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Abstract

In this paper we introduce a formal methodology to per-
form passive testing, based on invariants, for systems where
the passing of time is represented in probabilistic terms by
means of probability distributions functions. In our ap-
proach, invariants express the fact that each time the imple-
mentation under test performs a given sequence of actions,
then it must exhibit a behavior according to the probability
distribution functions reflected in the invariant. We present
algorithms to decide the correctness of the proposed invari-
ants with respect to a given specification. Once we know
that an invariant is correct, we check whether the execu-
tion traces observed from the implementation respect the
invariant. In addition to the theoretical framework we have
developed a tool, called PASTE, that helps in the automa-
tion of our passive testing approach. We have used the tool
to obtain experimental results from the application of our
methodology.

1 Introduction

Formal testing techniques [4, 13, 21] allow to test the
correctness of a system with respect to a specification by
performing experiments on it. After the initial consolida-
tion stage, formal testing techniques started to deal with
non-functional properties. In this line, the time consumed
by each operation should be considered critical in a real-
time system. The testing community has shown a growing
interest in extending these frameworks so that not only func-
tional properties but also quantitative ones could be tested.
Thus, during the last years there have been several propos-
als for timed testing (e.g. [14, 9, 23,7, 19, 20, 10, 16, 17, 8,
22]). In these papers, with the only exception of the model
initially introduced in [19], time is considered to be de-
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terministic, that is, time requirements follow the form “af-
ter/before ¢t time units...” In fact, in most of the cases time is
introduced by means of clocks following [1]. Even though
the inclusion of time allows to give a more precise descrip-
tion of the system to be implemented, there are frequent
situations, most notably when studying biological systems,
that cannot be accurately described by using this notion of
deterministic time. For example, we may desire to spec-
ify a system where a message is expected to be received
with probability + in the interval (0, 1], with probability 1
in (1, 2], and so on.

Most testing approaches consist in the generation of a set
of tests that are applied to the implementation in order to
check its correctness with respect to a specification. Thus,
testing is based on the ability of a tester to stimulate the
implementation under test (IUT) and check the correction
of the answers provided by the implementation. However,
in some situations this activity becomes difficult and even
impossible to perform. For example, this is the case if the
tester is not provided with a direct interface to interact with
the IUT or the implementation is built from components that
are running in their environment and cannot be shutdown or
interrupted for a long period of time. In addition, the activ-
ity of testing could be specially difficult if the tester must
check temporal restrictions. In these situations, the instru-
ments of measurement could be not so precise as required
or the results could be distorted due to mistakes during the
observation (see [15] where small measuring errors while
testing timed systems are considered). As a result, undis-
covered faults may result in failures at runtime, where the
system may perform untested traces. In these situations,
there is a particular interest in using passive testing tech-
niques. In passive testing the tester does not need to in-
teract with the IUT. On the contrary, execution traces are
observed and analyzed without interfering with the behav-
ior of the IUT. Usually, execution traces of the implemen-
tation are compared with the specification to detect faults
in the implementation ([12, 18, 24, 25]). In most of these
works the specification has the form of a finite state machine

IEEE
computer
psouety



(FSM) and the studies consist in verifying that the executed
trace is accepted by the FSM specification. A drawback of
these first approaches is the low performance of the pro-
posed algorithms (in terms of complexity in the worst case)
if non-deterministic specifications are considered. A new
approach was proposed in [6]. There, a set of properties
called invariants were extracted from the specification and
checked on the traces observed from the implementation to
test their correctness. One of the drawbacks of this work
was the limitation on the grammar used to express invari-
ants. A new formalism that overcomes this restriction for
expressing invariants was presented in [3]. It allows to spec-
ify wild-card characters in invariants and to include a set of
outputs as termination of the invariant. In [2] a temporal
extension of [3] was introduced in order to deal with timed
restrictions, where time is considered to be deterministic. A
simple extension of the classical concept of FSM was used
which allows a specifier to explicitly denote temporal re-
quirements for each action of a system.

In this paper we present a testing methodology based on
passive testing, where the time consumed by the system
while it performs its tasks is given by probability distri-
bution functions. In order to deal with stochastic time we
consider a suitable extension of the F SM model: Stochastic
Timed Finite State Machines. Instead of having expressions
such as “the action o takes ¢ units of time to be performed”
we will have expressions such as “with probability p the ac-
tion o will be performed before ¢ units of time.” Thus, the

. . .. i/o L e
interpretation of a transition s ——— g s’ is “if the ma-
chine is in state s and receives an input 4, it will produce the
output o and it will change its state to s’ before an amount
of time ¢ with probability F'(t), where F' is the probability
distribution function associated with the transition.”

Invariants will be used to express properties that are ful-
filled in all the parts of the IUT: If we observe a trace from
the IUT that does not match a correct invariant, then we
conclude that the IUT is faulty. Our invariants will express
both causality relations among inputs and outputs, and re-
lations between the time values observed in the trace and
certain probability distribution functions appearing in in-
variants. Invariants can represent properties such as “Each
time that the system produces /o if the system receives the
input ¢ then the paired output must belong to a given set
0.’ In addition, the invariant will have two probability dis-
tribution functions, associated to the previously mentioned
transitions, so that all the time values appearing in the trace
attached to the performance of each pair could be gener-
ated by the corresponding probability distribution function.
Thus, we have to perform two types of property verification
concerning invariants: One on the specification and another
one on the traces generated by the implementation. Since
invariants can be supplied by the tester, the first step is to
check that these invariants are in fact correct with respect
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to the specification. The next step is to check whether the
trace produced by the IUT fulfills invariants. In this case,
we propose an algorithm that is an adaption of the classi-
cal algorithms for string matching. It works, in the worst
case, in time O(m - n) where m and n are the length of the
trace and the invariant, respectively. Let us remark that we
cannot achieve complexities as good as the ones in classical
algorithms because we have to find all the occurrences of
the pattern.

We have developed a tool, called PASTE, to automate
our methodology. In particular, the tool includes the algo-
rithms to check the correctness of invariants with respect to
the specification and to decide whether the trace observed
from the implementation fulfills the invariants. Moreover,
the tool facilitates the task of choosing good invariants by
automatically performing experiments based on mutation
techniques.

This paper makes the following contributions. It ad-
vances the state of the art on testing systems presenting
stochastic time, so that complements the active testing ap-
proach given in [19]. It provides, as far as we know, the first
formal approach to perform passive testing of the impor-
tant class of systems where time is represented in stochastic
terms. Finally, it reports on a tool to automate passive test-
ing activities of timed systems, in particular, of stochastic-
timed systems.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the notation we apply along the paper. In
Section 3 we introduce our stochastic-temporal extension
of the classical finite state machine model. In Section 4 the
notion of invariant for systems where timed restrictions are
given in stochastic terms is presented, as well as the algo-
rithms to check the correctness of invariants with respect to
the specification and the conformance of the execution trace
with respect to the invariants. In Section 5 we comment
the tool developed to implement our methodology. Finally,
Section 6 presents the conclusions of the paper and some
lines for future work.

2 Preliminaries

Along this paper we use probability distribution func-
tions to model the time output actions take to be executed.
Thus, we need to introduce some basic concepts. We will
consider that the sample space, that is, the domain of the
probability distribution functions, is R .

Definition 1 A probability distribution function is a func-
tion F' : R; — [0, 1] having the following properties:

o limy. o0 F(t) = 1.

e F' is monotonically increasing, that is, for all ¢; and
to € Ry such that t; < ¢y we have F(t1) < F(ta).



e F'isright-continuous, that is, for all ¢ € R we have:

lim F(t') = F(t).

t/—tt

We denote the set of probability distribution functions
by F (F, Fy, F5 to range over F). Let F; and F5 be two
probability distribution functions. We write F; = F5 if for
all ¢ € R4 we have Fy(t) = Fy(t). We will call sample to
any multiset of positive real numbers. We denote the set of
multisets in Ry by p(R4).

Let F' be a probability distribution function and J be a
sample. We denote the confidence of F in J by v(F, J).

O

In our setting, samples will be associated with time val-
ues that implementations need to perform sequences of ac-
tions. We have that v(F,J) takes values in the interval
[0, 1]. Intuitively, bigger values of v(F, J) indicate that the
observed sample J is more likely to be produced by the
probability distributed function F'. That is, v decides how
similar is the probability distribution function generated by
J and the one corresponding to F’ are.

Next, we introduce one of the standard ways to measure
the confidence degree that a function ' has on a sample. In
order to do so, we will present a methodology to perform
hypothesis contrasts. The underlying idea is that a sample
will be rejected if the probability of observing that sample
from a natural sample extracted from F' is low. In practice,
we will check whether the probability to observe a discrep-
ancy lower than or equal to the one we have observed is low
enough. We will present Pearson’s x? contrast.

Definition 2 The Pearson’s x? contrast can be applied both
to continuous and discrete probability distribution func-
tions. Once we have collected a sample of size n we per-
form the following steps:

e We split the sample into k classes which cover all the
possible range of values. We denote by o, the observed
Jfrequency at class ¢ (i.e. the number of elements be-
longing to the class 7).

e We calculate the probability p; of each class, according
to the proposed probability distribution function. We
denote by e; the expected frequency, which is given by
the equation e; = n - p;.

e We calculate the discrepancy between observed
frequencies and expected frequencies as X2 =
Zle (0;76)2 When the model is correct, this dis-
crepancy is approximately distributed as the distribu-
tion x2.

e We estimate the number of freedom degrees of x? as
k — r — 1. In this case, r is the number of parameters
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of the model which have been estimated by maximal
likelihood over the sample to estimate the values of p;
(i.e. » = 0 if the model completely specifies the values
of p; before the samples are observed).

e We will accept that the sample follows the proposed
random variable if the probability to obtain a discrep-
ancy greater or equal to the discrepancy observed is
high enough, that is, if X2 < X%k—r—l),a for some «
low enough. Actually, as such margin to accept the
sample decreases as « decreases, we can obtain a mea-
sure of the validity of the sample as max{a | X? <

X(zk'—r—l),a}'
O

Example 1 Let us illustrate the previous definitions of
probability distribution function, sample, confidence and
Pearson x? contrast in the following example. Let us sup-
pose we have a dice, having its six sides the same probabil-
ity. For example, the probability of obtaining 1 or less is %,
and the probability of obtaining a number less than or equal
to 4 is %.

Let us suppose we toss this dice three hundred times.
We store the observed results in a sample denoted by /. We
have that £ is in p({1,2,3,4,5,6}). In order to represent
the number of observed values associated which each side
of the dice, let us suppose that in £ the observed frequencies
are o1 = 43, 09 = 49, 03 = 56, 04 = 45, 05 = 66, and
Og — 41.

Now we show how can we decide the confidence of ¢
with respect to the probability distribution function consid-
ered. We will use for this task the chi square goodness of fit
test. This test is particularly useful to determine how well a
model fits observed data since it allows us to evaluate how
close the observed values are to those which would be ex-
pected given the model considered.

We denote the expected frequency of value ¢ by e;. Since
we expected that the dice is regular, we have e; = 50 for all
1< <6.

The level of significance o € [0, 1] allows us to let some
discrepancies of the observed values with respect to the ex-
pected ones. We define the null hypothesis, denoted by Hy,
and we must show that y does not hold. The meaning of
the null hypothesis in this example is “the dice is not regu-
lar”, meaning that F'(z) # §, for some x € {1,...,6}.

= (01 — ei)?
Hy = e
0 ; e X5,o¢
In other words, we are saying that with probability 1 —a,
£ was obtained from F'. In our case, we can accept that the
dice is regular because Hy does not hold since the left hand
side of the inequality is equal to 8.96 while the right hand
side is equal to 11.07. O



3 Stochastic Timed Finite State Machine

In this section we introduce our notion of finite state
machines with stochastic time. The main difference with
respect to usual FSMs consists in the addition of time to
indicate the lapse between offering an input and receiving
an output. As we have already indicated, we use probabil-
ity distribution functions to model the (stochastic) time that
output actions take to be executed.

Definition 3 A Stochastic Timed Finite State Machine, in
short STFSM, is a tuple M = (S,Z,0,T'r, s;;,) where S is
a finite set of states, Z is the set of input actions, O is the set
of output actions, T'r is the set of transitions, and s;,, is the
initial state.

A transition belonging to T'r is a tuple (s,s’,i,0,F)
where s,s’ € S are the initial and final states of the tran-
sition, ¢ € Z and o € O are the input and output actions,
respectively, and F' € F denotes the time, in probabilistic
terms, that the transition needs to be completed.

We say that M is input-enabled if for all state s € .S and
input ¢ € Z, there exist s’ € S,0 € O, and I € F such
that (s,s’,4,0,F) € Tr. We say that M is observable
if for all s,7, 0 there do not exist two different transitions
(s,81,%,0,F1), (s, 82,1,0,Fy) € Tr. We say that M has
regular stochastic information, if there do not exist two dif-
ferent transitions (s, s1, ¢, 0, F1) and (s2, 83,1, 0, F») with
) £ Fs. a

Intuitively, a transition (s, s’,4,0, F) of a STFSM indi-
cates that if the machine is in state s and receives the input
1, then the machine emits the output o and moves to s’ after
a lapse less than or equal to ¢ time units with probability

F(t). We usually denote such transition by s _Ho, Fs.
Along the rest of this paper we assume that all the machines
are input-enabled, observable and have regular stochastic
information.

Example 2 Let us consider the STFSM depicted in Fig-
ure 1. We are modeling the timed behavior with the func-
tions Fy, F5, Fy associated with each transition. In this ex-
ample we show three possible, often used, functions. We
consider that the values generated by Fy are uniformly dis-
tributed in the interval [0, 2]. Uniform distributions allow us
to keep compatibility with time intervals in (non-stochastic)
timed models in the sense that the same weight is assigned
to all the times in the interval. The function F5 follows a
Dirac distribution in 4. Dirac distributions concentrate the
probability in a single point. Thus F5 gives probability 1
to 4 and probability 0 to the rest of values. In timed terms,
the idea is that the corresponding delay will be equal to 4
units of time. Dirac distributions allow us to simulate de-
terministic delays appearing in timed models. Finally, Fj is
exponentially distributed with parameter 3.
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Let us consider the transition (sq, s1, 79,01, F1). Intu-
itively, if the machine is in state s5 and receives the input ¢
then it will produce the output o; after a time given by F}
and will move to state s3. The time associated with the tran-
sition is a value 0 < t < 2, that can be drawn with the same
probability. For example, we know that this delay will be
less than 1 time unit with probability %, it will be less than
1.5 time units with probability %, and so on. Finally, once 2
time units have passed we know that the output 0; has been
performed (that is, we have probability 1). ad

4 Stochastic Invariants

In this section we introduce the notion of invariant for
systems where time conditions are given in stochastic terms.
An invariant represents a relevant property that must be ful-
filled by the IUT. Intuitively, an invariant expresses the fact
that each time the IUT performs a given sequence of ac-
tions, then it must exhibit a behavior reflected in the invari-
ant. These invariants should be supplied by the expert/tester.
Thus, the first step is to check that the invariants are correct
with respect to the specification and an algorithm is pro-
vided in order to establish it. After we have a collection
of correct invariants we must check whether the traces pro-
duced by the IUT satisfy the properties expressed by them.
Another approach consists in automatically extract invari-
ants from the specification. In this case, we can adapt to
our framework the algorithms given in [6]. The problem
with this approach is that the number of possible invariants
is huge. A third alternative is to assume that invariants are
correct by definition. In this situation, a specification is not
needed and the invariants can be considered as the require-
ments of the system to be implemented.

Due to the timed nature of our framework, we need to
extend the notion of invariant to deal with temporal require-
ments. The invariants will allow to express properties such
as “After pressing the red button we receive a coke before 4
seconds with probability 0.95”.

Next, we introduce the notion of invariant where
stochastic-temporal behavior is taken into account.

In order to express invariants in a concise way, we will
use the wild-card characters 7 and . The wild-car ? rep-
resents any value in the sets I and O, while * represents a
sequence of input/output pairs.

Definition 4 Let M = (S,Z,0,Tr, s;,) be a STESM. We
say that a sequence [ is an invariant for M if the following
two conditions hold:

1. I is defined according to the following EBNF:

Ii=a/z/FI|x1I'|i— M
I':=i/z/FI|i— M



i1, 02, Fy

i1, 02, F3 ig, 02, I

i1, 02, I3

0 ift<0
Ft) =< & ifo<t<2

1 if ¢ >2

0 if t <4
B (1) _{1 ift>4

—t

1—e3 ift>0
F(t) = =
3(®) 0 ift<0

I = {io,i1,i2} O = {01, 02,03}

Figure 1. Example of STFSM.

In this expression we consider F' € F, 1 € Z, a €
TU{?hzeOU{?},and M C O x F.

2. 1 is correct with respect to M.

We denote the set of stochastic time invariants by STInv.
O

Intuitively, the previous EBNF expresses that an invari-
ant is either a sequence of symbols where each component,
but the last one, is either an expression a/z/F, with a be-
ing an input action or the wild-card character ?, z being an
output action or the wild-card character ?, and F' being a
probability distribution function, or an expression x. There
are two restrictions to this rule. First, an invariant cannot
contain two consecutive expressions *. The second restric-
tion is that an invariant cannot present a component of the
form % followed by an expression beginning with the wild-
card character 7, that is, the input of the next component
must be an input action ¢ € Z. In fact, x represents any se-
quence of input/output pairs such that the input is not equal
to 7, being ¢ the next input appearing in the invariant.

The last component, corresponding to the expression
i — M, is an input action followed by a set of pairs
< o, F' >. Each pair represents a possible output that can
be observed after the input ¢ and the probability distribution
function that draws the amount of time the system should
spend for performing it.

Example 3 Let us consider the invariant (regarding the
specification in Figure 1)

i1/7/F5,%,10 — {< 01, F1 >,< 02, F> >,< 03, F3 >}

This invariant reflects that each time we find in a trace a
(sub)sequence starting with the input ¢; and paired with any
output symbol, the first occurrence of the input ¢( should be
paired with either the output o, the output o9, or the out-
put o3. Only if we find the corresponding sequence, then
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we check the temporal behavior. The previous invariant re-
quires that the amount of time the system spends to generate
an output for the input 4; must be given by F3. Further-
more, always that we find ¢¢ and it is followed by 01 or 0
or o3, the amount of time the system takes will happen with
a probability given by I, F5 and Fj respectively.

We can refine the previous invariant if we consider only
the cases where the pair i1 /02 was observed. The invariant
for denoting this property is

i1/02/F3,%,i9 — {< 01, F1 >,< 03, Fy >,< 03,3>}

O
4.1 Correctness of invariants with respect
to specifications

Since we assume that invariants may be defined by a
tester, we must ensure they are correct with respect to the
specification. Next, we introduce an algorithm that allows
us to establish this correctness and explain its most relevant
aspects. First we introduce some auxiliary functions.

Definition 5 Let M = (S,Z,0,Tr, $;,) be a STFSM, s €
S,a € TU{?}, and z € O U {?}. We define the set
afterCond(s, a, z) as the set of transitions belonging to
T'r having as initial state s and labeled by a/z, that is,

afterCond(s,i,0) = {(s,8,4,0,F)|(s,s,i,0,F) € Tr}

afterCond(s,?,0) = |J,cyafterCond(s,i,o)

afterCond(s,i,?) = J,coafterCond(s,i,o)

afterCond(s,?,?) Uiez.0co afterCond(s,i,0)

We define the function afterInp(s,i) as the function
that computes the set of states that can be reached from state
s without performing the input ¢:



afterInp(s,i) = {s} U

381,y 8n—1,%1, 500,01, -+, 0n, F1, ..o Fy
, i1/01 ig/02 in/on ,
s | s F S1 Fy S2...8n—1 — "5 g 8
ANig {i1,...in} An>1

The algorithm to establish the correctness of an invariant
with respect to a specification is given in Figure 2. Intu-
itively, the algorithm checks that the invariant is respected
in all the possible paths of the specification. Initially, we
need to consider all the states of the specification due to the
fact that the invariant does not have to correspond with a
trace beginning in the initial state. From each state in the
specification the algorithm explores if there exists any tran-
sition that matches the first component of the invariant. The
set of states reached by these transitions are collected and
the same process is applied for the next components of the
invariant, considering only the states gathered in the pre-
vious step. If during this process we obtain a empty set of
states, it means that the invariant is useless for this specifica-
tion and the algorithm stops. Otherwise, we must check the
last component of the invariant, ¢ — M. We need to decide
whether the transitions outgoing from the states reached in
the first phase of the algorithm and labeled by the input ¢
fulfill the requirements established in M, that is, the output
and the probability distribution function associated to these
transitions belong to the set M.

Lemmal Let M = (S,Z,0,Tr,s;,) be a
STFSM. The worst case of the algorithm given
in Figure 2 checks the correctness of an invariant
I = il/Ol/F17~~~,in—1/0n—1/Fn—17in — M with
respect to M :

e In time O(n - |T'r|) and space O(|T'r|) if I does not
present occurrences of .

e Intime O(k-|Tr|*>+ (n—k)-|Tr|) and space O(|Tr|)
if I presents k occurrences of % in I.

O

4.2 Conformance of traces with respect to
invariants

In this section we explain how we can determine whether
the execution traces obtained from the IUT satisfy the prop-
erties expressed by the invariants. As we commented pre-
viously, it is not relevant the state where the machine was
placed when we started to observe the trace because invari-
ants have to be fulfilled at any point of the IUT. In order to
test the trace we perform a pattern matching strategy. We
have implemented an adaption of the classical algorithms
for pattern matching on strings, (i,e. [5, 11]).
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in : M=(52Z0,Tr, si,)

I = {al,...,an,l,in D—>_/\/l}
// either ay, = iy /oy /| F} orap, = %
out: Bool.

I' — 1,8 « S;j«— 1,58 «— @; error «+— false;
while (j < n) do

if (head(I’) = %) then

while (5" # @) do

Choose s € S';

S — S\ {s};

S" «— 8" UafterInp(s,ijt1);

else
while (5" # @) do
Choose s, € 5';
S 5"\ {sak;
Tr' — afterCond(sq,i;,05);
while (T # @) do
Choose (Sq, S, 1,05, F') € Tr';
Tr' —Tr" \ {(sa; S0,%5,0;, F') };
if I/ = F)j then
L S// — S//U{Sb};

I'=tail(l);
| j—j+1 8«88«
if (S’ = @) then
| error < true;
while (S’ # @) do
Choose s, € 5';
S — 8"\ {sa};
Tr' — afterCond(sq,in, ?);
while (Tr' # @) do
Choose (Sq, S, in, 0, F') € Tr’;
Tr' — Tr' \ {(sa, $b, in, 0, F') };
if (< 0, I >€ M)) then
| 8" — S"U{sp};
else
L error < true

if (S = @) then
L error < true;

Return (—error);

Figure 2. Correctness of an invariant with re-
spect to a specification.

Execution traces are essential in passive testing. Let
us remember that, in our setting, testers cannot inter-
act with the IUT. They are only provided with recorded
traces, called logs, for performing testing. In a log we
can observe several signals (input/output) and the time
the system took to perform them. A log is a sequence



input : s :: sequence
I= {CL17 s 7an—1ain g M}
A€ 0,1]

output: Bool.

times :: Set of p(R4);

Fs:: Setof Z x O x F;

Struct A {wild :: Bool; Iy 2 STINV}
b, baus : Stack[A]; tok :: A,

error «<— false;

for (j — 1;j < length(s) A —error;j < j+1)do
(i, 0,t) < s[j];
times(4, 0) < times(i, 0) U {t};
tok.wild <+ false;
tok. I gye <— I;
tok « check(s[j], tok, error, Fs);
if (tok # null) then
| push(bgys, tok);
while (—isEmpty(b)) do
tok < check(s[j], top(b), error, Fs);
if (tok # null) then
| push(baus, tok);
— b — bau$;
while (Fs # & A —error) do
Choose(i, 0, F) € Fs;
Fs — Fs\ {(4,0, F)};

if (v(F, times(i,0)) < A) then
| error < true;

return(—error);

Figure 3. Correctness of a log with respect to
an invariant.

i1/01/t1,42/02/ta,i3/03/ts, ..., in/0n/t, Where for all
1<j<nwehavei; € I,0; € O,andt; € R,.

Regarding stochastic-temporal requirements, we might
require that any subsequence of an execution trace must
have the same associated delay, that is, each input/output
has an identical probability distribution function to the one
appearing in the invariant. Although this is very reason-
able, if we assume a passive testing framework then we
cannot check whether the corresponding probability distri-
bution is identical. This is so because we do not have the
implemented function; we only have the amounts of time
the system spent to perform the actions. In order to guar-
antee that these values fif the corresponding probability dis-
tribution function in the invariant we collect the execution
times and compare them with the function using a hypothe-
Sis contrast.

In Figure 3 the algorithm that we use to establish the
conformance of a log obtained from the IUT with respect to
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input : (i,0,t)
tok:: A
&error :: Bool
&Fs:: Setof T x O x F

output: A.
switch (head(tok.l,q.)) do
case : (¢',0,F")

Fs — FsU{(i',o,F")};

if 7 = 4/ then

if o = o’ then
tok.wild « false;
tok.Ioux < tail(tok.Ioux);
return(tok);

else

| return(null);

else
if tok.wild then

| return(tok);
else

| return(null);

Case :(ip — M)
Fs — FsU{(in,0,F)}|(0,F) € M};
if i = i,, then
if (3F : (o, F) € M) then
| return(null);

else
L error <— true;

return(null);

else
| return(null);
Case :(%)
tok.wild < true;
tok.Taux < tail(tok.Taux);
return(tok);

Figure 4. The check function.

an invariant is presented. The algorithm can be divided in
two different stages. The first one explores the correctness
of the trace with respect to the input/output pairs appearing
in the invariant. The second one is related to the stochastic-
temporal restrictions.

In the first phase we transverse the trace, looking for any
incorrect behavior of the implementation with respect to
the property expressed in the invariant without considering
the probability distribution functions.We use an auxiliary
function check, depicted in Figure 4, that checks whether
an element of the trace and a component of the invariant
match. The treatment depends on the kind of component of
the invariant being checked: A triple i/0/F, a x symbol or
i — M corresponding to the last component of the invari-



ant. In this phase, an error is detected only when we check
if the log and the last component of the invariant match. Let
us remark that the fact that the recorded log and the invari-
ant do not fit when we are checking the first n — 1 elements
of the invariant, it does not indicate that the trace does not
fulfill the invariant. In that case, we have not found the pre-
conditions established by it. In the same way, we could not
deduce that we have found an error if all the components of
the invariant appear in the observed trace but the last one.
In such a situation we cannot conclude that the implemen-
tation fails. Similarly, if we find the last component, we
cannot conclude anything since the rest of the components
of the invariant were not found. It is only when we reach
the last component of the invariant when a verdict can be
emitted. If we find the input ,, and the corresponding out-
put o, does not appear in any pair < o, I’ > belonging to
M, then the trace log does not fulfill the property expressed
by the invariant and the algorithm emits an error.

During the first stage time values registered in the log
are stored. The next phase of the algorithm corresponds
to verify if the execution time values collected for each
input/output considered in the invariant fit the associated
probability distribution function. This notion of fitting is
given by the function  given in Definition 1 and its spe-
cialization by using the contrast hypothesis given in Defini-
tion 2. The input parameter o denotes the minimum con-
fidence level that we can let to the time values of the log
trace.

S PASTE: a PASsive TEsting tool

In addition to the theoretical framework we have devel-
oped a tool called PASTE that helps in the automation of
our passive testing approaches. In order to use the tool, we
suppose that the tester has a specification and a set of in-
variants written in XML and following the internal syntax
of the tool (due to lack of space we do not elaborate either
on the specific syntax or on the types of probability dis-
tribution functions included, by default, in the tool). The
tool PASTE provides two major functionalities. The first
one fully implements the framework presented in this paper.
The first step performed by the tool consists in checking the
correctness of the invariants with respect to the specifica-
tion. Once this correctness is established, the tool has to be
provided with one or more logs recorded from the IUT. The
user can sort the invariants so that the order in which they
are checked against the logs is fixed.

PASTE includes a second functionality that notably helps
in the task of performing passive testing for big systems
where logs have to be necessarily long and the number of
invariants can be very big. In this situation, the task of sort-
ing invariants to decide which ones have to be applied first
is of vital importance but very difficult to be done manu-
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Figure 5. Effectiveness of individual invari-
ants.
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ally. In order to overcome this problem PASTE implements
a mutation-based approach. Intuitively, by constructing mu-
tants from the specification and by applying the considered
invariants, beforehand, to the logs generated by these mu-
tants, we may classify invariants according to the number
of mutants that they detect. As usual, it is expected that the
more mutants an invariant kills, the more effective will be
to detect errors in real implementations.

In order to generate mutants, we consider three types of
mutations: Producing a wrong output in a transition, chang-
ing the final state of a transition, and changing one probabil-
ity distribution function associated with the performance of
different transitions. While the first two types are standard
in mutation testing, the last one deserves some comments.
Mutations consist in slightly changing, between -10% and
10%, one of the parameters of the corresponding function.
In the case of discrete probability functions, we can change
either one value having probability greater than zero or the
probability associated with one value (this last change im-
plies, obviously, that another probability has to be adjusted
so that all the weights add up to 1). In the case of con-
tinuous functions, for example, in exponential or uniform
distributions, we change one of the parameters appearing in
the definition. Once we have a set of mutants, we generate
random traces from these mutants to obtain a big sample
where we are able to fest the effectiveness of the proposed
invariants.

Next we report on the performed experiments. First, we
generated 500 mutants from a specification and observe the
percentage of killed mutants after considering a specific set
of 40 invariants. We do not remove conforming mutants,
that is, mutants that even after inducing a fault are still
equivalent to the original specification. This experiment
has been performed 50 times with the same specification.
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Figure 6. Comparative of invariants with re-
spect to the length of observed logs.

In each simulation we use 200 mutants having an induced
output-fault, 200 mutants having with an induced final state
fault, and 100 mutants presenting an induced probability
distribution function fault. We take different lengths of the
log and generate ten logs for each considered length. Obvi-
ously, the longer the log is, the higher is the probability of
detecting an error in a non-conforming mutant. The length
of the logs is computed as a multiple of the total number of
transitions appearing in the specification. For example, if
the mutant has 25 transitions, then a trace 2x means that its
length is 50. In these experiments we used traces of length
ranging from 1z to 10z.

Next, we selected a subset containing the ten invariants,
among the 40 considered, providing the best results. We
obtained the results given in Figure 5, where the numbers
indicate the percentage of erroneous traces found by each
invariant. We would like to stress that invariants are a very
powerful tool to find errors among faulty implementations
since some of them were able to kill almost 20% of the mu-
tants. For the next stage of the experiment, we produced 25
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new different mutants of each class, and extracted, for each
length ranging from 1z to 9z, 10 traces. In Figure 6 we
observe that the coverage of finding an error (kill a mutant)
with a big set of invariants in this concrete specification is
closer to 50%, what we consider a good number for a pas-
sive testing approach.

6 Conclusions and Future Work

In this paper we have introduced a passive testing
methodology for systems that present stochastic timed re-
strictions. Based on an extension of the classic F SM formal-
ism, and a formal definition of the notion of invariant, we
have introduced two algorithms to establish the correctness
of an invariant with respect to a specification and to deter-
mine whether a log obtained from the IUT satisfy the prop-
erties expressed by mean of these invariants. In addition to
the theoretical framework we have developed a tool called
PASTE that allows the automation of our passive testing ap-
proach. In particular, the algorithms presented in the paper
are fully implemented and we have some interesting results
obtained from the experiments performed.

As future work we plan to improve the capability of our
framework by adding new classes of invariants. In addition,
we are currently studying the correlation between length
of invariants, number of possible invariants for a certain
length, and their effectiveness.
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