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Abstract

Let Ā = (A0, A1) , B̄ = (B0, B1) be Banach couples, let E be a Banach space
and let T be a bilinear operator such that ‖T (a, b)‖E ≤ Mj‖a‖Aj‖b‖Bj for
a ∈ A0 ∩ A1, b ∈ B0 ∩ B1, j = 0, 1. If T : A◦j × B◦j −→ E compactly for
j = 0 or 1, we show that T may be uniquely extended to a compact bilinear
operator from the complex interpolation spaces generated by Ā and B̄ to E.
Furthermore, the corresponding result for the real method is given and we also
study the case when E is replaced by a couple (E0, E1) of Banach function
spaces on the same measure space.
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1. Introduction

The problem of interpolation of compact bilinear (multilinear) operators was
considered for the first time by Calderón [6] in his seminal paper on the complex
method and it is receiving attention by several authors in recent years. See the
papers by Fernandez and Silva [12], Fernández-Cabrera and Mart́ınez [13, 14]
and Cobos, Fernández-Cabrera and Mart́ınez [7]. Moreover, quantitative results
in terms of the measure of non-compactness have been established by Masty lo
and Silva [20] and Besoy and Cobos [5]. A motivation for all these investigations
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is the fact that compact bilinear operators arise rather naturally in harmonic
analysis. See, for example, the papers by Bényi and Torres [3], Bényi and
Oh [2] and Hu [15]. In particular, commutators of Calderón-Zygmund bilinear
operators acting on Lp-spaces are compact (see [3] and [7]).

For the case of linear operators, the famous results established by Lions and
Peetre [19] play an important role in the proofs of all compactness theorems (see,
for example, [9, 10, 8]). Lions-Peetre results refer to the degenerate situations
when one of the Banach couples reduces to a single Banach space. Similarly,
for bilinear operators, Lions-Peetre type results are also important tools in the
research on interpolation properties of compact bilinear operators.

Working with Banach couples Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1)
and bilinear operators T , often the starting assumption is that

T : (A0 +A1)× (B0 +B1) −→ E0 + E1 boundedly with the restrictions

T : Aj ×Bj −→ Ej being also bounded for j = 0, 1. (1.1)

However, sometimes in applications T does not satisfy (1.1) but only that there
are constants Mj > 0 such that

‖T (a, b)‖Ej ≤Mj‖a‖Aj‖b‖Bj , a ∈ A0 ∩A1, b ∈ B0 ∩B1, j = 0, 1. (1.2)

Under the assumption (1.1), Lions-Peetre type theorems have been estab-
lished in [13, Theorems 5.1 and 5.2]. Note that if A0 = A1 and B0 = B1, then
(1.1) and (1.2) are the same. However, if E0 = E1 but A0 6= A1 and B0 6= B1,
then (1.2) is weaker than (1.1). Fernández-Cabrera and Mart́ınez have shown
by means of examples (see [13, Example 4.2] and [14, Counterexamples 4.2 and
4.3]) that under the assumption (1.2), compactness of the interpolated operator
can fail in some cases where assuming (1.1) the interpolated operator is com-
pact. In fact, under assumption (1.2), it is not known a bilinear Lions-Peetre
compactness result for E0 = E1. Accordingly, we prove in this paper such a
theorem.

We start by recalling in Section 2 the most familiar interpolation methods.
Then we establish the bilinear Lions-Peetre compactness result. We proceed
with the help of duality, using the results of Ramanujan and Schock [21].

Finally, in Section 3, we study the non-degenerated case E0 6= E1 but as-
suming that (E0, E1) is a couple of Banach function spaces on the same measure
space, with E0 having absolutely continuous norm, and we prove a compactness
theorem under assumption (1.2). In particular, the results applies to couples of
Lp spaces with (E0, E1) = (Lr0(Ω), Lr1(Ω)) and 1 ≤ r0 <∞. We conclude the
paper with a result for the case r0 =∞ when the measure space (Ω, µ) is finite.

2. Bilinear compactness results of Lions-Peetre type

In what follows the scalar field is C, the set of complex numbers.
Let A, B, E be complex Banach spaces. We put UA = {a ∈ A : ‖a‖A ≤ 1}

for the closed unit ball of A and define UB similarly. Let T : A×B −→ E be a
bilinear operator. We say that the operator T is bounded if

‖T‖A×B,E = sup
{
‖T (a, b)‖E : a ∈ UA, b ∈ UB

}
<∞.
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If T is bounded, we write T ∈ L(A × B,E). The operator T is said to be
compact if

T (UA × UB) =
{
T (a, b) : a ∈ UA, b ∈ UB

}
is relatively compact in E or, equivalently, if for any bounded sequence (zn) ⊆
A×B, the sequence (Tzn) has a convergent subsequence in E (see [3, Proposition
1]). Examples of compact bilinear operators can be found in [21, 3, 2, 15, 14, 7].
See also [16] for same examples of non-compact bilinear operators.

As it is show in [3, Proposition 3], the set of all compact bilinear operators
from A×B into E is a closed subspace of L(A×B,E).

Let E∗ be the dual space of E. If T ∈ L(A × B,E), following Ramanujan
and Schock [21], we define the adjoint operator T× of T as the linear map

T× : E∗ −→ L(A×B,C)

given by
(T×f)(a, b) = f(T (a, b)).

It turns out that ‖T‖A×B,E = ‖T×‖E∗,L(A×B,C). Furthermore,

T is compact if and only if T× is compact (2.1)

(see [21, Theorem 2.6]).
Let Ā = (A0, A1) be a Banach couple, that is, two Banach spaces Aj which

are continuously embedded in the same Hausdorff topological vector space. We
write A◦j for the closure of A0 ∩ A1 in the norm of Aj . The Banach couple Ā
is said to be regular if A◦j = Aj for j = 0, 1. If this is the case, the dual couple

Ā∗ = (A∗0, A
∗
1) is a Banach couple because A∗j ↪→ (A0 ∩ A1)∗ for j = 0, 1. Here

↪→ means continuous embedding.
Consider the closed strip D = {z ∈ C : 0 ≤ Rez ≤ 1} and define F(Ā) to

be the space of all functions g from D into A0 +A1 such that g is bounded and
continuous on D, analytic on the interior of D, with g(j+ it) ∈ Aj for all t ∈ R,
j = 0, 1, and the functions t→ g(j+ it) are continuous from R into Aj and tend
to zero as |t| → ∞. The space F(Ā) becomes a Banach space with the norm

‖g‖F(Ā) = max
j=0,1

{sup
t∈R
‖g(j + it)‖Aj}.

For 0 < θ < 1, the complex interpolation space [A0, A1]θ consists of all a ∈
A0 + A1 such that a = g(θ) for some g ∈ F(Ā). We endow [A0, A1]θ with the
norm

‖a‖[A0,A1]θ = inf{‖g‖F(Ā) : g(θ) = a, g ∈ F(Ā)}.

See [6, 4, 22, 18].
For 0 < θ < 1 and 1 ≤ q ≤ ∞, the real interpolation space (A0, A1)θ,q is

formed of all a ∈ A0 +A1 having a finite norm

‖a‖(A0,A1)θ,q =

(∫ ∞
0

(t−θK(t, a))q
dt

t

)1/q

(the integral should be replaced by the supremum if q =∞). Here

K(t, a) = inf {‖a0‖A0
+ t‖a1‖A1

: a = a0 + a1 , aj ∈ Aj}
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is the Peetre’s K-functional. See [19, 4, 22, 1].
Is turns out that

(A0, A1)θ,1 ↪→ [A0, A1]θ ↪→ (A0, A1)θ,∞.

The space A0 ∩ A1 is dense in [A0, A1]θ, and also in (A0, A1)θ,q if q < ∞
(see [4, 22]).

Let B̄ = (B0, B1) and Ē = (E0, E1) be other Banach couples. By T :
Ā × B̄ −→ Ē we mean that T is a bounded bilinear operator T : (A0 + A1) ×
(B0 +B1) −→ E0 +E1 whose restriction to Aj ×Bj defines a bounded bilinear
operator from Aj × Bj into Ej for j = 0, 1. We write ‖T‖j for the norm of
T : Aj ×Bj −→ Ej .

The following compactness results of Lions-Peetre type are consequence of
[13, Theorems 5.1 and 5.3].

Theorem 2.1. Let Ā = (A0, A1), B̄ = (B0, B1) be Banach couples and let E
be a Banach space. Assume that T : (A0 +A1)× (B0 +B1) −→ E is a bounded
bilinear operator such that the restriction T : Aj × Bj −→ E is compact for
j = 0 or 1. Let 0 < θ, η < 1 and 1 ≤ p, q ≤ ∞. Then the following holds.

(i) T : [A0, A1]θ × [B0, B1]η −→ E is compact.

(ii) T : (A0, A1)θ,p × (B0, B1)η,q −→ E is compact.

Theorem 2.2. Let A, B be Banach spaces and let Ē = (E0, E1) be a Banach
couple. Assume that T : A×B −→ E0 ∩E1 is a bounded bilinear operator such
that any of the restrictions T : A × B −→ Ej is compact for j = 0 or 1. Let
0 < θ < 1 and 1 ≤ q ≤ ∞. Then the following holds.

(i) T : A×B −→ [E0, E1]θ is compact.

(ii) T : A×B −→ (E0, E1)θ,q is compact.

Sometimes in applications we do not have that T : Ā × B̄ −→ Ē but only
that the bilinear operator T is defined on (A0 ∩A1)× (B0 ∩B1) with values in
E0 ∩ E1 and that there are constants Mj > 0 such that

‖T (a, b)‖Ej ≤Mj‖a‖Aj‖b‖Bj , a ∈ A0 ∩A1, b ∈ B0 ∩B1, j = 0, 1. (2.2)

We denote by B(Ā× B̄, Ē) = B(Ā× B̄, (E0, E1)) those operators which satisfy
(2.2).

Assumption (2.2) was the one used by Calderón [6, 10.1] for establishing the
bilinear (and multilinear) interpolation theorem for the complex method (see
also [4, 4.4]).

If T ∈ B(Ā × B̄, Ē), it is not difficult to check that T may be uniquely
extended to a bilinear operator Tj : A◦j × B◦j −→ Ej , j = 0, 1. We write
‖T‖j = ‖Tj‖A◦j×B◦j ,Ej = Mj , j = 0, 1. We say that T : A◦j × B◦j −→ Ej is
compact if Tj does it.

Note that in the case of Theorem 2.2 where A0 = A1 = A and B0 = B1 = B,
the fact that T ∈ B(Ā× B̄, Ē) coincides with T : Ā× B̄ −→ Ē. Hence Theorem
2.2 does not change working with the weaker assumption. However, Theorem
2.1 fails if we replace

T : (A0 +A1)× (B0 +B1) −→ E boundedly
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by
T ∈ B(Ā× B̄, (E,E)).

Indeed, the example given in [14, Counterexample 4.2 and Remark 4.4] with
the couples Ā = (`p, `p(2

−m)), B̄ = (`p′(2
m), `p′), 1 < p < ∞, 1/p + 1/p′ = 1,

0 < η, θ < 1, the space E = C and the operator

T (ξ, η) =

∞∑
m=−∞

ξm2−mη−m , ξ = (ξm) , η = (ηm) (2.3)

shows that T ∈ B(Ā × B̄, (C,C)) but Theorem 2.1/(i) and (ii) fails if η 6= θ.
On the other hand, as it is pointed out in [13, Example 4.2] working with the
same operator T as in (2.3), even though η = θ, if T ∈ B(Ā × B̄, (E,E)) then
Theorem 2.1/(ii) may fail if 1/p+ 1/q < 1.

Next we establish the corresponding version of Theorem 2.1 for
T ∈ B(Ā× B̄, (E,E)) in the remaining range of parameters.

Theorem 2.3. Let Ā = (A0, A1), B̄ = (B0, B1) be Banach couples and let E
be a Banach space. Assume that T ∈ B(Ā× B̄, (E,E)) and T : A◦j ×B◦j −→ E
compactly for j = 0 or 1. Let 0 < θ < 1 and 1 ≤ p, q <∞ with 1/p+ 1/q ≥ 1.
Then the following holds.

(i) T may be uniquely extended to a compact bilinear operator from [A0, A1]θ×
[B0, B1]θ to E.

(ii) T may be uniquely extended to a compact bilinear operator from (A0, A1)θ,p×
(B0, B1)θ,q to E.

Proof. According to [4, Theorem 4.2.2], we have that [A0, A1]θ = [A◦0, A
◦
1]θ.

Hence, in order to establish (i), without lost of generality we may assume that
Ā is a regular couple, and also that B̄ is regular.

By the bilinear interpolation theorem for the complex method [4, Theo-
rem 4.4.1], T may be uniquely extended to a bounded bilinear operator from
[A0, A1]θ × [B0, B1]θ to E. Hence, having in mind (2.1), to conclude that
T : [A0, A1]θ × [B0, B1]θ −→ E compactly, it suffices to show that the linear
operator

T× : E∗ −→ L([A0, A1]θ × [B0, B1]θ,C) is compact (2.4)

Put Xj = L(Aj ×Bj ,C), j = 0, 1. Since Xj ↪→ L((A0 ∩A1)× (B0 ∩B1),C),
we have that X̄ = (X0, X1) is a Banach couple. Using the diagram of bounded
bilinear operators

A0 ×B0

T

##
E

A1 ×B1

T

;;

and going to adjoint operators, we get the diagram
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L(A0 ×B0,C) = X0

E∗

T×
55

T×

))
L(A1 ×B1,C) = X1.

In addition, T× : E∗ −→ Xj is compact provided T : Aj × Bj −→ E is so.
Therefore, we can apply the Lions-Peetre compactness theorem for bounded
linear operators [4, Theorem 3.8.1/(i)], obtaining that

T× : E∗ −→ [X0, X1]θ compactly. (2.5)

We claim that

[X0, X1]θ ↪→ L([A0, A1]θ × [B0, B1]θ,C). (2.6)

Embedding (2.6) is a consequence of the abstract result [20, Theorem 2.1].
For completness, we include the arguments. Consider the bilinear mapping Φ
assigning to any a ∈ A0∩A1 and R ∈ X0∩X1 the functional Φ(a,R)(b) = R(a, b)
where b ∈ B0 ∩B1. Since

‖Φ(a,R)‖B∗j = sup
{
|R(a, b)| : ‖b‖Bj ≤ 1 , b ∈ B0 ∩B1

}
≤ ‖R‖Xj‖a‖Aj ,

we have that Φ ∈ B(Ā × X̄, B̄∗). By [4, Theorem 4.4.2], we get that Φ may
be uniquely extended to a bilinear mapping from [A0, A1]θ × [X0, X1]θ to
[B∗0 , B

∗
1 ]θ with norm at most 1. The space [B∗0 , B

∗
1 ]θ is the so-called upper

complex space (see [4, p. 89]). The duality theorem [4, Theorem 4.5.1] gives
that [B∗0 , B

∗
1 ]θ = [B0, B1]∗θ . Therefore, for any a ∈ A0 ∩ A1, R ∈ X0 ∩X1 and

b ∈ B0 ∩B1, we obtain

|R(a, b)| = |Φ(a,R)(b)| ≤ ‖R‖[X0,X1]θ‖a‖[A0,A1]θ‖b‖[B0,B1]θ .

This shows that R ∈ L([A0, A1]θ × [B0, B1]θ,C). Since X0 ∩ X1 is dense in
[X0, X1]θ, embedding (2.6) follows.

Combining (2.5) and (2.6) we derive that T× in (2.4) is compact and, there-
fore, T : [A0, A1]θ × [B0, B1]θ −→ E compactly. This establishes (i).

Since (A0, A1)θ,1 ↪→ [A0, A1]θ and (B0, B1)θ,1 ↪→ [B0, B1]θ, when p = q = 1,
statement (ii) is a consequence of (i). For the case 1 ≤ 1/p+1/q < 2, the proof of
(ii) follows the same steps as for (i) but using now that (A◦0, A

◦
1)θ,p = (A0, A1)θ,p

[4, Theorem 3.4.2/(d)], the bilinear interpolation theorem for the real method
[14, Theorem 4.1] with 1/p + 1/r′ = 1 + 1/q′ and 1 < r ≤ ∞, 1/r + 1/r′ = 1
and duality formula (B∗0 , B

∗
1)θ,q′ = (B0, B1)∗θ,q [4, Theorem 3.7.1]. This time

the required embedding between operator spaces read

(X0, X1)θ,r′ ↪→ L((A0, A1)θ,p × (B0, B1)θ,q,C) , 1/r + 1/r′ = 1.

This completes the proof.

Remark 2.4. Note that in Theorem 2.1 (as in Lions-Peetre compactness results
for linear operators) the case of the complex method is a consequence of the
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case of the real method because we have the the following factorization for the
operator

[A0, A1]θ × [B0, B1]η ↪→ (A0, A1)θ,∞ × (B0, B1)η,∞
T−−−−→ E.

However, in Theorem 2.3, the complex and real cases are independent because
1/p+ 1/q ≥ 1.

3. Bilinear operators with target in Banach function spaces

Let (Ω, µ) be a σ-finite measure space. We denote by M the collection of
all (equivalence classes of) scalar-valued µ-measurable functions on Ω which are
finite µ-almost everywhere. The space M becomes a complete metric space
with the topology of convergence in measure on sets of finite measure.

Following [1, 11], we say that a Banach space E of functions in M is a
Banach function space if the following four properties hold:

(a) Whenever g ∈ M , f ∈ E and |g(x)| ≤ |f(x)| µ-a.e., then g ∈ E and
‖g‖E ≤ ‖f‖E .

(b) If fn → f µ-a.e., and if lim infn→∞ ‖fn‖E < ∞, then f ∈ E and ‖f‖E ≤
lim infn→∞ ‖fn‖E .

(c) For every Γ ⊆ Ω with µ(Γ) <∞, we have that χ
Γ
∈ E.

(d) For every Γ ⊆ Ω with µ(Γ) < ∞ there is a constant cΓ > 0 such that∫
Γ
|f | dµ ≤ cΓ ‖f‖E for every f ∈ E.

Examples of Banach function spaces are the Lebesgue spaces Lp, Lorentz
spaces Lp,q and Orlicz spaces LΦ (see, [23, 18, 1, 11]).

Let (Γn) be a sequence of µ-measurable sets of Ω. We put Γn → ∅ µ−a.e. if
the characteristic functions χΓn

converge to 0 pointwise µ-a.e.
We say that a function f ∈ E has absolutely continuous norm if ‖fχ

Γn
‖E →

0 for every sequence (Γn) satisfying that Γn → ∅ µ−a.e. The space E is said to
have absolutely continuous norm if every function of E has absolutely continuous
norm.

The following criterion for compactness is useful (see [1, p. 31] and [17,
Lemma I.1.1]).

Lemma 3.1. Let E be a Banach function space and let K ⊆ E a subset formed
by functions with absolutely continuous norm. Then K is relatively compact in
E if and only if K is relatively compact in M and for any Γn → ∅ µ−a.e. and
any ε > 0, there is N ∈ N such that ‖fχΓn

‖E ≤ ε for any f ∈ K and n ≥ N .

If E is a Banach function space then E ↪→ M (see [1, Theorem I.1.4]).
Hence, if E0 and E1 are Banach function space on Ω, we have that (E0, E1) is
a Banach couple.

Let 0 < θ < 1. If E0 or E1 has absolutely continuous norm, then

[E0, E1]θ =
{
f ∈M : |f(x)| = |f0(x)|1−θ|f1(x)|θ, fj ∈ Ej , j = 0, 1

}
and

‖f‖[E0,E1]θ = inf{max(‖f0‖E0
, ‖f1‖E1

) : |f | = |f0|1−θ|f1|θ}
(see [18, Theorem 4.1.14]). In particular [E0, E1]θ is a Banach function space.

The next theorem complements the results of [14, Section 4].
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Theorem 3.2. Let Ā = (A0, A1), B̄ = (B0, B1) be Banach couples. Assume
that (Ω, µ) is a σ-finite measure space, let Ē = (E0, E1) be a couple of Banach
function spaces on Ω, let 0 < θ < 1 and T ∈ B(Ā × B̄, Ē). If T : A◦0 × B◦0 −→
E0 compactly and E0 has absolutely continuous norm, then T may be uniquely
extended to a compact bilinear operator from [A0, A1]θ × [B0, B1]θ to [E0, E1]θ.

Proof. By the bilinear interpolation theorem [4, Theorem 4.4.1], the operator
T may be uniquely extended to a bounded bilinear operator T : [A0, A1]θ ×
[B0, B1]θ −→ [E0, E1]θ. To check that the extension is compact we rely on
Theorem 2.3 and Lemma 3.1. Since T ∈ B(Ā × B̄, (E0 + E1, E0 + E1)) and
T : A◦0 × B◦0 −→ E0 + E1 is compact, it follows from Theorem 2.3/(i) that T :
[A0, A1]θ× [B0, B1]θ −→ E0 +E1 is compact. Let W = T (U[A0,A1]θ ×U[B0,B1]θ ).
Then W is relatively compact in E0+E1 and so inM. Furthermore, [E0, E1]θ =
E1−θ

0 Eθ1 has absolutely continuous norm because E0 does (see [18, Remark in p.
245]). Whence, the subset W ⊆ [E0, E1]θ is formed by functions with absolutely
continuous norm. Consider any sequence (Γn) ⊆ Ω with Γn → ∅ µ−a.e. and
any ε > 0. Let Rn be the bilinear operator Rn(f, g) = T (f, g)χ

Γn
. Clearly

Rn ∈ B(Ā× B̄, Ē). Since T : A◦0×B◦0 −→ E0 compactly, if follows from Lemma
3.1 that there is N ∈ N such that ‖Rn‖0 ≤ ( ε

‖T‖θ1
)1−θ for any n ≥ N . Moreover,

‖Rn‖1 ≤ ‖T‖1. Hence, the bilinear interpolation theorem yields that if n ≥ N
then

‖Rn‖[A0,A1]θ×[B0,B1]θ,[E0,E1]θ ≤
ε

‖T‖θ1
‖T‖θ1 = ε.

In other words, for every h = T (f, g) ∈W and n ≥ N , we have that
‖T (f, g)χ

Γn
‖[E0,E1]θ ≤ ε. Consequently, according to Lemma 3.1, we derive

that
T : [A0, A1]θ × [B0, B1]θ −→ [E0, E1]θ is compact.

For 1 ≤ p0, p1 ≤ ∞, 0 < θ < 1 and 1/p = (1 − θ)/p0 + θ/p1, we know that
[Lp0(Ω), Lp1(Ω)]θ = Lp(Ω) (see [4] or [22]). As a consequence of the preceding
result we have:

Corollary 3.3. Let (Ωk, µk) be σ-finite measure spaces for k = 0, 1, 2. Suppose
0 < θ < 1, 1 ≤ pj , qj , rj ≤ ∞, j = 0, 1, and put 1/p = (1 − θ)/p0 + θ/p1,
1/q = (1− θ)/q0 + θ/q1 and 1/r = (1− θ)/r0 + θ/r1. Suppose that

T ∈ B
(
(Lp0

(Ω0), Lp1
(Ω0))× (Lq0(Ω1), Lq1(Ω1)), (Lr0(Ω2), Lr1(Ω2))

)
.

If T : Lp0
(Ω0)◦ × Lq0(Ω1)◦ −→ Lr0(Ω2) is compact and r0 < ∞, then T may

be uniquely extended to a compact bilinear operator from Lp(Ω0) × Lq(Ω1) to
Lr(Ω2).

Corollary 3.3 complements the results of [7, Section 5]. We close the paper
with a result for the case r0 =∞

Theorem 3.4. Let Ā = (A0, A1), B̄ = (B0, B1) be Banach couples. Assume
that (Ω, µ) is a finite measure space. Let 1 ≤ r1 ≤ ∞, 0 < θ < 1 and 1/r = θ/r1.
Suppose that T ∈ B

(
Ā × B̄, (L∞(Ω), Lr1(Ω))

)
with T : A◦0 × B◦0 −→ L∞(Ω)

compactly. Then T may be uniquely extended to a compact bilinear operator
from [A0, A1]θ × [B0, B1]θ to Lr(Ω).
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Proof. Applying the bilinear interpolation theorem [4, Theorem 4.4.1], T may be
uniquely extended to a bounded bilinear operator T : [A0, A1]θ × [B0, B1]θ −→
Lr(Ω). To show compactness of T we prove that T can be uniformly approx-
imated by compact bilinear operators. Take any ε > 0. Since T

(
UA◦0 × UB◦0

)
is relatively compact in L∞(Ω), we can find a finite set {h1, · · · , hn} ⊆ L∞(Ω)
such that

T
(
UA◦0 × UB◦0

)
⊆

n⋃
j=1

B(hj , ε)

with B(hj , ε) =
{
h ∈ L∞(Ω) : ‖h − hj‖L∞(Ω) ≤ ε

}
. By [1, Lemma IV.2.8],

there is a partition of Ω into finitely many disjoint subsets Γ1 · · ·Γm, each of
positive measure, such that the linear operator

Ph =

m∑
k=1

( 1

µ(Γk)

∫
Γk

hdµ
)
χ

Γk

satisfies that
‖hj − Phj‖L∞(Ω) ≤ ε , j = 1, · · · , n.

It is clear that ‖P‖Ls(Ω),Ls(Ω) ≤ 1 for s = 1 and s = ∞. Therefore, using the
Riesz-Thorin theorem, we also have that ‖P‖Ls(Ω),Ls(Ω) ≤ 1 for 1 < s < ∞ .
Moreover, P : Lr(Ω) −→ Lr(Ω) is compact because P has finite rank. Therefore,
the bilinear operator

PT : [A0, A1]θ × [B0, B1]θ −→ Lr(Ω) is compact.

We estimate the norm of T − PT by using the bilinear interpolation theorem.
Since

‖PT‖A◦1×B◦1 ,Lr1 (Ω) ≤ ‖P‖Lr1 (Ω),Lr1 (Ω) ‖T‖1 ≤ ‖T‖1,
we have ‖T −PT‖1 ≤ 2‖T‖1. As for the other restriction of T −PT , given any
a ∈ A0 ∩ A1, b ∈ B0 ∩ B1 with a ∈ UA0

and b ∈ UB0
, if we choose 1 ≤ j ≤ n

such that ‖T (a, b)− hj‖L∞(Ω) ≤ ε, then we have

‖T (a, b)− PT (a, b)‖L∞(Ω)

≤ ‖T (a, b)− hj‖L∞(Ω) + ‖hj − Phj‖L∞(Ω) + ‖Phj − PT (a, b)‖L∞(Ω)

≤ 2‖T (a, b)− hj‖L∞(Ω) + ‖hj − Phj‖L∞(Ω) ≤ 3ε.

Consequently,

‖T − PT‖[A0,A1]θ×[B0,B1]θ,Lr(Ω) ≤ ‖T − PT‖1−θ0 ‖T − PT‖θ1 ≤ (3ε)1−θ(2‖T‖1)θ.

This completes the proof.

Corollary 3.5. Let (Ωj , µj) be σ-finite measure spaces, j = 0, 1, and let (Ω2, µ2)
be a finite measure space. Suppose 1 ≤ pj , qj , r1 ≤ ∞, j = 0, 1. Let 0 < θ < 1,
and put 1/p = (1 − θ)/p0 + θ/p1, 1/q = (1 − θ)/q0 + θ/q1 and 1/r = θ/r1.
Suppose that

T ∈ B
(
(Lp0

(Ω0), Lp1
(Ω0))× (Lq0(Ω1), Lq1(Ω1)), (L∞(Ω2), Lr1(Ω2))

)
.

If T : Lp0
(Ω0)◦ × Lq0(Ω1)◦ −→ L∞(Ω2) is compact, then T may be uniquely

extended to a compact bilinear operator from Lp(Ω0)× Lq(Ω1) to Lr(Ω2).
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