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Abstract 

The propagation laws of the intensity moments of a laser beam through ABCD optical systems are generalized to 
include pure phase transmittances. This is done by representing the behaviour of such transmittances by means of a 4 x 4 
matrix, M, which can be handled, to some extent, as the ABCD-matrices associated with ordinary first-order optical 
systems. This formalism enables the application of ABCD propagation formulae to cascaded optical systems containing 
pure phase transmittances. Matrix M is used to determine the intensity moments at the output of two special quartic phase 

transmittances, namely, a circular spherically aberrated lens and a pair of orthogonal cylindrical (also aberrated) lenses. 

1. Introduction 

The characterization of spatial profiles of laser 
beams by means of suitable quality parameters and 

the description of their propagation through optical 
systems are topics of current interest [ l-51. One 
way to improve the beam quality (defined in terms of 
the so-called moments of both the intensity and the 

radiant intensity of the field) is by using soft-edge 
Gaussian apertures. However, in such a case, the out- 
put beam intensity might be drastically reduced. To 
maintain the total power without hard-edge diffraction 
effects, a method based on the use of a pure-phase 
transmittance (PPT) seems to be more appropriate. 
In fact, the phase function that should be employed 
to achieve the minimum value (highest quality) of 

the beam quality parameter of symmetric-intensity 
beams has been determined [ 61. Moreover, it has re- 
cently been shown [ 71, that spherical aberrations (or 
more generally, quartic phase distortions) could im- 
prove the beam quality. Unfortunately, PPTs are not, 

in general, first-order optical systems. It thus seems 
that a simple ABCD-propagation law cannot be ap- 

plied to this kind of transmittance. This is of special 
relevance when the beam travels through a cascaded 
optical system containing an arbitrary collection of 
PPTs. So far, such cascaded optical elements could 
not be characterized by an overall ABCD matrix. 

This generates lengthy and cumbersome calculations 

of the spatial moments of the output beam, especially 
in the tridimensional case. 

The aim of the present paper is to overcome this dif- 
ficulty. Thus, to determine all first- and second-order 
intensity moments of the beam after travelling through 
a PPT, we will represent in the next section the be- 
haviour of this transmittance by means of a 4 x 4 ma- 
trix, which can formally be handled, to some extent, as 
the matrices associated with ordinary ABCD optical 

systems. In Section 3, as a simple application of the 
above formalism, we will obtain all second-order in- 
tensity moments of two special but important cases of 
quartic phase transmittances: (i) a circular spherically 
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aberrated lens; and (ii) a pair of orthogonal cylindri- 
cal (also abet-rated) lenses. Finally, some demonstra- 
tions are shown in the Appendix. 

To handle tridimensional beams propagating 
through ABCD systems, it is useful to define two 
matrices, namely, 

2. Matricial representation of PPTs 

As usual, let us begin with the Wigner distribution 

function (WDF) h(x, y, U, u; z) of the field, defined 

as [81 

h(p,rl;z) = J d=s r(p + s/2, p - s/2; z) 

x exp(ikqs), (1) 

where k is the wavenumber, r denotes the cross- 
spectral density function of a field, z indicates the di- 

rection of propagation, p = (x, y), x and y being the 
transversal variables, and v = (u, u), with u and u rep- 
resenting the angles of propagation (without taking the 
evanescent waves into account). Note that (ku, ko) = 
(k,, kY) are the wavevector components along the X- 

and y-axes, respectively. The dummy variable s ap- 
pears in the function T(xi, .x2), where Xi, i = 1,2, 

denotes the bidimensional transversal position vectors, 
as a consequence of a change of variables XI -x2 = s, 

p = (Xl + x2)/2 required to write Eq. (1). Integra- 
tion of h over the angular and spatial variables then 
gives, respectively, the beam irradiance and (a propor- 
tionality factor apart) the radiant intensity of the field. 
Averages (also called intensity moments) of the func- 

tion h, denoted by angle brackets, can be introduced 
as follows 

(q) = $/di4~d~~~qWw,v) 
1 

x h(x,y,u,u;z), (2) 

where Pi = Sdxdyduduh(x,y,L1,u;z) is the total 
power (zero-order moment) and q represents some 

function of the spatial and/or angular variables. As is 
well known, if we assume, for simplicity, that (x) = 
(y) = (u) = (u) = 0, the moments (x2 + y2) and 
(u2 + u2) can be understood, respectively, as a mea- 
sure of the (squared) width of the beam at plane z and 
of its associated (squared) far-field divergence. Other 
moments, such as (xu), (yu), (xy), (uu), etc. are re- 
lated to the characteristics of asymmetry, astigmatism 
and spatial orientation of the beam [4,9]. 

( 
ix=> by) (4 (x4 

s = (XY) (Y2) (Y4 (Y4 
(4 (Y4 (u2) (4 ’ 
(4 (Y4 64 (u21 i 

(3) 

and the so-called beam matrix [ 41 

(4) 

which can also be written in the form 

F= + 
s 

$h(x,y,u,u;z)dxdydudu, (5) 
I 

and 

S=$ ~Plth(x,y,u,u;z)dxdydudu, 
s 

(6) 
I 

where b’ G (n,y, U, u), the symbol t denoting the 
transposed matrix. Taking Eqs. (5) and (6) into ac- 
count, matrices F and S at the output of an arbitrary 
ABCD optical system (characterized by a 4 x 4 ma- 
trix M) are given in terms of the WDF of the beam 

at the entrance plane of the system, hi (x, y, u, u; z ), 
through the equations 

F,=k MBhi(x,y,m,u;z)dxdydudu, 
s 

(7) 
I 

and 

So = k Mp^@‘M’hi(X,y,u,~;z) dxdydudu, 
I s 

(8) 

where the subscript “0” denotes the output plane of 
the ABCD system. 

Let us now consider a thin PPT characterized by 

a transmittance function t(x, y) = exp[ ik+(x, y)]. 
Accordingly, the complex amplitude of the beam, 
g( x, y) , after crossing the PPT, will be given in terms 
of the value of the input complex field, f(x, y), as 
follows 

g(x,v) =exp[ik~(x,y)lf(x,y). (9) 

We will next show that the propagation laws of the 
first and second-order moments (Eqs. (7) and ( 8) ) 
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are also valid for PPTs provided that we describe the 
behaviour of such transmittances by means of the fol- 

lowing matrix: 

MPFT = 

I being the 2 x 2 identity matrix, and 

l%J o 
-- 

c= x ax 

i 1 0 
la+ . -- 
Y JY 

(10) 

(11) 

To prove the validity of Eq. (7) it suffices to note that 

(see Eq. (9)) [ 121 

(4 = & j($)g’dxdy 
1 

=- 
s 

aff*dxdY+;/$(ZdxdY 
ikPi C?X I 

(12) 

where the subscripts “0” and “i” again refer, respec- 
tively, to the complex amplitude of the beam after and 
before crossing the PPT. In a similar way it can be 

shown that 

(u)o = (u)i + i 1 f$ lf12dxdY. 
I 

(13) 

Finally, since (x) and (y) are intensity moments of 

spatial variables only, they do not change under propa- 
gation through PPTs. The propagations law (Eq. (7) ) 
is thus fulfilled. To prove now the applicability of Eq. 
(8) to this kind of transmittance let us first calculate 

the elements of the 4 x 4 matrix T E Mppr fi fi’ MLa 
appearing inside the integral of Eq. (8). After some 

algebra we find 

tii =x2, 

fl2 =f21 = xy, 

(14a) 

(14b) 

azb 
f13=t31 = "an + nu, 

a+ 
t14=t41 =x- +xu, 

dY 

(14c) 

(14d) 

t22 =y=, (14e) 
a+ 

t23 = t32 = yz + yu, (140 

WJ 
t24 = t42 = y- + yu, 

aY 
(1%) 

t33= (s)2+2u(g) +2, (14h) 

t34=143=(~)(~)+U$+u$+uu, (14i) 

t44= ($P2 +2@) +u2, 

with (l/Pi)Stnrnhi(x,Y,u,U;~) dx dY du du = 

(fmn)it m,n = 1,. . . ,4. Thus, for example, (tts)i = 

(tsi)i= (x(a@/a~))i + (xu);, and similarly for the 

other elements of matrix T. 
On the other hand, from direct application of Eq. 

(2) it can be shown (see Appendix) that the second- 
order moments at the output of a PPT are given in 

terms of the moments at the input plane of the trans- 
mittance by the formulae 

(x2), = (X2)i, 

(XY)o = (XY)i, 

(4, = {xg), + (XU)i, 

(Xu)c~ = (X%)1 + (Xu)iv 
1 

(Y*)o = (Y2)i7 

(YU)o = (Y $), + (YU)i 9 

tYuLl= (Y$ + (YU)i> 
I 

lu2)0=( (g)2)i + (2ug)i + (u2)i3 

( 154 

( 15b) 

( 15c) 

( 15d) 

( 1%) 

( 15f> 

( 1%) 

( 15h) 

+(uu)i, ( 15i) 

(02j0 = (( $)2)i + (2r~X)~ + (U2)i. ( 1%) 

But the above expressions are identical to those ob- 
tained from the substitution of the elements of matrix 
T into the integral that appears in the right-hand side 

of Eq. (8). Consequently, Eq. (8) is fulfilled. 
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It should be noted that matrix Mrm. as given by 
Eq. ( lo), depends on the reference coordinate systems 

only through the function 4(x, y). In other words, if 

the plate is placed rotated about the z-axis, the specific 

form of function &x,y) would, in general, change, 
but Eq. (IO) is still valid. 

In the particular case, t(x, y) = exp [ -( ik/2f) 
x (x2 + y2) ] (non-abet-rated thin lens), matrix C re- 

duces to 

(lo) 

in complete agreement with the well-known ABCD 
matrix of such a lens. It is important to note that the 
propagation laws through PPTs must be written in the 

form given by Eqs. (7) and (8), instead of in the 

more usual form (valid for ordinary ABCD optical 

elements only) 

Fo = MFi , (17) 

and 

S, = MSjM’, (18) 

where M now represents the matrix of the ABCD 
system. Expressions ( 17) and ( 18) would not make 
sense if matrix M were directly substituted by Mppl. 
in these equations. 

Accordingly, the propagation laws of the intensity 

moments of beams propagating through cascaded op- 
tical systems containing PPTs must also be written as 

follows 

F, = f 
s 

MNMN_, . . .Mlp^ 
I 

x hi(x,y,u,u;z)dxdydudu, 

and 

(19) 

1 
S “‘p, s 

MNMN--] . ..M.$$M’, . ..M._,Mf, 

X hi(x,y,u,u;z)dxdydudu, (20) 

where Mj, j = l,..., N, denote the matrices associ- 

ated with the optical elements (including PPTs) , mul- 
tiplied in the same order as they are crossed by the 

beam. 

3. Application to quartic phase transmittances 

Use of matrix Mpp~ can significantly shorten the 
calculations (usually rather cumbersome) required to 

get the moments and other related parameters (e.g., 
beam quality) when a beam propagates through a PPT. 
As a simple application of the above matrix, we will 
now consider the effect that quartic phase distortions 

produce in the intensity moments of general beams. 
Two cases of special interest will be analysed: (i) 

a single circular (rotationally symmetric) spherically 
aberrated lens, and (ii) two identical but orthogonal 
spherically aberrated cylindrical lenses in contact with 
one another. The changes generated in a number of 

beam quality parameters have recently been investi- 
gated [ lo]. In the following, by using matrix Mpm, 
we will provide all second-order moments at the out- 
put of these kinds of quartic phase transmittances. 

3.1. Single lens 

A spherical aberration can be represented by means 
of the following transmittance function [ lo,11 1. 

t(x,y> = exp[ika(x* + y2)21, (21) 

where a is a constant. Therefore, matrix C (see Eq. 

( 1 I ) ) takes the form 

c= ( 4a(n2 + y2) 0 
0 4a(2 + y2) > . 

(22) 

If we assume, for simplicity, that (x) = (y) = (a) = 

(u) = 0 (this is simply equivalent to a shift of the 

coordinate system), direct application of Eqs. ( 8) and 
(10) then gives 

(X*)0 = (X*)i, ( 23a) 

(XY)o = (XY)i 9 ( 23b) 

(XU), = (XZd)i +4U(X4)i +4U(X2Y2)j, ( 23~) 

(XU)o=(XU)i +4U(X3Y)i + 4U(XY")i, ( 23d) 

(Y*)o = (Y*)i, ( 23e) 

(Yfi)o = (YU>i + 4a(x3Y)i + 4a(Xy3)i7 ( 23f) 

(Yu)0 = (Yu)i + 4a(x2Y2)i + 4a(Y4)i3 ( 23g) 

(u~)O=(U*)~ + 16a2((X6)i + 2(X4Y2)i + (X2Y4)i) 

+8a((X3u)i + (XllY*)i), (23h) 
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+4U((X3U)j + (Y3U)i + (XY'U)i + (X2YU)i) 

+16U2(2(X3Y3)i + (X5Y)i + (XY5)i), ( 23i) 

(u2)o = (U2)i + 16a2( (y6)i + 2(x2y4)i + (x4y2)i) 

+8a( (y3U)i + (X2yU)i). ( 2%) 

These expressions are consistent with the values of 
the beam quality parameters obtained in Ref. [ lo] for 
the special case (xy)i = 0. 

3.2. Two orthogonal cylindrical lenses 

In this case function t( x, y) reads 

t(x,y> =exp[ika(x4+y4)]. 

Matrix C now becomes 

(24) 

c= (4y2 4aoyi), (25) 

and the second-order intensity moments are 

(X2)0 = (X2)i, ( 264 

(XY)o = (XY)i, ( 26b) 

(XU), = (Xll)j + 4U(X4)i, ( 26~) 

(XU), = (XU)i + 4U(XY3)i, ( 26d) 

(Y2)o= (Y2)i7 ( 26e) 

(YU)o = (Yu)i + 4a(X3Y)i, ( 260 

(YU)o = (YU>i + 4a(Y4)i9 ( 26d 

(u2), = (u2)i f 16a2(x6)i + 8a(x3u)i, ( 26h) 

(UU)o= (lAU)i +4U((X3U)i + (Y3U)i) 

+16a2(x3y3)i, ( 26i) 

(U2), = (U’)i + 16a2(y6)t + 8a(y3u)i. ( 26j) 

As above, these expressions are consistent with the 
formulae handled in Ref. [ lo]. It is clear that, from an 
analytical point of view, the two-lens system involves 
much simpler expressions of the moments than the 
single-lens case. 

which is identical to Eq. ( 15~). In a similar way Eqs. 

( 15d), (15f) and (15g) can be proved. It can also be 
shown that 

(A.2) 

But 

(A.3) 

and 
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Appendix A 

In this appendix we will demonstrate Eqs. ( 15). 

To begin with note that (x2), (y2) and (xy) are 
moments of spatial variables only, so that Eqs. ( 15a), 
(15b) and (15e) follow at once. On the other hand, 

by taking Eq. (9) into account, we have 

= (Xu)i + (X:),7 

I 
(A.11 
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