Graphical representation of covariant-contravariant modal
formulae

Luca Aceto Anna Ingolfsdottir

ICE-TCS, School of Computer Science
Reykjavik University
Iceland

Ignacio Fabregas David de Frutos Escrig Miguel Palomino

Departamento de Sistemas Informaticos y Computacion
Universidad Complutense de Madtid
Spain

Covariant-contravariantsimulation is a combination efstard (covariant) simulation, its contravari-
ant counterpart and bisimulation. We have previously sids logical characterization by means of
the covariant-contravariant modal logic. Moreover, weehmyvestigated the relationships between
this model and that of modal transition systems, where twadkiof transitions (the so-called may
and must transitions) were combined in order to obtain a leifiamework to express a notion of
refinement over state-transition models. In a classic p&mrdol and Larsen established a precise
connection between thgraphicalapproach, by means of modal transition systems, antbthieal
approach, based on Hennessy-Milner logic without negatiosystem specification. They obtained
a (graphical) representation theorem proving that a foantaln be represented by a term if, and
only if, it is consistent and prime. We show in this paper tthegt formulae from the covariant-
contravariant modal logic that admit a “graphical” reprgagion by means of processes, modulo
the covariant-contravariant simulation preorder, are #ig consistent and prime ones. In order to
obtain the desired graphical representation result, weréstrict ourselves to the case of covariant-
contravariant systems without bivariant actions. Bivatrictions can be incorporated later by means
of an encoding that splits each bivariant action into itsac@nt and its contravariant parts.

1 Introduction

Modal transition system@TSs) were introduced ir_[9, 10] as a model of reactive cotajon based
on states and transitions that naturally supports a nofiorfmement This is connected with the use
of Hennessy-Milner Logic without negation as a specifigatimnguage: a specification describes the
collection of (good) properties that any implementatios ka fulfil. More generally, a process is
considered to be better thanif the set of formulae satisfied by is included in the set of formulae
satisfied byp. The tight connections between these two ways of expressangotions of specification
and refinement were studied i [4]. There the authors talkedta'graphical” representation (by means
of one or several MTSSs) of logical specifications, and coteptecharacterized the collection of logical
specification that can be “graphically represented”. Tlaesdhe so-called prime, consistent formulae.
There are two types of modal operators in Hennessy-Milnagid:o(a) and [a], for each actiora.
Intuitively, a formula(a)¢ indicates that it must be possible to execai@nd reach a state that satisfies

*Research supported by the project ‘Processes and Modatd'dgroject nr. 100048021) of the Icelandic Research Fund,
and the Abel Extraordinary Chair programme within the NILSIMity Project.

TResearch supported by Spanish projects DESAFIOS10 TIN28899-C03-01, TESIS TIN2009-14321-C02-01 and
PROMETIDOS S2009/TIC-1465

B. Luttik and F. D. Valencia (Eds.): 18th International Wshlkop on C(i I]ﬁAgﬁts(géjft:?gg)lr\ngZio%iii Frutos,
Expressiveness in Concurrency (EXPRESS 2011) - N9 .

- This work is licensed under the
EPTCS 64, 2011, pp. [J15, doL10.42047EPTCS]64.1 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.64.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Graphical representation of cc-modal formulae

¢, while [a]¢ imposes that this will happen after any executioradfom the current state. It is well
known that these two operators reflect the duality, so that any process satisfyindga ¢ formulamust
include somea-labelled transition reaching a state satisfyihgwhereas the constraint expressed by a
[a]¢ formula is better understood in a negative way: a processf\sag it may notcontain are-labelled
transition reaching a state that does not sagfsfyn particular, the formulda] L indicates that a process
cannot executa in its initial state, and therefore, using these formulae,can limit the set of actions
offered at any state.

In order to reflect these two kinds of constraints at the “apenal” level, MTSs contain two kinds
of transitions: thenaytransitions and thenusttransitions. Then we can use MTSs both as specifications
or as implementations, and the notion of refinement impdsat in order to implement correctly a
specification, an implementation should exhibit all thasttransitions in the MTS that describes the
specification and may not include any transition that is Hoted by the specification: we cannot add
any newmaytransition, although those in the specification could eithgappear, be preserved or turned
into musttransitions. The relation betweemayandmustis reflected in the formal definition of MTSs
by requiring that each must transition is also a may traomsiti

The conditions defining the notion of refinement between Mal8sously resemble those defining
simulation and bisimulation. For may transitions we havemtr@avariant simulation condition, express-
ing the fact that no new (non-allowed)aytransition can appear when refining a specification. Since
we impose thamusttransitions induce the correspondintaytransitions, we could think that they are
related in a “bisimulation-like” style. However, this istnihe case since the contravariant simulation
condition imposed on the may part can be covered magtransition withoutmustcounterpart. In fact,
this is crucial in order to capture the principle thahaytransition can be refined byrausttransition.

Some of the authors of this paper thought that a more direobamtion of simulation and bisim-
ulation conditions could capture in a more flexible way adl theas on which the specification of sys-
tems by means of modal systems and modal logics is based, ahdoked for the clearest and most
general framework to express those modal constraints. Wdfthat covariant-contravariant systems
(sometimes abbreviated to cc-systems) are a possible atswes quest, combining pure (covariant)
simulation, its contravariant counterpart and bisimolati

We started the study abvariant-contravariant simulatiom [5], and the modal logic characterizing
it was presented in [7]. (In what follows, we refer to thisiwgs cc-modal logic.) In the most general
case, we consider a partition of the set of actions into the¢® the collection of covariant actions, that of
contravariant actions, and the set of bivariant actiontitimely, one may think of the covariant actions
as being under the control of the specification LTS, and iians with such actions as their label should
be simulated by any correct implementation of the specifinatOn the other hand, the contravariant
actions may be considered as being under the control of thiementation (or of the environment) and
transitions with such actions as their label should be sated| by the specification. The bivariant actions
are treated as in the classic notion of bisimulation.

We will see in this paper that, as in the MTS setting, the cest and prime formulae from the
cc-modal logic are exactly those that admit a “graphicafresentation by means of processes modulo
the covariant-contravariant simulation preorder. Moegpeach formula in the cc-modal logic can be
represented “graphically” by a (possibly empty) finite Sgprmcesses.

The proofs of these representation results are inspiretidogevelopments in_[4]. There are, how-
ever, subtle differences because, in covariant-contiEavasystems, each action has a single modality
(covariant, contravariant, bivariant), while in MTSs wen@@mbine bottmayandmusttransitions.

In fact, in order to obtain the desired graphical represgemafor technical reasons we first restrict
ourselves to the case of covariant-contravariant systeithewt bivariant actions. The reason that justi-

L. Aceto, I. Fabregas, D. de Frutos, A. Ingdlfsdéttir & M. Balino 3

fies this constraint is that bivariant actions cannot be @pprated in a non-trivial way (either we have
one of them as itself, or we do not have it at all). Insteadadant and contravariant actions behave in a
more flexible way and we can obtain the desired charactanzetsult by following the lead of the work
done for MTSs.

Then we observe that bivariant actions can be seen as theretioh of a covariant and a contravari-
ant action. In fact, this also corresponds with the idea usét]] when relating MTSs and cc-systems.
Indeed, the constraint imposed orusttransitions in MTSs, where they should always be accompanie
by theirmaycounterparts, tells us somehow that they have a “nearhdrtzimt behaviour. (To be more
precise, they are first covariant, but they are also “semitt@variant because when comparing two pro-
cessed andq, anymusttransition ing should fit with either a correspondimgusttransition inp, or at
least with amaytransition there.)

We could say that the very recent development of the notigpadtfial bisimulationin the setting
of labelled transition systems (LTSs) presented_in [3] laspleted the spectrum of modal simulations.
Partial bisimulation combines plain bisimulation [14] Hsljd simulation, also by means of a partition of
the set of actions. For the actions in the distinguishedBseé have bisimulation-like conditions, while
for the others we only impose simulation. Note that, insteaalytransitions in MTSs corresponded to
contravariant simulation conditions, and therefore,ipbhttisimulation can be seen as a dual of MTSs,
and covariant-contravariant systems (cc-systems) asfangiframework where we can combine the
refinement ideas in the theory of MTSs with the explicit cdesation of the constraints imposed by the
environment, which is possible when partial bisimulatismsed. Once we know that the formulae from
the modal logic for cc-systems also afford a graphical regmeation, we will be able to integrate the
logical formulae into the development of systems using drig@models discussed above.

The remainder of the paper is organized as follows. Seltism@voted to the necessary background
on covariant-contravariant simulations, whereas in $a¢8 we summarize the results on covariant-
contravariant modal formulae. In Sectibh 4 we develop thelysf the graphical representation of
cc-modal formulae for processes without bivariant actiokféerwards, in Sectiohl5, we show how we
can work with cc-systems with bivariant actions. Finallgc8on[6 concludes the paper and describes
some future research that we plan to pursue.

2 Covariant-contravariant systems

We start the technical part of the paper by defining the castscontravariant simulation semantics for
processes. Our semantics is defined dwebelled Transition System&TS) S= (P,A,—), whereP
is a set of process states|s a set of actions and—C P x A x P is a transition relation on processes.
We follow the standard practice and wripe—25 q instead of(p,a,q) €—. Because of the covariant-
contravariant view, we assume this partitioned intoA' andA', expressed a& = A' A", As we have
already mentioned in the introduction, we will delay the sideration of the general case where we have
also bivariant actions in a third clasg' until Sectior{b.

Covariant-contravariant simulation can now be defined baWs:

Definition 1 LetS= (P,AlwA", —) be an LTS. Aovariant-contravariant simulati@ver S is a relation
R C P x P such that, whenever,g € P and p R g, we have:

e Forallac A" and all p—25 p/, there exists some-- o with P Rd.
e Forallac Al and all q—25 ¢, there exists some g p/ with p R d.
We will write p<ccq if there exists a covariant-contravariant simulation Risuhat p R g.

4 Graphical representation of cc-modal formulae

Remark 1 Note that we call the actions ¥ like that, because for those there is a “plain simulation”
from left to right; whereas for the actions A there is an “anti-simulation” from right to left.

It is well known that the relatiorte is a preorder.

In this study we will be mainly concerned with “finite” propies of systems, which will be either
captured by (finite) logic formulae, or by finite processeat ttan be described by means of process
terms.

Definition 2 Assume that A= A' w A", Then the collection gfrocess termganged over by gy etc. is
given by the following syntax:

p:=0|wl|ap|p+p,

where ac A. We denote the set of process termsy
The size of a process term is its length in symbols.

We note that our se®? of process terms is basically the setBECSPterms introduced ir_[8]. The
only addition to the signature of BCCSP is the constantvhich will be used to denote the least LTS
modulo <... However, we assume a classification of the actions in twgjdidit) sets, although this is
not reflected in the syntactic structure of the terms. Eve# ibnly contains finite terms, by means of
we will obtain the full contravariant process which can exeany action at any time.

In [5,[6,[4] we used a more general definition for covarianttcavariant simulations which includes
also bivariant actions, but since in the presence of thesegiant actions some technical problems appear
(in particular the procese will not be the least process with respect to the covariantravariant
simulation preorder), we have preferred to first develoghalresults without bivariant actions and, in
Sectiorl b, we will describe how they can be extended to angettith bivariant actions.

Definition 3 Theoperational semantiad &2 is defined by the following rules:

o« w2 wiorallbeA,
e ap-S pforallacA,
e p-2 pimplies p+q— p,
e q— g implies p+q -2 d.
Observe that ip # w andp -2 p/, then the size ofY is smaller than the size qf
It is clear thatw is the least possible element with respect to the cc-siioulgreorder. That is, we

havew < p for any p.
In what follows we assume thatis finite.

3 The covariant-contravariant modal logic

Covariant-contravariant modal logic has been introducetstudied in[[7].

Definition 4 Covariant-contravariant modal logi#’ has the following syntax:

pu=L|T|oAd|dVe|bp| (@9 (acA beA).

The operatorsl, T, A andV have the standard meaning whereas the semantics for thel mpeiators
is defined as follows:

L. Aceto, I. Fabregas, D. de Frutos, A. Ingdlfsdéttir & M. Balino 5

pi=[bl¢ if p'[= ¢ forall p— p,
pl=(a)¢ if p’ = ¢ for some p-= p.

We say that a formula is consistenif there is some p such thatpp ¢.
Themodal deptlof a formula is the maximum nesting of modal operators in it.

The covariant-contravariant logic characterizes the Gamtcontravariant simulation semantics over
image-finite processes. Before we state this result foymedl introduce some notation. We define the
set of formulae that a procepsatisfies byZ (p) = {@ | p = @} and the logical preordér & as follows:
pCy qiff Z(p) C.Z(q). Recall that an LTS igmage finiteiff the set{p’ | p— p'} is finite for each
processp and actiora.

Now we have the following theorem:

Theorem 1 ([7]) If the LTS S is image finite thef,. =C & over S.

Clearly the processes ¥ are image finite.

4 Graphical representation of formulae

Whenever we have a (modal) logic characterizing some sécadior processes, we could look for a
single formula that characterizes completely the behavidua process logically; this is a so-called
characteristic formulaThis subject has been studied by many authors in the litgrabut we will just
refer here to the book [2] for more details and further refees to the original literature.

It is clear that, since we only allow for finite formulae withtoany fixed-point operator, we can
only treat “finite” processes, such as those definable by iouyple process algebr&’. However, the
recursive definition of the characteristic formulae in wirdliows gives us immediately the framework
for extending our results to finite-state processes folgyatandard lines.

Definition 5 A formulag € . is a characteristic formuldor a process p iff p= ¢ andVvq.(q E ¢ =
P Secd)-

In what follows, we writep < @ if {peP|pE= @} C{peP|pkE ¢}. We say thatp andy are
logically equivalent, writterp = , iff ¢ < g andy < .
Lemma 1 The following statements hold.

1. Aformulag € . is a characteristic formula for a process p ¥f.(q = ¢ < p<cQ).

2. Assume thgt(p) and x(q) are characteristic formulae for processes p and q, respebti Then,
we have that

P Sceq iff X (q) < x(p).

3. A characteristic formula for a process p is unique up tddagequivalence.

Proof.

1. First assume thais a characteristic formula for a procgssBy definitionvq.(q = ¢ = p<cQ)
holds. We have to prove that.(p <c.cq=" g} ¢). To this end, assume thpt<..q. Asp | @,
by Theoreni L we have thgt= ¢ and we are done.

For the converse, gs<.c p we have thap = ¢ and the result follows.

6 Graphical representation of cc-modal formulae

2. Assume thaj (p) and x(q) are characteristic formulae for procesgeandq, respectively. First
assume thap <..q and thatr = x(q). By Definition[8,q <c.r and thusp <..r. By the previous
clause of the Lemma, alsol= x(p). Asr was arbitrary, this shows that(q) < x(p). Next,
assume thakx (q) < x(p). Asq k= x(q) theng = x(p), and by definition of the characteristic
formula, p <cQ.

3. This claim follows directly from statement 2 above.

As a characteristic formula for a proceg$s unigue up to logical equivalence, we can denote it by
X (p) unambiguously. The next lemma tells us tg@p) exists for each procegse Z.

Lemma 2 The characteristic formula for a processep%? can be obtained recursively as

x = A @x@)AABICY x().ifp#w.

p-25p ,acAr beAl by
X(w) = T.

Proof. First we prove thap = x(p), for eachp. This follows by a simple induction on the size jf

Next we prove that, for ang, q = x (p) implies p <ccq by induction on the size d.

First we note that ifp = w then x(w) = T andw <..Q; hence we obtain the result. Also, for the
casep = 0, we have thak (0) is equivalent to\p. [b] L. Thus ifg = x(0), then the procesg cannot
perform anyb € Al. This yields that Q.

Now, letp be a process different from 0 ang and assume thgt= x (p). First suppose thqli> of
for somep’ and someac A'. Asq = /\pim’.aeA’ (a)x(p'), this implies that there is sonme—>+ ¢ with
d = x(p'). Then, by inductionp’ <c.q'.

Next, assume tha11> d, for someq andb € A'. Asq = Apen [0](V X(p)), we can conclude

b
p—p
thatq = x(p'), for somep’ with p LI p’. Again, by induction, we concludg <¢.q. O

Next we consider the converse problem, we want to repredentraila by a process, or at least by a
finite set of processes.

Definition 6 A formulag is represented by a (single) procgss

vae 2. [qF @iff p Scedl.

A formulag is represented by a finite skt C &7 of processes if
Voge 2. [qf= @iff 3pe M. pSeed).

It is clear thatp representsp iff {p} representsp. Moreover, the empty set of processes represents
the formula.l .

The following lemma connects the notion of “graphical reygrtation” of formulae with that of
characteristic formula for processes.

Lemma 3 We have the following properties:
1. prepresent®iff = x(p).
2. If M C Zis finite andg is a formula then

M representspiff o= \/ x(p).
peM

L. Aceto, I. Fabregas, D. de Frutos, A. Ingdlfsdéttir & M. Balino 7

Proof.

1. It follows directly from the definitions of these two copte and Lemma]1.
2. For anyg € &7 we proceed as follows:

IpeMpScqeIpeMagEx(p) < a= \ x(p).
peM

Now the statement of the lemma follows easily from this faxt Befinition[6.0

We want to characterize the set of formulae that can be reptes by a finite set of processes, and

in particular by a single process. For this purpose we inicedsome notions of nhormal form for logical
formulae.

Definition 7 1. Aformulag is in normal formif it has the form

o=\ (A\@)gA A B,

el jeg keK;
where aII(pJi and l,Uli(are also in normal form. In particular, is obtained when + 0 and T when
| ={1} and 3 =K; =0.

2. Aformulay is in strong normal fornif it has the form

v=\a,

iel

where eachy is in unary strong normal form. A formul@ is in unary strong normal forrii it is
T or it has the form

o= N@)a A N\ [blgb,
jed beAl

where everyy; is in unary strong normal form and evegy, is in strong normal form.

We note that any unary strong normal form different froncan equivalently be written as

o=N@jar AblV ug,

jed beAl keKp

where everyp; and everyt,ut‘j are in unary strong normal form, thus avoiding the introgiucbf strong
normal forms.

Remark 2 It is not hard to see that each unary strong normal form isistamt. See also Theordm 2 to
follow.

Clearly the characteristic formulae of processes are imyustiong normal form. Therefore, by
Lemmal3, it is a necessary condition for a formula to be repreble by a single process that it has an

equivalent unary strong normal form. We will show that tlisiso a sufficient condition for this to hold
for any consistent formula.

8 Graphical representation of cc-modal formulae

Theorem 2 A unary strong normal form
o= N@pan AN\
j€d beA keKp
is represented by the process defined recursively by

B(p) = Zaj.e(Z Zbe Wb, AT
JE

beAl keKp
0(T) = w.

In particular @ is the characteristic formula fof(¢) (up to logical equivalence). Note that even if
in the formal expression above there is a summand for eact\b only those b’s such thatg<£ 0 will
finally appear as summands 6{g).

Proof. First we prove thaB(¢) = @ by induction on the modal depth af. If @ = T we have that
obviously 8(¢) = w = @ = T. For the inductive step first we note th@typ) A, O(¢) forall j € J.

By induction, 8(@1) = @. Next assume tha () LN p for someb € A' and somep. We have that
p = 6(yf) for somek € Kp. By induction8(y) = Y and therefordd(Yf) = Viek, Y-

Next we prove that if| = ¢ then8(@) <ccq. Towards proving this claim, assume tloggt ¢. Again
we proceed by induction on the modal depthpof

First assume thad () —2, o for somea € A" and process termy. Thena = a; for somej € Jand

P = 0(¢). Asql= @, we have that =N q for someq with d = ¢;. By induction, 8(¢;) Sccd, as
required.

Now assume tha —2 ¢ for someb € Al. Asq = ¢ we have thaty = Wk for somek € K. Now

6(p) LI Q(L/JIS) and, by the induction hypothesis, we hzﬂ(epg) <ccq, as required.
This proves thatp is the characteristic formula fo(¢) and therefore, by Lemnia 3, thé{ p)
representsp. O

Next, we will show that any formula has an equivalent stroagmal form and therefore can always
be represented by a (possibly empty) finite set of procesbBeglerive this result we will use several
standard equivalences between formulae.

Lemma 4 The following statements hold.
1. AandV are associative, commutative and idempotent.
A distributes ovetv, andV distributes over.
VT =T,ovLil=0, oNT =@, andpn L= 1.
b T=T.
[bjoA [bly = [o](pA @) forbe Al
(@yoV (ayy = (a)(pV) forac A'.

2 e

Proof. The first three collections of equalities are straightfaxvand well known, so we omit their
proofs.

e b]T=T. Wehavep = [b|T iff p =T forall p LN p'. Therefore, the condition is satisfied

b
whenevem LI P/, and it is vacuously true whem/—.

L. Aceto, I. Fabregas, D. de Frutos, A. Ingdlfsdéttir & M. Balino 9

e [bjoA bl = [bl(@A). We havep = ([bjo A [bly) iff p' = @ forall pi> p’ andp’ |= y for all
p— P, iff P k= (9A) forall p—=> P, iff p = [b(@A).

e (Q)@V (@)Y= (a)(pV). We havep = (a)pV (a)y iff there existsp — p’ such thatp’ = @ or
there exist9 — p’ such thap” |= y, that is, iff there exists some - p}, such thatp) = @ or
Pp = @. This holds iffp = (a)(@V ¢). O

Lemma 5 Every formulag has an equivalent strong normal form with no larger modalttep

Proof. First we prove by induction on the modal depth, using 1-3 ohtrea[4, thatp has an equivalent
normal form with the same modal depth. To prove the mainistate we can therefore assume tipds
in normal form. We proceed by induction on the modal deptlig). The base casad(¢) =0 (p= L
andg = T) follows immediately.
Next let us assume that o o
o=\ (A\@)gr A\ blwo).
el jed kekK;
By Lemmd4, using 4 and 5 and the standard laws described jipL#@h be rewritten into an equivalent

formula of the form o _

o=\ (A @)gn A blup)

iel jed beA

wheremd(yi) < sup(md(y4) | k € K} (we note that some of thie]yis may have the forrfb] T, which
is equivalent toT"). Therefore, by the induction hypothesis, we may assurrteqlmd L/Jti) are in strong
normal form. Next we use Lemnia 4.6 to remove all the occugemtV that are guarded bya), for
somea e A" in each/\j; (&))¢l. The result for eachis of the formA\ jc; (Ve <dj>(p}"), where eaclq)}"
is in a unary strong normal form. By repeated use of distiifiyt the whole formula can be rewritten as

o=\ (Aasr Aol B

reR ss beAl teTy

where eacho? and Brb’t is a unary strong normal form. Finally we note that the openatdescribed
above do not increase the modal dept.

Now we will relate our result to the one in Boudol and Larsguaper [4].
Definition 8 A formulag is primeif the following holds:

VoL, e L. o< @V @impliesp < @ or ¢ < @.

Theorem 3 A formulag can always be represented by a finite set of processes. Iteapbesented by
a single process if and only if it is consistent and prime.

Proof. By Lemmab, o=@ V...V @ where eachy, 1 <i <n, is in unary strong normal form. By
Theoreni2g = x(p;i) for somep; for each 1<i < n, and thereforep = x(p1) V...V X(pn). The first
statement now follows from LemndB.2.

Towards proving the second statement, first assumeghaty(p;) V...V x(pn) is prime. This
implies thatg < x(p;) < @, for somei € {1,...,n}, which in turn implies thatp = x(p;).

Next assume thap is represented by some procgssr equivalently thatp = x(p). Now assume
thatx(p) < @ vV @. As p = x(p), this implies thatp = @ Vv @ or equivalently that eithep = ¢ or
p = @. Without loss of generality, we can assume thbat ¢. Now assume thatl= x(p). Thenp Scer
and by Theorerl1 this implies that= @. Sincer was arbitrary, this proves that= x(p) < @. Hence
@ is prime, which was to be shown. O

10 Graphical representation of cc-modal formulae

5 Considering bivariant actions

Originally [3,16,[7], the theory of covariant-contravarissemantics also considered bivariant actions in
AP so that we had a partition @into {A", A', AP'} (called the signature of the LTS), and the definition
of covariant-contravariant simulations imposed the feilg two conditions:

e Forallac A"UAP and allp -2 p/, there exists somg —=+ o with p’ R d.
e Forallac A'UAY and allqg—2+ ¢, there exists somp —= p’ with p' R d.

When we have in our signature bivariant actions we cannodligettly the graphical representation
results that we have presented in Sedifibn 4. This is so bedaeriant actions cannot be under approx-
imated, as a consequence of the well known result that bégiityi is an equivalence relation and not a
plain preorder. In order to maintain our results we mandgtaeed that notion of approximation. We
obtain it by decomposing each bivariant actemmto a pair of actions, one covariarg,, and another
contravariantg'. Technically, we define an embedding of the set of process&rsam arbitrary signature
A= {A",A' AP} into that corresponding to a new signatdre- {A", A", 0}. The latter does not include
any bivariant action, and then we can apply to it our graphigaresentation results, that then can be
transfered to the original signature by means of the defindueeding.

In [1] we presented transformations from LTSs to Modal Titzms Systems (MTSs), and vice versa,
named.# and%’, respectively. We proved that both preserve and reflectdigr@nt-contravariant logic
and simulation preorder. Applying these two transfornraian a row we did not obtain the identity
function, but instead a transformatiofy = % o # that transforms an LTS with bivariant actions into
another LTS without them. Since composition preserves tlvel goroperties o and.#, % also has
these properties.

Next we give a direct definition ofj.

Definition 9 Let T be an LTS with the signature=A{A", A', AP}, The LTS%(T) with signatureA =
{A", A0}, whereA" = {d" |d € A" UA”} andA' = {d' |d € A" UA'UAP, is constructed as follows:

e The set of states ofp(T) is the same as the one of T plus a new state u.
|
e For each transition pi> P in T , add a transition pd—> pin Z(T).
e For each transition p-% p/ in T with d € A" UAP!, add a transition p p’ in Z(T).

| |
e For each ac A" and state p, add the transitioana—> uto %(T), as well as transitions ud—> u,
for each action dc A.

Note that eactc € AP is “encoded” by means of a pair of new actiofe§,c'). Moreover, as a
consequence of the general definition.df, for eacha € A", together witha', which is its “natural”
encoding an additional € A, coupled with it, is introduced. Finally, the behaviour bét'extra” state
uis defined byw.

Based on this transformation, we have designed a directdangmf LTSs over a signaturd =
{A",Al, AP} by means of LTSs over an adequate signafiize {A", A', 0}. As above, for each € AP in
the original signature, we introduce a pair of (new) actiassthe following definition makes precise.

Definition 10 Let T be an LTS with signature A {A", A", AP'}. The LTSZ(T), with signatureA =
{A", A0}, whereA" = A"U{c" | cc A’} andA' = Al U{c' | c € AP}, is constructed as follows:

e The set of states of (T) is the same as that of T.

L. Aceto, I. Fabregas, D. de Frutos, A. Ingdlfsdéttir & M. Balino

11

a’a

X Y Z

I A p
a,c,b
Figure 1: The original transformation of a LTS with bivariattions into anothe

=

without them, assuming’ = {a}, A' = {b} andA" = {c}.

e All the transitions from T with label in"AJA' are in.7 (T).

« For each transition p->s p/ in T with ce A%, we add p-<= p/ and p-s p' to T(T).

The transformation above produces an LTS without bivaréstions more closely related to the

original covariant-contravariant LTS than that producgd% (compare Figurgl2 with Figu

_ r {
that the class of LTSs with signatufethat satisfy thap —— p/ if and only if p = p/, for all
and allc € A”'; is exactly the class of processes that are the represemtiftsome LTS with s

1). Note

p.p EP,
ignatura.

To translate modal formulae we have just to adopt the righdatity for each action, as the following

definition makes precise.

Definition 11 Let us extend” to translate modal formulae over the modal logic for LTS o&ento

modal formulae over the modal logic for LTS overas follows:

o 7(L)=1.

e 7(T)=T

o« TOAY) = TB)AT (W)

e T(pVY)=T(9)VI(Y).

o T((@)9) = (@7 (@), ifacA

o T($) = () T($), fce A

o T(b)) =67 (6), fbe A

o T(d9) = [E]7(#), ifce A
a b 5 a b

X Y Z — X Y Z

Cc Cr,Cl

Figure 2: The new transformatiofr (T) of an LTS with bivariant actions into a
other without them, assuminy = {a}, A' = {b} andA® = {c}.

In order to show that” preserves and reflects the cc-simulation preorder, we ca@ipér) with

Zo(T) and we prove a more general result.

12 Graphical representation of cc-modal formulae

Definition 12 Given a signatur/ A", A', 0} and ¢ € A we define the transformatioff;~ as that which
given an LTS T with that signature adds a new state u whosevlehids that defined by, and a new
transition labelled by 'cfrom each state of T to u.

Proposition 1 er preserves and reflects the cc-simulation preorder wheniegpd a system that does
not contain any ctransition.

Proof. We will see thaRis a cc-simulation ifT if and only if RU {(u,u)} is a cc-simulation in7;"(T).
The result is immediate by simply observing that &eransitions, witha ¢!, the leaving of any state

p with p # u are exactly the same ih and Zj(T), while for any such state we always haweg uin
TH(TM).o
C

Corollary 1 Let T be an LTS with signaturgA”, A', A’} Then, for any two states p and g of T, we
have p<c.qin .7 (T) if and only if p<c¢cq in Zo(T).

Proof. Note that.7 (T) is a{A",A',0}-LTS, while 5(T) is an{A", A", 0}-LTS, whereA" = {a' | ac
A"UAP} andA = AU {d | ac A'}. This means that we can also sé&T) as an{A", A, 0}-LTS if
we rename each € A" into the corresponding’ € A". Then, we can appl;ﬁa'+ for eachae A" in a
row, thus getting a transformed systef (T). All along these applications we are under the hypothesis
of Propositior(]L. Moreover, the only differences betweBn (T) and Z(T) are the collection o#!-
transitions paired with the'-transitions inT, with a € A". But since for any statp of 7 (T) we have

p-su foralld e {d | a € A'}, we immediately conclude that the identity is a cc-simofatin both
directions (up-to the indicating renaming) between theestaf.7*(T) and those inZ(T), from which
we finally obtain thap <¢.qin 7 (T) iff p<ccqin F(T).DO

Corollary 2 Our transformation.7 preserves and reflects the cc-simulation preorder, thafbiseach
LTS T and for all states pand g in T, it holds tha€g.q in T if, and only, if p<¢cq in 7 (T).

Proof. We just need to combine Propositioh 1 and Corolldry 1.

Proposition 2 .7 preserves and reflects the cc-logic, that is, for each LTS rly, state p and all
covariant-contravariant formulg in T, it holds that p= ¢ in T if, and only if, p= .7 (¢) in 7 (T).

Proof. We proved in[[1] the corresponding result 6% and the transformatior’ which is defined on
logic formulae exactly as”, but renaming again eaehe A" into a'. From the definitions of7 and %
we immediately conclude that-transitions witha € A" do not play any role in the satisfaction of any
formula.7 (¢), and then the result follows from that proved|in [d.

After the representation of a bivariant actiore A as a pair(c’,c') with ¢ € A" andc' € A, we
have thatc' under-approximates, wherea’ over-approximates. This means in particular that we
have 0 <¢. 0+ c'0 <, c'0 and, more generallyg' p <c.c' p+c'q<c.c'q, for all processep and
g. Therefore, once we have separated the covariant and canést characters of bivariant actions
we achieve a greater flexibility which allows us to consideori-balanced” processes where these two
characters do not go always together, thus producing owkuader-approximations when needed.

Discussion It is interesting to compare our new transformatighwith the original transformation’
from [1]. The first aims to obtain a representation over tigmature{A", A", 0} that is as simple as

L. Aceto, I. Fabregas, D. de Frutos, A. Ingdlfsdéttir & M. Balino 13

possible, and this is why we do not introdugewhena € A". Instead, we can see the result of the
transformation, as a process in the “uniform” signatube= {A", A, 0}, with A" = {a' |ac ATUA' U
AP andA! = {a |ae A"UA UAPY. Itis true that the actions” with b € A' do not appear itZ(T), but
even so we can consider arfi(T) as a process fok. Obviously, this is also the case f6f (T), where
the actionsa' with a € A" do not appear either. Both(T) and.7 (T) were “good” representations of
T, as stated above, however it is clear that we do not B&&) =¢. 7 (T). Instead, 7(T) <cc 7 (T),
and in fact7(T) is the least process with respectdg, for the uniform signaturd that has the good
properties stated in the paper. Note that, insteadransitions fob € A' do not need to be introduced at
all, since any addition of a covariant transitions produLgg-greater process.

Therefore, the original transformatiofp, would be indeed the adequate one if we wanted to obtain
an embedding of the class of processes for any signaturéhiatcorresponding to the uniform signature
A defined above, where all the actions can be interpreted amtfagiant and contravariant parts of the
actions in a sef.

To conclude the section we explore the set of systems for igmatsireA = {A", A',0}. Some of
them, but not all, are equivalent to the representation gstem for the original alphabét Whenever
that is not the case we would need to remove (or add) sometioasslabelled by the created actions
in {c",c | c e AP} in order to obtain a system that is equivalent to the reptatien of some process.
In the following proposition we give an algorithm for obtaig a system for the original signatufeto
which a given system for the signatukds equivalent, whenever such a system exists. To make p@ssib
a proof by (structural) induction, we will only present tlesult for process terms i#’.

Proposition 3 Let A= {A", A', A"} be a signature and = {A", A', 0} be the associated signature with-
out bivariant actions. Let g € & be process terms foh such that q is the representation of some
process for the signature A. Let us assume that.pg. Then it is possible to transform p into the
representation | of some process term for A, simply by adding or removing soangitions labelled
by actions in{c",c | c€ AP},

Proof. The proof is done by structural induction.
e If p=0 orp= wwe can takey = p.

e In the general case, we exploit the fact that wheneverA', if of <c.p then ap +ad =ccap
(and dually, wherb € A', bp + bq = bq). This means that from any term f8rwe can remove
all the summandaq’ (resp. bp’) such thaiap’ is not a maximab-summand of with respect
to <cc (resp.bp’ is not a minimala-summand), obtaining &.c-equivalent process. So, we start
by removing all the non-maxima-summands witla € A", and all the non-minimab-summands
with b € A" of any subterm op. By abuse of notation, we will still denote the obtained psxby
p, and we still havep = g.

Now, for anya-summand ofp with a € A", p= p' +ap’, there is some — ¢’ with p”’ <ccq".
But also, sincep = g, starting withq — g there must exist some—= p” with ¢’ <¢c p”, but
thenp” <c¢c p”, and sincep” was maximal we can assume tht = p”, and then we also have

/' =. . The same is true for all thesummands witth € A', and this means that we can apply
the induction hypothesis to all the derivativespof

Moreover, for eactap’ summand witha = ¢ we can add tg the summand' p’ and we obtain
P = p+C p. Indeed, we have triviallp+ ¢ p’ <cc p, and to prove thap <. p+c' p’ we check

{ {
q<ccp+C p. We only need to see that for any transitipr- ¢ p’ —— p there is some] — o

14 Graphical representation of cc-modal formulae

with g <c.p’. We use again the maximality of the summanhg@’ and we obtain, as above, that
there is some"q summand ofy with o <. p’. But sinceqwas the representation of some process
for A, it has also a summarglq as required above.

The obtained process has alreadycitandc' transitions, withc € AP, paired at its first level, and
then we simply need to apply the induction hypothesis to kemtecthe proofo

Remark 3 Although the proposition above assumes that the consideezkss was equivalent to the
representation of some process £giit is easy to use it as a decision algorithm to check thatemtgp
we apply the algorithm to the given procgssind check if the obtained procepsis =..-equivalent to
it, if that is not the case thepis not equivalent to the representation of any process #ositnatureA.

6 Conclusions and future work

In [1] we studied the relationships between the notion ohegfient over modal transition systems, and
the notions of covariant-contravariant simulation andighbisimulation over labelled transition sys-
tems. Here we have continued that work by looking for the gbieal” representation of the covariant-
contravariant modal formulae by means of terms, as it wag doifi3] for the case of modal transition
systems. For technical reasons, we had first to restricetu@s to the case in which we have no bivari-
ant actions. Afterwards, we argued that the general casercaome sense, be “reduced” to the one we
dealt with in SectiohM by defining a semantic-preservingdfarmation between covariant-contravariant
systems with bivariant actions, and covariant-contravdrsystems without them.

The idea was to separate each bivariant action into its @aand its contravariant parts. As a
matter of fact, we believe that this idea might be useful mdy dor obtaining theoretical results, as we
have done here, but also for applications. Most of the studieprocess algebras and their semantics
assume the bivariant behaviour of all the actions. It is thag¢in some studies (see for example|[13]) we
have a classification of actions, as we have also done in fLjrathis paper. But now we are proposing
to exploit the relationships between the different clasgexctions.

As future work, it would be interesting to obtain a direct werization of the formulae that are
graphically representable in a setting with bivariant@wii Such a direct characterization will also pave
the way towards a more general theory of “graphical chariaettons” of formulae in modal logics of
processes, of which the result by Boudol and Larsen and oerspecial cases.

Of course, one of the directions in which we plan to continue siudies is that related with the
logical characterization of the semantics, and in parictiie connections between logical formulae and
terms established by characteristic formulae and graphépmesentations. The combination of these
two frameworks is also an interesting challenge. In paldicuwe plan some extensions of the recent
work by Littgen and Vogler [11, 12] to the case of covariamticavariant systems.

References

[1] Luca Aceto, Ignacio Fabregas, David de Frutos Escrighadmgélfsdottir & Miguel Palomino (2011)Re-
lating modal refinements, covariant-contravariant sintidas and partial bisimulationsIn Fundamentals
of Software Engineering, FSEN 201INCS, Springer.To appeatr.

[2] Luca Aceto, Anna Ingolfsdéttir, Kim Guldstrand LarsenJ&i Srba (2007):Reactive Systems: Modelling,
Specification and VerificatiorCambridge University Press.

L. Aceto, I. Fabregas, D. de Frutos, A. Ingdlfsdéttir & M. Balino 15

(3]

[4]
[5]

[6]

[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

J. Baeten, D. van Beek, B. Luttik, J. Markovski & J. Rooda010): Partial Bisimulation
SE Report 2010-04, Department of Mechanical Engineerinigdiioven University of Technology,
http://se.wtb.tue.nl/sereports.

Gérard Boudol & Kim Gulstrand Larsen (199raphical versus logical specification¥heoretical Com-
puter Scienc&06(1), pp. 3-20, d0i:10.1016/0304-3975(92)90276-L.

Ignacio Fabregas, David de Frutos-Escrig & Miguel Paloon(2009): Non-strongly Stable Orders
Also Define Interesting Simulation Relationsin CALCO’09, LNCS 5728, Springer, pp. 221-235,
doi{10.1007/978-3-642-03741-2 | 16.

Ignacio Fabregas, David de Frutos-Escrig & Miguel Palwon(2010): Equational Characterization of
Covariant-Contravariant Simulation and Conformance Satian Semantics In SOS’1Q EPTCS32, pp.
1-14, doi:10.4204/EPTCS.32.1.

Ignacio Fabregas, David de Frutos-Escrig & Miguel Paloor(2010):Logics for Contravariant Simulations
In FORTE-FMOODS 201A.NCS6117, Springer, pp. 224-231, d0i:10.1007/978-3-642-413A6L8.

R. J. van Glabbeek (2001Jhe linear time-branching time spectrum I: The semanticoatrete, sequential
processesln J. A. Bergstra, A. Ponse & S. A. Smolka, editofandbook of process algehiorth-Holland,
pp. 3—99.

Kim Guldstrand Larsen (1989Modal SpecificationsIn Automatic Verification Methods for Finite State
SystemsLNCS 407, Springer, pp. 232—-246, d0i:10.1007/3-540-5214&8 1

Kim Guldstrand Larsen & Bent Thomsen (1988)Modal Process Logicln: LICS 1988 IEEE Computer
Society, pp. 203-210, dbi:10.1109/LICS.1988.5119.

Gerald Littgen & Walter Vogler (20095afe Reasoning with Logic LT$ SOFSEM 2009LNCS 5404,
Springer, pp. 376-387, doi:10.1007/978-3-540-9589158 3

Gerald Littgen & Walter Vogler (2010)Ready simulation for concurrency: It's logical!Inf. Comput.
208(7), pp. 845-867, d0i:10.1016/j.ic.2010.02,001.

Nancy Lynch (1988)1/O Automata: A model for discrete event systerfis22nd Annual Conferenc e on
Information Sciences and Systenpp. 29-38.
http://groups.csail.mit.edu/tds/papers/Lynch/MIT-LCS-TM-351.pdf

R. Milner (1989):Communication and Concurrenclrentice Hall.

David Park (1981)Concurrency and Automata on Infinite Sequented heoretical Computer Science, 5th
GI-ConferenceLNCS 104, Springer, pp. 167-183, doi:10.1007/BFb0017309.

http://se.wtb.tue.nl/sereports
http://dx.doi.org/10.1016/0304-3975(92)90276-L
http://dx.doi.org/10.1007/978-3-642-03741-2_16
http://dx.doi.org/10.4204/EPTCS.32.1
http://dx.doi.org/10.1007/978-3-642-13464-7_18
http://dx.doi.org/10.1007/3-540-52148-8_19
http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.1007/978-3-540-95891-8_35
http://dx.doi.org/10.1016/j.ic.2010.02.001
http://groups.csail.mit.edu/tds/papers/Lynch/MIT-LCS-TM-351.pdf
http://dx.doi.org/10.1007/BFb0017309

	1 Introduction
	2 Covariant-contravariant systems
	3 The covariant-contravariant modal logic
	4 Graphical representation of formulae
	5 Considering bivariant actions
	6 Conclusions and future work

