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We have devised an artificial intelligence algorithm with machine reinforcement learning (Q-learning) to
construct remarkable entangled states with four qubits. This way, the algorithm is able to generate representative
states for some of the 49 true SLOCC classes of the four-qubit entanglement states. In particular, it is possible to
reach at least one true SLOCC class for each of the nine entanglement families. The quantum circuits synthesized
by the algorithm may be useful for the experimental realization of these important classes of entangled states
and to draw conclusions about the intrinsic properties of our universe. We introduce a graphical tool called
the state-link graph (SLG) to represent the construction of the quality matrix (Q-matrix) used by the algorithm
to build a given objective state belonging to the corresponding entanglement class. This allows us to discover
the necessary connections between specific entanglement features and the role of certain quantum gates, which
the algorithm needs to include in the quantum gate set of actions. The quantum circuits found are optimal by
construction with respect to the quantum gate-set chosen. These SLGs make the algorithm simple, intuitive, and
a useful resource for the automated construction of entangled states with a low number of qubits.
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I. INTRODUCTION

The term machine learning (ML) was coined in 1959 by
Arthur Samuel, an American IBMer and pioneer in the field
of computer gaming and artificial intelligence [1]. ML con-
sists essentially in the exploitation of particular algorithms of
self-learning to get information from data in order to make
predictions. Because of this, machine learning facilitates com-
puters in building models from sample data in order to build
decision-making processes based on data inputs [2,3].

The applications of machine learning techniques to physics
experienced a huge development in the last decades, with
approaches based on topological optimization, evolutionary
strategies, deep learning and reinforcement learning [4–6].
In particular, the application of ML to “creative tasks,” such
as designing new quantum experiments, is not completely
explored yet. There are a few aspects of quantum mechanics
which lead researchers to think that ML and computer aided
techniques offer interesting and promising perspectives in this
regard [5]. For example, as we start to deal with many entan-
gled particles, the Hilbert space dimension becomes so large
that the problem is no more treatable without computer aid.
Moreover, to build new experiments, physicists usually have
to handle a huge number of variables, and ML techniques are
yet in use to handle this kind of complexity [4]. Moreover, it is
worth asking whether ML and artificial intelligence (AI) can
boost human intuition in dealing with the intrinsic counter-
intuitive nature of quantum mechanics, and if ML can also
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help to handle multidimensional and multipartite entangled
systems. An emblematic example is the Melvin algorithm
developed by Krenn et al. in 2016 [6]. Indeed, this algorithm
has uncovered solutions to previously unsolved questions and
has also inspired the discovery of new scientific insights [7].

In this work, we will present an application of a ML tech-
nique to quantum entanglement, a fundamental resource for
quantum computation. In particular, we will employ ML to
design new quantum experiments aimed at engineering quan-
tum mechanical states with desired entanglement properties.

II. BACKGROUND

Machine learning algorithms can be grouped into three
basic types: Supervised learning, unsupervised learning and
reinforcement learning (RL). Many ML reinforcement meth-
ods, such as the projective simulation (PS) algorithms [8],
have been extended to the quantum domain [9] obtaining
a quantum advantage for the first time over their classical
counterparts. Whereas a lot of activity is being generated for
quantum reinforcement learning [10,11], the present works
remains classical with respect to the algorithm employed with
the goal being the generation of quantum states. In particular,
we will employ an RL algorithm called Q-learning. This latter
is one of the best known RL algorithms [3,12], and, although
the name may suggests otherwise, the Q does not stand for
anything quantum-related, it is in fact a historical notation
based on the name of the cost function to be optimized during
the algorithm.

A. Q-learning algorithm working principles

Q-learning, like all the RL procedures, involves an agent
(the algorithm itself), an environment and a set of actions
by which the agent interacts with it (see Fig. 1). In the
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FIG. 1. Flowchart of reinforcement learning working principle.
It consists of an agent, an environment and a set of actions by which
the agent interacts with the environment and is rewarded.

environment are placed some objectives which the agent must
reach [13]. It is a policy-free RL algorithm, i.e., there is no
previous knowledge of a conduct of behavior [12]. It can
explore the environment by performing stochastic actions and
analyzing the feedback it receives. By interacting with the
environment, the agent changes its state and eventually earns
some rewards, when finding its objectives. By keeping track of
this feedback, it learns how to interact with the environment to
reach the objectives while maximizing the rewards. Hence, the
agent will be able to select its actions with an optimal policy
[12], in the sense of the reward maximization.

A simple illustrative description of the Q-learning algo-
rithm is shown in Fig. 2 for the mouse-labyrinth example. We
can identify the following elements: (1) Ensemble of actions:
all the possible movements that the mouse can perform, (2)
states of the agent: Its positions in the labyrinth, and (3) re-
wards: The pieces of cheese which he can reach while walking
in the labyrinth.

The actions of the mouse (agent), allows it to explore
the labyrinth (environment). The states in which the mouse

FIG. 2. Q-learning scheme through the mouse-labyrinth exam-
ple. In this image, we represent the agent as a mouse that can move
around a labyrinth, with the aim of finding the exits, where some
cheese-rewards are placed. In the learning process, it selects and
performs random movements starting from random positions in the
labyrinth. It eventually earns a reward when it approaches the escapes
and records this event. By performing random movements and by
keeping track of the rewards earned, it can trace the optimal path to
escape from the labyrinth, which maximizes the rewards earned.

could be corresponds to all the positions in the labyrinth. The
rewards in the environment are encoded by a user defined
function, which establishes the “prizes” that the agent will
gain during its exploration. Usually this means that, if we
want the agent to learn how to end up in specific states in the
environment, we have to provide rewards every time it per-
forms actions which lead it in those states. We will call these
states the “objective states.” The reward function is usually
implemented as a matrix called Reward matrix (R-matrix). It
has nonzero elements for state-action pairs that lead directly
to the objective states.

While the agent explores the environment, it needs to
record the rewards it earns and to recall them during the
exploration. In particular it needs an instrument to keep track
of the pairs state-action which bring to rewards. In Q-learning
this tool is the Quality matrix, or Q-matrix. The Q-learning
algorithm involves two phases: Training and testing [12]. The
training part consists in the exploration of the environment and
proceeds with single episodes. At each time t an episode takes
place, the agent is placed in a random state st in the environ-
ment, from which it performs a random action at . It records
the reward which it eventually obtains from the R-matrix, Rt .
The numerical value inserted in the Q-matrix is calculated
with a Bellmann equation [14], or Q-learning formula, which
allows to update the old Q-matrix value Q(st , at ) to the new
one Qnew(st , at ). The agent assigns to each pair state-action a
quality value (Q-value), which depends not only on the reward
earned in the current episode (Rt ), but also on the rewards
received in the past ones. Further details about the calculation
of this Q-value will be given in the following section. Below
are shown the steps consisting in a single episode:

Q-learning - episode of the training part

Initialize: Generate a random state st

Action : Select a random action at

Perform the action at from the state st

Observe: Check the resulting state st+1

if Rt �= 0 then
Earn a reward

end
Update Q(st , at ) → Qnew(st , at ) with Bellman eq.
Initialize: Generate a new random state

At the end of the training part, the agent has updated its Q-
matrix with weighted rewards associated with the pairs state-
action. Each value in the Q-matrix quantifies how much is
good to take a specific action in a certain state, in order to
reach the objective with an optimal path.

If the agent went through a sufficiently high number of
episodes, the values of its Q-matrix no longer change signif-
icantly. The criteria for this convergence must be established
depending on the problem treated, but in general it is theoret-
ically proven [12,15] that the Q-learning algorithm converges
to an optimal policy. In the testing part, by using the Q-matrix
values, the agent is able to reach the a priori established
objectives by following the best rewarded pairs state-action,
starting from a chosen initial state. The agent selects from the
Q-matrix the most rewarded action associated with its current
state. It performs the action and changes its state, repeating
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FIG. 3. At the end of the training part, the mouse has updated
its Q-matrix with weighted rewards associated with the pairs state-
action. This values quantify how much is good to take a specific
action in a certain state, in order to reach the objective. In the grid
showed in this picture, the size of the cheese values indicates the
goodness of an action, given the state in which it is performed.
Once an initial position is established, the mouse follows his grid
of state-action pairs to select his next movement, choosing the most
rewarded ones. This will carry it to the exit of the labyrinth.

this procedure until it reaches the final objective. In this way,
it can find the optimal path towards its goals, maximizing the
earned rewards (see Fig. 3).

We choose this algorithm because, even if the problem
of designing quantum circuits is a deterministic problem, we
need to define a code of conduct that establish which action
to choose in each state, or that establish the parameters that
we should evaluate in order to select an action (i.e. we are
missing a policy or policy evaluation). Because of that, we
chose to avoid value iteration procedures [16], or other dy-
namic programming methods. Moreover, we did not introduce
a distance concept in our environment, and thus we are not
able to assign values to the states based on their distance from
the objective state.

B. Q-learning cost function

As we mentioned, the Q-matrix is derived from the R-
matrix, and it is updated at each episode of the training process
using the Q-learning formula:

Qnew(st , at ) ← Q(st , at )(1− α) + α(Rt + γ maxaQ(st+1, a)).
(1)

This expression is a Bellman equation [14], where Qnew(st , at )
expresses the quality value of a state-action pair. In this ele-
ment, the variable t represent a discrete timing of the episodes.
We can compute the value Qnew(st , at ) using the prior value of
the Q-matrix for that state-action pair, Q(st , at ), and adding
to it the reward earned in the current episode, Rt . We add
to this latter an evaluation of the maximum reward for the
possible future actions, maxaQ(st+1, a), in fact, the a index
runs through all the actions that can be performed from the
resulting state st+1. If in the past episodes the agent gained
some rewards it will take into account these past rewards as
a positive contribution to the Qnew(st , at ) value, thanks to the
quantity maxaQ(st+1, a). This means that, in order to assign
a quality value to the current state-action pair, the agent is
looking at the values of the possible next steps. Indeed, with

this procedure, the agent learns to follow the best rewarded
path. These past rewards are scaled by a discount factor γ .

(1) γ : Is a real number between zero and one, 0 < γ < 1,
and sets how much the reward of future actions influences the
new value Qnew(st , at ).

If γ is chosen close to 0, it will prevent the algorithm to see
the future rewards by making it “myopic” [12], considering
only current rewards. If it is close to 1, the past rewards will
be taken much more into account than the new ones coming
from the R-matrix. All these terms are scaled again by the so
called learning rate α.

α: It is a real number between 0 and 1, like γ , it is set to
establish the learning speed of the algorithm.

If it is closer to 1 it allows the algorithm to learn quickly, as
the values of the Q-matrix will be updated with a high weight,
otherwise, the learning part of the algorithm is slower but is
capable to “remember” better the rewards taken in the past. In
other words, α defines how much we override the old values
of the Q-matrix with the new ones. Hence, the setting of α

requires to choose between two opposite strategies. The first,
with α close to 1, consists in a faster exploration, which easily
forgets the past rewards, in favor of the new ones. The second,
with α close to 0, implies a slower exploration in which,
however, the algorithm can remember each past reward, but
it will take a longer time to explore the environment. After
setting those parameters to suitable values, the algorithm will
update the Q-matrix during the training part.

The Q-values are proven to converge to those of a Q∗(s, a)
function, which represents the optimal policy of the algorithm,
i.e., the set of quality values that make the agent able to reach
the objective with an optimal path [12]. However, the training
part should include ideally an infinite number of trials in order
to convergence to the optimal policy [12,15], in practice, there
is a residual convergence, which is negligible. We will con-
sider the training completed when the values of the Q-matrix
remain stable under a certain threshold.

C. Entanglement basics

Entanglement is one of the most important and interesting
features of quantum mechanics, it has a key role in the fields
of quantum communication, quantum cryptography and en-
tangled states are a fundamental ingredient to build quantum
algorithms in quantum computation [17,18]. For pure quan-
tum states we can say that if we have two or more systems
entangled the state of each system cannot be described inde-
pendently from the others. In other words, for a system with
Hilbert space H = HA ⊗ HB, it holds

|ψ〉 �= |ψ〉A ⊗ |ψ〉B, (2)

with |ψ〉 being an entangled state of the whole system in H ,
|ψ〉 cannot be factorized into the states of the subsystems A
and B. We focus our discussion on two-level quantum sys-
tems, i.e., the qubits (such as linearly polarized photons or
electrons spin)), which generic state reads

|φ〉 = α|0〉 + β|1〉, (3)

with α and β complex coefficients. We can deal at the same
time with more than one qubit, and thus we can have multi-
qubit entanglement.
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The study of entanglement between qubits is of crucial
importance for quantum computing and of course for the real-
ization of modern prototypes of quantum computers [17,18].
Many studies and applications have been made to obtain de-
sired quantum states, with particular entanglement properties,
and the entanglement complexity poses major obstacles to this
research field [5]. For this reason, many recent works employ
ML techniques in order to help scientists in difficult computa-
tional tasks, but also to explore entanglement features, which
are far from human intuition [4,6]. With such background,
this work is devoted to explore the design of quantum circuits
that can reproduce entangled states of qubits, with the aid of a
Q-learning algorithm. In particular, we will focus our attention
on entangled states of four qubits, based on the classification
made previously in the literature [19–23].

D. SLOCC classification

The complexity of quantum entangled states requires a
clear picture that allows to classify them. In order to catego-
rize different types of entanglement, we can divide the Hilbert
space of a multipartite system into equivalence classes, us-
ing an operational definition of equivalence. Following the
scheme in [24,25] we can use the Local Unitary (LU) equiva-
lence, with LU being deterministic and reversible operations.
If it is possible to transform a state into another via LU
operations, then the two states are LU-equivalent [25]. Two
LU-equivalent states have the same physical properties, in
particular, the same entanglement ones. However, the LU
operations do not include all the possible operations that pre-
serve the entanglement and can be performed experimentally.
In particular, they do not allow to perform joint operations on
spatially separated particles. In order to classify properly the
entangled states, we need to include in the conversion opera-
tions the support of classical communication [26]. This leads
to the paradigm of Local Operations assisted with Classical
Communication (LOCC): quantum states are transformed by
performing Local Operations (LOs) on the subsystems and al-
lowing the transmission of classical communication between
the spatially separated parties [25,26].

For the case of pure states, however, it has been shown
[27,28] that two states are LOCC-equivalent iff they are LU-
equivalent. This means that the classes defined by LOCC
are the same as those defined by LU operations. It has been
demonstrated that two pure bipartite states are LOCC-equiv-
alent iff they have the same Schmidt coefficients [19,29,30]:

|ψ〉 LU↔ |φ〉 ⇔ |ψ〉 LOCC↔ |φ〉 ⇔ αi = α′
i , ∀i, (4)

with |ψ〉 → {αi}, |φ〉 → {α′
i} being their Schmidt decompo-

sitions. Hence, through these LOCC we can transform one
state into another deterministically (with probability of suc-
cess equal to 1), i.e., the two states belong to the same LOCC
entanglement class [31], and they have the same entanglement
properties. Otherwise they belong to different entanglement
classes and thus have different entanglement properties. We
notice that this criterion is interesting in quantum information
theory because all the parties involved can use these LOCC
equivalent states for exactly the same tasks [31].

This Schmidt criterion of classification becomes impracti-
cal when dealing with multipartite Hilbert spaces, in fact, the

FIG. 4. LOCC classification as a refinement of SLOCC clas-
sification. States which are LOCC equivalent result also SLOCC
equivalent [25].

Schmidt decomposition is only possible for the bipartitions of
a system [17]. The most promising classification for multipar-
tite Hilbert spaces states is the one based on the equivalence
under Stochastic Local Operations and Classical Communi-
cation (SLOCC). This latter is identical to LOCC equivalence
except that the interconversion of two states does not need
to be deterministic, the success probability of a conversion
only needs to be nonzero [17]. Thus LOCC-equivalence im-
plies SLOCC equivalence, and therefore the partition of the
Hilbert space into LOCC equivalence classes is a refinement
of the partition into SLOCC classes, Fig. 4. The SLOCC
classification is carried out mostly by means of invariants
and semi-invariants [23,25].We remind that SLOCC opera-
tions cannot increase, on average, the amount of entanglement
[17,25]. In particular, it is not possible to generate entangled
states from separable states by SLOCC, even probabilistically
[17,25].

With two qubits, there exist only two SLOCC equivalence
classes, the class of separable states, and the class of entangled
states. Any pure entangled state of two qubits can be converted
via SLOCC into any other pure entangled state with nonzero
probability. For three qubits, there exist six SLOCC classes
[31], namely, the separable class, the three bipartite entangled
classes AB-C, AC-B, BC-A, the class with W-type entangle-
ment and the class with GHZ-type entanglement [31,32].

For four qubits, the number of SLOCC classes seemed to
become infinite [31]. This assumption was then disproved in
[25] by D. Li et al., in particular they specify that it cannot be
asserted that there exist infinite SLOCC classesfor four qubits.
One of the reasons lies in the fact that SLOCC classes of n
qubits depends on at least 2 × 2n − 2 − 8n real parameters
[21], thislower bound allows for a finite number of SLOCC
classes for n = 4 [25] in the SLOCC representation made by
F. Verstraete et al. Meanwhile, various attempts have been
made to find physically meaningful classification schemes
for the four-qubit case. The technique that we will take into
account is the one used in Refs. [20,21], developed also in
Ref. [23] and then further analyzed in Ref. [22]. F. Verstraete
et al. [21] introduced the concept of Entangled Families (EF),
and nine different EFs were found, while in Ref. [22] 49
different SLOCC classes are identified within these EFs. This
classification of four qubits states will be the basis for the
application of our quantum circuit design algorithm.
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E. SLOCC families for four-qubit entangled states

As we explained in the previous section, Verstraete et al.
categorize the four-qubit entangled states into nine en-
tanglement families basing the categorization on SLOCC

classification [21]. They prove that each SLOCC equivalence
class belongs to exactly one EF [21]. In Fig. 5, a graphical
representation of this relationship is shown. Here we report
all the nine EFs for four qubits, we adhere to the terminology
used in Ref. [21]:

Gabcd = d + a

2
(|0000〉 + |1111〉) + a − d

2
(|0011〉 + |1100〉) + c − b

2
(|0110〉 + |1001〉) + b + c

2
(|0101〉 + |1010〉),

Labc2 = a + b

2
(|0000〉 + |1111〉) + a − b

2
(|0011〉 + |1100〉) + c(|0101〉 + |1010〉) + |0110〉,

La2b2 = a(|0000〉 + |1111〉) + b(|0101〉 + |1010〉) + |0110〉 + |0011〉,

Lab3 = a(|0000〉 + |1111〉) + a + b

2
(|0101〉 + |1010〉) + a − b

2
(|0110〉 + |1001〉) + i√

2
(|0001〉

+ |0010〉 + |0111〉 + |1011〉),

La4 = a(|0000〉 + |0101〉 + |1010〉 + |1111〉) + (i|0001〉 + |0110〉 + i|1011〉),

La203⊕1̄
= a(|0000〉 + |1111〉) + (|0011〉 + |0101〉 + |0110〉),

L05⊕3̄
= |0000〉 + |0101〉 + |1000〉 + |1110〉,

L07⊕1̄
= |0000〉 + |1011〉 + |1101〉 + |1110〉,

L03⊕1̄03⊕1̄
=|0000〉 + |0111〉, (5)

where a, b, c, and d are four complex parameters. The SLOCC
classes which can be identified in these nine families depend
on constraints applied to those four complex parameters [22].
The work by D. Li et al. [22] distinguishes at least 49 true
SLOCC entanglement classes among all the nine families.
For example, for family Gabcd they identify 13 different true
SLOCC classes; for family Labc2 , 19 true SLOCC classes
and so on. They give the complete SLOCC classifications for
families La4 , La203⊕1̄

, L05⊕3̄
, L07⊕1̄

, and L03⊕1̄03⊕1̄
, but they do not

grant that the other classes have been completely explored. In
Table I, we summarize the 49 true SLOCC classes, specifying
the conditions on the coefficients a, b, c and d . Here we adhere
to the terminology used in Ref. [22].

FIG. 5. Graphical representation of the relationship between EFs
and SLOCC classes. Even if each EF does not contain only one
SLOCC class, each SLOCC class is demonstrated to belong to only
one EF [21].

Notice that, for La203⊕1̄
, L05⊕3̄

, and L07⊕1̄
in Eq. (5), there

is a 1 : 1 correspondence with SLOCC classes, while L03⊕1̄03⊕1̄

does not contain four qubit entanglement, in fact it is a product
state of the one-qubit state |0〉 and the three-qubit GHZ state.
It is clear that, with the increasing number of qubits, the
number of different SLOCC classes increase dramatically, i.e.,
the complexity of the entanglement grows exponentially with
the number of qubits involved. To overcome this complexity
and approach entangled states from a computational point
of view, we decide to apply the RL algorithm described in
Secs. II A and II B, called Q-learning [12], in order to synthe-
size quantum circuits which can produce four-qubit entangled
states belonging to the above showed EFs. We will illustrate
in detail in the next sections how Q-learning is exploited for
our purpose.

III. QUANTUM CIRCUITS DESIGN WITH
REINFORCEMENT LEARNING

A. Q-learning algorithm applied to quantum circuits design

In order to apply the Q-learning to our case, we imple-
ment the basic components of the algorithm as follows: (1)
The objectives, which we will specifically search for, are the
SLOCC classes (Table I) included in the nine EFs [Eq. (5)],
hence, the representative states of the SLOCC classes of four
qubits; (2) the environment is located in the four qubits state
space; (3) the actions that the agent can perform consist in
the application of quantum gates from a chosen set of gates;
and (4) the rewards are encoded in a R-matrix whose entries
corresponds to state-action pairs.

The training part consists in updating the Q-matrix whereas
in the testing part the agent reaches the final objective state,
producing the desired circuit. More specifically:
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TABLE I. True SLOCC classes of four-qubit entangled states.

Family, SLOCC class Conditions on coefficients

Gabcd , A1.1 b = c = 0, ad �= 0, a = ±d
Gabcd , A1.2 b = c = 0, ad �= 0, a �= ±d, a2 + d2 = 0
Gabcd , A1.3 b = c = 0, a2 + d2 �= 0
Gabcd , A2.1 a = d, a �= ±b, b = +c, a2 + b2 = 0
Gabcd , A2.2 a = d, b = c, a �= ±b, a2 + b2 �= 0
Gabcd , A3.1 a = d, a �= ±b, b = −c, a2 + b2 = 0
Gabcd , A3.2 a = d, b = −c, a �= ±b, a2 + b2 �= 0
Gabcd , A4.1 a = d, either a = ±b or ±c, 2a2 + b2 + c2 = 0
Gabcd , A4.2 a = d, either a = ±b or ±c, 2a2 + b2 + c2 �= 0
Gabcd , A4.3 a = d, a �= ±b, a �= ±c, 2a2 + b2 + c2 = 0
Gabcd , A4.4 a = d, a �= ±b, a �= ±c, 2a2 + b2 + c2 �= 0
Gabcd , A4.5 a2 + b2 + c2 + d2 = 0
Gabcd , A4.6 a2 + b2 + c2 + d2 �= 0
Labc2 , B1.1 c = 0, a = b �= 0
Labc2 , B1.2 c = 0, a = −b �= 0
Labc2 , B1.3 c = 0, a �= ±b, a2 + b2 = 0
Labc2 , B1.4 c = 0, a �= ±b, ab �= 0, a2 + b2 �= 0
Labc2 , B1.5 c = 0, a �= ±b, ab = 0
Labc2 , B2.1 abc �= 0, a = b, a = ±c
Labc2 , B2.2 abc �= 0, a = b, a �= ±c, a2 + c2 = 0
Labc2 , B2.3 abc �= 0, a = b, a �= ±c, a2 + c2 �= 0
Labc2 , B3.1 abc �= 0, a = −b, a = ±c
Labc2 , B3.2 abc �= 0, a = −b, a �= ±c, a2 + c2 = 0
Labc2 , B3.3 abc �= 0, a = −b, a �= ±c, a2 + c2 �= 0
Labc2 , B4.1 abc �= 0, a �= ±b, a = ±c, 3a2 + b2 = 0
Labc2 , B4.2 abc �= 0, a �= ±b, a = ±c, 3a2 + b2 �= 0
Labc2 , B4.3 abc �= 0, x �= ±y, a2 + b2 + 2c2 = 0.
Labc2 , B4.4 abc �= 0, x �= ±y, a2 + b2 + 2c2 �= 0.
Labc2 , B5.1 c �= 0, a = b = 0
Labc2 , B5.2 c �= 0, a = 0, b = c
Labc2 , B5.3 c �= 0, a = 0, b �= ±c, b2 + 2c2 = 0
La2b2 , B5.4 c �= 0, a = 0, b �= ±c, b2 + 2c2 �= 0
La2b2 , V1 a = ±b �= 0
La2b2 , V2 a �= ±b, ab �= 0, a2 + b2 = 0
La2b2 , V3 a �= ±b, ab �= 0, a2 + b2 �= 0
La2b2 , V4 a �= ±b, ab = 0
Lab3 , R1.1 a = b = 0
Lab3 , R1.2 a = b �= 0
Lab3 , R1.3 a = −b �= 0
Lab3 , R2.1 a = 0, b �= 0
Lab3 , R2.2 a �= 0, b = 0
Lab3 , R3.1 a �= ±b, ab �= 0, 3a2 + b2 �= 0
Lab3 , R3.2 a �= ±b, ab �= 0, 3a2 + b2 = 0, b = +i

√
3

Lab3 , R3.2* a �= ±b, ab �= 0, 3a2 + b2 = 0, b = −i
√

3
La4 , La.1 a = 0
La4 , La.2 a �= 0
La203⊕1̄

a �= 0
L05⊕3̄

no conditions
L07⊕1̄

no conditions

In this table we show the 49 true SLOCC classes identified in [22] among the nine families reported in Eqs.(5),
with the conditions on the parameters a, b, c, and d . Notice that the family L03⊕1̄03⊕1̄

is not included because it is not
characterized by four qubit entanglement since its representative state is a product state of the one-qubit state |0〉 and
the three-qubit |GHZ〉 state [22].

a. Objectives. The algorithm can only focus on one
target state at a time, thus we fix a single objective
state, the representative of a SLOCC class in Table I.
In order to suit the algorithm procedure, the representa-

tive state chosen is encoded as a list of its superposition
terms, e.g., if the SLOCC class is A1.1 and the repre-
sentative state reads |�〉A1.1 = 1√

2
(|0000〉 + |1111〉), then

it is encoded as �A1.1 = {0000, 1111}. This element is a
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representation of the objective state that the algorithm can
elaborate. In general, the state that we want to target can be
written as

|�〉 =
16∑
j=1

α j |ψ〉 j, (6)

where |ψ〉 j are the sixteen basis states for the four-qubit
state space, α j are the superposition coefficients which can be
either 0 or �= 0. This state, for the purpose of the algorithm,
can be encoded as

� = {ψ1, . . . , ψn} (7)

with n being the number of terms of the objective quantum
state |�〉. Notice that in Eq. (7) only the basis states |ψ j〉
with α j �= 0 are listed. We specify that there is a clear distinc-
tion between |�〉, the physical representation of the quantum
state, and the abstract list-object �, which represents it for
the algorithm procedure. In fact, as we will see in the next
sections, after the Q-learning procedure we need to make
further manipulations on the output of the algorithm to obtain
the physical objective state |�〉 (see Appendix).

b. Environment. The environment of our algorithm is made
up of quantum states of four qubits. We divide the Hilbert
space into subsets characterized by states with a fixed number
of terms in their superposition, i.e., single-term set, double-
term set,etc. Moreover, in order to have a finite and discrete
number of states to explore, as it is done for the objectives,
we represent each state of the subsets as a list of its own su-
perposition terms, without considering the states’ coefficients.
In fact, recording continuous coefficients would be an impos-
sible task in terms of computational resources. However, to
overcome the issues that can rise from this limitation, we will
apply a post-processing procedure that allow us to tune the
coefficients of the resulting state, in order to match the desired
ones of the objective quantum state |�〉 (see Appendix). If the
representative state of the class has n terms, then the algorithm
will explore the subsets with m terms, m � n. Notice that
the dimension of the environment (the total dimension of
the subsets involved) grows with the number of terms of the
target state. This choice allows to explore a limited number of
subsets.

Although this method limits the possibility to explore some
of the four qubits entanglement classes, our algorithm proves
to be an efficient way to design quantum protocols for a
significant part of them.

c. Actions. The actions that the agent can perform consist in
the application of single quantum gates (both single qubit and
multiple qubits gates). The set of gates which the algorithm
can apply is established before the training part. However,
depending on our necessities we can update the set of gates
before each search. For example, in order to reach specific
classes, we added new gates with respect to the initial ones.

d. Rewards. The R-matrix entries correspond to the pairs
state-gate, where the states are all the subsets of states with m
terms, which compose the environment. The only entries that
carry a value �= 0 are those where the gate applied to the state
gives, as a result, the target state.

FIG. 6. Decreasing of the Q-matrix changing rate (CR) with the
increasing number of episodes in the training part, for the search of
the B1.1 SLOCC class (see Table I). We consider that the algorithm
has successfully updated the Q-matrix when the it reaches or pass the
CR threshold.

B. Algorithmic procedure

When a target state |�〉 is established, and then encoded
in � as a list-shaped object showed in Eq. (7), the algorithm
first builds the R-matrix and initialize the Q-matrix as a zero
matrix with the same shape as the R-matrix. We recall that the
size of the R-matrix depends on the number of terms of the
target state and on the number of gates that we decide to use.

a. Training part. During each episode of the training part,
the algorithm is initialized in a random � state, among the
ones belonging to the subsets involved. Then it applies to
the current state a random gate, taken from the gates set.
It reads the resulting state and checks if the desired target
state has been reached. By means of the Q-learning cost
function [Eq. (1)], it updates the value of the Q-matrix entry,
corresponding to the pair current state-gate. This procedure,
consisting in a single episode of the Q-learning algorithm,
is repeated for a fixed number of times, established before
the training part. At the end of this run, we calculate what
we can call the changing rate (CR). This quantity evaluates
how much the Q-matrix values change, with respect to the
values before the run. We can set a threshold under which
the Q-matrix is considered substantially unchanged. After a
sufficiently high number of episodes, if the algorithm reaches
the desired threshold, we can consider that the Q-learning is
at its convergence, and thus we can proceed to the testing part.

The number of repetitions needed to explore the whole
environment depends on the dimension of this latter, which, as
we mentioned, is linked to the number of terms of the searched
state. In Fig. 6, we can see an example of this convergence
procedure: the threshold for the CR is set at 10% and we can
see how the CR of the Q-matrix decreases while number of
episodes increases.

b. Testing part. In this part we check if the algorithm is
able to find a suitable protocol to reach the objective state.
We select an arbitrary initial state, e.g., |0000〉 encoded as
{0000}. The algorithm checks the Q-matrix values in the
cells that link the current state to the quantum gates, i.e.,
entries with coordinates ({0000},gatei ), with i scrolling all the
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gates of the gate set. It then selects the action corresponding
to the largest Q-value, and applies the gate to the current state.
After reading the resulting state, it sets this latter as the new
current state, and repeats the same procedure, until the final
target state is reached. By recording the sequence of states and
applied gates, it builds a quantum protocol, which starts from
the arbitrarily chosen initial state and reaches to the objective
one. Let us call |�〉out the output state of the quantum protocol
synthesized by the algorithm. The algorithm representation of
the output state should be equal to the searched one �: in other
words, |�〉out must have the same superposition terms showed
in the � list, i.e., the same superposition terms of |�〉. This
outcome proves that the training procedure was completed
successfully, and thus the algorithm is able to produce the
quantum circuit that generates the target state. As we already
mentioned, in order to have an output state |�〉out that matches
also the coefficients of the quantum state |�〉 we developed a
post-processing procedure showed in Appendix.

IV. MACHINE LEARNING GENERATION OF ENTANGLED
FOUR-QUBIT STATES

In this section, we apply the Q-learning algorithm to design
proper quantum protocols to achieve the four qubits entan-
glement classes. Using the classification in Table I [22], we
present some of the quantum circuits generated by the algo-
rithm to reach the representative states of those classes. We
find out that not all these true SLOCC classes can be handled
with the aid of our algorithm. Therefore we try to point out
and explain the features of the circuits, which we manage to
find for some of the classes, focusing on the specific gates that
we introduced.

We start our search of quantum circuits with a simple set of
gates, focusing firstly on the EF L03⊕1̄03⊕1̄

, i.e., the ninth EF. Al-
though it is characterized by only three-partite entanglement,
and thus it is not a true SLOCC class, it is a good starting
point to test our algorithm, due to the possibility to validate
our result with pre-existing literature concerning three qubits
entangled states [17,31]. Moreover, this family representative
state has only two terms meaning that the environment we
have to build is extremely limited, thus, faster to explore.
Therefore we take the representative state of the ninth family
as a delightful example of the algorithm performance, and
we present the results obtained with a simple set of gates,
observing also its intrinsic limits.

Secondly, we show how this reduced gate set turns out to be
not successful in reaching some of the other classes. Indeed,
we take as an example the seventh and eighth EFs, since they
coincide with true SLOCC classes [see Eqs. (5), Table I]. For
these and other classes we are not able to produce a suitable
circuit with the initial set of gates. Hence, to overcome this
obstacle, we update it by adding the Toffoli gate: This allows
us to reach some of the classes that were previously precluded.

Afterwards, we show that also this new gate-set is not yet
sufficient, as it prevents to reach some of the classes whose
representatives have an odd number of terms, as it will be
elucidated afterwards. The solution that we found to this prob-
lem consists in the addition of the controlled-Hadamard (C-H)
gate, to our gate set.

TABLE II. Universal set of quantum gates.

By adding new gates to our set we manage to reach a large
number of SLOCC classes in Table I, without altering the
whole structure of the algorithm.

Finally, we summarize in Tables III–V which of the 49
true SLOCC classes we manage to reach with quantum pro-
tocols built by the algorithm or with the algorithm followed
by the post-processing procedure in Appendix. Moreover, we
suggest that some of the classes, which we did not manage
to reach, could be approached with phase-dependent gates or
with new subroutines that can be queued to our procedure.

A. First set of gates

As a universal set of quantum gates we introduce the set
comprising the Hadamard gate, the phase gate, the controlled-
not (C-NOT) gate, and the Toffoli gate (C-C-NOT) (see
Table II). This is equivalent to the standard universal gates
set which includes Hadamard, phase gate, C-NOT and π/8
gate [17,18]. However, as a first attempt we will use a reduced
set of gates, made up of C-NOT, X gate (quantum NOT) and
Hadamard. This choice is made aiming at reaching “simple
classes” in the most direct and easiest way. Some of the
classes, indeed, can be trivially obtained with this reduced set
of gates, since approaching them with a universal set would
introduce an unnecessary complication and would be more
difficult in terms of computational resources. Thus we start
with a simple set and, once we meet some obstacles with
this initial toolbox, we add new gates. With this approach it
can be argued that we end up with a set which includes a
universal set but has some redundancy, meaning that not all
the gates are independent. However, by adding redundancy
we gain in efficiency; indeed, a richer toolbox improves the
performances of the learning part in terms of computational
time.

Furthermore, by including unconventional gates in the
toolbox (such as controlled-Hadamard) we help the algorithm
in finding optimal circuits characterized by a smaller number
of gates. Moreover, handling different entanglement classes
with different sets of gates, growing in complexity, allows us
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TABLE III. Feasibility categorization.

Family, SLOCC class Conditions on parameters Feasibility

Gabcd , A1.1 b = c = 0, ad �= 0, a = ±d
Gabcd , A1.2 b = c = 0, ad �= 0, a �= ±d, a2 + d2 = 0
Gabcd , A2.1 a = d, a �= ±b, b = +c, a2 + b2 = 0
Gabcd , A3.1 a = d, a �= ±b, b = −c, a2 + b2 = 0
Labc2 , B1.1 c = 0, a = b �= 0
Labc2 , B1.2 c = 0, a = −b �= 0
Labc2 , B1.3 c = 0, a �= ±b, a2 + b2 = 0
Labc2 , B1.5 c = 0, a �= ±b, ab = 0
Labc2 , B2.1 abc �= 0, a = b, a = ±c
Labc2 , B2.2 abc �= 0, a = b, a �= ±c, a2 + c2 = 0
Labc2 , B3.1 abc �= 0, a = −b, a = ±c
Labc2 , B3.2 abc �= 0, a = −b, a �= ±c, a2 + c2 = 0
Labc2 , B5.1 c �= 0, a = b = 0
Labc2 , B5.2 c �= 0, a = 0, b = c = 1
Labc2 , B5.3 c �= 0, a = 0, b �= ±c, b2 + 2c2 = 0

In this table, we report the feasibility categorization of our algorithm and post-processing procedure for the SLOCC classes belonging to the
EFs Gabcd and Labc2 .

to better observe their entanglement properties. For example,
some of the entanglement classes explicitly need gates which
can act on three qubits (see Sec. IV B for the introduction
of the Toffoli gate), while some other classes do not require
this kind of gates. In other words, adding gates step by step
helps us to point out their key role in reaching specific SLOCC
classes.

As anticipated, we firstly choose to analyze the ninth EF.
Because its environment is extremely limited, the time needed
to check if the algorithm succeeds is relatively short. In fact,
since the representative of the class reads

|�〉L03⊗103⊗1
= |0000〉 + |0111〉, (8)

its algorithm representation reads {0000, 0111}, thus the only
rewarding matrices, and quality matrices, which we need to
build are those that connect actions, i.e., application of gates,

to single-term states (ST) and double-term states (DT). The
ST and DT lists reads

ST =

⎧⎪⎪⎨
⎪⎪⎩

0000
0001
0010

...

⎫⎪⎪⎬
⎪⎪⎭

DT =

⎧⎪⎪⎨
⎪⎪⎩

{0000, 0001}
{0000, 0010}
{0010, 0011}

...

⎫⎪⎪⎬
⎪⎪⎭

.

From now on, we will refer to the representative states of the
nine families as |�〉J , with J = 1, . . . , 9, and the represen-
tative states of the SLOCC classes with the notation used in
Table I [22]. Thus |�〉L03⊗103⊗1

= |�〉9.
In Fig. 7, we can see the R-matrix of the ninth EF of Eq. (8)

for the DT states, carrying rewards only in correspondence of
some state-action pairs, highlighted in green. After training
the algorithm, the Q-matrices are built: In Fig. 8, we can see
the insight of the Q-matrix for the ST subset. The pattern of

TABLE IV. Feasibility categorization.

Family, SLOCC class Conditions on parameters Feasibility

La2b2 , V1 a = ±b �= 0
La2b2 , V2 a �= ±b, ab �= 0, a2 + b2 = 0
La2b2 , V4 a �= ±b, ab = 0
Lab3 , R1.1 a = b = 0
Lab3 , R1.2 a = b �= 0
Lab3 , R1.3 a = −b �= 0
Lab3 , R2.1 a = 0, b �= 0
Lab3 , R2.2 a �= 0, b = 0
Lab3 , R3.2 a �= ±b, ab �= 0, 3a2 + b2 = 0
Lab3 , R3.2* a �= ±b, ab �= 0, 3a2 + b2 = 0
La4 , La.1 a = 0
La4 , La.2 a �= 0

Here we show the feasibility for the EFs La2b2 , Lab3 , and La4 . We can see that, due to the complex coefficients of the EF Lab3 in Eqs. (5), the
SLOCC classes related to this EF are not approachable with our post-processing procedure.
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TABLE V. Feasibility categorization.

Family, SLOCC class Conditions on parameters Feasibility

La203⊕1̄
a �= 0

L05⊕3̄
no constraints

L07⊕1̄
no constraints

The last three SLOCC classes that we report are among those showed
as examples in this paper, |�〉6, |�〉7, and |�〉8.

weighted rewards, i.e., the quality values Q(s, a), is clearly
visible. During the testing part, as explained in Sec. III B,
we choose a starting quantum state, set as the current state,
that will be the initialized state in our quantum circuit. The
algorithm checks the Q-matrix values in the cells that link the
current state representation to the quantum gates, i.e., if the
chosen quantum state is |ψ0〉 = |0000〉, it checks the entries
with coordinates ({0000},gatei ), with i scrolling all the gates
of the gate set. It then selects the largest Q-value in that
row and applies the correspondent gate to the current state.
It registers the resulting state and sets this latter as the new
current state, and repeats the same procedure, until the final
target state is reached. In Fig. 9, the result of the testing part
is displayed in form of a quantum circuit, as the sequence of
gates selected as the best valued once. The sequential appli-

FIG. 7. R-matrix for the DT states for the EF |�〉9, i.e., L03⊕1̄03⊕1̄
.

The green cells represent the rewards, and they are present only for
the pairs state-action that directly link to the objective class.

FIG. 8. Q-matrix of the ninth EF, built for the ST states. The cells
represent the pairs state-action and the color-grade indicates the Q-
value itself. While the R-matrix include just the single-gate rewards,
this matrix contains a pattern of rewards, which help the algorithm to
choose the best gate to apply when placed in a certain state.

cation of the gates produces the output state |�〉out which, in
terms of its algorithm representation �out, meets exactly the
desired representative state |�〉9 → �9 = {0000, 0111}. We
will introduce in the next section an intuitive way to visualize
states and gates connections. Based on this first successful re-
sult we may start dealing with more time-demanding classes.

In Secs. IV B and IV C, we explain why we decide to
add new gates to the reduced toolbox, by elucidating what
kind of difficulties we encounter trying to reach some of the
entanglement classes.

B. Adding the Toffoli gate

Two of the entanglement classes which the algorithm strug-
gled to handle at this stage are the seventh and the eight:

|�〉7 = |0000〉 + |0101〉 + |1000〉 + |1110〉, (9)

|�〉8 = |0000〉 + |1011〉 + |1101〉 + |1110〉. (10)

For an entangled state with four terms, like |�〉7 and |�〉8,
we have to explore all the subsets including states with n � 4
terms, i.e., ST subset, DT subset, three-term subset (TT),

FIG. 9. Quantum circuit for the |�〉9 family resulting from the
reinforcement learning algorithm.
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FIG. 10. State-link graph (SLG) encoding the information of the Q-matrix for the |�〉7 SLOCC class. Each circular shell represents a
subset of states, from the outer one to the inner one: Single-term (ST), double-term (DT), three-term (TT) and four-term (FT). The nodes
represent the states, while the rewarded single gate transformations are represented by the links between nodes. The color grade of the nodes
refers to the number of connections that each state has with other states, belonging to the same shell or to different shells. Whereas the color of
the edges indicates the weighted reward associated to that gate application. As we can see the rewards only spread inside the FT shell. On the
top are showed the insights of the inner shell related to three steps (from left to right) of the progressive training procedure. We can see how
the FT states are progressively connected by rewarded gates applications.

and four-term subset (FT). During the training part, even if
the algorithm manages to converge in terms of the Q-matrix
modifications, it shows that the rewards do not propagate
outside the FT subset. Indeed, we noticed that, at the end of
the training, only the Q-matrix related to the FT states reports
weighted rewards, while the other three Q-matrices (related to
TT, DT, and ST states) remain unchanged. This means that,
with the set of gates provided, there are no rewarded links
between the FT subset and the TT, DT, and ST subsets.

This affects our capability to reach the desired entangled
state from an arbitrary quantum state in our environment.
Indeed, if the agent is placed in one of the TT, DT, or ST
states, it will have no clue on which is the best action to take
in order to reach the desired state in the four-term subset,
due to the fact that there are no rewards spread in that part
of the environment where it is located. As a consequence,
during the testing part, if the agent is placed in one of the ST,
DT, or TT subsets, it will only take random actions, because
all the state-action pairs have the same quality weight (equal
to zero).

We can visualize the connections between quantum states,
encoded in the Q-matrix, with the state-link graph (SLG)
shown in Fig. 10. The nodes of the graph represent the

environment states and the links which connect two states
correspond to the rewarded application of a single gate. Dif-
ferent concentric shells correspond to different subsets, i.e.,
to subsets which states have different number of terms. The
innermost shell is the one related to the four-term states: it is
the shell where the representative state of the class is located.
The other shells, from the outer one to the inner one, are the
ST, DT, and TT states. The color grade of the nodes refers
to the number of connections that each state has with other
states and the colors of the links correspond to the Q-values.
We can see that the nodes of the outer shells have no rewarded
connections, while the four-term shell has links between its
states. This behavior indicates that the algorithm could not
spread the reward pattern in the Q-matrix outside a certain
region of the environment. If we want our algorithm to find
the optimal path starting from an arbitrary initial state, we
have to provide shortcuts that can connect different shells
with a rewarded link. Notice that this obstacle cannot be
traced back to the number of terms in the superposition of
the objective state, because for other classes with four terms
the algorithm worked efficiently. As an example we can look
at the entanglement family Gabcd , in particular, the SLOCC
class A4.1 in Table I, where the parameters are set as a = d,
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FIG. 11. Quantum circuit for representative state |�〉A4.1(a = 0).

a = ±b, 2a2 + b2 + c2 = 0, with a = 0:

|�〉A4.1(a = 0) = |0101〉 + |1010〉 + |0110〉 + |1001〉
↓ algorithm representation

�A4.1(a = 0) = {0101, 1010, 0110, 1001}. (11)

For this class, the rewards spread over all the states subsets and
the algorithm is able to find the circuit showed in Fig. 11, start-
ing from the state |ψ0〉 = |0000〉. The reason for this behavior
lies on the particular terms of the superposition characterizing
the two classes |�〉8 and |�〉7: we can see that both have one
or more terms with three qubits in the state |1〉. In fact |�〉8
is in a superposition of |1011〉, |1101〉, and |1110〉, and |�〉7
includes |1110〉. To account for this feature it becomes nec-
essary to introduce the Toffoli gate (C-C-NOT). It performs a
quantum not on a target qubit only if the two control qubits
are in the state |1〉 at the same time. Indeed, acting on three
qubits the Toffoli gate generates this type of superposition
without creating or canceling other terms in the state. For
our purpose, the Toffoli gate allows the algorithm to reach
superpositions between base elements which include terms
with three qubits in the state |1〉. Indeed, after the introduction
of C-C-NOT in the set of gates, the algorithm manages to
spread the reward and finds paths that allow to reach |�〉7
starting from an arbitrary quantum state. In Fig. 12, we can see
the quantum circuit for the seventh EF, with |ψ0〉 = |0000〉.
We can also observe the Q-matrices pattern of rewards, once
the Toffoli is introduced: in fact, the state-link graph (SLG)
appears completely filled with rewarded links that connect
different shells Fig. 13. With the addition of the Toffoli gate
we almost reached a universal set of gates, which compre-
hends: Hadamard gate, Z gate, C-NOT, and Toffoli gate [17].
However, due to the fact that we are not keeping track of the
amplitudes, we do not need to add the phase gate Z.

C. Adding the controlled-Hadamard gate

Proceeding with the analysis of the SLOCC classes we
find that, at this stage, the algorithm is unable to reach some

FIG. 12. Quantum circuit built for |�〉7 with the aid of the Toffoli
gate.

FIG. 13. State-link graph (SLG) for the objective state |�〉7 after
the introduction of the Toffoli gate. In this graph, the four shells
are completely connected by weighted rewards, as opposed to the
situation in Fig. 10.

states with an odd number of terms in their superposition. In
particular, states which representative has three terms, such as
the representatives of classes B1.1, B1.2, and B5.1. Again we
decide to add a gate to our toolbox, in order to reach these
SLOCC classes. The best candidate that can help us is the
Hadamard gate, because it introduces superposition. Indeed,
its action reads

H |0〉 → 1√
2

(|0〉 + |1〉), H |1〉 → 1√
2

(|0〉 − |1〉). (12)

In terms of a quantum optics device, by taking the polarization
as our degree of freedom and considering linearly polarized
photons, the Hadamard corresponds to a polarization rotator
which performs a rotation of π/4, i.e., a half-wave plate.
Indeed, horizontal and vertical polarization can be encoded,
respectively, as |0〉 and |1〉 of the computational basis. A qubit
subject to the action of a Hadamard gate is analogous to a pho-
ton passing through a half-wave plate: it is projected onto the
basis {|+〉 = 1/

√
2(|0〉 + |1〉), |−〉 = 1/

√
2(|0〉 − |1〉)} [33].

Applying Hadamard to a single-term state we obtain a
double-term state. Of course, applying it to a double-term state
we may obtain a three-term state. However, when we look at
what happens when a Hadamard is applied to a double-term
state, in an homogeneous superposition, we can see that there
are just a few possible outcomes.

We have two different cases, depending on the entangle-
ment. If the state is entangled and it is in an homogeneous
superposition, the action of the Hadamard gate can only lead
to one type of result, e.g., on one of the Bell’s states it reads

H (A)(|00〉 + |11〉) → |00〉 + |10〉 + |01〉 − |11〉, (13)

where H (A) is the Hadamard acting on the first qubit. A
similar superposition of four terms can be obtained from the
action of one Hadamard gate on the other three Bell states.
The other possibility is that the two-qubit state, on which
the Hadamard acts is not entangled, then the result can be
summarized in the following way.
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(i) Action on the factorizable qubit

H (A)(|01〉 + |00〉) → H (A)|0〉A(|1〉B + |0〉B)

→ |01〉 + |11〉 + |00〉 + |01〉.
(ii) Action on the nonfactorizable qubit

H (B)(|01〉 + |00〉) → |0〉AH (B)(|1〉B + |0〉B)

→ |00〉.
This means that the Hadamard gate, acting on the two

qubits states in homogeneous superpositions, can only dou-
ble the number of terms (from two to four terms) or halves
it, returning to a single-term state. This discussion can be
generalized to the three and four qubit case. Indeed, as the
Hadamard gate is a single-qubit gate, if we want to obtain a
recombination of terms, i.e., to sum two or more terms, we
need superpositions of terms, which differ from each other
for a single qubit and the Hadamard gate should act on that
specific qubit:

H (A)(|01〉 + |11〉) → |01〉 + |11〉 + |01〉 − |11〉 → |01〉.
(14)

If we apply the Hadamard gate to a two-term state of four or
three qubits with terms which differ for more than one qubit,
we will obtain always four terms as a result, because the sum
of the terms would not be possible, keeping in mind that the
Hadamard acts on only one qubit at a time. This observation
leads to the following results regarding the four qubits states,
analogues to those listed above for the two-qubit states.

(i*) The two terms differ from each other for more than one
qubit, and the Hadamard gate acts on one of them

H (B)(|0100〉 − |0010〉) → |0000〉 − |0100〉
− |0010〉 + |0110〉.

We obtain a four-term superposition from a two-term one.
(ii*) The two terms differ one another for more than one

qubit and the Hadamard gate acts on the factorizable ones
(analogue to the case i)

H (A)(|0100〉 + |0010〉) → |0100〉 + |1100〉
+ |0010〉 + |1010〉.

We obtain a four-term superposition from a two-term one.
(iii*) The two terms differ for a single qubit and the

Hadamard gate acts on the factorized ones (this case is not
different from the previous one ii*, due to the fact that the
Hadamard gate can only change one qubit at a time)

H (A)(|0100〉 + |0000〉) → |0100〉 + |1100〉
+ |0000〉 + |1000〉.

We obtain a four-term superposition from a two-term one.
If the two terms differ by only one qubit, which corre-

sponds to the qubit targeted by the Hadamard gate, then the
result can be trivially referred to the two-qubit case (ii), with-
out loss of generality.

FIG. 14. The state-link graph (SLG) for the objective state
|�〉B1.1 without the C-H gate added, showing that the shells related
to ST states (outer shell) and DT (next-to-outer shell) states are not
connected by rewarded single gates applications.

(iv*) The two terms differ for a single qubit and the
Hadamard gate acts on it

H (D)(|0000〉 + |0001〉) → |0000〉 + |0001〉
+ |0000〉 − |0001〉

→ |0000〉.
We obtain a state which is no more in a superposition, a single-
term state from a two-term one.

In polarization terms, we are performing a rota-
tion from the diagonal basis |+〉D = 1/

√
2(|0〉D + |1〉D),

|−〉D = 1/
√

2(|0〉D − |1〉D) to the basis |0〉D, |1〉D. Thus the
Hadamard gate cannot provide three terms in a superposition.

The discussion becomes different if we consider states of
four terms and we want to reach five terms. In that case the
Hadamard gate, together with the action of NOT or C-NOT
gates, can recombine terms and a state with five terms can be
built from a four-term state. Since some of the entanglement
classes that we want to reach have representative states with
three terms, we choose to add a new gate to the previous
set of gates, namely, the Controlled-Hadamard (C-H) gate.
To see the effectiveness of this addition, we take as an ex-
ample the SLOCC class B1.1, whose representative state is
|�〉B1.1 = |0000〉 + |1111〉 + |0110〉 [22]. In Fig. 14, we can
see the SLG related to this entanglement class without the
addition of the C-H gate. We notice that the TT states are
isolated from the others, as it happened before with |�〉7.
With the C-H included in the toolbox we can overcome this
obstacle and we are able to generate states with three terms in
their superposition. Without loss of generality, we can make
an example of the action of a C-H on a simple two-qubit state,
omitting normalization coefficients:

C-H (B, A)(|01〉AB + |10〉AB) → |01〉 + |11〉 + |10〉. (15)

In this example, the C-H gate has qubit B as the control qubit
and qubit A as the target. Due to the nonsymmetric action of
this gate we can reach states with an odd number of terms
with a shortcut which connects even-term shells and odd-term
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FIG. 15. The state-link graph (SLG) for the objective state
|�〉B1.1 with the C-H gate added showing how the shells, correspond-
ing to all number of terms, link with one another.

shells in the SLG. In Fig. 15, we can see how the graph related
to |�〉B1.1 is now connected by edges that allow to reach the
objective state. We report the quantum circuit to generate
|�〉B1.1 in Fig. 16, and the corresponding optimal path in a
graph form in Fig. 17.

D. Complete and incomplete exploration of the entanglement
classes

We summarize in Tables III–V the subgroup of the 49
classes, showed in Table I, which we managed to approach
with our reinforcement learning algorithm. We recall that
these SLOCC classes are identified from the original nine
entanglement families in Eqs. (5), with constraints on the
complex parameters a, b, c, and d [22]. The colored dots in
the Feasibility column have the following meaning:

→ class that we are able to reach with the set of gates
{X, H, C-NOT, C-C-NOT, C-H}, without the post-processing
procedure,

→ class that can be reached with the previously
mentioned set of gates and the post-processing procedure
described in Appendix,

→ class that requires post-processing procedure
shown in Appendix and phase gates addition.

For the SLOCC classes marked with a dark green dot ( ),
we are able to produce the quantum circuits generating their
representative state exploiting only the Q-learning procedure.
We showed some of them in the previous sections. These

FIG. 16. Quantum circuit obtained for the SLOCC class B1.1
(Table I) generated with the reinforcement learning algorithm.

FIG. 17. Quantum circuit for the class B1.1 in the SLG repre-
sentation. These links represent connections created by the single
gates of the protocol in Fig. 16. The starting state on the right is
�0 = {0000}.

classes have representative states that are homogeneous su-
perpositions with real coefficients, i.e., their terms have all the
same real coefficients. For these classes, we managed to find
suitable protocols, reported in Sec. IV E, which can reproduce
their representative states. We consider these results optimal
given the settings of the algorithm.

The classes with a blue mark ( ) required the post-
processing procedure, described in Appendix. Indeed, even
though the circuit produced by the Q-learning procedure has
an output state with the same terms of the representative one,
we need to tune the coefficients of this output state, to match
those of the desired state.

The classes with a yellow mark ( ) have representative
states in which one or more terms have imaginary coefficients.
Hence, our algorithm is able to reach states with the right
terms of the superposition but our post processing procedure
is not able to match the coefficients in the end, as it is designed
only to tune real coefficients. These states can be reached with
a proper addition of the phase gates (S), the control-phase
gates (C-S) or the π/8 gates. By means of them we can
rearrange the phases of the coefficients accordingly, in order
to achieve the desired representative state. In any case, our
algorithm can be used as a fruitful starting point.

There are some classes in Table I that are not included in
this summary. This is because they are not fully classified [22],
meaning that they could either be true SLOCC classes or not.
Let us recall that this feasibility categorization is based on the
capabilities of our algorithm and it is intrinsically linked to its
working principles. Thus, among the classes listed in this sec-
tion, we consider completely explored the classes marked in
dark green and blue, while we consider the others as partially
explored, which could be finalized along the lines mentioned
here or by further developments.

We divide the SLOCC classes into three tables. The first
one, Table III, refers to the SLOCC classes that derive from
the first two EFs in Eqs. (5). We notice that the four-qubit
GHZ state is included in the first EF, the representative state
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TABLE VI. Quantum protocols.

of class A1.1. being

|GHZ〉4 = 1√
2

(|0000〉 + |1111〉). (16)

In Table IV, the SLOCC classes that derive from the third,
fourth, and fifth families in Eqs. (5) are reported.

In Table V, are reported the SLOCC classes belonging to
the remaining families in Eqs. (5), the sixth, the seventh and
the eighth families, since the ninth family does not contain
four qubits entanglement.

E. Quantum circuits for SLOCC classes of four qubits

This subsection summarizes the main results of this work.
We report in Tables VI and VII the quantum circuits that
we find with our reinforcement learning algorithm for some
of the classes listed in Tables III–V, marked with a blue ( )
and a dark green dot ( ). We can see that, in some cases the
algorithm uses the Toffoli gate and the C-H gate extensively:
this is due to the optimization of the circuital length.

TABLE VII. Quantum protocols.

V. CONCLUSIONS

We exploited the potentiality of the off-policy Q-learning
algorithm that provided us a tool for state preparation in
quantum computing. We focused on the interplay between the
chosen sets of gates, the encoding method and visualization
in SLGs, and the entanglement SLOCC classes. The idea to
use a single gate reward carried to highlight the role of some
specific single gates in reaching states with some qualitative
entanglement features. We pursued the idea of giving an oper-
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ative indication on the complexity of qubits state preparation,
in terms of circuit composition.

We have shown that with our implementation of the Q-
learning algorithm, we manage to successfully build quantum
protocols able to generate representative states for some of
the 49 true SLOCC classes of the four-qubit entanglement
states. In particular, we are able to reach at least one true
SLOCC class for each of the nine entanglement families.
Further, we observe that many of the other SLOCC classes
can be approached by adding other quantum gates to the
set, and modifying accordingly the algorithm in order to use
them. Therefore this machine learning algorithm is useful in
reaching a large number of four-qubit entangled states, and
could be employed to better understand their properties and to
devise new procedures to construct them in a real experiment.
Moreover, our method in principle allows to deal with n qubit
states, four-party quantum states with multilevel systems, i.e.,
we could in future works extend it from qubits to qutrits or
higher, thereby it can in principle produce further new results
in unknown territory.

Furthermore, we can discover new connections between
specific entanglement features and the role of certain quantum
gates. In this sense, thanks to its simplicity and intuitiveness,
the Q-learning algorithm turns out to be widely profitable for
these kind of tasks. Something similar to this was discovered
with the Melvin algorithm [6,7] for a low number multidimen-
sional (a few qutrits, etc.) quantum states. It is conceivable that
those multidimensional quantum states can be addressed with
the tools developed in this work.

Due to our limited computational resources and the intri-
cacies of some of the entangled states addressed, we have not
completed the full generation of all the 49 classes of entangled
four qubit states. Thus a possible next step to take to reach
the representatives of the remaining classes would be to make
the algorithm capable of handling states in a nonhomogeneous
superposition, with complex coefficients, without the aid of a
post processing method. In this way, the number of SLOCC
classes for which we could be able to provide protocols will
further increase. Therefore, even if the Q-learning in its cur-
rent form is not suitable for the very complete exploration of
the nine entanglement families, it provides reasonable clues
as to how to attempt to handle the unsolved cases, if further
capabilities are included in the resource toolbox of the rein-
forcement Q-learning algorithm.

We have devised a graphical tool called the state-link graph
(SLG) to represent the construction of the Q-matrix for a given
objective state belonging to one of the entanglement classes.
See examples in Figs. 10, 13, etc. These graphs are very useful
to detect whether the learning algorithm is exploring the set of
multiple terms needed to reconstruct the objective state. This
way, when it is detected that some of the shells in SLG are
not connected, it is an indication that our gate-set chosen is
not rich enough so as to build the given state. Then, it means
that it is the moment to enlarge the quantum gate-set. This is
precisely the process that we have followed to synthesize the
quantum circuits found in Tables VI and VII.

Some of the results obtained for the synthesis of four-qubit
states with remarkable entanglement properties, such as those
in Tables VI and VII, may be useful to investigate statements
about the local and realistic properties of our universe with ex-

perimental means as was originally proposed with the Melvin
algorithm [6,7]. In our Q-learning algorithm, we do not need
to know about the concept of Schmidt coefficients as the
Melvin algorithm does. The reinforcement machine learning
algorithm does not rely on previous knowledge nor on often
flawed intuition.

By construction, the quantum circuits found with our re-
inforcement learning algorithm are optimal with respect to
the quantum gate-set chosen. This is guaranteed by the con-
vergence of the training part and the subsequent construction
of the quantum circuits in the testing part relying on optimal
state-action pairs found for the Q-matrix. This result is useful
for the automated quantum circuit synthesis (QCS) where
optimal implementations of quantum algorithms are designed
from quantum logic gates belonging to known universal sets
[34–38]. These are the type of automated tasks needed to
construct quantum compilers. Machine learning methods to
synthesize optimal circuits for continuous variable quantum
computation have been proposed with photonics architectures
[39,40].

It is worth noticing that our reinforcement learning al-
gorithm is not scalable as the number of entangled qubits
increases since the number of multiple terms needed to
construct the objective states and the environment, grows
exponentially with the number of entangled qubits. Thus,
although we can boost the task of automatically constructing
the quantum circuits for many of the entanglement classes
of four qubit states, in the end we will also face the wall of
the exponential complexity of quantum entangled states with
an arbitrary number of qubits. Nevertheless, the quantum cir-
cuits synthesized with machine algorithms with reinforcement
learning can serve as a benchmark for more complex quantum
compilers.
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APPENDIX: POST-PROCESSING
AND NORMALIZATION

As we mentioned in Sec. III A, we have to check and fix
the coefficients of the quantum states after we manage to
approach them with the quantum circuits generated by our al-
gorithm. In particular, we address a post-processing procedure
that allow us to tune the coefficients in the superposition, if
these latter do not meet the desired ones. This procedure con-
sists in replacing one or more Hadamard or C-Hadamard gates
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of the circuit that results from the Q-learning procedure, with
unitary gates, with one or more free parameters. In general, a
unitary gate can be written as

U (θ, φ, λ) =
(

cos( θ
2 ) −eiλ sin( θ

2 )
eiφ sin( θ

2 ) ei(φ+λ) cos( θ
2 )

)
(A1)

by setting the parameters θ , φ and λ we can build every
single-qubit unitary gate. As our interest is to modify real
coefficients, we need to use the U gate as a pure rotation, in
order to create an unbalanced Hadamard gate (or C-Hadamard
gate). Indeed, the Hadamard gate corresponds to U ( π

2 , 0, π )
and, leaving the θ parameter free, we have a pure rotation:

U (θ, 0, π ) =
(

cos( θ
2 ) sin( θ

2 )
sin( θ

2 ) − cos( θ
2 )

)
= U (θ ). (A2)

Notice that in the case of the C-U gate, its matrix representa-
tion reads

C-U (θ ) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos( θ

2 ) sin( θ
2 )

0 0 sin( θ
2 ) − cos( θ

2 )

⎞
⎟⎟⎠. (A3)

We assume to replace, in the output circuit of the Q-learning
algorithm, m Hadamard or C-Hadamard gates, we call the
ith unitary gate Ui(θi ) or C-Ui(θi ), where θi is the ith free
parameter. We then apply to the initial state the circuit with
the replacements, the resulting state after this quantum circuit
has the same terms of the objective one in Eq. (6) but has still
undetermined coefficients:

|�〉out =
16∑
j=1

f j (θ0, . . . , θm)|ψ j〉. (A4)

Here the coefficients f j (θ0, . . . , θi, . . . , θm) can assume any
desired value, with the requirement of |�〉 normalization. If
the desired representative state of a SLOCC class reads

|�〉 =
16∑
j=0

α j |ψ j〉, (A5)

we can find the values of the parameters θi by solving the
following equations system:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f0(θ0, . . . , θi, . . . , θm) = α0
...

f j (θ0, . . . , θi, . . . , θm) = α j where α j ∈ R, ∀ j.
...

fn(θ0, . . . , θi, . . . , θm) = αn

(A6)

On the left side, we have the undetermined coefficients for
each term, in form of trigonometric functions of θ1, . . . , θm,
where m stands for the overall number of Hadamard and
C-Hadamard gates replaced; on the right side we have the
desired coefficients, α0, . . . , αn, where n is the number of
terms of the goal state. Despite the existence of the solution
is not theoretically guaranteed for that system, in our cases
we always find suitable values for θi that allow us to reach the
representative state |�〉 of the SLOCC class in exam.

Let us take as an example the SLOCC class B1.1, be-
longing to the SLOCC family Labc2 . With the Q-learning
procedure we manage to find the circuit in Fig. 16. Taking into
account the normalization coefficients of the Hadamard and
C-Hadamard gates, the resulting state after this circuit reads

|�〉out = 1√
2
|0000〉 + 1

2
|0110〉 + 1

2
|1111〉 (A7)

in order to obtain a state that matches the normalized repre-
sentative state of the class |�〉B1.1 = 1√

3
(|0001〉 + |0110〉 +

|1011〉) we can apply our post-processing procedure and re-
place the first Hadamard gate H (C) with a unitary gate U (C).
The result reads

|�〉out = cos

(
θ0

2

)
|0000〉 + sin (θ0/2)√

2
|0110〉 (A8)

+ sin (θ0/2)√
2

|1111〉.

It is straightforward that, in order to obtain |�〉out = |�〉B1.1
the system to solve is the following:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

cos
(

θ0
2

) = 1√
3

sin (θ0/2)√
2

= 1√
3

sin (θ0/2)√
2

= 1√
3

(A9)

which solution include{
θ0 → 2 arctan

(√
2
) + 4πk

∣∣ k ∈ Z
}
. (A10)

The resulting state with this choice of the θ0 parameter, is the
desired one. Notice that in this case, as we replaced a single
Hadamard gate, we have only one unknown. In some cases,
we need to replace more than one Hadamard or C-Hadamard
gate to obtain a solvable system.
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