCI, 2022. 
Using a more restricted definition of the situation of dependence9 than that used under 
Robinson’s (1996) care transition model (CTM), AALTCI (2022) reports that for a 
woman (man) who is currently age 65, the probabilities of needing LTC at the ages of 70, 
80 and 90 are 5.60% (5.30%), 27.20% (24.30%) and 58.30% (51.10%) respectively.  
LCAs have several advantages. First, combining LTCI and life annuities would reduce 
adverse selection for the annuity portion, resulting in lower premiums and allowing the 
relaxation of underwriting standards for the LTCI portions. Second, LCAs would allow 
people to delay the purchase of LTCI until closer to retirement, which would have the 
further benefit of allowing insurers to better account for trends in disability, longevity, 
investment returns and other sources of risk in designing and pricing policies. The cash-
for-care benefit in a combined annuity has the potential to simplify choices and reduce 
uncertainty about future benefits, which are two frequently cited reasons for explaining 
the low market penetration of conventional LTCI. Finally, if the individual has an existing 
health issue, they might find it easier to be approved for an annuity with an LTC rider 
instead of a stand-alone LTCI. This is a very important point, given that Cornell et al. 
(2016) show that in the target age range (50-71 years), approximately 30% of those whose 
wealth meets minimum industry standards for suitability for LTCI would have their 
applications rejected for this type of insurance at the underwriting stage10.  
In short, an LCA is different from a stand-alone LTCI in various ways. With LTCI, the 
individual is buying an insurance policy specifically for LTC and they might pay a 
premium upfront or at regular intervals. Once they need LTC, the policy can be paid out 
monthly or on a lump-sum basis to help with the costs. LTCI doesn’t have the growth 
component that an LCA would have. Another key difference is that if the policyholder 

                                                           
9 Care need is defined as being unable to perform two or more of the six ADLs (bathing, continence, 
dressing, eating, toileting and transferring) or being “severely cognitively impaired”. 
10 “Your money pays for LTCI, but it's your health that really buys it. Insurers decline nearly half of those 
who apply after the age of 70" explains Jesse Slome, director of the American Association for LTCI. 
(AALTCI, 2022)  
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does not ultimately need LTC, they will not have their premiums returned unless they 
purchase a return-of-premium rider. With an LCA, the annuitant could still receive 
annuitized payments even if they do not use the benefits from the LTC rider. In other 
words, this is a form of guaranteed income that the annuitant can use for LTC if needed 
or for other expenses in retirement. 
In those countries for which the data sets have been analysed, the private LTCI market 
either does not exist or is very small. In Portugal and Spain, for example, the markets for 
LTCI are still underdeveloped. In Spain, the number of individual LTCI policies in force 
is almost negligible, less than 60,000 in 2021 (DGSFP, 2022). Private LTCI is not 
currently available in Australia (NSPAC, 2013; Sherris, 2022), and in China the LTC 
insurance market is still at an early stage of development. Policy and regulation need to 
be improved before the market can enter a phase of high growth (Swiss Re, 2022). The 
private LTCI market in the US had a promising start at the beginning of the 80s, but is 
now in a downturn. 
A series of papers by Brown and Finkelstein (2007, 2008, 2009) provided evidence of the 
relatively high loading factors used in the private LTCI market in the US, particularly for 
men. The authors concluded that, for the typical policies purchased, the premiums were 
marked up substantially higher than the expected benefits. As we will see, however, the 
evolution of the market does not appear to bear this out. The LTCI premium rates 
developed by insurers from at least 10 years ago have generally turned out to be 
underpriced, and therefore many premium rate increases have been filed in this area 
(AAA, 2018). Given that liabilities from LTCI (which depend on future morbidity and 
mortality) are very volatile, it is not surprising that premiums (especially in the form of 
regular premium payments) on many policies in the US private market are subject to 
increases based on claims experience.  
By 2014 the average policy premiums (for the same benefits) had increased by 215% of 
the premiums charged in 2000 (AAA, 2016). The variability of insurance premiums 
means that some of the spending risk of unknown LTC expenditure is transferred back to 
the policyholder. This means they participate in the risk of increased LTC costs or in 
claims that exceed those anticipated in the underwriting process (Pfau and Finke, 2016). 
Indeed, in the US the issue of increased LTC premiums is a nationwide trend11. Most 
insurance companies underestimated the cost of paying claims and overestimated the 
number of people cancelling policies. When original LTCI policy forms were issued in 
the 1980s and 1990s, morbidity assumptions were often based on statistics for the general 
population, while lapse and mortality assumptions were based on experience with non-
LTC insurance products. Inadequate medical underwriting was another source of 
deviation (AAA, 2018). 
Insurance companies are forced to adjust premiums to compensate for inaccurate pricing 
assumptions to ensure there are enough reserves to pay LTC claims under each plan. If 
rates were not increased, the insurance carriers could run into financial trouble, leaving 
them unable to pay claims. The result of all this along with other reasons that go beyond 
the scope of this paper is that the number of individual LTCI policies sold in the US 
declined to 49,000 in 2020 (USDT, 2020). This was after they increased from 380,000 in 
1990 to a peak of 754,000 in 2002. The number of companies offering policies fell and 
many faced financial problems (OECD, 2020). According to the National Association of 
                                                           
11 The history of requested and approved LTCI rate increases for companies currently underwriting LTCI 
in the US is constantly being updated and can be consulted online: 
https://longtermcareinsurancepartner.com/resources/long-term-care-insurance-rate-increase-history 

https://longtermcareinsurancepartner.com/resources/long-term-care-insurance-rate-increase-history
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Insurance Commissioners (NAIC), the number of insurers offering LTCI coverage has 
fallen from just over 100 in 2004 to around a dozen in 2021. Between 2012 and 2021 the 
number of individuals with an active or “in-force” stand-alone LTCI policy12 declined 
from 7.2 million to 5.3 million (AALTCI, 2022). The continuous reduction in the number 
of LTCI policies sold and the declining size of the market could to some extent be a result 
of the very high prevalence of bad experiences undergone by policy-holders due to 
premium increases, which in turn has led to a lessening of trust in insurance companies 
(Courbage and Nicolas, 2021).   
Now that we have analysed the data sets, we will briefly consider the most relevant 
aspects to be taken into account for each country if we were to determine the actuarially 
fair price of an LCA by looking only at the biometric aspect of pricing. 
Spain: Judging by the data in Artís et al. (2007), it is obvious that women would have to 
pay a higher price than men for each benefit unit because more of them would become 
dependent (higher prevalence rates in the case of women) and payouts would be more 
expensive (higher life expectancy in women). The main drawback would be that 
distinctions could not be made by levels of dependence, and the biometric data would 
need to be updated and deal exclusively with the case of Spain. 
The biometric data in Albarrán-Lozano et al. (2021) have the disadvantage of lacking 
information on the probabilities of transition from active to dependent and are therefore 
not very useful for assessing an LCA. Nevertheless, including them in this work is 
interesting since they could be used to value “special-rate annuities”, and in particular the 
“enhanced pension annuity (EPA)”13.   

Portugal: Using the data in Esquivel et al. (2021) it is not possible to distinguish between 
men and women. The data show a low life expectancy (compared to that of the general 
population) as a healthy (active) and dependent individual, a small amount of time likely 
to be spent in a state of dependence, and a preponderance of the least severe level of 
dependence 𝑑𝑑1compared to the rest, which means that using these biometric data would 
result in a clear underestimation of LCA premiums. 
USA: Using the biometric data in Friedberg et al. (2014) would result in a clear decrease 
in the price of LCAs with respect to the Robinson (1996) model, given that life 
expectancies are lower for both active and dependent people, and also the number of 
active and dependent survivors would be lower. 
Australia: Prices would be much higher than in the US. This would be due to greater life 
expectancy for both active and dependent individuals, along with a greater proportion of 
life expectancy spent in states of dependence. 
China: Using the data in Cui et al. (2022) would result in a clear overestimation of LCA 
premiums because of the very high prevalence rates reported. 
To conclude this section, we should ask ourselves whether it should be compulsory to 
disclose information about the HLE and the other longevity risk and morbidity indicators 
used in the technical bases for computing LTCI and/or LCA premiums? 
In the world of science and engineering, a black box is a device, system or object that can 
be viewed solely in terms of its input and output without the user knowing how it works. 
                                                           
12 American Association for Long-Term Care Insurance, 2022, https://www.aaltci.org/ 
13 The enhanced life annuity pays an income to a person with lower life expectancy, in particular because 
of a personal history of medical conditions. The “enhancement” in the annuity benefit (compared to a 
standard-rate life annuity, same premium) naturally comes from the use of a higher mortality assumption. 

https://content.naic.org/sites/default/files/inline-files/2019_CIPR_LTCI%20Brief.pdf
https://www.aaltci.org/
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Individuals or couples who are interested in purchasing LTCI or an LCA in particular 
might feel they are up against something similar. For them, a black box could be the 
actuarial calculation done to compute the premium for an LCA. The actuarial black box 
can be defined as a situation in which the actuarial analysis has not been adequately 
explained to its users (Gutterman, 1996). This might be due to the use of a complicated 
actuarial model, a lack of understanding of what the actuary does, or simply poor 
communication. 
The market for individual LTC products would greatly benefit from the elimination of as 
many of these black boxes as possible. We could start to eliminate them by disclosing 
more information about the biometric assumptions made to compute the premiums and 
by spending more time with possible purchasers to explain the meaning of concepts such 
us life expectancy, healthy life expectancy, and longevity and morbidity risks. Fuino et 
al. (2022) find that factors relating to the awareness and understanding of LTC are 
extremely relevant when purchasing LTCI. Boyer et al. (2020) suggest that to spark an 
interest in buying LTCI policies it is essential to make the population aware of the 
frequency and severity of the risk insured, and also to provide a clear explanation of the 
benefits that come from having an LTCI policy. 
In short, our analysis and its associated data could provide very useful information to help 
individuals or couples to understand the need to be protected against the cost of requiring 
LTC services. It would also make the computation of the actuarial factors more 
transparent (Ventura-Marco et al., 2022). This information could also be embedded in 
retirement calculators and other tools used by financial advisors (Hurwitz et al., 2022). 
This is in line with the proposal to increase the transparency of complex products and 
strategies during the decumulation phase (Bär and Gatzert, 2022). 

5.-Conclusions and future research 
From the beginning of this research, the authors were fully aware of how difficult it would 
be to compare the health and demographic indicators deriving from the various data sets 
analysed. Nevertheless, we believe that the paper's aims have been reasonably achieved 
given that the five basic research questions have been answered. 
The methodology used to obtain the life expectancy matrix based on an individual’s initial 
health state plus the analysis carried out has enabled us to show various health and 
demographic indicators to help assess the coherence and quality of the different data sets 
analysed. These indicators are rarely presented when authors build their biometric data 
sets nor when they are used to calculate LTCI or LCA premiums, nor when they are used 
in research articles to estimate the future demand for LTC services in a particular country. 
The data sets analysed confirm the existence of the so-called “male-female health-
survival paradox”. Intensive research performed in recent decades has made it clear that 
the extent of and trends in mortality differences between women and men are caused by 
a complex combination of biological factors and acquired risks. In contrast to the situation 
regarding mortality differences, there is still no conclusive understanding of the reasons 
for the contradictory picture of higher female morbidity rates (Di Lego et al., 2020). 
The construction of biometric data sets is a difficult task, particularly when more than one 
state of dependence is considered along with the recovery assumption. Bearing in mind 
that insurers have so far dealt with only a low volume of cases, that the nature of the 
situation is constantly evolving, that the mortality law for LTC claimants consists of a 
mixture of pathologies, and that the estimation of crude death rates is very volatile, it is 
not surprising that we found a number of flaws in the data sets analysed. 
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The main weaknesses are the following: 

• Low number of dependence states (Artis et al., 2007; Cui et al., 2022). 

• Big differences in the amount of time likely to be spent in a dependent state when 
compared to official statistics and/or similar investigations (Artis et al, 2007; Esquivel 
et al., 2021; Robinson, 1996; Friedberg et al., 2014; Cui et al., 2022). The use of very 
different methodologies (prevalence-rate versus incidence-rate models) and varying 
definitions of disability and age in the samples across studies is one of the reasons for 
the differences in the observed results14.  

• Anomalies in life expectancy depending on the level of dependence (Albarrán-Lozano 
et al., 2021). 

• High recovery rates (Esquivel et al., 2021; Cui et al., 2022). 

• Lack of graduation in incidence and mortality rates (Esquivel et al., 2021; Cui et al., 
2022). 

• Mortality ratios with large irregularities that are very difficult to understand and 
justify (Albarrán-Lozano et al. 2021; Esquivel et al., 2021; Cui et al., 2022). 

• Very high prevalence rates (Hariyanto et al., 2014a, 2014b; Esquivel et al., 2021 
(people in the least severe level of dependence); Cui et al., 2022). 

• Low life expectancy for the active population (Esquivel et al., 2021; Friedberg et al., 
2014). 

In short, despite the fact that all the biometric data sets we have analysed have their own 
problems, we would say that the most coherent from a demographic and epidemiological 
standpoint are those in Hariyanto et al. (2014a, 2014b) and Robinson (1996). On the basis 
of all the information we have analysed, the data sets with the most consistency problems 
would be Esquivel et al. (2021) and Cui et al. (2022).  
For all these reasons it is no surprise that insurance companies are becoming less willing 
to provide LTCI and LCA contracts, since there is a big problem with the biometric aspect 
when it comes to calculating actuarially fair premiums with any degree of certainty. In 
those countries (except the US) whose data sets we have analysed, the market for this 
type of product is either non-existent or underdeveloped. 
From the point of view of potential purchasers of this type of insurance product, the 
disclosure of the summary health/longevity measures used in the technical bases to 
compute LTCI and LCA premiums would help them to understand the need to be 
protected against the cost of requiring LTC services and also make the computation of 
the actuarial factors transparent. This information could also be embedded in the 
retirement calculators and other tools used by financial advisors, given that many people 
are simply unaware of longevity (and morbidity) risks. 
Finally, it could be said that LTCI is one of the least secure insurance products for the 
insured person since the periodic increases in premiums clearly distort the traditional 
concept of insurance. Seen from this perspective, LCAs are certainly better for the 
annuitant because the premium is generally paid as a lump-sum when the individual is 
close to retirement. 

                                                           
14 The complexity of this issue clearly goes beyond the scope of this paper. 
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Future research could extend the analysis carried out in this paper to other biometric data 
sets that we initially excluded for various reasons, such us the difficulty of collecting all 
the necessary data or because they did not use a Markovian structure.  

6.-References 
Albarrán-Lozano, I., Alonso-González, P.J. and Arribas-Gil, A. (2017). Dependence 
evolution in the Spanish disabled population: a functional data analysis approach. Journal 
of the Royal Statistical Society, Series A, 180(2), 657-677. 
https://doi.org/10.1111/rssa.12228. 
Albarrán-Lozano, I.; Alonso-González, P.J. and Núñez-Velázquez, J.J. (2021). 
Estimation of Life Expectancy for Dependent Population in a Multi-State Context. Int. J. 
Environ. Res. Public Health, 18(21), 11162. https://doi.org/10.3390/ijerph182111162 
American Academy of Actuaries (AAA) (2016). Understanding Premium Rate Increases 
on Private Long-term Care Insurance. Issue Brief 
https://www.actuary.org/content/understanding-premium-rate-increases-private-long-
term-care-insurance 
American Academy of Actuaries (AAA) (2018). Long-Term Care Insurance: 
Considerations for Treatment of Past Losses in Rate Increase Requests. Issue Brief 
https://www.actuary.org/content/long-term-care-insurance-considerations-treatment-
past-losses-rateincrease-requests 
American Association for Long-Term Care Insurance (AALTCI). (2022). Long-Term 
Care Insurance Facts - Data - Statistics - 2022 Reports. www.aaltci.org 
Artís, M., Ayuso, M., Guillén, M., and Monteverde, M. (2007). Una estimación actuarial 
del coste individual de la dependencia en la población de mayor edad en España. 
Estadística Española, 49(165), 373-402. 
Australian Institute of Health and Welfare (AIHW) (2014). Healthy life expectancy in 
Australia: patterns and trends 1998 to 2012. 2014. Bulletin 126. 
https://www.aihw.gov.au/reports/life-expectancy-death/healthy-life-expectancy-in-
australia-patterns/formats 
Baione, F. and (2018). Pricing Critical Illness Insurance from Prevalence Rates: 
Gompertz versus Weibull. North American Actuarial Journal, 22(2), 270-288, 
https://doi.org/10.1080/10920277.2017.1397524 
Baione, F., and Levantesi S. (2014). A Health Insurance Pricing Model Based on 
Prevalence Rates: Application to Critical Illness Insurance. Insurance: Mathematics and 
Economics, 58, 174–184  https://doi.org/10.1016/j.insmatheco.2014.07.005 
Bär, M and Gatzert N. (2022). Products and Strategies for the Decumulation of Wealth 
during Retirement: Insights from the Literature. North American Actuarial Journal, First 
Published online: 05 Aug 2022. https://doi.org/10.1080/10920277.2022.2078374 
Barber SL, van Gool K, Wise S, Woods M, Or Z, Penneau A et al. (2021). Pricing long-
term care for older persons. Geneva: World Health Organization, Organisation for 
Economic Co-operation and Development; 2021. Licence: CC BY-NC-SA 3.0 IGO. 
Barendregt, J. (2002). Incidence- and prevalence-based SMPH: making the twain meet. 
Chapter 4.4. in Murray CJL, Salomon JA, Mathers CD, Lopez AD, (2002). World Health 
Organization. Summary measures of population health: concepts, ethics, measurement 
and applications [Internet]. Geneve: WHO. 2002 
https://apps.who.int/iris/handle/10665/42439 

https://doi.org/10.1111/rssa.12228
https://doi.org/10.3390/ijerph182111162
https://www.actuary.org/content/understanding-premium-rate-increases-private-long-term-care-insurance
https://www.actuary.org/content/understanding-premium-rate-increases-private-long-term-care-insurance
https://www.actuary.org/content/long-term-care-insurance-considerations-treatment-past-losses-rateincrease-requests
https://www.actuary.org/content/long-term-care-insurance-considerations-treatment-past-losses-rateincrease-requests
http://www.aaltci.org/
https://www.aihw.gov.au/reports/life-expectancy-death/healthy-life-expectancy-in-australia-patterns/formats
https://www.aihw.gov.au/reports/life-expectancy-death/healthy-life-expectancy-in-australia-patterns/formats
https://doi.org/10.1080/10920277.2017.1397524
https://doi.org/10.1016/j.insmatheco.2014.07.005
https://doi.org/10.1080/10920277.2022.2078374
https://apps.who.int/iris/handle/10665/42439


 

37 
 

Barendregt, J., Bonneux, L., and Van der Maas P. (1994). Health Expectancy: An 
Indicator for Change? Journal of Epidemiology and Community Health, 48, 482–487. 
https://doi.org/10.1136/jech.48.5.482 
Biessy, G. (2017). Continuous-time semi-Markov inference of biometric laws associated 
with a long-term care insurance portfolio. Astin Bulletin, 47(2), 527-561 
https://doi.org/10.1017/asb.2016.41 
Bogaert, P., McKee, M., Robine, JM. (2020). Health Expectancy in Policy: The Use and 
Uptake of the Healthy Life Years Indicator and the Global Activity Limitation Indicator 
by the European Commission and Member States. In: Jagger, C., Crimmins, E.M., Saito, 
Y., De Carvalho Yokota, R.T., Van Oyen, H., Robine, JM. (eds) International Handbook 
of Health Expectancies. International Handbooks of Population, vol 9. Springer, Cham. 
https://doi.org/10.1007/978-3-030-37668-0_13 
Boyer, M, Donder, P. D., Fluet, C. Leroux, M.L., and Michaud P.C. (2020). Long‐term 
care insurance: Information frictions and selection. American Economic Journal, 12(3), 
134–169. https://doi.org/10.1257/pol.20180227 
Brown, J., and Finkelstein, A. (2007). Why is the market for long-term care insurance so 
small? Journal of Public Economics, 91, 1967–1991. 
https://doi.org/10.1016/j.jpubeco.2007.02.010 
Brown, J., and Finkelstein, A. (2008). The interaction of public and private insurance: 
Medicaid and the long-term care insurance market. American Economic Review,98(3), 
1083–1102. https://www.aeaweb.org/articles?id=10.1257/aer.98.3.1083 
Brown, J., and Finkelstein, A. (2009). The private market for long-term care insurance in 
the U.S.: A review of the evidence. Journal of Risk and Insurance,76(1), 5–29. 
https://doi.org/10.1111/j.1539-6975.2009.01286.x 
Canudas-Romo V. (2008). The modal age at death and the shifting mortality hypothesis. 
Demographic Research, 19(30),1179–1204. https://doi.org/10.4054/DemRes.2008.19.30 
Canudas-Romo V. (2010). Three measures of longevity: time trends and record values. 
Demography, 47(2), 299-312. https://doi.org/10.1353/dem.0.0098 
Chandler, S. J. (2011). “Life Transitions” from the Wolfram demonstrations project. 
http://demonstrations.wolfram.com/LifeTransitions/ 

Cheung, S.L.K., Robine, JM., Tu, E.JC. and Caselli G. (2005). Three dimensions of the 
survival curve: horizontalization, verticalization, and longevity extension. Demography, 
42, 243–258. https://doi.org/10.1353/dem.2005.0012 

Courbage, C., and Nicolas, C. (2021). Trust in insurance: The importance of experiences. 
Journal of Risk and Insurance, 88(2), 263–291. https://doi.org/10.1111/jori.12324 
Cornell, P.Y., Grabowski, DC, Cohen, M., Shi, X., and Stevenson D.G. (2016). Medical 
Underwriting in Long-Term Care Insurance: Market Conditions Limit Options for 
Higher-Risk Consumers. Health Affairs (Millwood), 35(8), 1494-503. 
https://doi.org/10.1377/hlthaff.2015.1133 

Crimmins, E.M, Zhang, Y. and Saito, Y. (2016). Trends Over 4 Decades in Disability-
Free Life Expectancy in the United States. American Journal of Public Health, 106(7), 
1287-93. https://doi.org/10.2105/AJPH.2016.303120 

https://doi.org/10.1136/jech.48.5.482
https://doi.org/10.1017/asb.2016.41
https://doi.org/10.1007/978-3-030-37668-0_13
https://doi.org/10.1257/pol.20180227
https://doi.org/10.1016/j.jpubeco.2007.02.010
https://www.aeaweb.org/articles?id=10.1257/aer.98.3.1083
https://doi.org/10.1111%2Fj.1539-6975.2009.01286.x
https://doi.org/10.4054/DemRes.2008.19.30
https://doi.org/10.1353/dem.0.0098
http://demonstrations.wolfram.com/LifeTransitions/
https://doi.org/10.1353/dem.2005.0012
https://doi.org/10.1111/jori.12324
https://doi.org/10.1377/hlthaff.2015.1133
https://doi.org/10.2105/AJPH.2016.303120


 

38 
 

Cui, X., Duan, X., Chang CH. T., and Jiang S. (2022). Health Transition Probability and 
Long-Term Care Cost Estimation. Mathematical Problems in Engineering Article ID 
7980111, 11 pages, 2022. https://doi.org/10.1155/2022/7980111 
Denuit, M., Lucas, N. and Pitacco, E. (2019). Pricing and Reserving in LTC Insurance. 
In: Dupourqué, E., Planchet, F., Sator, N. (eds) Actuarial Aspects of Long Term Care. 
Springer Actuarial. Springer, Cham. https://doi.org/10.1007/978-3-030-05660-5_5 
Deville, M., Riffe, T. and Noymer, A. (2016). Exact Poisson confidence intervals for life 
expectancy. Population Association of America, Annual meeting 2016. 
Di Lego, V. (2021). Health expectancy indicators: what do they measure? Cadernos 
Saúde Coletiva, 29, 115-129. https://doi.org/10.1590/1414-462X202199010376 

Di Lego, V., Di Giulio, P. and Luy, M. (2020). Gender Differences in Healthy and 
Unhealthy Life Expectancy. In: Jagger, C., Crimmins, E.M., Saito, Y., De Carvalho 
Yokota, R.T., Van Oyen, H., Robine, JM. (eds) International Handbook of Health 
Expectancies. International Handbooks of Population, vol 9. Springer, Cham. 
https://doi.org/10.1007/978-3-030-37668-0_1 

Diaconu, V., van Raalte, A., and Martikainen, P. (2022). Why we should monitor 
disparities in old age mortality with the modal age at death. PLoS ONE, 17(2), e0263626. 
https://doi.org/10.1371/journal.pone.0263626 
Dickson, D., Hardy, M., and Waters, H. (2019). Actuarial Mathematics for Life 
Contingent Risks (3rd ed., International Series on Actuarial Science). Cambridge: 
Cambridge University Press. https://doi.org/10.1017/9781108784184 

Dirección General de Seguros y Fondos de Pensiones (DGSFP) (2022). Informe de 
Seguros y Fondos de Pensiones 2021. 
http://www.dgsfp.mineco.es/es/Paginas/InformeSectorSeguros20221.aspx 

Ebeling, M., Rau R., and Baudisch A.  (2018). Rectangularization of the survival curve 
reconsidered: The maximum inner rectangle approach, Population Studies, 72(3), 369-
379, https://doi.org/10.1080/00324728.2017.1414299 
Esquível, M.L., Guerreiro, G.R, Oliveira, M.C., and Corte Real P. (2021). Calibration of 
Transition Intensities for a Multistate Model: Application to Long-Term Care. Risks, 9(2), 
37. https://doi.org/10.3390/risks9020037 
Eurostat (2022). Healthy life years by sex (from 2004 onwards). Instituto Nacional de 
Estadística (INE). https://ec.europa.eu/eurostat/cache/metadata/en/hlth_hlye_esms.htm 

Freedman, V.A., and Spillman, B.A. (2016). Active Life Expectancy in The Older US 
Population, 1982–2011: Differences Between Blacks and Whites Persisted. Health 
Affairs, 35(8), 1351-1358. https://doi.org/10.1377/hlthaff.2015.1247 

Freedman, V.A., Wolf, D.A., and Spillman, B.A. (2016). Disability-Free Life Expectancy 
Over 30 Years: A Growing Female Disadvantage in the US Population. American Journal 
of Public Health, 106(6), 1079-1085. https://doi.org/10.2105/AJPH.2016.303089 
Friedberg, L., W. Hou, W. Sun, Webb A. and Li Z. (2014). “New Evidence on the Risk 
of Requiring Long-Term Care.” Working Paper 2014-12. Chestnut Hill, MA: Center for 
Retirement Research at Boston College. 

https://doi.org/10.1155/2022/7980111
https://doi.org/10.1007/978-3-030-05660-5_5
https://doi.org/10.1590/1414-462X202199010376
https://doi.org/10.1007/978-3-030-37668-0_1
https://doi.org/10.1371/journal.pone.0263626
https://doi.org/10.1017/9781108784184
http://www.dgsfp.mineco.es/es/Paginas/InformeSectorSeguros20221.aspx
https://doi.org/10.1080/00324728.2017.1414299
https://doi.org/10.3390/risks9020037
https://ec.europa.eu/eurostat/cache/metadata/en/hlth_hlye_esms.htm
https://www.healthaffairs.org/doi/abs/10.1377/hlthaff.2015.1247
https://www.healthaffairs.org/doi/abs/10.1377/hlthaff.2015.1247
https://doi.org/10.1377/hlthaff.2015.1247
https://doi.org/10.2105/AJPH.2016.303089


 

39 
 

Fuino, M., Ugarte-Montero, A., and Wagner, J. (2022). On the drivers of potential 
customers' interest in long-term care insurance: Evidence from Switzerland. Risk 
Management and Insurance Review, 25, 271–302. https://doi.org/10.1111/rmir.12218 
Fuino, M. and Wagner, J. (2018). Long-term care models and dependence probability 
tables by acuity level: new empirical evidence from Switzerland. Insurance: Mathematics 
and Economics, 81, 51–70. https://doi.org/10.1016/j.insmatheco.2018.05.002 
Guibert, Q., and Planchet, F. (2019). Measuring Long-Term Insurance Contract 
Biometric Risks. In: Dupourqué, E., Planchet, F., Sator, N. (eds) Actuarial Aspects of 
Long Term Care. Springer Actuarial. Springer, Cham. https://doi.org/10.1007/978-3-030-
05660-5_4 
Guterman, S. (1996). The actuarial black box. The Actuary. January. Pp 3. 
Gutiérrez-Fisac J.L, Regidor, E., and Alfaro, M. (2010). Esperanzas de vida saludable en 
España 1986-2007. Esperanza de vida libre de incapacidad y esperanza de vida en buena 
salud en España y sus comunidades autónomas. Madrid: Ministerio de Sanidad, Política 
Social e Igualdad, 2010. 
Haberman, S. and Pitacco, E. (1999). Actuarial models for disability insurance. Chapman 
and Hall. London. 
Hanley, J.A. (2022). The (Im)precision of Life Expectancy Numbers. American Journal 
of Public Health, 112, 1151-1160, https://doi.org/10.2105/AJPH.2022.306805 
Hariyanto, E., D. Dickson and Pitt, G.W. (2014a). Estimation of Disability Transition 
Probabilities in Australia I: Preliminary. Annals of Actuarial Science, 8(1), 131-155. 
https://doi.org/10.1017/S1748499513000158 
Hariyanto, E., D. Dickson and Pitt, G.W. (2014b). Estimation of Disability Transition 
Probabilities in Australia II: Implementation. Annals of Actuarial Science, 8 (1), 156-175. 
https://doi.org/10.1017/S174849951300016X  

Hurwitz, A., O. S. Mitchell and Sade O. (2022). Testing methods to enhance longevity 
awareness, Journal of Economic Behavior & Organization, 204, 466-475. 
https://doi.org/10.1016/j.jebo.2022.10.014 
Imai K, and Soneji S. (2007). On the estimation of disability-free life expectancy. Journal 
of the American Statistical Association, 102 (480), 1199–211. 
https://doi.org/10.1198/016214507000000040 
Jia, H., and Lubetkin E.I. (2020). Life expectancy and active life expectancy by marital 
status among older U.S. adults: Results from the U.S. Medicare Health Outcome Survey 
(HOS). SSM Population Health, 100642.   https://doi.org/10.1016/j.ssmph.2020.100642 
Jiao, K. (2019) Inequality of healthy life expectancy for the Chinese elderly and its trend. 
The Journal of Chinese Sociology, 6, 22. https://doi.org/10.1186/s40711-019-0111-3 
Kannisto, V. (2001). Mode and Dispersion of the Length of Life. Population, 13(1),159-
171; https://www.persee.fr/doc/pop_0032-4663_2001_hos_13_1_7235 

Klimaviciute, J., and Pestieau, P. (2022). The economics of long-term care. An overview. 
Journal of Economic Surveys, 1–22. First published: 26 October 2022. 
https://doi.org/10.1111/joes.12538 

https://doi.org/10.1111/rmir.12218
https://doi.org/10.1016/j.insmatheco.2018.05.002
https://doi.org/10.1007/978-3-030-05660-5_4
https://doi.org/10.1007/978-3-030-05660-5_4
https://doi.org/10.2105/AJPH.2022.306805
https://doi.org/10.1017/S1748499513000158
https://doi.org/10.1017/S174849951300016X
https://doi.org/10.1016/j.jebo.2022.10.014
https://doi.org/10.1198/016214507000000040
https://doi.org/10.1016/j.ssmph.2020.100642
https://doi.org/10.1186/s40711-019-0111-3
https://www.persee.fr/doc/pop_0032-4663_2001_hos_13_1_7235
https://doi.org/10.1111/joes.12538


 

40 
 

Lièvre, A., Brouard, N. and Heathcote, Ch. (2003). The estimation of Health Expectancies 
from Cross-Longitudinal Surveys. Mathematical Population Studies, 10(4), 211-248. 
https://doi.org/10.1080/713644739 

Majer, I.M., Stevens, R. Nusselder, W.J.; Mackbenbach, J.P. and van Baal, P.H.M. 
(2013). Modeling and Forecasting Health Expectancy: Theoretical Framework and 
Applications. Demography, 50, 673-697. https://doi.org/10.1007/s13524-012-0156-2 

Manton, K.G., and Land K.C. (2000). Active life expectancy estimates for the U.S. 
elderly population: a multidimensional continuous-mixture model of functional change 
applied to completed cohorts, 1982-1996. Demography, 37(3), 253-265. 
https://pubmed.ncbi.nlm.nih.gov/10953802/ 

Mathers, CD (2002). Health expectancies: an overview and critical appraisal. Chapter 4.1. 
in Murray CJL, Salomon JA, Mathers CD, Lopez AD, (2002). World Health 
Organization. Summary measures of population health: concepts, ethics, measurement 
and applications [Internet]. Geneve: WHO. 2002 
https://apps.who.int/iris/handle/10665/42439 
Molla, M.T., Wagener, D.K., and Madans J.H. (2001). Summary measures of population 
health: methods for calculating healthy life expectancy. Healthy People 2010 Stat Notes. 
2001 Aug;(21):1-11. https://doi.org/10.1037/e583762012-001 
Murray CJL, Salomon JA, Mathers CD and Lopez AD, (2002). World Health 
Organization. Summary measures of population health: concepts, ethics, measurement 
and applications [Internet]. Geneve: WHO. 2002 
https://apps.who.int/iris/handle/10665/42439 
Nielsen, C., Juel, L., Jeune, A.B., Christensen, K., and Lindahl-Jacobsen, R. (2021). 
Healthy life expectancy by frailty state in Europe from 2004 to 2015: findings from 
SHARE, European Journal of Public Health, 31(3), 554–560, 
https://doi.org/10.1093/eurpub/ckab012 
Norberg, R. (2002). Basic Life Insurance Mathematics. 
https://web.math.ku.dk/~mogens/lifebook.pdf 
Nusselder, W. J., Cambois, E.M., Wapperom, D., Meslé, F., Looman, C.W.N., Yokota, 
R.T.C., Van Oyen, H., Jagger, C. and Robine, J.M. (2019). Women’s excess unhealthy 
life years: disentangling the unhealthy life years gap. European Journal of Public Health, 
29(5), 914–919, https://doi.org/10.1093/eurpub/ckz114 
OECD (2020). Long-term Care and Health Care Insurance in OECD and Other Countries, 
ww.oecd.org/fin/insurance/Long-Term-Care-Health-Care-Insurance-in-OECD-and-
Other-Countries.htm 
OECD (2021), Health at a Glance 2021: OECD Indicators, OECD Publishing, Paris, 
https://doi.org/10.1787/ae3016b9-en 
OECD/European Union (2022), Health at a Glance: Europe 2022: State of Health in the 
EU Cycle, OECD Publishing, Paris, https://doi.org/10.1787/507433b0-en. 
Pfau, W. and Finke M. (2016). Managing long-term care spending risks in retirement. 
OneAmerica Financial Partners, Inc. 
https://cdn2.hubspot.net/hubfs/2635471/December%202%20I-
29178_Managing%20Long-
Term%20Care%20Spending%20Risks%20in%20Retirement_051617.pdf 

https://doi.org/10.1080/713644739
https://doi.org/10.1007/s13524-012-0156-2
https://pubmed.ncbi.nlm.nih.gov/10953802/
https://apps.who.int/iris/handle/10665/42439
https://doi.org/10.1037/e583762012-001
https://apps.who.int/iris/handle/10665/42439
https://doi.org/10.1093/eurpub/ckab012
https://web.math.ku.dk/%7Emogens/lifebook.pdf
https://doi.org/10.1093/eurpub/ckz114
https://doi.org/10.1787/ae3016b9-en
https://doi.org/10.1787/507433b0-en
https://cdn2.hubspot.net/hubfs/2635471/December%202%20I-29178_Managing%20Long-Term%20Care%20Spending%20Risks%20in%20Retirement_051617.pdf
https://cdn2.hubspot.net/hubfs/2635471/December%202%20I-29178_Managing%20Long-Term%20Care%20Spending%20Risks%20in%20Retirement_051617.pdf
https://cdn2.hubspot.net/hubfs/2635471/December%202%20I-29178_Managing%20Long-Term%20Care%20Spending%20Risks%20in%20Retirement_051617.pdf


 

41 
 

Pitacco, E. (2014). Health Insurance. Basic actuarial models. EAA Series. Springer. 
Pitacco, E. (2016). Premiums for Long-Term Care Insurance Packages: Sensitivity with 
Respect to Biometric Assumptions. Risks, 4(1), 3. https://doi.org/10.3390/risks4010003 
Planchet F. and Tomas J. (2016). Uncertainty on survival probabilities and solvency 
capital requirement: application to long-term care insurance. Scandinavian Actuarial 
Journal, Scandinavian Actuarial Journal, 4, 279–292 
https://doi.org/10.1080/03461238.2014.925496 
Pla-Porcel, J., Ventura-Marco, M. and Vidal-Meliá, C. (2017). Converting retirement 
benefit into a life care annuity with graded benefits. Scandinavian Actuarial Journal, 10, 
829-853. https://doi.org/10.1080/03461238.2016.1258370 
Pla-Porcel, J.; M. Ventura-Marco and idal-Meliá, C. (2016). Life Care Annuities (LCA) 
Embedded in a Notional Defined Contribution (NDC) Framework. Astin Bulletin, 46 (2) 
331 - 363. https://doi.org/10.1017/asb.2015.27 
Robine, J.M. (2002). A new health expectancy classification system. Chapter 4.2. in 
Murray CJL, Salomon JA, Mathers CD, Lopez AD, (2002). World Health Organization. 
Summary measures of population health: concepts, ethics, measurement and applications 
[Internet]. Geneve: WHO. 2002 https://apps.who.int/iris/handle/10665/42439 
Robinson, J. (1996). A Long-Term Care Status Transition Model. In Proceedings of The 
Old-Age Crisis—Actuarial Opportunities: The 1996 Bowles Symposium, pp.72–79, 
Georgia State University, Atlanta. 

Saito, Y., Robine, J.M., and Crimmins, E.M. (2014). The methods and materials of health 
expectancy. Statistical Journal of the IAOS, 30(3), 209-223. https://doi.org/10.3233/SJI-
140840 

Sanders B. (1964). Measuring community health level. American Journal of Public 
Health, 1964(54), 1063– 1970. [PubMed: 14157838]  
SAS (2020). Long Term Care Insurance: Financing, pricing and risk considerations. 
Health Insurance Committee. Singapur Actuarial Society. 
https://www.actuaries.org.sg/sites/default/files/2020-10/LTC20201001.pdf 

Sherris, M. (2022). Interviewed in Australia Looks Toward Long-Term Care Insurance 
to Provide Aged Car.  https://www.ltcnews.com/articles/australia-looks-toward-long-
term-care-insurance-to-provide-aged-care 

Sherris, M. and Wei P. (2021). A Multi-state Model of Functional Disability and Health 
Status in the Presence of Systematic Trend and Uncertainty. North American Actuarial 
Journal, 25(1), 17-39, https://doi.org/10.1080/10920277.2019.1708755 

Society of Actuaries (SOA) (2002). Long Term Care Experience Committee, 
Intercompany study. https://www.soa.org/resources/experience-studies/2000-2004/ltc-
84-99-experience-committees/ 

Society of Actuaries (SOA) (2016). Long-Term Care Insurance: The SOA Pricing 
Project. https://www.soa.org/globalassets/assets/files/static-pages/sections/long-term-
care/ltc-pricing-project.pdf 
Sullivan DF. (1966). Conceptual Problems in Developing an Index of Health, Vital and 
Health Statistics. National Centre for Health Statistics; Washington, DC: 1966. Series 2 

https://doi.org/10.3390/risks4010003
https://doi.org/10.1080/03461238.2014.925496
https://doi.org/10.1080/03461238.2016.1258370
https://doi.org/10.1017/asb.2015.27
https://apps.who.int/iris/handle/10665/42439
https://doi.org/10.3233/SJI-140840
https://doi.org/10.3233/SJI-140840
https://www.actuaries.org.sg/sites/default/files/2020-10/LTC20201001.pdf
https://www.ltcnews.com/articles/australia-looks-toward-long-term-care-insurance-to-provide-aged-care
https://www.ltcnews.com/articles/australia-looks-toward-long-term-care-insurance-to-provide-aged-care
https://doi.org/10.1080/10920277.2019.1708755
https://www.soa.org/resources/experience-studies/2000-2004/ltc-84-99-experience-committees/
https://www.soa.org/resources/experience-studies/2000-2004/ltc-84-99-experience-committees/
https://www.soa.org/globalassets/assets/files/static-pages/sections/long-term-care/ltc-pricing-project.pdf
https://www.soa.org/globalassets/assets/files/static-pages/sections/long-term-care/ltc-pricing-project.pdf


 

42 
 

Sullivan DF. (1971). A single index of mortality and morbidity. HSMHA Health Reports, 
86 (4), 57-74. PMID:5554262 
Swiss Re (2022). Private long-term care insurance opportunities in China. 
https://www.swissre.com/institute/research/topics-and-risk-dialogues/china/long-term-
care-insurance-china.html 
The National Seniors Productive Ageing Centre (NSPAC) (2013). Long Term Care 
Insurance: A Survey of Providers’ Attitudes. ISBN 978-0-9874598-6-2. 
Tomas, J. and Planchet, F. (2013). Multidimensional smoothing by adaptive local kernel-
weighted log-likelihood with application to long-term care insurance. Insurance: 
Mathematics & Economics, 52(3), 573–589. 
https://doi.org/10.1016/j.insmatheco.2013.03.009 

U.S. Department of the Treasury (USDT) (2020). Long-Term Care Insurance: 
Recommendations for Improvement of Regulation. Report of the Federal Interagency 
Task Force on Long-Term Care Insurance. https://home.treasury.gov/policy-
issues/economic-policy/economic-policy-reports-and-notices/federal-interagency-task-
force-on-long-term-care-insurance 

Van der Gaag, N., Bijwaard, G., de Beer, J. and Bonneux L. (2015). A multistate model 
to project elderly disability in case of limited data. Demographic Research, 32 (3), 75-
106. https://doi.org/10.4054/DemRes.2015.32.3 
Van Raalte, A., and Caswell H. (2013). Perturbation analysis of indices of lifespan 
variability. Demography, 50(5), 1615-40. https://doi.org/10.1007/s13524-013-0223-3 
Vaupel, J.W., and Romo, V.C. (2003). Decomposing change in life expectancy: A 
bouquet of formulas in honor of Nathan Keyfitz’s 90th birthday. Demography, 40, 201–
216. https://doi.org/10.1353/dem.2003.0018 
Ventura-Marco, M.; Vidal-Meliá, C., and Pérez-Salamero González, J. M. (2022). Life 
care annuities to help couples cope with the cost of long-term care. ICAE; nº 03, 2022, 
ISSN: 2341-2356. 
Vidal-Meliá, C., Ventura-Marco, M., and Pla-Porcel, J. (2020). An NDC approach to 
helping pensioners cope with the cost of long-term care. Journal of Pension Economics 
and Finance, 19(1), 80-108. https://doi.org/10.1017/S1474747218000070 
Wilmoth, J.R. and Horiuchi S. (1999). Rectangularization revisited: variability of age at 
death within human populations. Demography, 36(4), 475-495. 
https://pubmed.ncbi.nlm.nih.gov/10604076/ 
Zhen, Z., D. Junhan, Z. Chenyuan and L. Qiang (2022). Trends of Healthy Life 
Expectancy of the Elderly in China in 1994–2015: Revisiting from the Perspective of 
Morbidity Transition. Frontiers in Public Health, 9, 774205. 
https://doi.org/10.3389/fpubh.2021.774205 
  

https://pubmed.ncbi.nlm.nih.gov/5554262
https://www.swissre.com/institute/research/topics-and-risk-dialogues/china/long-term-care-insurance-china.html
https://www.swissre.com/institute/research/topics-and-risk-dialogues/china/long-term-care-insurance-china.html
https://doi.org/10.1016/j.insmatheco.2013.03.009
https://home.treasury.gov/policy-issues/economic-policy/economic-policy-reports-and-notices/federal-interagency-task-force-on-long-term-care-insurance
https://home.treasury.gov/policy-issues/economic-policy/economic-policy-reports-and-notices/federal-interagency-task-force-on-long-term-care-insurance
https://home.treasury.gov/policy-issues/economic-policy/economic-policy-reports-and-notices/federal-interagency-task-force-on-long-term-care-insurance
https://doi.org/10.4054/DemRes.2015.32.3
https://doi.org/10.1007/s13524-013-0223-3
https://doi.org/10.1353/dem.2003.0018
https://doi.org/10.1017/S1474747218000070
https://pubmed.ncbi.nlm.nih.gov/10604076/
https://doi.org/10.3389/fpubh.2021.774205


 

43 
 

Technical Appendix  
Life expectancy15 

The curtate future lifetime random variable is defined as the integer part of future lifetime 
and is denoted by 𝐾𝐾𝑥𝑥 for an individual aged 𝑥𝑥. 

The expected value of 𝐾𝐾𝑥𝑥 is denoted by 𝑒𝑒𝑥𝑥, so that 𝑒𝑒𝑥𝑥 = 𝔼𝔼[𝐾𝐾𝑥𝑥], and is referred to as the 
curtate expectation of life (even though it represents the expected curtate lifetime). So, 

𝑒𝑒𝑥𝑥 = 𝔼𝔼[𝐾𝐾𝑥𝑥] = � 𝑘𝑘 ∙ 𝑞𝑞𝑥𝑥𝑘𝑘/
�

ℙ�𝐾𝐾𝑥𝑥 = 𝑘𝑘�𝑤𝑤−𝑥𝑥−1

𝑘𝑘=0

 [1.] 

with 𝑞𝑞𝑥𝑥𝑘𝑘/  being the probability that an individual aged 𝑥𝑥 survives 𝑘𝑘 years and then dies 
within that year, and where 𝜔𝜔 is the maximum lifespan, and:  

𝑞𝑞𝑥𝑥𝑘𝑘/ = 𝑝𝑝𝑥𝑥𝑘𝑘 − 𝑝𝑝𝑥𝑥𝑘𝑘+1  [2.] 

where 𝑝𝑝𝑥𝑥𝑘𝑘  is the probability that the individual aged 𝑥𝑥 survives to age 𝑥𝑥 + 𝑘𝑘. 
It is easy to see that: 

𝑒𝑒𝑥𝑥 = 𝔼𝔼[𝐾𝐾𝑥𝑥] = � 𝑝𝑝𝑥𝑥𝑘𝑘

𝑤𝑤−𝑥𝑥−1

𝑘𝑘=1

 [3.] 

Given that in our framework the curtate future lifetime random variable can be 
disaggregated as the sum of the curtate future lifetime of health states: 

𝐾𝐾𝑥𝑥 = �𝐾𝐾𝑥𝑥𝑖𝑖
𝑖𝑖∈𝑆𝑆′

 [4.] 

with 𝒮𝒮′ = 𝒮𝒮\{𝑓𝑓} = {𝑎𝑎,𝑑𝑑1,⋯ , 𝑑𝑑𝑛𝑛}, and consequently the probability that the individual 
aged 𝑥𝑥 survives to age 𝑥𝑥 + 𝑘𝑘 can be disaggregated also by health state: 

𝑝𝑝𝑥𝑥𝑘𝑘 = � 𝑝𝑝𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖∈𝑆𝑆′

 [5.] 

we get: 

𝑒𝑒𝑥𝑥 = � � 𝑝𝑝𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖∈𝑆𝑆′

=
𝑤𝑤−𝑥𝑥−1

𝑘𝑘=1

� 𝑒𝑒𝑥𝑥𝑖𝑖
𝑖𝑖∈𝑆𝑆′

 [6.] 

For the complete life expectancy (Gerber, 1997; Dickson et al., 2020): 

𝑒𝑒𝑥𝑥′ ≡ 𝔼𝔼[𝑇𝑇𝑥𝑥] = 𝔼𝔼[𝐾𝐾𝑥𝑥 + 𝐼𝐼𝑥𝑥] = 𝔼𝔼[𝐾𝐾𝑥𝑥] + 𝔼𝔼[𝐼𝐼𝑥𝑥] = 𝑒𝑒𝑥𝑥 + 1 2⁄  [7.] 

where 𝑇𝑇𝑥𝑥 is the random variable of future lifetime at age 𝑥𝑥 for this individual, and 𝐼𝐼𝑥𝑥 =
𝑇𝑇𝑥𝑥 − 𝐾𝐾𝑥𝑥 is the random variable of the fractional part of the future lifetime, independent 
of 𝐾𝐾𝑥𝑥, with the assumption of uniform distribution, i.e. 𝐼𝐼𝑥𝑥~𝑈𝑈(0,1). 

                                                           
15 For the sake of completeness, we include the development of life expectancy over the years from an 
actuarial point of view. 
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The life expectancy matrix depending on an individual’s initial health state 

The discrete multistate model (Figure 1, Section 2.2.1.) can be expressed as an (𝑛𝑛 + 2)-
state-age non-homogeneous discrete-time Markov chain. The yearly transition 
probabilities forming the stochastic one-year transition matrix (𝑀𝑀𝑥𝑥+𝑘𝑘) are shown in Table 
A1: 

Table A1:  𝑴𝑴𝒙𝒙+𝒌𝒌 

Starting 

status, 𝒊𝒊 

Ending status, 𝒋𝒋 
𝒂𝒂 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 … …. 𝒅𝒅𝒏𝒏 𝒇𝒇 

𝒂𝒂 𝑝𝑝𝑥𝑥+𝑘𝑘𝑎𝑎𝑎𝑎  𝑝𝑝𝑥𝑥+𝑘𝑘
𝑎𝑎𝑑𝑑1  𝑝𝑝𝑥𝑥+𝑘𝑘

𝑎𝑎𝑑𝑑2  … …. 𝑝𝑝𝑥𝑥+𝑘𝑘
𝑎𝑎𝑑𝑑𝑛𝑛  𝑝𝑝𝑥𝑥+𝑘𝑘

𝑎𝑎𝑎𝑎  

𝒅𝒅𝟏𝟏 𝑝𝑝𝑥𝑥+𝑘𝑘
𝑑𝑑1𝑎𝑎  𝑝𝑝𝑥𝑥+𝑘𝑘

𝑑𝑑1𝑑𝑑1  𝑝𝑝𝑥𝑥+𝑘𝑘
𝑑𝑑1𝑑𝑑2  … …. 𝑝𝑝𝑥𝑥+𝑘𝑘

𝑑𝑑1𝑑𝑑𝑛𝑛 𝑝𝑝𝑥𝑥+𝑘𝑘
𝑑𝑑1𝑎𝑎  

𝒅𝒅𝟐𝟐 𝑝𝑝𝑥𝑥+𝑘𝑘
𝑑𝑑2𝑎𝑎  𝑝𝑝𝑥𝑥+𝑘𝑘

𝑑𝑑2𝑑𝑑1  𝑝𝑝𝑥𝑥+𝑘𝑘
𝑑𝑑2𝑑𝑑2  … …. 𝑝𝑝𝑥𝑥+𝑘𝑘

𝑑𝑑2𝑑𝑑𝑛𝑛 𝑝𝑝𝑥𝑥+𝑘𝑘
𝑑𝑑2𝑎𝑎  

… … … .. … .. … .. … …. … .. … .. 
𝒅𝒅𝒏𝒏 𝑝𝑝𝑥𝑥+𝑘𝑘

𝑑𝑑𝑛𝑛𝑎𝑎 𝑝𝑝𝑥𝑥+𝑘𝑘
𝑑𝑑𝑛𝑛𝑑𝑑1 𝑝𝑝𝑥𝑥+𝑘𝑘

𝑑𝑑𝑛𝑛𝑑𝑑2  ……. 𝑝𝑝𝑥𝑥+𝑘𝑘
𝑑𝑑𝑛𝑛𝑑𝑑𝑛𝑛  𝑝𝑝𝑥𝑥+𝑘𝑘

𝑑𝑑𝑛𝑛𝑎𝑎 

𝒇𝒇 0 0 0 0 0 1 
Source: Own 

𝑝𝑝𝑥𝑥+𝑘𝑘𝑎𝑎𝑎𝑎  is the probability that an active person aged 𝑥𝑥 + 𝑘𝑘, 𝑘𝑘 ∈ {0,1,⋯ ,𝑤𝑤 − (𝑥𝑥)} will reach 
age 𝑥𝑥 + 𝑘𝑘 + 1 in the same state. 

𝑝𝑝𝑥𝑥+𝑘𝑘
𝑎𝑎𝑑𝑑𝑗𝑗  is the probability that an active person aged 𝑥𝑥 + 𝑘𝑘 will reach age 𝑥𝑥 + 𝑘𝑘 + 1 in state 

of dependence 𝑑𝑑𝑗𝑗, 𝑗𝑗 ∈ {1, 2, …𝑛𝑛}. 

𝑝𝑝𝑥𝑥+𝑘𝑘
𝑎𝑎𝑎𝑎  is the probability that an active person aged 𝑥𝑥 + 𝑘𝑘 will die during the year. 

𝑝𝑝𝑥𝑥+𝑘𝑘
𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗 is the probability that a person (𝑖𝑖 ∈ {1, 2, …𝑛𝑛}-level dependent) aged 𝑥𝑥 + 𝑘𝑘 will reach 

age 𝑥𝑥 + 𝑘𝑘 + 1 in state of dependence 𝑑𝑑𝑗𝑗, 𝑗𝑗 ∈ { 1, 2, …𝑛𝑛}. 

The rows and columns of the matrix embedded in Table A1 relate to the starting and 
ending health status respectively of each individual in the cohort. 
As we are working with Markov processes, we apply classic recurrent Chapman-
Kolmogorov equations to obtain the corresponding multiyear transition probabilities. 
A key element when it comes to computing the value of LCAs is the probability that an 
active person aged 𝑥𝑥 will reach age 𝑥𝑥 + 𝑘𝑘 in any state of 𝑗𝑗 ∈ {1,2, … ,𝑛𝑛} dependence 
( 𝑝𝑝𝑥𝑥𝑒𝑒+𝐴𝐴

𝑟𝑟𝑑𝑑𝑗𝑗
𝑘𝑘 ). 

This probability can be obtained from the vector (or matrix row) of the multiyear 
transition probabilities ( 𝑀𝑀𝑘𝑘 𝑥𝑥 ),  given the initial state 𝑎𝑎 at age 𝑥𝑥. This vector is the product 
of the annual probabilities of transition among the different states, which can also be 
expressed as an annual transition matrix for each age attained. At time 𝑡𝑡, for the group of 
healthy people aged 𝑥𝑥, the resulting probabilities are: 

� 𝑝𝑝𝑘𝑘 𝑥𝑥 
𝑎𝑎𝑎𝑎 , 𝑝𝑝𝑘𝑘 𝑥𝑥

𝑎𝑎𝑑𝑑1  , 𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑑𝑑2  , … … . . , 𝑝𝑝𝑘𝑘 𝑥𝑥

𝑎𝑎𝑑𝑑𝑛𝑛  , 𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑎𝑎�= 𝑀𝑀𝑘𝑘 𝑥𝑥  

[8.] =  

𝑢𝑢1 ∙ 𝑀𝑀𝑥𝑥 ∙ 𝑀𝑀𝑥𝑥+1 ∙. . . . . .∙ 𝑀𝑀𝑥𝑥+𝑘𝑘−2�������������������
𝑀𝑀𝑘𝑘−1 𝑥𝑥

∙ 𝑀𝑀𝑥𝑥+𝑘𝑘−1 
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where: 

vector row  𝑢𝑢1, with value one in the first position and zero in the rest of the positions, 
sets the true initial state 𝑎𝑎 at age 𝑥𝑥. The individual could have become dependent in any 
year within the corresponding age period (𝑥𝑥, 𝑥𝑥 + 𝑘𝑘]. 

𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑑𝑑𝑗𝑗 is the probability that a healthy person aged 𝑥𝑥 will reach age 𝑥𝑥 + 𝑘𝑘 in level 𝑗𝑗 ∈

{1,2, … ,𝑛𝑛} of dependence:  

𝑝𝑝𝑘𝑘−1 𝑎𝑎
𝑎𝑎𝑎𝑎 ∙ 𝑝𝑝𝑥𝑥+𝑘𝑘−1

𝑎𝑎𝑑𝑑𝑗𝑗 + � 𝑝𝑝𝑘𝑘−1 𝑥𝑥
𝑎𝑎𝑑𝑑𝑖𝑖 ∙ 𝑝𝑝𝑥𝑥+𝑘𝑘−1

𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗
𝑛𝑛

𝑖𝑖=1

 [9.] 

𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑎𝑎 is the probability that a healthy individual aged 𝑥𝑥 will reach age 𝑥𝑥 + 𝑘𝑘 in the same 

state: 

𝑝𝑝𝑘𝑘−1 𝑥𝑥 
𝑎𝑎𝑎𝑎 ∙ 𝑝𝑝𝑥𝑥+𝑘𝑘−1𝑎𝑎𝑎𝑎 + � 𝑝𝑝𝑘𝑘−1 𝑥𝑥

𝑎𝑎𝑑𝑑𝑗𝑗 ∙ 𝑝𝑝𝑥𝑥+𝑘𝑘−1
𝑑𝑑𝑗𝑗𝑎𝑎

𝑛𝑛

𝑗𝑗=1

 [10.] 

and finally, 𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑎𝑎 is the probability that an active person aged 𝑥𝑥 will not reach age 𝑥𝑥 + 𝑘𝑘. 

The individual could have died (active or dependent) in any year within the period: 

𝑝𝑝𝑘𝑘−1 𝑥𝑥 
𝑎𝑎𝑎𝑎 ∙ 𝑝𝑝𝑥𝑥+𝑘𝑘−1

𝑎𝑎𝑎𝑎 + � 𝑝𝑝𝑘𝑘−1 𝑥𝑥
𝑎𝑎𝑑𝑑𝑗𝑗 ∙ 𝑝𝑝𝑥𝑥+𝑘𝑘−1

𝑑𝑑𝑗𝑗𝑎𝑎
𝑛𝑛

𝑗𝑗=1

 [11.] 

Under the framework described above, the life expectancy of active people disaggregated 
into healthy and unhealthy life years can be computed as: 

𝑒𝑒𝑥𝑥𝑎𝑎 

[12.] 

= 

� 𝑝𝑝𝑘𝑘 𝑥𝑥 
𝑎𝑎𝑎𝑎

𝑤𝑤−𝑥𝑥

𝑘𝑘=0

+ � 𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑑𝑑1

𝑤𝑤−𝑥𝑥

𝑘𝑘=1

+ ⋯… … + �∙ 𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑑𝑑𝑛𝑛−1

𝑤𝑤−𝑥𝑥

𝑘𝑘=1

+ � 𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑑𝑑𝑛𝑛

𝑤𝑤−𝑥𝑥

𝑘𝑘=1

 

= 

𝑒𝑒𝑥𝑥𝑎𝑎𝑎𝑎�
ℎ𝑒𝑒𝑎𝑎𝑙𝑙𝑒𝑒ℎ𝑦𝑦 𝑙𝑙𝑖𝑖𝑎𝑎𝑒𝑒 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟𝑦𝑦

+ � 𝑒𝑒𝑥𝑥
𝑎𝑎𝑑𝑑𝑗𝑗

𝑛𝑛

𝑗𝑗=1�������
 𝑢𝑢𝑛𝑛ℎ𝑒𝑒𝑎𝑎𝑙𝑙𝑒𝑒ℎ𝑦𝑦 𝑙𝑙𝑖𝑖𝑎𝑎𝑒𝑒 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟𝑦𝑦 

𝑤𝑤𝑖𝑖𝑒𝑒ℎ 𝑗𝑗−𝑙𝑙𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙 𝐿𝐿𝐿𝐿𝐿𝐿

 

If the individual aged (𝑥𝑥) is in state (𝑖𝑖), the vector row in this case with value one in the 
position corresponding to state (𝑖𝑖) and zero in the rest of the positions, i.e. their health 
state is not considered able, then life expectancy can be expressed as: 

𝑒𝑒𝑥𝑥
𝑑𝑑𝑖𝑖 = � 𝑝𝑝𝑘𝑘 𝑥𝑥 

𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖
𝑤𝑤−𝑥𝑥

𝑘𝑘=0

�������
𝐼𝐼𝑛𝑛 𝑒𝑒ℎ𝑒𝑒 𝑦𝑦𝑎𝑎𝑠𝑠𝑒𝑒  𝑦𝑦𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒 

+ � 𝑝𝑝𝑘𝑘 𝑥𝑥
𝑑𝑑𝑖𝑖𝑎𝑎

𝑤𝑤−𝑥𝑥

𝑘𝑘=1

�������
𝐿𝐿𝑇𝑇𝑒𝑒𝑎𝑎𝑙𝑙 𝑟𝑟𝑒𝑒𝑟𝑟𝑇𝑇𝑙𝑙𝑒𝑒𝑟𝑟𝑦𝑦

+ �� 𝑝𝑝𝑘𝑘 𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗

𝑛𝑛

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑤𝑤−𝑥𝑥

𝑘𝑘=1
���������

𝐿𝐿𝑟𝑟𝑎𝑎𝑛𝑛𝑦𝑦𝑖𝑖𝑒𝑒𝑖𝑖𝑇𝑇𝑛𝑛𝑦𝑦 𝑒𝑒𝑇𝑇 𝑇𝑇𝑒𝑒ℎ𝑒𝑒𝑟𝑟𝑦𝑦𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑦𝑦

 
[13.] 

 

= 
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𝑒𝑒𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖�

𝐼𝐼𝑛𝑛 𝑒𝑒ℎ𝑒𝑒 𝑦𝑦𝑎𝑎𝑠𝑠𝑒𝑒 𝑦𝑦𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒

+ 𝑒𝑒𝑥𝑥
𝑑𝑑𝑖𝑖𝑎𝑎�

𝐹𝐹𝑟𝑟𝑒𝑒𝑒𝑒 𝑇𝑇𝑎𝑎
𝑎𝑎𝑟𝑟𝑒𝑒𝑖𝑖𝑙𝑙𝑖𝑖𝑒𝑒𝑦𝑦 
𝑙𝑙𝑖𝑖𝑠𝑠𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑖𝑖𝑇𝑇𝑛𝑛

+ �𝑒𝑒𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗

𝑖𝑖−1

𝑗𝑗=1

�����

In better
 states of 

dependence

+ � 𝑒𝑒𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖+1�������
In worse
 states of 

dependence

 

where: 

𝑝𝑝𝑘𝑘 𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖  is the probability that a person with level 𝑑𝑑𝑖𝑖 dependence aged (𝑥𝑥) will reach age 

(𝑥𝑥 + 𝑘𝑘) in the same state of dependence. The probability that a person will remain 
continuously in the same state for (𝑘𝑘) length of time, occupancy probability term 𝑝𝑝𝑘𝑘 𝑥𝑥

𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖 , 
is included here: 

𝑝𝑝𝑘𝑘 𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖  

[14.] 

= 

𝑝𝑝𝑘𝑘 𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖 + � 𝑝𝑝𝑦𝑦−1 𝑥𝑥

𝑑𝑑𝑖𝑖𝑎𝑎
𝑘𝑘

𝑦𝑦=1

∙ 𝑝𝑝𝑥𝑥+𝑦𝑦−1
𝑎𝑎𝑑𝑑𝑖𝑖 ∙ 𝑝𝑝𝑘𝑘−(𝑥𝑥+𝑦𝑦) 𝑥𝑥+𝑦𝑦

𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖 

+ 

�� 𝑝𝑝𝑦𝑦−1 𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗

𝑘𝑘

𝑦𝑦=1

∙ 𝑝𝑝𝑥𝑥+𝑦𝑦−1
𝑑𝑑𝑗𝑗𝑑𝑑𝑖𝑖 ∙ 𝑝𝑝𝑘𝑘−(𝑥𝑥+𝑦𝑦) 𝑥𝑥+𝑦𝑦

𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖
𝑛𝑛

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 

𝑝𝑝𝑘𝑘 𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗  is the probability that a person with level 𝑑𝑑𝑖𝑖 dependence aged (𝑥𝑥) will reach age 

(𝑥𝑥 + 𝑘𝑘) in level 𝑗𝑗 of dependence. 

∑ 𝑒𝑒𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗𝑖𝑖−1

𝑗𝑗=1 indicates how many years of their total remaining life expectancy the 
individual can expect to live in better states of dependence.  

∑ 𝑒𝑒𝑥𝑥
𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗𝑛𝑛

𝑗𝑗=𝑖𝑖+1  indicates how many years of their total remaining life expectancy the 
individual can expect to live in worse states of dependence. 

The median age at death, 𝑀𝑀𝑑𝑑.  

When the value of 𝑀𝑀𝑑𝑑 is found between two complete single ages 𝑥𝑥 and 𝑥𝑥 + 1, its value 
needs to be interpolated as 𝑀𝑀𝑑𝑑 = 𝑥𝑥 + 𝛾𝛾, where 𝛾𝛾 is a function of the number of people 
surviving in the same health state between ages 𝑥𝑥 and 𝑥𝑥 + 1. Assuming linearity in this 
interval, age 𝑀𝑀𝑑𝑑 is located as: 

𝑀𝑀𝑑𝑑 = 𝑥𝑥 +
(𝑙𝑙𝑥𝑥 −

𝑙𝑙𝑥𝑥𝑒𝑒
2 )

(𝑙𝑙𝑥𝑥 − 𝑙𝑙𝑥𝑥+1)
   [15.] 

Alternatively, and more appropriately for actuarial approach, the median age at death can 
be defined as the age at which the survival function is equal to one half (Canudas-Romo, 
2008), and using the discrete distribution of deaths is 
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𝑀𝑀𝑑𝑑 = �𝑥𝑥 𝑠𝑠𝑢𝑢𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑆𝑆𝑥𝑥𝑒𝑒(𝑥𝑥) = 𝑝𝑝𝑥𝑥𝑒𝑒𝑥𝑥−𝑥𝑥𝑒𝑒 =
1
2
� [16.] 

The value of 𝑀𝑀𝑑𝑑 with decimal precision points can also be estimated by linear 
interpolation between two complete single ages 𝑥𝑥 and 𝑥𝑥 +  1 

𝑀𝑀𝑑𝑑 = 𝑥𝑥 +
(𝑆𝑆𝑥𝑥𝑒𝑒(𝑥𝑥) − 0.5)

(𝑆𝑆𝑥𝑥𝑒𝑒(𝑥𝑥) − 𝑆𝑆𝑥𝑥𝑒𝑒(𝑥𝑥 + 1))
   [17.] 

The interquartile range (IQR)  

It is computed by the mathematical difference between the third and first quartiles of the 
data: 

𝐼𝐼3 − 𝐼𝐼1   [18.] 

where 𝐼𝐼1 and 𝐼𝐼3 are, respectively, the first and third age quartiles, values which will have 
to be interpolated with a discrete distribution by analogous procedures to the median (van 
Raalte & Caswell, 2013). IQR is not sensitive to outlier data. It is sensitive to transfers 
between quartiles but not to transfers within quartiles. In our context, it indicates the table-
specific difference between the 25th and 75th percentiles in survivorship. The larger range 
in this measure indicates more variability and uncertainty, whereas a smaller range signals 
greater regularity in lifespans. 

The adult modal age at death, M.  

In our case the cohort is aged 𝑥𝑥𝑒𝑒 = 65 or older and the health state is able (or with j-level 
activity limitation). 

𝑀𝑀 = {𝑥𝑥 𝑠𝑠𝑢𝑢𝑠𝑠ℎ  𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑥𝑥 > 𝑥𝑥𝑒𝑒 𝑎𝑎𝑛𝑛𝑑𝑑 𝑑𝑑𝑥𝑥 >  𝑑𝑑𝑎𝑎  ∀ 𝑎𝑎 > 𝑥𝑥𝑒𝑒} [19.] 

where 𝑑𝑑𝑥𝑥 is the number of deaths between the exact ages of 𝑥𝑥 and 𝑥𝑥 + 1. 
Alternatively, and also more appropriately for actuarial purposes, the modal age at death 
can be defined as 

𝑀𝑀 = �𝑥𝑥 𝑠𝑠𝑢𝑢𝑠𝑠ℎ  𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑀𝑀𝑎𝑎𝑥𝑥�𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥)�  ∀ 𝑥𝑥 > 𝑥𝑥𝑒𝑒� [20.] 

where 𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥) is the lifespan for the cohort aged 𝑥𝑥𝑒𝑒, i.e. the life table density function 
describing the distribution of deaths for a cohort starting from age 𝑥𝑥𝑒𝑒. To obtain the 
expression for the modal age at death with decimal precision its value is estimated in the 
range [𝑥𝑥 − 1, 𝑥𝑥 + 1] by the parabola (a quadratic polynomial approximation) which has 
the right areas below it to produce the observed values 𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥 − 1), 𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥) and 𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥 +
1), that is (Canudas-Romo, 2010) 

𝑀𝑀 = 𝑥𝑥 +
𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥) − 𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥 − 1)

�𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥) − 𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥 − 1)� + �𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥) − 𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥 + 1)�
 

[21.] 

For the discrete distribution of deaths and for practical purposes consider that 𝑑𝑑𝑥𝑥𝑒𝑒(𝑥𝑥) =
𝑞𝑞𝑥𝑥𝑒𝑒𝑥𝑥−𝑥𝑥𝑒𝑒/ , the deferred probability of death from 𝑥𝑥𝑒𝑒. 
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For a given age, the resulting value of the adult modal age at death, M, depends on the 
distribution of individuals at that age between active (healthy) (𝑎𝑎) and dependent (𝑗𝑗 ∈
{1,2, … ,𝑛𝑛}-level dependent)), so in reality there is clearly more than one mode. Given a 
starting age and an initial health state (able or dependent), there is a mode for each state. 
In states with a high level of dependence, a biased mode is usually found at ages very 
close to the starting age that is significantly far from life expectancy and from the median, 
denoting a highly asymmetric probability distribution. 

If we decompose the deferred probabilities of death for a given age (𝑥𝑥𝑒𝑒) and the initial 
health state (𝑖𝑖 ∈ {𝑎𝑎, 𝑑𝑑1,𝑑𝑑2,⋯ ,𝑑𝑑𝑛𝑛}) in the deferred probabilities of death of the different 
states of activity considered in which death occurs (𝑗𝑗 ∈ {𝑎𝑎,𝑑𝑑1,𝑑𝑑2,⋯ ,𝑑𝑑𝑛𝑛}), a modal value 
is obtained for each one of them (𝑀𝑀𝑥𝑥𝑒𝑒

𝑖𝑖𝑗𝑗 ). Thus it can be calculated as the weighted adult 
modal age at death (𝑀𝑀�𝑥𝑥𝑒𝑒

𝑖𝑖 ).  

The weighted adult modal age at death  

It can be expressed as: 

𝑀𝑀�𝑥𝑥𝑒𝑒
𝑖𝑖 = �𝑀𝑀𝑥𝑥𝑒𝑒

𝑖𝑖𝑗𝑗

𝑗𝑗

∙ 𝐼𝐼𝑥𝑥𝑒𝑒|𝑖𝑖
𝑗𝑗𝑎𝑎  [22.] 

where the weightings are the percentages of deaths in the different states: 

𝐼𝐼𝑥𝑥𝑒𝑒|𝑖𝑖
𝑗𝑗𝑎𝑎 = � 𝑝𝑝𝑥𝑥𝑒𝑒|𝑖𝑖

𝑗𝑗𝑎𝑎
𝑥𝑥−𝑥𝑥𝑒𝑒/

𝑥𝑥>𝑥𝑥𝑒𝑒

 
[23.] 

Other indicators of mortality and morbidity. 
The implicit (synthetic) LTC prevalence rate 

Given that the evolution of the hypothetical population broken down by health states can 
be easily computed from the vector (or matrix row) of the multiyear transition 
probabilities ( 𝑀𝑀𝑘𝑘 𝑥𝑥 ),  the implicit (synthetic) LTC prevalence rate16, 𝜆𝜆𝑥𝑥+𝑘𝑘

𝑗𝑗 , which is the 
ratio between the number of dependent people with dependence level 𝑗𝑗 (𝑙𝑙𝑥𝑥+𝑘𝑘

𝑗𝑗 ) and the 
number of individuals aged 𝑥𝑥 + 𝑘𝑘 (𝑙𝑙𝑥𝑥+𝑘𝑘), it is easy to get:  

𝜆𝜆𝑥𝑥+𝑘𝑘
𝑗𝑗 =

𝑙𝑙𝑥𝑥+𝑘𝑘
𝑗𝑗

𝑙𝑙𝑥𝑥+𝑘𝑘
=

𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑑𝑑𝑗𝑗

𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑎𝑎 + ∑ 𝑝𝑝𝑘𝑘 𝑥𝑥

𝑎𝑎𝑑𝑑𝑛𝑛𝑛𝑛
𝑖𝑖=1

=
𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑑𝑑𝑗𝑗

𝑀𝑀𝑘𝑘 𝑥𝑥 ∙ 1(𝑛𝑛) − 𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑎𝑎 =

𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑑𝑑𝑗𝑗

1 − 𝑝𝑝𝑘𝑘 𝑥𝑥
𝑎𝑎𝑎𝑎 [24.] 

where 1(𝑛𝑛) is the n-dimensional row vector whose n components are 1. 

And under the assumption that in the first year (at the inception of the system and/or at 
the beginning of the insurance contract) there are only healthy people, the average LTC 
prevalence rate, �̅�𝜆𝑥𝑥

𝑗𝑗 , is: 

�̅�𝜆𝑥𝑥
𝑗𝑗 =

∑ 𝑙𝑙𝑥𝑥+𝑘𝑘
𝑗𝑗𝑤𝑤−𝑥𝑥

𝑘𝑘=1
∑ 𝑙𝑙𝑥𝑥+𝑘𝑘𝑤𝑤−𝑥𝑥
𝑘𝑘=0

 [25.] 

                                                           
16 This multistate disease prevalence might be referred to as a “synthetic prevalence”, analogous to the life 
table cohort (Barendregt, 2002). 
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Obviously, the active prevalence rate is: �̅�𝜆𝑥𝑥𝑎𝑎 = 1 − ∑ �̅�𝜆𝑥𝑥
𝑗𝑗𝑛𝑛

𝑗𝑗=1 . 

The mortality ratio 

The mortality ratio, 𝛿𝛿𝑥𝑥+𝑘𝑘
𝑗𝑗 , of dependent people with dependence level 𝑗𝑗 aged 𝑥𝑥 + 𝑘𝑘, is the 

ratio between the mortality rates for dependent people and active people (the extra-
mortality added for dependent people), which in general terms decreases with age. In our 
notation it can be expressed as: 

𝛿𝛿𝑥𝑥+𝑘𝑘
𝑗𝑗 =

𝑝𝑝𝑥𝑥+𝑘𝑘
𝑑𝑑𝑗𝑗𝑎𝑎

𝑝𝑝𝑥𝑥+𝑘𝑘
𝑎𝑎𝑎𝑎  [26.] 

Depending on data availability, this ratio could be expressed as dependent 
persons/general population.  

The average mortality ratio (𝛿𝛿�̅�𝑥
𝑗𝑗) is: 

𝛿𝛿�̅�𝑥
𝑗𝑗 =

∑ 𝑙𝑙𝑥𝑥+𝑘𝑘
𝑗𝑗 ∙ 𝛿𝛿𝑥𝑥+𝑘𝑘

𝑗𝑗𝑤𝑤−𝑥𝑥
𝑘𝑘=1

∑ 𝑙𝑙𝑥𝑥+𝑘𝑘
𝑗𝑗𝑤𝑤−𝑥𝑥

𝑘𝑘=1
=
∑ 𝜆𝜆𝑥𝑥+𝑘𝑘

𝑗𝑗 ∙ 𝛿𝛿𝑥𝑥+𝑘𝑘
𝑗𝑗𝑤𝑤−𝑥𝑥

𝑘𝑘=1

�̅�𝜆𝑥𝑥
𝑗𝑗  [27.] 
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