
UNIVERSIDAD COMPLUTENSE DE MADRID 
FACULTAD DE CIENCIAS ECONÓMICAS Y 

EMPRESARIALES 
 
 

 
 
 

TESIS DOCTORAL 
 

Energy Commodities: New Approaches For Pricing Options 
 

Materias Primas de Energía: Nuevos Enfoques para la 
Valoración de Opciones 

 
 

MEMORIA PARA OPTAR AL GRADO DE DOCTOR 
 

PRESENTADA POR 
 

María del Carmen Frau Gomila 
 

Directores 
 

John Crosby 
María Dolores Robles Fernández 

 
 

Madrid 
 
 
 

© María del Carmen Frau Gomila, 2022 



UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES

TESIS DOCTORAL

X

Energy Commodities: New Approaches For Pricing Options
Materias Primas de Energı́a: Nuevos Enfoques para la

Valoración de Opciones

MEMORIA PARA OPTAR AL GRADO DE DOCTORA

PRESENTADA POR

X

Marı́a del Carmen Frau Gomila
X

DIRECTORES

X
John Crosby

Marı́a Dolores Robles Fernández





UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES
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Resumen

UNIVERSIDAD COMPLUTENSE DE MADRID
Facultad de Ciencias Económicas y Empresariales

Grado de Doctora
Materias Primas Energéticas: Nuevos Enfoques para la Valoración de Opciones

por Marı́a del Carmen Frau Gomila
.

En esta tesis nos centramos en la valoración de opciones de compra y venta europeas estándar cu-
yo subyacente son los precios de los contratos de futuros sobre dos materias primas energéticas: el
petróleo West Texas Intermediate (WTI) (Capı́tulo 1) y el gas natural Henry Hub (HH) (Capı́tulo
2). Ambos cotizan en dólares USD en la Bolsa de materias primas de Nueva York (NYMEX) es-
pecializada en activos derivados (futuros y opciones) sobre productos agrı́colas, metales preciosos
y materias primas energéticas. También consideramos opciones europeas del tipo diferencial de
precios (Capı́tulo 3).

Para poder plantear la valoración es necesario partir de un modelo para los precios del sub-
yacente en cada caso, por lo que al tratarse de futuros, nos centramos en modelos de estructura
temporal en los que el plazo a vencimiento de los contratos es relevante. Partimos del modelo
de estructura temporal propuesto por Trolle y Schwartz (2009) como benchmark, el cual consi-
dera las siguientes caracterı́sticas: (i) los precios son estocásticos; (ii) la tasa de rendimiento de
los activos es estocástica; (iii) la correlación es negativa entre los precios al contado y su tasa de
rendimiento; (iv) hay una reversión a la media de los precios al contado (debido a la correlación
negativa anteriormente mencionada); y (v) la volatilidad de los precios de los futuros es estocástica
e inversamente proporcional al vencimiento del contrato (efecto Samuelson).

Tanto el petróleo como el gas natural presentan otras caracterı́sticas que no están recogidas en
este modelo. Los precios del petróleo han presentado saltos hacia abajo importantes en los últimos
años, especialmente en el 2014 (fracking) y el 2020 (inicio de la pandemia del Covid-19), cuya
magnitud se aprecia como inversamente proporcional al vencimiento del contrato. Los precios del
gas natural son estacionales en media y varianza; la primera viene implı́citamente recogida en la
curva de precios de los futuros, no ocurre lo mismo con la segunda.

El modelo presentado en Trolle y Schwartz (2009) ası́ como otros modelos similares existentes
en la literatura no son capaces de reproducir simultáneamente todas las caracterı́sticas menciona-



das anteriormente, por lo que el objetivo de esta tesis es proponer nuevos modelos que recojan

todos estos hechos estilizados y permitan mejorar la valoración de opciones sobre las dos mate-

rias primas en cuestión. Esta capacidad es de gran interés en diversos ámbitos: ofrece al ámbito

académico un avance en el conocimiento sobre modelos de estructura temporal y permite replicar

más exactamente la superficie de volatilidad implı́cita en las opciones cotizadas; mientras que a

diversos actores de la industria les proporciona herramientas para valorar y cubrir los libros de ne-

gociación de forma consistente. Una vez especificados los nuevos modelos, se procede a estudiar

las dinámicas de los precios y a la valoración de opciones europeas sobre estos activos, para lo

cual requerimos conocer la expresión matemática de las funciones caracterı́sticas de los precios.

En el Capı́tulo 1 se incorporan saltos al modelo benchmark para investigar posibles mejo-

ras de adecuación a las caracterı́sticas del petróleo, proponiendo seis sub-especificaciones. En el

Capı́tulo 2 se extiende el modelo benchmark con estacionalidad en la varianza y se estudia su

comportamiento aplicado al gas natural, proponiendo dos sub-especificaciones. En estos capı́tulos

se valoran opciones europeas estándar mediante el procedimiento descrito en Carr y Madan (1999)

mediante el algoritmo fast Fourier transform (FFT). En el Capı́tulo 3 se valoran opciones europeas

sobre diferenciales de precios, en concreto opciones calendario y crack; las primeras dependen de

la diferencia de precios de dos futuros sobre el mismo activo observado en fechas diferentes, mien-

tras que las segundas dependen de la diferencia de precios de dos futuros sobre diferentes activos

observados en una única fecha. Para valorar opciones sobre un diferencial de precios utilizamos

los procedimientos propuestos en Carr y Madan (1999) y en Caldana y Fusai (2013).

Obtenemos soluciones analı́ticas para todos los términos de la función caracterı́stica del primer

modelo, mientras que para el segundo son “cuasi-analı́ticas” dado que la mayorı́a de los compo-

nentes de la expresión que recoge la estacionalidad presentan una solución cerrada, salvo uno que

hemos aproximado por expansiones de Taylor. Comparamos la bondad de ajuste de nuestras pro-

puestas con un panel de modelos bien conocidos en la literatura. En los dos primeros capı́tulos,

trabajamos con series de 10 años (2011-2020) de datos de futuros y opciones para calibrar los

parámetros de los modelos a mercado. El análisis se realiza con series mensuales y diarias, logran-

do con estas últimas mejores resultados en término medio. Los modelos propuestos mejoran todos

los del panel incluyendo el benchmark, especialmente en contratos de menor duración y cuánto

más fuera de dinero.

En cuanto a las opciones de tipo calendario, calculamos la expresión general que sigue la

correspondiente función caracterı́stica conjunta y, para cada modelo, presentamos las expresiones

que siguen cada uno de sus términos. Para opciones de tipo crack, también proporcionamos las

expresiones que siguen los términos de las correspondientes funciones caracterı́sticas conjuntas

para los modelos más recientes. Todo esto supone una importante contribución ya que permite



llenar una laguna en la literatura. En este tercer capı́tulo desarrollamos una comparativa de los
procedimientos de valoración de Carr y Madan (1999) y Caldana y Fusai (2013), concluyendo que
el segundo es más robusto y hasta 26.5 veces más rápido en promedio que el primero.





Summary

COMPLUTENSE UNIVERSITY OF MADRID
Faculty of Economics and Business

Doctor of Philosophy
Energy Commodities: New Approaches for Pricing Options

by Marı́a del Carmen Frau Gomila
.

This thesis focuses on the valuation of standard European call and put options, of which the un-
derlyings are the prices of futures contracts on two energy commodities, specifically West Texas
Intermediate (WTI) crude oil (Chapter 1) and Henry Hub (HH) natural gas (Chapter 2). Both are
quoted in USD and listed in the New York Commodities Exchange (NY MEX), which specialises in
derivatives (futures and options) of agricultural products, precious metals and energy commodities.
European spread options are also considered (Chapter 3).

In order to define pricing, it is necessary to start by establishing a model for the underlying prices
in each case; working with futures prices, the focus is on term-structure models where the time to
maturity will be relevant. The starting point is the model proposed in Trolle & Schwartz (2009),
considered as the benchmark. The stylised facts represented in this model are the following: (i)
prices are stochastic; (ii) the cost of carry is stochastic; (iii) the correlation is negative between spot
prices and their cost of carry; (iv) there is a mean-reversion in spot prices (due to the aforementioned
negative correlation); and (v) the volatility of futures prices is stochastic and declining with the
expiration of the contract (Samuelson effect).

Oil and natural gas present some characteristics which neither Trolle & Schwartz (2009) nor
other relevant models in the literature to date are capable of simultaneously reproducing. Notably,
oil prices have shown significant downward jumps in recent years, especially in 2014 (fracking)
and 2020 (start of the Covid-19 pandemic) in which the magnitude is observed to decline in line
with the expiration of the contract. Natural gas prices are seasonal in mean and variance; while the
mean is implicitly included in the futures price curve, this does not occur with the variance.

Given that the model presented in Trolle & Schwartz (2009) and similar ones existing in the
literature are not capable of simultaneously reproducing all the features previously listed, the ob-
jective of this thesis is to propose new models which collect all these stylised facts and improve the
valuation of options on the two commodities. This capability is of great interest for different actors:



for academia, it offers an advance in the understanding of term-structure models and the ability of
more accurately replicating the implied volatility surface of listed options; as well, it provides tools
for industry players to value and hedge trading books consistently. After defining new models, a
study is conducted on the price dynamics and the valuation of European options on these assets.
The valuation methodologies used require knowing the mathematical expression followed by the
characteristic functions of the prices.

In Chapter 1, jumps are incorporated to the benchmark model to investigate possible improve-
ments in line with the characteristics of oil, proposing six sub-specifications. In Chapter 2, the
benchmark model is extended with seasonal variance and its behaviour is studied applied to natural
gas, proposing two sub-specifications. In these chapters, plain vanilla options on oil and natural
gas are valued by means of the method described in Carr & Madan (1999) through the fast Fourier
transform (FFT) algorithm. Chapter 3 discusses spread options, specifically calendar and crack; the
former depends on the difference in prices of two futures on the same asset observed on different
dates, while the latter on the difference in prices of two futures on different assets observed on a
common date. The methods proposed in Carr & Madan (1999) as well as Caldana & Fusai (2013)
are leveraged to value spread options.

Analytical solutions are presented for all the terms of the characteristic function of the first
model. The second model can be described as ”quasi-analytical” since most of the components of
the expression that collects the seasonality have a closed-form solution, except one that has been
approximated by Taylor expansions. The performance of the newly proposed models is compared
with a panel of alternatives well established in the literature. The first two chapters utilise a data-
set consisting of 10-year time series (2011-2020) of futures and options to calibrate the models’
parameters to market. The analysis is carried out with monthly and daily series, the latter of which
yields better results on average. Newly proposed models improve all those in the panel includ-
ing the benchmark, outperforming them in shorter duration contracts and deep out-of-the-money
(OTM) options.

Regarding calendar options, this work calculates the general expression followed by the joint
characteristic function aimed for valuing European options for each model, presenting also the
expressions followed by each of the terms. In relation to crack options, expressions are provided
followed by each of the terms of the joint characteristic functions required to value them through
the most recent models. This provides a significant contribution towards filling in a gap in the
literature. In the third chapter, a comparison is developed between the different pricing methods in
Carr & Madan (1999) and Caldana & Fusai (2013), concluding that the latter is more robust and up
to 26.5 times faster on average.
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CHAPTER

1
Jumps in Commodity Prices: New

Approaches for Pricing Plain
Vanilla Options

Abstract1

In this work we present a new term-structure model for commodity futures prices based on

Trolle & Schwartz (2009), which we extend by incorporating multiple jump processes. Our work

explores the valuation of plain vanilla options on futures prices when the spot price follows a

log-normal process, the forward cost of carry curve and the volatility are stochastic variables,

and the spot price and the forward cost of carry allow for time-dampening jumps. We obtain

an analytical representation of the characteristic function of the futures prices and, hence, also

for plain vanilla option prices using the fast Fourier transform (FFT) methodology. We price

options on WTI crude oil futures contracts using our model and extant models. We obtain higher

accuracy than earlier models and save significantly in computing time.

1Co-author: John Crosby, University of Maryland. This chapter refers to an article which is currently under a first
R&R at the journal Energy Economics. It can be found at SSRN (id=3754835).
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1. Jumps in Commodity Prices: New Approaches for Pricing Plain Vanilla Options

1.1 Introduction

To obtain accurate estimates of the convenience yield of each commodity, it is crucial to adopt

a futures pricing model that is capable of matching the different shapes of the term-structure of

commodity futures and can explain a large part of their fluctuations.

There are two major approaches to describe the futures price dynamics for pricing options on

commodities, spot models and term-structure models. The spot-based approach relies on spe-

cifying the dynamics of a limited set of state variables and deriving futures prices endogenously.

According to Schwartz (1997), a single-factor model is not suitable for accurately explaining

the variations in futures prices (see, e.g., Brennan & Schwartz (1985)). The inclusion of a

second state variable (the convenience yield) substantially enhances the model performance

and the model is capable of better describing the forward curve. Typically, two-factor mod-

els (see, e.g., Gibson & Schwartz (1990), Brennan (1991) and Schwartz (1997)) let the price

of a futures contract depend on the specific dynamics of the spot price and the convenience

yield, but they typically assume constant interest rates. Several authors suggest the inclusion

of stochastic interest rates as a third state variable. Such three-factor models are discussed in

Schwartz (1997), Hilliard & Reis (1998), Miltersen & Schwartz (1998), Cortázar & Schwartz

(2003), and Nielsen & Schwartz (2004), among others. Richter & Sørensen (2002), in a model

focused on agricultural products, explicitly allow for stochastic volatility. Yan (2002) presents

a four-factor model which also allows for stochastic volatility, additionally it allows for jumps

in the spot price returns and in the volatility.

The term-structure approach relies on specifying the evolution of the futures curve directly,

taking the current market futures prices as given. The futures price is the risk-neutral expect-

ation, conditional on the information of the future spot price available at a given time. Within

this approach, models have been focused mostly on deterministic volatility functions, but with

a major drawback: they produce flat implied volatility surfaces with respect to strike and time

to maturity while we observe smile- and skew-shaped surfaces in the market. The inclusion of

stochastic volatility allows us to calibrate the model to option volatility smiles and skews, typic-

ally seen in option markets. Models that assume deterministic volatilities are discussed in Reis-

man (1991), Cortázar & Schwartz (1994), Amin, Ng & Pirrong (1995), Hilliard & Reis (1998),

Miltersen & Schwartz (1998), Clewlow & Strickland (1999b), Clewlow & Strickland (1999a),

Miltersen (2003) and Crosby (2008), among others. Andersen (2010) considers a multi-factor

diffusion model based on the Heath, Jarrow & Morton (1992) (HJM hereafter) framework,2

paying careful attention to the specification of volatility and to issues of seasonality.

2Endogenous conditions are imposed on the drift of the futures price process so that it matches the forward curve.
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1.1 Introduction

There have been two important extensions in the term-structure literature so far: the inclu-

sion of jumps in the futures dynamics, as in Crosby (2008), and the adaptation of the volatility

to be stochastic, as in Trolle & Schwartz (2009) and Trolle (2014). Trolle & Schwartz (2009)

is specified under the risk-neutral probability measure and it is based on the HJM framework.

Commodity futures prices are driven by two stochastic factors, the spot price and the forward

cost of carry curve. They are original in presenting a new stochastic volatility HJM-type model

for pricing commodity options. In their three-factor formulation SV1, the volatility of the spot

price and that of the cost of carry curve may depend on one volatility factor, whereas in their

four-factor general formulation SV2gen, option prices are driven by a short- and a long-term

volatility. The advantage of working in an HJM setting is that, as Trolle & Schwartz (2009)

point out, unspanned stochastic volatility arises naturally. An analytical representation of the

characteristic function of the futures price is derived for the computation of standard European

options using Fourier transforms. They compute options numerically.

Jumps in the spot price abound in the literature (see, e.g., Merton (1976), Bates (1996)

and Trolle (2014)), as do models that present jumps in the variance process (e.g., Duffie, Pan

& Singleton (2000) proposes the SVJJ model which extends Bates (1996) by the addition of

exponential jumps in the variance). In the scope of commodity models, however, jumps in the

cost of carry have scarcely (if ever) been up to date in the literature. Implicitly, they exist in

Crosby (2008).3

In this work we present a novel term-structure commodity model which is based on the

model of Trolle & Schwartz (2009)-SV1. It presents jumps in those factors that affect the

futures price, that is, the spot price and the forward cost of carry curve; this idea is inspired by

Crosby (2008). We derive an analytical representation of the characteristic function of futures

prices, and compute standard European options analytically using the fast Fourier transform

algorithm.

The remainder of this article is structured as follows: in Section 1.2 we present a new

three-factor model specification that allows for jumps and describe how to price plain vanilla

options on futures contracts; in Section 1.3 we present an alternative characterisation of the

parameters or set-up of our model; in Section 1.4 we describe the market data set we use and

the estimation method; in Section 1.5 we discuss the values of the calibrated parameters and

the pricing performance; and in Section 1.6 we present our conclusions and ideas for further

research.
3Jumps enter the specification in equal number as futures contracts are considered. Jumps do not enter directly
into the spot or cost of carry dynamics, but in the futures dynamics. This model is of the HJM-type but with
deterministic volatility.
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1. Jumps in Commodity Prices: New Approaches for Pricing Plain Vanilla Options

1.2 A New Three-Factor Model for Futures Prices on Com-
modities

Let St denote the time-t spot price of the commodity, and let y(t, T ) denote the time-t instant-

aneous forward cost of carry that matures at time T , with y(t, t) = yt the time-t instantaneous

spot cost of carry. We model the evolution of the entire futures curve by specifying one process

for St and another for y(t, T ). Also, let vt denote the instantaneous variance, which follows a

mean-reverting process as in Cox, Ingersoll & Ross (1985).

Trolle & Schwartz (2009) extends the existing framework to accommodate unspanned stoch-

astic volatility, which we also incorporate in our model. In this work, we introduce simultaneous

jumps in St returns and in y(t, T ), which are uncorrelated with any standard Wiener process

present in the equations that describe the factors dynamics.

1.2.1 The Model Under the Risk-Neutral Measure Q

Consider the following three-factor model. Let (Ω,F ,Q) be a probability space on which three

Brownian motion processes, W S
t ,W

y
t and W v

t , are defined for all 0 ≤ t ≤ T . On the same

probability space, a Poisson process Nt is also defined for all 0 ≤ t ≤ T , with a constant

intensity parameter λ > 0. Furthermore, we know that Nt is independent of all Brownian mo-

tion processes, W S
t ,W

y
t and W v

t . Let F be the filtration generated by these Brownian motions.

We also define two random variables, JS and Jy(t, T ), which represent the jump sizes of the

Poisson processes in each factor.

The absence of arbitrage implies the existence of a risk-neutral probability Q under which

the drift-adjusted processes followed by St, y(t, T ) and vt are governed by the following dy-

namics

dSt
St

=
(
yt − λEQ

t

[
eJS − 1

])
dt+ σS

√
vt dW

S
t +

(
eJS − 1

)
dNt, (1.1)

dy(t, T ) =
(
µy(t, T )− λEQ

t [Jy(t, T )]
)
dt+ σy(t, T )

√
vt dW

y
t + Jy(t, T ) dNt, (1.2)

dvt = κ (θ − vt) dt+ σv
√
vt dW

v
t , (1.3)

allowing W S
t ,W

y
t and W v

t to be correlated with ρSy, ρSv and ρyv, which denote pairwise correl-

ations.
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1.2 A New Three-Factor Model for Futures Prices on Commodities

The dynamics in (1.1)-(1.3) can also be expressed in an array form

d

 St

y(t, T )

vt

 =


(
yt − λEQ

t

[
eJS − 1

])
St

µy(t, T )− λEQ
t [Jy(t, T )]

κ(θ − vt)

 dt+
√
vt

σSSt 0 0

0 σy(t, T ) 0

0 0 σv

 d

W
S
t

W y
t

W v
t



+


(
eJS − 1

)
St

Jy(t, T )

0

 dNt.

The forward cost of carry is defined by the difference between the forward interest rate

and the forward convenience yield. Our model could be extended with separate processes.

Notwithstanding, and as Trolle & Schwartz (2009) indicate, “for pricing most commodity fu-

tures contracts, this extension is of minor importance. Furthermore, for pricing short-term or

medium-term options on most commodity futures, the pricing error that arises from not ex-

plicitly modeling stochastic interest rates is negligible – since the volatility of interest rates is

typically orders of magnitudes smaller than the volatility of futures returns, and the correlation

between interest rates and futures returns tends to be very low.”

Intuitively, the long-term forward cost of carry rates should be less volatile than the short-

term ones. Following Trolle & Schwartz (2009), this requirement is satisfied using the following

exponentially-dampened specification for the volatility of the forward cost of carry curve4

σy(t, T ) ≡ αe−γ(T−t), (1.4)

with α, γ > 0.

The specification followed by the dynamics of the variance vt guarantees the positiveness

of the volatility factor at all times only if the Feller condition is met.5

Jump Specifications

The jump component will affect mainly the tails of the distribution of futures returns. We

assume that the intensity of the jumps λ is constant. We consider the following cases to specify

the nature of jump sizes:

• Jumps in St are as in Merton (1976)

4 With this specification, the parameters σS , α, θ and σv are not simultaneously identified. Trolle & Schwartz
(2009) normalise η = κθ to one to achieve identification whereas we, seeking the same objective and inspired by
Heston (1993) and Bates (1996), decide to set σS to one instead.

5 In Heston (1993), the parameters obey that 2κθ > σv , which is when the values of vt are strictly positive. We
also consider this restriction is met in Bates (1996), Trolle & Schwartz (2009), Trolle (2014) and in our model.
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1. Jumps in Commodity Prices: New Approaches for Pricing Plain Vanilla Options

Jump assumption (a1): We assume that JS ∼ N (µJS , σ
2
JS

) with σJS ≥ 0, that is,

jumps in St are i.i.d. random variables over time.

Jump assumption (a2): Jumps in St are constant in magnitude, JS ≡ µJS , which is

equivalent to imposing σJS = 0 in jump assumption (a1). This can be seen as an special

case of jump assumption.(b2).

• Jumps in y(t, T ) are as in Crosby (2008)

Jy(t, T ) ≡ ae−b(T−t). (1.5)

Jump assumption (b1): We assume that jumps in y(t, T ) are as in Merton (1976).

The jump amplitude parameter a is assumed to be an i.i.d. random variable over time, the

distribution of which is defined with respect to Q, satisfying−∞ < a <∞, all of which are

independent of the Brownian motions and the Poisson processes. With this, we allow the

mean jump to be positive or negative. In this case, the jump-decay parameter b is assumed

to be identically equal to zero (i.e., b ≡ 0). We assume that Jy(t, T ) ∼ N (µJY , σ
2
JY

) with

σJY ≥ 0.

Jump assumption (b2): We assume that jumps in y(t, T ) present an exponentially-

dampened functional form. The jump amplitude parameter a is assumed to be a finite

constant and the jump-decay parameter b is assumed to be any non-negative number. a de-

termines the size of the jump conditional on a jump in Nt, whereas b controls, when jumps

occur, how much less long-dated futures contracts jump relative to short-dated futures con-

tracts.

• There can also be a combination of the jumps presented above occurring simultaneously,

with the parameters and conditions as previously described (we do not consider mixed jump

types):

Jump assumption (1): We assume i.i.d. jumps in St and in y(t, T ).

Jump assumption (2): We assume jumps of constant magnitude in St and an exponent-

ially-dampened functional form for jumps in y(t, T ).

Their corresponding expressions for expected values and transforms are represented in Table

1.5.
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1.2 A New Three-Factor Model for Futures Prices on Commodities

Futures Dynamics

Let F (t, T ) denote the time-t price of a futures contract that matures at time T . By definition,

we have

F (t, T ) ≡ Ste
∫ T
t y(t,u)du = Ste

Y (t,T ). (1.6)

In the absence of arbitrage opportunities, the process followed by F (t, T ) must be a martingale

under Q (see Duffie (2001)). As such, we obtain the following condition for the drift of the

forward cost of carry process:

Proposition 1.1 The absence of arbitrage implies that the drift term in equation (1.2) is given
by

µy(t, T ) = −vtσy(t, T )
(
σY (t, T ) + σSρSy

)
+λEQ

t

[(
eJS + Jy(t, T )− 1

)
−
(
eJS+Jy(t,T ) − 1

)]
,

(1.7)

where

σY (t, T ) ≡
∫ T

t
σy(t, u)du =

α

γ

(
1− e−γ(T−t)

)
. (1.8)

Proof. See Appendix 1A.1 for proof.

Despite the existence of jumps, this condition is analogous to the drift condition in forward

interest rate term-structure models such as Heath et al. (1992).

From applying Itô’s Lemma for jump diffusion processes (see (Cont & Tankov 2003, Sec.

8.3.2)) to (1.6), given (1.7) and setting the drift to zero, it follows that the dynamics of F (t, T )

are given by

dF (t, T )

F (t, T )
=
√
vt

(
σSdW

S
t + σY (t, T )dW y

t

)
−λEQ

t

[
eJS+JY (t,T ) − 1

]
dt+

(
eJS+JY (t,T ) − 1

)
dNt,

(1.9)

where

JY (t, T ) ≡
∫ T

t
Jy(t, u)du =

a

b

(
1− e−b(T−t)

)
. (1.10)

The volatility of the futures prices depends on vt, a factor driven by W v
t which does not appear

in the expression followed by the futures dynamics (1.9). The volatility risk and the options on

futures contracts cannot be completely hedged by trading in futures contracts alone, for which

reason the model features unspanned stochastic volatility. To the extent that W v
t is correlated

with W S
t and W y

t , the variance factor contains a spanned component and volatility risk is partly

7



1. Jumps in Commodity Prices: New Approaches for Pricing Plain Vanilla Options

hedgeable. As special cases, if this correlation is 0, the volatility risk is completely unhedgeable,

and if this correlation is ±1, the volatility risk is completely hedgeable.

In the following proposition, we show that the cost of carry rates are affine jump-diffusion

functions of two state variables, namely χt and φt, plus the jump-related terms; the log-futures

prices f(t, T ) ≡ lnF (t, T ) are also affine jump-diffusion functions of the same variables and

terms, plus the log-spot prices st ≡ lnSt:

Proposition 1.2 The forward and the instantaneous cost of carry rates and log-futures prices
are given by

y(t, T ) = y(0, T )− λ
∫ t

0
EQ
u [Jy(u, T )] du+

∫ t

0
Jy(u, T )dNu + σy(t, T )χt +

σ2
y(t, T )

α
φt, (1.11)

yt = y(0, t)− λ
∫ t

0
EQ
u [Jy(u, t)] du+

∫ t

0
Jy(u, t)dNu + α (χt + φt) . (1.12)

f(t, T ) = st + f(0, T )− f(0, t) + σY (t, T )χt +
σ̂Y (t, T )

α
φt +

∫ t

0

(
yu −

σ2
S

2
vu

)
du

+ σS

∫ t

0

√
vudW

S
u − λ

∫ t

0
EQ
u

[
eJS + JY (u, T )− 1

]
du+

∫ t

0

(
JS + JY (u, T )

)
dNu.

(1.13)

with σ̂Y (t, T ) as in (1A.21), the dynamics for f(t, T ), χt and φt as in (1A.10),(1A.15) and
(1A.16).

Proof. See Appendix 1A.2 for proof.

In the following proposition we present the expressions followed by futures and spot prices:

Proposition 1.3 With yu as in (1.12), the expressions followed by the spot and futures prices
are given by

F (t, T ) = F (0, T )×

exp

{∫ t

0

(
√
vu

(
σSdW

S
u + σY (u, T )dW y

u

)
−vu

2

(
σSdW

S
u + σY (u, T )dW y

u

)2
)
du

}
exp

{
−λ
∫ t

0
EQ
u

[
eJS + JY (u, T )− 1

]
du+

∫ t

0

(
eJS+JY (u,T ) − 1

)
dNu

}
, (1.14)

St = S0 exp

{∫ t

0

(
yu −

σ2
S

2
vu − λEQ

u

[
eJS − 1

] )
du+ σS

∫ t

0

√
vudW

S
u + JS

∫ t

0
dNu

}
.

(1.15)

Proof. See Appendix 1A.3 for proof.
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1.2 A New Three-Factor Model for Futures Prices on Commodities

1.2.2 Deriving the Characteristic Function

As with most exchange-traded products, options on oil expire (TOpt) slightly before the expira-

tion date of the underlying futures contract (T ). The Fourier transform for the time-t standard

European option price can be expressed in terms of the characteristic function (hereafter CF)

ψ(iu, t, TOpt, T ), so it can be obtained by applying the Fourier inversion theorem. We define

τ ≡ TOpt− t and the process f(TOpt, T ) ≡ lnF (TOpt, T ) with dynamics as in (1A.10). To price

options on futures, we introduce the transform

ψt(iu, t, TOpt, T ) ≡ EQ
t [eiuf(TOpt,T )], (1.16)

which has an exponential affine solution as demonstrated in the following proposition:

Proposition 1.4 The transform in (1.16) is given by

ψt(iu, t, TOpt, T ) = eA(τ)+B(τ)vt+C(τ)λ+iuf(t,T ), (1.17)

with C(τ) the new term connected with the jumps. A(τ), B(τ) and C(τ) solve the following
system of ODEs

∂A(τ)

∂τ
= B(τ)κθ, (1.18)

∂B(τ)

∂τ
= b0 + b1B(τ) + b2B

2(τ), (1.19)

∂C(τ)

∂τ
= najbj (τ)− iu majbj (τ), (1.20)

with
b0 = −1

2
(u2 + iu)

(
σ2
S + σ2

Y (t, T ) + 2ρSyσSσY (t, T )
)
,

b1 = −κ+ iu σv
(
ρSvσS + ρyvσY (t, T )

)
,

b2 =
σ2
v

2
,

(1.21)

subject to the initial conditions A(0) = B(0) = C(0) = 0, for j = 1, 2 and following the jump
assumptions in Subsection 1.2.1. The analytical expressions followed by the expected value
terms (ma1 ,ma2 ,mb1 ,mb2 ,ma1b1 and ma2b2) and the transform terms (na1 , na2 , nb1 , nb2 , na1b1
and na2b2) are represented in Table 1.5.

Proof. See Appendix 1A.4 for proof.

The terms A(τ) and B(τ) are defined in Trolle & Schwartz (2009). In a recent work,

Sitzia (2018) derives an analytical representation followed by the transform of the futures prices

9



1. Jumps in Commodity Prices: New Approaches for Pricing Plain Vanilla Options

F (t, T ) for Trolle & Schwartz (2009)-SV1 and Trolle (2014). Equations (1.18) and (1.19) have
analytical solutions which are given by

A(τ) =
2κθ

σ2
v

(
βγτ − µz − ln g(z)

)
+k3, (1.22)

B(τ) =
2γ

σ2
v

(
β + µz + z

g′(z)

g(z)

)
, (1.23)

where g(z) is a linear combination of Kummer’s (M) and Tricomi’s (U) hypergeometric func-
tions. The expressions followed by g(z), g′(z), β, µ and z can be found in equations (1B.4)-
(1B.7) in Appendix 1B.1. To match the initial condition A(0) = 0, we have that

k3 =
2κθµ

σ2
vω

. (1.24)

The following proposition provides the analytic expression followed by the term C(τ) in
equation (1.17):

Proposition 1.5 Equation (1.20) has an analytical solution which is given by

C(τ) = nAjBj (τ)− iu mAjBj (τ), (1.25)

subject to the initial condition C(0) = 0, for j = 1, 2 and following the jump assump-
tions in Subsection 1.2.1. The analytical expressions followed by the expected value terms
(mA1 ,mA2 ,mB1 ,mB2 ,mA1B1 and mA2B2) and the transform terms (nA1 , nA2 , nB1 , nB2 , nA1B1

and nA2B2) are represented in Table 1.5.

The inclusion of jumps in the model does not have any impact on the computation of the
hypergeometric functions, which are part of the expressions followed by A(τ) and B(τ).

Model Sub-Specifications

We denote our model by SYSVJ.6 We consider six model sub-specifications to which we refer
with an identifier based on the jump assumption made, as described in Subsection 1.2.1:

• SYSVJa1: i.i.d. jumps in St – equivalent to Trolle (2014)

• SYSVJb1: i.i.d. jumps in y(t, T )

• SYSVJ1: i.i.d. jumps in St and in y(t, T )

• SYSVJa2: jumps of constant magnitude in St

• SYSVJb2: exponentially-dampened jumps in y(t, T )

• SYSVJ2: jumps of constant magnitude in St and exponentially-dampened jumps in y(t, T )
6SYSVJ is the acronym for Stochastic cost of carry Y (t, T ), Stochastic Volatility vt and Jumps.
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1.2 A New Three-Factor Model for Futures Prices on Commodities

Nested Models

Modeling the futures dynamics using jumps and stochastic volatility causes the futures prices
to have non-Gaussian returns – a stylised fact in the energy markets. In Table 1.3 we present the
values for the first four moments of the distribution and we perform the Jarque-Bera normality
test: Sub-table 1.3(a) refers to monthly observations, whereas Sub-table 1.3(b) refers to daily
observations. We reject the null hypothesis of normality in returns for each of the labeled
contracts M2-Q2, and all the contracts taken together. This implies that jumps and stochastic
volatility are required, providing skewness and kurtosis to the distribution of returns. Earlier
models did not include dynamics of both kinds.

We consider one-, two- and three-factor models, a mix of spot-based models such as Merton
(1976), Heston (1993) and Bates (1996), and term-structure models such as Trolle & Schwartz
(2009)-SV1 and Trolle (2014). By settingmB1 ,mB2 , nB1 and nB2 to zero in the jump termC(τ)

in (1.25), Trolle (2014) is replicated; by setting the jump term C(τ) to zero, Trolle & Schwartz
(2009)-SV1 is replicated. Further modifications to A(τ), B(τ) and C(τ) need to be put in place
to replicate the nested models we present.

To compare different models from a commodity perspective, we transform the original spot-
based specifications and get the corresponding futures prices dynamics. These models were not
originally meant for commodities but rather for equities or exchange rates and they do not
consider a stochastic cost of carry rate. We adapt their specifications to commodity assets
accordingly. We will hereafter refer to their equivalent term-structure models, though naming
them under the original form.

Given (1.16), we present the corresponding Fourier transforms to the extant models con-
sidered:

1. Merton (1976) or Mer76 hereafter:

ψt(iu, t, TOpt, T ) = eA(τ)+C(τ)λ+iuf(t,T ). (1.26)

This model extends Black & Scholes (1973) incorporating jumps in the spot price St, where
the constant term A(τ) in both models coincides. The jump-related term C(τ) corresponds
to our jump assumption (a1) in Subsection 1.2.1.

2. Heston (1993) or Hes93 hereafter:

ψt(iu, t, TOpt, T ) = eA(τ)+B(τ)vt+iuf(t,T ). (1.27)

In this case, a volatility term B(τ) is necessary as this model extends Black & Scholes
(1973) incorporating stochastic volatility vt; the independent term A(τ) in both models
coincides.

11
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3. Bates (1996) or Bat96 hereafter:

ψt(iu, t, TOpt, T ) = eA(τ)+B(τ)vt+C(τ)λ+iuf(t,T ). (1.28)

This model is a combination of Hes93 and Mer76. A(τ) and B(τ) are as in Hes93, and the

jump term C(τ) is as in Mer76.

4. Trolle & Schwartz (2009)-SV1 or TS09-SV1 hereafter:

ψt(iu, t, TOpt, T ) = eA(τ)+B(τ)vt+iuf(t,T ). (1.29)

This model consists of the extension of Hes93 with a stochastic forward cost of carry curve

y(t, T ), where A(τ) and B(τ) follow (1.22) and (1.23), respectively.

5. Trolle (2014) or Tro14 hereafter:

ψt(iu, t, TOpt, T ) = eA(τ)+B(τ)vt+C(τ)λ+iuf(t,T ). (1.30)

This model consists of the extension of TS09-SV1 with i.i.d. jumps in the spot price St.

A(τ) and B(τ) are as in TS09-SV1; C(τ) is as in Mer76. This theoretical model has yet to

be subjected to an empirical application.

In Table 1.1 we present the dynamics followed by the models presented in this list together

with our model, providing both the spot and the futures price dynamics. Table 1.2 shows a

classification based on the factors and jumps considered. The expressions followed by the

ODEs and the solution to the terms in (1.26)-(1.30) and in our model in (1.17) can be found in

Sub-tables 1.4(a) and 1.4(b), respectively. Table 1.5 presents the jump assumptions described

in Subsection 1.2.1, their corresponding expressions for expected values and jump transforms.

Given that Tro14 is equivalent to our model sub-specification (a1), it does not explicitly appear

in Tables 1.2, 1.4 and 1.6.

Key advantages of the most recent models (TS09-SV1, Tro14 and our model) include im-

proved approximation to the real price behaviour and better description of the implied volatility

surface. In our case, adding up to five jump parameters provides even more flexibility to rep-

licate the market implied volatilities, allowing for a wider range of possible shapes (e.g., long-

dated contracts jump more than those closer to maturity – a stylised fact in the energy markets).

Its implementation is not especially difficult, requiring only the addition of one new term C(τ)

to the CF in TS09-SV1.7

7Observe that this new term can present six different forms, as many as the number of model sub-specifications.
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1.3 Alternative Characterisation

1.2.3 Pricing of Standard European Options

Let C(t, TOpt, T,K) and P(t, TOpt, T,K) denote the time-t prices of a standard European call
(hereafter, call) option and a standard European put (hereafter, put) option that expire at time
TOpt with strike K on a futures contract that expires at time T , and let P (TOpt, t) denote the
time-t price of a zero-coupon bond that matures at time TOpt. This option can be priced quasi-
analytically within the framework we describe in this section. In our empirical work, we follow
the fast Fourier transform (FFT hereafter) methodology.

We use the Carr & Madan (1999) approach for pricing options which permits the use of the
computationally efficient FFT algorithm. Its popularity stems from its remarkable speed: while
a naive computation needs N2 operations, the FFT requires only N ln(N) steps.

In the following proposition we present the expressions followed by the prices of a European
call and put option:

Proposition 1.6 The time-t price of a call and a put option that expires at time TOpt with strike
K on a futures contract that expire at T are given by

C(t, TOpt, T,K) = P (t, TOpt)
e−α ln(K)

π

∫ ∞
0
<

[
e−iu ln(K)ψt(u− i(1 + α), t, TOpt, T )

α(α+ 1)− u2 + iu(1 + 2α)

]
du, (1.31)

P(t, TOpt, T,K) = P (t, TOpt)
e−α ln(K)

π

∫ ∞
0
<

[
e−iu ln(K)ψt(u− i(1− α), t, TOpt, T )

α(α− 1)− u2 + iu(1− 2α)

]
du, (1.32)

where α is the control parameter.8

Proof. The proof is in Carr & Madan (1999).
This approach presents two advantages: firstly, it permits the use of the computationally

efficient FFT; secondly, it requires the evaluation of only one integral, as opposed to the two
integrals required when using earlier methods such as in Heston (1993) or Duffie et al. (2000),
among others.

1.3 Alternative Characterisation

We have reinterpreted some parameters presented in this work for the sake of model simplicity.
In fact, it consists of an equivalent way of understanding the nature of the volatilities and the
8α has to be chosen to ensure that it makes the modified option price square-integrable and to obtain good numerical
accuracy – a sufficient condition for the Fourier transform to exist. This parameter has to be wisely chosen as it
might produce very oscillatory arguments of the integral if too big, or it might approach a point mass around 0 if
too small. This parameter is often set to 0.75, seeming to achieve very good numerical results on practically all
occasions. We also set it to 0.75.
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jumps of the spot price St and the forward cost of carry curve y(t, T ) and, as a result, the

futures dynamics too. The option prices are equivalent no matter whether we use this alternative

parameter characterisation or the original set. This alternative set-up is a novel feature in this

work, which reduces calibration time by approximately 50%.

1.3.1 Futures Dynamics

In this subsection we present the alternative expressions for the volatility functions, jump ex-

pressions and the futures dynamics. The idea beyond this modification consists of considering

a single expression for the volatilities of the factors that affect futures prices F (t, T ). It is based

in the fact that the spot price St does not have a maturity whereas the forward cost of carry curve

y(t, T ) does. As such, when t = T , we have that σy(t, t) = α, and by matching the parameters

σS = 0 we allow a single expression to hold for the volatilities of both factors. We do the same

with the jumps.

Next, we present the new expressions we refer to and their integrals. We denote the volatility

of F (t, T ) by σf (t, T ) and the jumps in F (t, T ) by Jf (t, T ).

Alternative Volatility Functions

We consider that σf (t, T ) follows an exponentially-dampened functional form, with (1.4) and

(1.8) becoming

σf (t, T ) ≡ αe−γ(T−t), (1.33)

σF (t, T ) ≡
∫ T

t
σf (t, u)du =

α

γ

(
1− e−γ(T−t)

)
. (1.34)

Observe that in Subsection 1.2.1 we imposed σS = 1 given that the parameters σS, α, θ and σv
were not simultaneously identified. This implies that the calibrated values for σS and α will not

be close at all to each other when comparing their values in the original characterisation with

the alternative one.

Alternative Jump Specifications

We consider the jumps in F (t, T ) as in Crosby (2008), with expressions (1.5) and (1.10) be-

coming

Jf (t, T ) ≡ ae−b(T−t), (1.35)

JF (t, T ) ≡
∫ T

t
Jf (t, u)du =

a

b

(
1− e−b(T−t)

)
, (1.36)
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for which we contemplate two alternatives:
Jump assumption (1): Jumps as in Mer76, i.e., Jf (t, T ) ∼ N (µJF , σ

2
JF

) with σJF ≥ 0.
The jump amplitude parameter a is assumed to be an i.i.d. random variable over time,
the distribution of which is defined with respect to Q. The jump-decay parameter b is
assumed to be zero.
Jump assumption (2): Jumps with an exponentially-dampened functional form, where
the jump amplitude parameter a is assumed to be a finite constant and the jump-decay
parameter b is assumed to be any non-negative number.

Alternative Futures Dynamics and Model Sub-Specifications

As a result, equation (1.9) becomes

dF (t, T )

F (t, T )
=
√
vtσF (t, T )dWF

t − λEQ
t

[
eJF (t,T ) − 1

]
dt+

(
eJF (t,T ) − 1

)
dNt. (1.37)

In this set-up we consider two model sub-specifications:

• SYSVJ1: i.i.d. jumps in F (t, T )

• SYSVJ2: exponentially-dampened jumps in F (t, T )

1.3.2 Characteristic Function

The coefficients in the dynamics of B(τ) in equation (1.19) result in the new expressions

b0 = −1

2
(u2 + iu)σ2

F (t, T ),

b1 = −κ+ iu σvρFvσF (t, T ),

b2 =
σ2
v

2
,

(1.38)

whereas the expressions followed byA(τ) andB(τ) in (1.22) and (1.23) remain the same. Their
coefficients can be found in Annexes 1B.1 and 1B.2.

Subject to the initial condition C(0) = 0, for j = 1, 2 and the jump assumptions presented
above, the alternative jump-related term dynamics and solution are

∂C(τ)

∂τ
= nfj (τ)− iu mfj (τ), (1.39)

C(τ) = nFj (τ)− iu mFj (τ). (1.40)

The analytical expressions followed by the expected value terms (mf1 ,mf2 ,mF1 and mF2) and
the transform terms (nf1 , nf2 , nF1 and nF2) are represented in Table 1.5.
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1.4 Model Estimation

We directly define our model dynamics under Q and, therefore, the parameter estimation is

performed under this measure. We use the least-square fit to calibrate our parameters. This

section describes the market data we use for this analysis and the calibration method we follow.

Market Data

We consider West Texas Intermediate (WTI) light sweet crude oil data listed on the New York

Mercantile Exchange (NYMEX), which we obtain from Refinitive Eikon (formerly Thomson-

Reuters Datastream). The data set consists of observations of closing prices (quoted in USD)

and open interest for futures prices, and market implied (Black) volatilities for the correspond-

ing options.

The period considered spans from May 27th, 2010 to September 30th, 2020 and is at monthly

and daily frequency, making it 125 monthly and 2,618 daily observations, respectively. Only

ATM and OTM options are utilised. We select ATM options plus those 15 OTM closer to the

ATM level, which we label as ATM±0.5, 1, ..., 7, 7.5 USD, with ATM the futures price. This

makes 32 options per contract and observation.

The trading of futures contracts terminates three business days prior to the 25th calendar day

of the month prior to the contract month (i.e., delivery month). Futures contracts that mature

on those termination dates exist for a wide variety of maturities. In deciding which maturity

futures contracts to use, we select contracts based on higher open interest, as detailed in (Trolle

& Schwartz 2009, p. 5,6). This procedure leaves seven generic futures contracts out of the first

60 available nominal ones: the second- to the sixth-month contracts (M2-M6) and the following

two with expiration in either March, June, September or December (Q1-Q2). This represents

868 futures contracts in total. The trading of standard European options terminates six business

days prior to the 25th calendar day of the month prior to the contract month.

Calibration Method

The inputs to the calibration algorithm are the underlying futures prices, the option strikes and

the discount factors. Additionally, as a proxy for the instantaneous variance, we use the square

of ATM volatilities that corresponds to the shorter maturity contract (in our case, the contract

labeled M2) – that is, a unique volatility value v0 per observation date.

We use a least-squares fitting with the objective of minimising the root mean squared error

in volatilities RMSE. With the calibrated parameters, for comparative purposes, we also report
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1.4 Model Estimation

MAEs in option volatilities. All the results reported in this Section are in terms of MAE(σ).
The expressions followed by these error statistics read

MAE(σ) =

∑N
t=1 |σ̂t − σt|

N
, (1.41)

RMSE(σ) =

√∑N
t=1(σ̂t − σt)2

N
. (1.42)

We apply Feller’s condition to all models with stochastic volatility, that is, all models con-
sidered except Mer76. Hes93 and Bat96 assume that σS = 1. Following this assumption, we
also assume that σS = 1 in TS09-SV1, Tro14 and our model in the original set-up, σS = 0 in
the alternative set-up. We calibrate the parameters for the models listed in Subsection 1.2.2 and
for our model.

Following Carr & Madan (1999), the integral in the pricing functions (1.31)-(1.32) is numer-
ically computed using Simpson’s rule (using Matlab’s built-in function simps). We compare
the performance of other integration methods and we find Simpson’s rule to be the best. For
the sake of brevity, we do not present this analysis in this work, but the results are available
upon request. We have carried out an equivalent analysis to choose the optimal value of α to be
used in equations (1.31)-(1.32). When performing a numerical calibration, we use a standard
fourth order Runge-Kutta algorithm to solve the system of ODEs (1.18)-(1.20) (using Matlab’s
built-in function ode45). We consider an integral step of 1/10 and an upper bound of 60, which
implies 600 evaluation points. Experiments are implemented on an HP laptop computer on a
CPU Intel Core i7 2.60 GHz 16.0 GB RAM SSD hard drive machine, running on Windows 10
64 bits, with Matlab version R2020b and Microsoft Office 64 bits.

1.4.1 Monthly Observations

The observation period considered makes 125 end of month observations, which are taken on
the last business day of the month in the period considered. As a result, we consider the seven
futures contracts and their 32 corresponding ATM and OTM options for each observation, which
represent 28,000 options. Because of data issues, 3,570 options are discarded, making it a final
number of 24,430 options (87.25% of the total number).

Figure 1.1 focuses on the period May 2010 to September 2020; it considers the contracts
labeled M2, Q1, Q2 only. Sub-figure 1.1(a) shows the evolution of futures prices per contracts,
Sub-figure 1.1(b) shows futures returns, Sub-figure 1.1(c) shows Black volatilities for ATM
call options, and Sub-figure 1.1(d) presents a histogram of futures returns compared with those
normally-distributed. In the histogram, the presence of skewness and kurtosis (fat tails) is evid-
ent. In Sub-figure (c), we also observe that volatility is stochastic. In the period considered, the
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jump in 2011 corresponds to the Arab spring; the biggest downward jump occurring in 2014

corresponds to the territorial gains made by ISIS in Iraq and Syria, the surprising growth of US

shale oil production (fracking) and the decision taken by the OPEC to maintain output. Fu-

tures prices plummeted in March 2020, which corresponds to the beginning of the Covid-19

pandemic.

A Jarque-Bera normality test demonstrates that futures returns are not Gaussian. Sub-table

1.3(a) presents the results of the test, contract by contract and for all contracts taken together.

The values of the skewness and kurtosis signal the returns not to have a normal distribution,

which supports the inclusion of stochastic variance as well as jumps.

1.4.2 Daily Observations

The observation period considered makes 2,618 daily observations. As a result, we consider the

seven futures contracts and their 32 corresponding options for each observation, which represent

586,432 options. Because of data issues similar to the monthly observations, 74,194 options are

discarded, making it a final number of 512,238 options (87.35% of the total number).

We omit plotting futures prices and returns, and options volatilities on daily observations

to reduce clutter on the graphs. Again, a Jarque-Bera normality test demonstrates that futures

returns are not Gaussian. Sub-table 1.3(b) presents the results.

1.5 Results

In this section we discuss the empirical pricing performance of our novel model presented in

Subsection 1.2.1 and each of the extant models listed in Subsection 1.2.2. Black (1976) is the

market model for pricing standard European options on futures prices. In fact, there is one

equivalent Black volatility per quoted option; therefore, there is no benefit in calibrating this

single-parameter model. Our benchmark model is TS09-SV1, which is deployed as a special

case of ours, and our sub-specification SVSYJa1 corresponds to Tro14.

We compute the fair value of standard European call and put options contracts on different

maturities and strike prices over a period of slightly over 10 years. Analytic results (estimated

parameters values, pricing errors and computation time) are reported in Table 1.6. Sub-table (a)

refers to monthly data and Sub-Table (b) refers to daily data of futures and option prices. Errors

are expressed in terms of MAE(σ) and RMSE(σ), and computation time in hours.

We want to determine whether the addition of different types of jumps brings any benefit to

the pricing performance of our model compared with our benchmark. In this section we will
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focus on results generated from daily observations; if results differ between one granularity and

the other, we will explicitly discuss it.

Originally, TS09 was calibrated numerically applying the Fourier inversion theorem as in

Duffie et al. (2000). This is the first empirical work in the literature we are aware of which prices

plain vanilla options using the analytical solutions in Sitzia (2018). This innovation enables a

much faster calibration of TS09-SV1 and our model. The alternative characterisation of the

parameters is another novel feature, which reduces calibration time by approximately 50%.9

Our model presents the highest performance results (that is, the lowest values in terms of

MAE(σ) and RSME(σ)) but also the longest computation times, as it contains the highest num-

ber of parameters. There is one exception on monthly (daily) data, where neither the benchmark

nor our model can beat Bat96 (and Hes93) in terms or errors.10 So that computational time and

calibrated values are comparable, we use the same initial set of (common) parameter values

throughout all of our model sub-specifications as well as for our TS09-SV1. We tried many

different sets of initial parameter values until we reached the best possible local optimum. In

all cases we beat the benchmark; this result is more evident using daily data where, on average,

the outperformance reaches 0.57% in terms of MAE(σ) (0.0363 to 0.0306) and 0.72% in terms

of RMSE(σ) (0.0601 to 0.0529). These results represent a noteworthy improvement in model

performance. Considered along with the reduction in computation time through the analytical

solution for the CF and the use of the FFT for option pricing, these improvements provide a

significant benefit for practitioners.

To better understand the realism of the errors under each frequency scenario, we analyse the

distribution of the errors which can be observed in Tables 1.7 to 1.10. These tables present the

distribution of MAE(σ) along two dimensions, namely the 32 moneyness levels and the maturity

of the seven futures contracts, considered individually and taken together. When the observa-

tions are taken monthly (daily), Tables 1.7 and 1.8 (1.9 and 1.10) present the performances

obtained by our benchmark and our model. The first table refers to our i.i.d. sub-specification

(1) and the latter to our more advanced model with time-dampening jumps (2). In Sub-tables

(a) we present the benchmark errors, Sub-tables (b) present our model errors, and Sub-tables

(c) represent how good or bad our model is compared with the benchmark. Where the inclusion

of jumps improves the pricing accuracy of our model, the values in Sub-tables (c) are positive.

We subsequently study in detail the information displayed in Tables 1.9 and 1.10, which are

based on the daily data set. Examining Sub-tables (a) and (b), the first insight is that contracts

that report greater errors are found in the shorter maturity contracts (darker red cells). In terms of

9These values are available upon request.
10This particular fact is under current review.
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moneyness, we find that the worst-performing contracts are the ones more distant from the ATM

level; the worst of all correspond to options with lower strike level (that is, put options). For

larger strike levels, the errors increase again for call options more distant from the ATM level.

Furthermore, we observe that error performances are not symmetric. Examining Sub-tables (c)

we observe that, on average, our model outperform the benchmark in nearly all contracts – all

but one for SYSVJ1, all but two for SYSVJ2 (all being 32x7=224). The biggest improvements

(darker blue) can be found in shorter contracts with lower strike levels and in OTM call options

more distant from the ATM level. Improvements are not symmetric in this case, either. For

SYSVJ1, the model improvement reaches 2.28% and 2.22% for SYSVJ2, which is noteworthy.

The improvement in the aforementioned option contracts is consistent with the inclusion of

jumps in the model. A priori, one would expected a positive effect in the short-term goodness

of fit given that jumps (as opposed to volatilities) affect prices immediately; this effect is more

clear in those contracts closer to maturity – a stylised fact in commodity markets.

Contrary to results from prior research11 carried out with market data from past decades,

when jumps were most of the times upwards (e.g., 1978-79: Iran cuts production and exports

during its Revolution and cancels contrats with US companies; 1990: Iraq invades Kuwait;

1999: Asian demand recovers after 1997 crisis; early 2000’s: production falls due to lack of

investment; mid 2000’s: Asia drives rising demand as production stagnates and Saudi spare ca-

pacity declines), we find that jumps in the WTI crude oil futures market over our sample period

on average tend to be downwards. After the 2010’s, we can observe another price increasing

period starting in early December 2021 followed by a clear upward jump during the days pre-

ceding the Russian invasion of Ukraine on February 24th 2022, when the price of oil hit 100

USD per barrel for the first time since 2014. Of course, this price increase is after our data

sample ends.

In Table 1.6 it can be observed that in jump models, the jump amplitude µJ is negative, an

empirical fact which can be observed in the heavier left tail in Sub-figure 1.1(d). Excluding

Mer76, jump amplitudes (taken together in the case of jump assumptions (1) or (2)) are always

higher in magnitude than −1. Their intensity rates are small, implying one jump every 10-12

years (depending on sub-specification and frequency). This results mainly from considering

stochastic volatility within the models, which is the main driver of the non-Gaussian returns.

Considering models with no jumps such as Hes93 and TS09-SV1, the correlation between the

spot price and the volatility ρSv is negative, whereas it is positive in all others. In models that

allow for stochastic cost of carry, correlations between the cost of carry and the volatility ρyv are

11See, e.g., Trolle & Schwartz (2009) (time series spanning from January 1990 to May 2006) and Crosby (2008)
(in Section 1, the author comments the rise in oil prices in 1990), among others.
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positive in most cases. Correlations between the spot price and the cost of carry (convenience

yield) ρSy are negative (positive) in all cases; this goes in line with the results obtained in prior

research.

The introduction of jumps complicates the calibration as parameters values are somewhat

unstable; this fact can be observed in Table 1.6 in either frequency considered. In our model and

for monthly data, we observe that with i.i.d jumps, jump volatilities σJS and σJY are zero in all

sub-specifications – they can all be considered as constant jumps providing similar performance

no matter the jump type considered. Something similar occurs with time-dampening jumps,

where the dampening factor bY hits zero in all sub-specifications (observe that jump assumption

(a2) is equivalent to (2) with bY = 0). Any type of jump outperforms our benchmark by

0.15%. For daily data and unlike the situation previously described, we can observe that jump

parameters do not present null values: jump volatilities in i.i.d. jumps are clearly different from

zero although small in magnitude, the jump-decay parameter in time-dependent jumps take

reasonable values.

The extant jump models perform in an opposite way to our novel jump model. For monthly

observations, the models of Bat96 and Mer76 have non-zero but quite small jump volatility

values. On the contrary, these volatilities are zero for daily observations. In both frequencies,

these findings lead us to think that jumps may not precisely be i.i.d.

In terms of model performance, MAE(σ) values are practically indistinguishable between

the two sets of sub-specifications: those corresponding to i.i.d. jumps together with (a2) hit

3.00%; those of (a2) and (2) stay around 3.20%. Both values clearly outperform our benchmark.

An insight discernible only in daily data is that sub-specifications that present time-dampening

jumps do not perform better than those related to i.i.d. jumps. Although the time-dependency

in jumps is an important stylised fact in commodity markets, we think it relevant to consider

jumps variable rather than constant; a mixture of both types might deliver even better results.

We conclude that our jump model performs better than our benchmark, especially for short

maturity contracts and away from the ATM level.

1.6 Conclusions and Further Research

We have developed a novel term-structure model for commodity futures prices which presents

stochastic spot prices, forward cost of carry curves and variance. The novel feature in our model

is the presence of simultaneous jumps in the spot prices and the cost or carry, either i.i.d. or

following a time-dampening form. We model futures dynamics under Q, compute the CF and

price plain vanilla option using the FFT algorithm with an analytic expression. We calibrate
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parameters for five extant models (Mer76, Hes93, Bat96, TS09-SV1 and Tro14) plus the six
sub-specifications of our model SYSVJ, with the objective of analysing pricing performances.

This is the first empirical work in the literature which prices options with TS09-SV1 using
analytical expressions. We prove that our model produces better results (that is, lower error
values in terms of MAE(σ) and RSME(σ)) than our benchmark model TS09-SV1, specially for
short maturity contracts and away from the ATM level. Our model outperforms the benchmark
by 0.57% in terms of MAE(σ) and 0.72% in terms of RMSE(σ). Considered along with the
reduction in computation time due to (i) the analytical solution for the CF, (ii) and the use of the
FFT for option pricing and (iii) the alternative set-up, these improvements provide a significant
benefit for practitioners.

Contrary to results from prior research, we find that jumps in the WTI crude oil futures
market over our sample period on average tend to be downwards.

Future lines of research will include, firstly, the extension of TS09-SV1 to capture the dy-
namics of seasonal energy assets (e.g. natural gas) in the variance. Secondly, we also aim to
price calendar spread options on WTI using a joint CF for the two futures contracts involved
in each option, within the framework of the model presented in this work. We expect to also
obtain analytical solutions for the new transforms, and analytical expressions to price both types
of options.

1.7 Figures and Tables
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Figure 1.1: Futures prices and returns, ATM call options implied volatilities – monthly data

(a) Futures prices (b) Futures returns

XXX
(c) Black volatilities for ATM call options (d) Histogram of futures returns

XXX
NOTES: This figure presents values that correspond to the futures contracts labeled M2, Q1, Q2 for the period May 2010 to September 2020.
Sub-figure (a) presents futures prices, Sub-figure (b) presents futures returns, Sub-figure (c) presents implied volatilities for ATM call options,
and Sub-figure (d) presents a histogram for aggregated futures returns.
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Table 1.1: Models dynamics

Model . Dynamics

Mer76 dSt
St

=
(
yt − λEQ

t

[
eJS − 1

] )
dt+ σSdW

S
t +

(
eJS − 1

)
dNt

[
dF (t,T )
F (t,T )

= −λEQ
t

[
eJS − 1

]
dt+ σSdW

S
t +

(
eJS − 1

)
dNt

Hes93 dSt
St

= ytdt+
√
vtdW

S
t

dvt = κ (θ − vt) dt+ σv
√
vtdW

v
t

dF (t,T )
F (t,T )

=
√
vtdW

S
t

Bat96 dSt
St

=
(
yt − λEQ

t

[
eJS − 1

] )
dt+

√
vtdW

S
t +

(
eJS − 1

)
dNt

dvt = κ (θ − vt) dt+ σv
√
vtdW

v
t

dF (t,T )
F (t,T )

= −λEQ
t

[
eJS − 1

]
dt+

√
vtdW

S
t +

(
eJS − 1

)
dNt

TS09-SV1 dSt
St

= ytdt+ σS
√
vtdW

S
t

dy(t, T ) = µy(t, T )dt+ σy(t, T )
√
vtdW

y
t

dvt = κ (θ − vt) dt+ σv
√
vtdW

v
t

dF (t,T )
F (t,T )

=
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
TS09-SV1? dF (t,T )

F (t,T )
=
√
vtσF (t, T )dW F

t

Tro14 dSt
St

=
(
yt − λEQ

t

[
eJS − 1

] )
dt+ σS

√
vtdW

S
t +

(
eJS − 1

)
dNt

dy(t, T ) = µy(t, T )dt+ σy(t, T )
√
vtdW

y
t

dvt = κ (θ − vt) dt+ σv
√
vtdW

v
t

dF (t,T )
F (t,T )

= −λEQ
t

[
eJS − 1

]
dt+

√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
+
(
eJS − 1

)
dNt

Tro14? dF (t,T )
F (t,T )

= −λEQ
t

[
eJS − 1

]
dt+

√
vtσF (t, T )dW F

t +
(
eJS − 1

)
dNt

SYSVJ dSt
St

=
(
yt − λEQ

t

[
eJS − 1

] )
dt+ σS

√
vt dW

S
t +

(
eJS − 1

)
dNt

dy(t, T ) =
(
µy(t, T )− λEQ

t [Jy(t, T )]
)
dt+ σy(t, T )

√
vt dW

y
t + Jy(t, T ) dNt

dvt = κ (θ − vt) dt+ σv
√
vt dW

v
t

dF (t,T )
F (t,T )

= −λEQ
t

[
eJS+JY (t,T ) − 1

]
dt+

√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
+
(
eJS+JY (t,T ) − 1

)
dNt

SYSVJ? dF (t,T )
F (t,T )

= −λEQ
t

[
eJF (t,T ) − 1

]
dt+

√
vtσF (t, T )dW F

t +
(
eJF (t,T ) − 1

)
dNt

XXX
NOTES: This table presents each model dynamics, the last equation refers to its corresponding futures price dynamics. Those models presenting
an alternative characterisation of the parameters (i.e., TS09-SV1, Tro14 and SYSVJ) appear with the superscript ?.
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1.7 Figures and Tables

Table 1.2: Factors and features per model

Model Stochastic Factors Jumps Parameter Analytical
St y(t, T ) F (t, T ) vt St y(t, T ) F (t, T ) Count Solution

Mer76 X X 4 X

Hes93 X X 4 X

Bat96 X X X 7 X

TS09-SV1 X X ? X 9(6) X

SYSVJa1 X X X X 12 X

SYSVJb1 X X X X 12 X

SYSVJ1 X X ? X X X ? 14(9) X

SYSVJa2 X X X X 11 X

SYSVJb2 X X X X 12 X

SYSVJ2 X X ? X X X ? 13(9) X

NOTES: For each model, this table indicates the factors and jumps considered, the parameter count and if the model allows for an analytical
solution for standard European option pricing. In those models presenting alternative set-up, F (t, T ) replaces St and y(t, T ); this is indicated
with the symbols ? (alternative set-up) and X (original set-up). The parameter count for the alternative set-up is shown in brackets. SYSVJa1

corresponds to Tro14.
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1. Jumps in Commodity Prices: New Approaches for Pricing Plain Vanilla Options

Table 1.3: Futures returns and Jarque-Bera test

(a) Monthly Observations

Contract Min. Max. Mean Std. Dev. Skew. Kurt. JB Stat. p-Value Test
M2 49.49% -60.62% -0.50% 10.92% -0.7948 12.2654 9.3739 0.0182 R
M3 39.57% -48.78% -0.50% 9.86% -0.7081 8.4547 10.0370 0.0158 R
M4 32.32% -41.76% -0.50% 9.18% -0.7223 6.4928 10.4806 0.0144 R
M5 28.16% -37.66% -0.51% 8.74% -0.7326 5.6324 10.7459 0.0136 R
M6 25.16% -34.86% -0.51% 8.39% -0.7536 5.1792 10.9373 0.0131 R
Q1 20.14% -28.87% -0.50% 7.64% -0.7752 4.5381 11.2291 0.0123 R
Q2 16.47% -25.85% -0.50% 6.80% -0.8589 4.4968 11.5409 0.0116 R
ALL 49.49% -60.62% -0.50% 8.87% -0.7789 8.7694 2,343.644 0.0010 R

XXX
(b) Daily Observations

Contract Min. Max. Mean Std. Dev. Skew. Kurt. JB Stat. p-Value Test
M2 58.12% -56.86% -0.02% 2.89% -0.3230 130.9346 194.4978 0.0010 R
M3 24.00% -34.08% -0.02% 2.40% -1.3885 35.7670 208.6014 0.0010 R
M4 18.58% -27.71% -0.02% 2.25% -1.2731 26.5330 217.2025 0.0010 R
M5 17.14% -24.78% -0.02% 2.15% -1.1976 22.4633 222.6880 0.0010 R
M6 15.64% -23.65% -0.02% 2.07% -1.1427 20.0304 226.8677 0.0010 R
Q1 14.32% -22.57% -0.02% 1.96% -1.0530 17.5825 223.3093 0.0010 R
Q2 11.29% -19.68% -0.02% 1.80% -1.0021 14.5854 240.9477 0.0010 R
ALL 58.12% -56.86% -0.02% 2.24% -1.9807 69.5524 42,831.8384 0.0010 R

XXX
NOTES: JB accounts for the Jarque-Bera normality test. The null hypothesis refers to the normal distribution of futures returns. The critical
value associated to a significance level of 0.05 is 5.991. When the value of Test is R (CR), we reject (cannot reject) the null hypothesis at 95%.
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1.7 Figures and Tables

Table 1.4: Fourier transforms – ODEs and solutions

(a) ODEs

Model
[
∂A(τ)/∂τ

]
∂B(τ)/∂τ ∂C(τ)/∂τ

Mer76
[
− σ2

S

2
(u2 + iu) − na1 − iu ma1

Hes93 B(τ)κθ

[
−1

2
(u2 + iu) +B(τ) (−κ+ iuσvρSv) +B2(τ)σ

2
v

2
−

Bat96 B(τ)κθ

[
−1

2
(u2 + iu) +B(τ) (−κ+ iuσvρSv) +B2(τ)σ

2
v

2
na1 − iu ma1

TS09-SV1(?) B(τ)κθ

[
b0 + b1B(τ) + b2B

2(τ) −

SYSVJ B(τ)κθ

[
b0 + b1B(τ) + b2B

2(τ) najbj − iu majbj

SYSVJ? B(τ)κθ

[
b0 + b1B(τ) + b2B

2(τ) nfj − iu mfj

XXX
(b) Solution to ODEs

Model
[
A(τ)

]
B(τ) C(τ)

Mer76
[
− σ2

S

2
(u2 + iu)τ

]
− nA1 − iu mA1

Hes93 κθ
σ2
v

(
(κ− iuσvρSv + d)τ − 2 ln 1−gedτ

1−g

)
κ−iuρSvσv+d

σ2
v

(
1−edτ
1−gedτ

)
−

Bat96 κθ
σ2
v

(
(κ− iuσvρSv + d)τ − 2 ln 1−gedτ

1−g

)
κ−iuρSvσv+d

σ2
v

(
1−edτ
1−gedτ

)
nA1 − iu mA1

TS09-SV1(?) 2κθ
σ2
v

(
βγτ − µz − ln g(z)

)
+k3

2γ
σ2
v

(
β + µz + z g

′(z)
g(z)

)
−

SYSVJ 2κθ
σ2
v

(
βγτ − µz − ln g(z)

)
+k3

2γ
σ2
v

(
β + µz + z g

′(z)
g(z)

)
nAjBj − iu mAjBj

SYSVJ?XX XX 2κθ
σ2
v

(
βγτ − µz − ln g(z)

)
+k3XX

2γ
σ2
v

(
β + µz + z g

′(z)
g(z)

)
XnFj − iu mFjXX

XXX
NOTES: This table presents the expressions followed by each of the ODEs and their solutions as they can be found in the literature. As per
our model, these expressions correspond to equations (1.18)-(1.20). m• is the expected value at time t under Q of the jump assuming the
jump assumption •; n• is the transform of the jump assuming the jump assumption •. For TS09-SV1 and our model SYSVJ, the values for
k3, g(z), g′(z), β and µ are shown in equations (1.24) and (1B.4)-(1B.6). Tro14 corresponds to SYSVJ(a1). In each Sub-table, the superscript
? after the model refers to the alternative characterisation of the parameters. For Hes93 and Bat96, we have that

g =
κ− iuσvρSv + d

κ− iuσvρSv − d
, d =

√
(κ− iuσvρSv)2 + σ2

v(u
2 + iu). (1.43)
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Table 1.5: Jump assumptions, corresponding expected values and jump transforms

Jump Set-up Expected Value . Transform

(a1) X ma1 ≡ EQ
t

[
eJS − 1

]
= e

µJS+ 1
2
σ2
JS − 1 na1 ≡ e

iuµJS−
u2

2
σ2
JS − 1

[
mA1 ≡ EQ

t

[∫ T
t

(eJS − 1) du
]

= (T − t)ma1 nA1 = (T − t)na1

(b1) X mb1 ≡ EQ
t

[
eJy(t,T ) − 1

]
= e

µJY + 1
2
σ2
JY − 1 nb1 ≡ e

iuµJY −
u2

2
σ2
JY − 1

mB1 ≡ EQ
t

[∫ T
t

(eJy(t,T ) − 1) du
]

= (T − t)mb1 nB1 = (T − t)nb1

(1) X ma1b1 ≡ EQ
t

[
eJS+Jy(t,T ) − 1

]
= (ma1 + 1)(mb1 + 1)− 1 na1b1 ≡ (na1 + 1)(nb1 + 1)− 1

mA1B1 ≡ EQ
t

[∫ T
t

(eJS+Jy(t,T ) − 1) du
]

= (T − t)ma1b1 nA1B1 ≡ (T − t)na1b1

(1) ? mf1 ≡ EQ
t

[
eJf (t,T ) − 1

]
= e

µJF + 1
2
σ2
JF − 1 nf1 ≡ e

iuµJF−
u2

2
σ2
JF − 1

mF1 ≡ EQ
t

[∫ T
t

(eJf (t,T ) − 1) du
]

= (T − t)mf1 nF1 = (T − t)nf1

(a2) X ma2 ≡ EQ
t

[
eJS − 1

]
= eµJS − 1 na2 ≡ eiuµJS − 1

[
mA2 ≡ EQ

t

[∫ T
t

(eJS − 1) du
]

= (T − t)ma2 nA2 = (T − t)na2

(b2) X mb2 ≡ EQ
t

[
eJy(t,T ) − 1

]
= eae

−b(T−t) − 1 nb2 ≡ eiuae
−iub(T−t) − 1

mB2 ≡ EQ
t

[∫ T
t

(eJy(t,T ) − 1) du
]

= e
a
b (1−e−b(T−t)) − (T − t) nB2 ≡ eiu

a
b (1−e−iub(T−t)) − (T − t)

(2) X ma2b2 ≡ EQ
t

[
eJS+Jy(t,T ) − 1

]
= (ma2 + 1)(mb2 + 1)− 1 na2b2 ≡ (na2 + 1)(nb2 + 1)− 1

mA2B2 ≡ EQ
t

[∫ T
t

(eJS+Jy(t,T ) − 1) du
]

= (T − t)ma2b2 nA2B2 ≡ (T − t)na2b2

(2) ? mf2 ≡ EQ
t

[
eJf (t,T ) − 1

]
= eae

−b(T−t) − 1 nf2 ≡ eiuae
−iub(T−t) − 1

mF2 ≡ EQ
t

[∫ T
t

(eJf (t,T ) − 1) du
]

= e
a
b (1−e−b(T−t)) − (T − t) nF2 ≡ eiu

a
b (1−e−iub(T−t)) − (T − t)

XXX
NOTES: The expressions followed by Jy(t, T ) and JY (t, T ) can be found in equations (1.5) and (1.10), respectively. The expressions followed
by Jf (t, T ) and JF (t, T ) can be found in equations (1.35) and (1.36), respectively. The term m• is the expected value at time t under Q of
the jump in •. The term n• is the transform of the jump in •. When • is a capital letter, it accounts for the integral from t to T of the jump
in the corresponding assumption. The different jump assumptions can be found in column Jump. The symbol ? in the column Set-up accounts
for the alternative characterisation of the parameters whereas the symbol X refers to the original set-up. Tro14 corresponds to SYSVJ(a1).
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1.7 Figures and Tables

Table 1.6: Estimated parameters, errors and computation time

(a) Monthly observations

Model. SYSVJ TS09-SV1 Bat96 Hes93 Mer76
Jump Type 2 b2 a2 1 b1 a1

σS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 – – 0.2209

α 0.7209 0.1087 0.5418 0.4854 0.7692 0.5373 0.4516 – – –
γ 2.0851 0.4586 1.0796 0.9962 2.0267 2.0065 0.0882 – – –
κ 1.9029 2.7783 1.9105 1.9478 1.5101 1.0283 0.9387 3.0953 2.0095 –
θ 0.0060 0.0070 0.0076 0.0085 0.0074 0.0062 0.1618 0.0061 0.0773 –
σv 0.1048 0.1869 0.1013 0.1059 0.1037 0.1115 0.2859 0.1878 0.5574 –
ρSy −0.7697 −0.6356 −0.8325 −0.8746 −0.9386 −0.7363 −0.9916 – – –
ρSv 0.9999 0.6595 1.0000 0.9778 0.9851 1.0000 −0.7435 −1.0000 −0.5648 –
ρyv 0.9714 −0.0492 0.8520 0.9540 0.3150 0.9847 −0.5937 – – –
λ 0.0919 0.0843 0.0875 0.0879 0.0914 0.0896 – 0.1040 – 0.4592

µJS −0.8664 – −1.8480 −0.9041 – −1.8256 – −1.2911 – −0.2689

σJS – – – 0.0002 – 0.0002 – 0.0175 – 0.0061

µJY – – – −0.9787 −1.7286 – – – – –
σJY – – – 0.0000 0.0000 – – – – –
aY −0.8664 −1.8608 – – – – – – – –
bY 0.0000 0.0000 – – – – – – – –
Parameter Count 13 12 11 14 12 12 9 7 4 4

MAE(σ) 0.0278 0.0279 0.0280 0.0280 0.0278 0.0280 0.0295 0.0277 0.0306 0.0805

RMSE(σ) 0.0547 0.0550 0.0549 0.0548 0.0548 0.0549 0.0590 0.0543 0.0606 0.1262

Computation Time 0.3926 0.2369 0.2445 0.1873 0.4383 0.2050 0.3266 0.0981 0.0459 0.0941

XXX
(b) Daily observations

Model. SYSVJ TS09-SV1 Bat96 Hes93 Mer76
Jump Type 2 b2 a2 1 b1 a1

σS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 – – 0.2180

α 0.3742 0.3707 0.7727 0.8002 0.9693 0.8935 0.3745 – – –
γ 0.6933 0.8335 0.1047 0.1137 0.1180 0.0995 0.1365 – – –
κ 2.2080 2.3895 0.6158 0.5724 0.3381 0.4455 0.9943 2.7686 1.9003 –
θ 0.0243 0.0269 0.0265 0.0223 0.0333 0.0292 0.1414 0.0023 0.0683 –
σv 0.3228 0.3565 0.1246 0.1275 0.1248 0.1059 0.2775 0.1131 0.2731 –
ρSy −0.4214 −0.2987 −0.9961 −0.9949 −0.9991 −0.9991 −0.9096 – – –
ρSv 0.0579 0.0653 0.3030 0.4882 0.5686 0.5657 −0.6657 1.0000 −1.0000 –
ρyv 0.1075 0.0183 0.3505 0.1346 0.6384 0.6391 −0.7219 – – –
λ 0.0705 0.0795 0.1000 0.1005 0.1037 0.0997 – 0.0960 – 0.6502

µJS −0.9069 – −1.2891 −0.6762 – −1.4818 – −1.3793 – −0.2263

σJS – – – 0.0256 – 0.1480 – 0.0000 – 0.0001

µJY – – – −0.6762 −1.4677 – – – – –
σJY – – – 0.0256 0.0802 – – – – –
aY −0.7358 −1.2668 – – – – – – – –
bY 0.0680 0.0668 – – – – – – – –
Parameter Count 13 12 11 14 12 12 9 7 4 4

MAE(σ) 0.0318 0.0321 0.0301 0.0300 0.0297 0.0298 0.0363 0.0250 0.0280 0.0803

RMSE(σ) 0.0542 0.0540 0.0526 0.0526 0.0519 0.0521 0.0601 0.0489 0.0539 0.1228

Computation Time 5.1864 3.0470 3.2148 5.2096 6.1521 4.3336 4.2462 8.2889 1.3871 5.4152

XXX
NOTES: MAE(σ) represents the mean absolute pricing error in option volatilities, RMSE(σ) represents the square root of the quadratic mean of
errors in option volatilities. The pricing errors are expressed in parts per unit (e.g., 0.0805 means 8.05%). The computation time is calculated
using the analytical solutions to the models displayed in Sub-table 1.4(b); the values are expressed in hours. Tro14 corresponds to SYSVJ(a1).
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Table 1.7: Model performance of SYSVJ1 – monthly observations

(a) TS09-SV1 (b) SYSVJ1 (c) Diff. SYSVJ1 – TS09-SV1

MAE(σ) M2 M3 M4 M5 M6 Q1 Q2 ALL
. p – 7.5 . 0.0426 0.0265 0.0289 0.0321 0.0328 0.0428 0.0420 0.0354
. p – 7 . 0.0392 0.0253 0.0285 0.0317 0.0335 0.0422 0.0411 0.0345
. p – 6.5 . 0.0362 0.0238 0.0274 0.0310 0.0336 0.0422 0.0418 0.0337
. p – 6 . 0.0333 0.0229 0.0273 0.0301 0.0330 0.0425 0.0425 0.0331
. p – 5.5 . 0.0307 0.0220 0.0271 0.0307 0.0328 0.0422 0.0411 0.0324
. p – 5 . 0.0281 0.0217 0.0262 0.0301 0.0334 0.0419 0.0416 0.0319
. p – 4.5 . 0.0264 0.0210 0.0254 0.0305 0.0326 0.0413 0.0417 0.0313
. p – 4 . 0.0235 0.0204 0.0251 0.0295 0.0325 0.0414 0.0424 0.0307
. p – 3.5 . 0.0214 0.0197 0.0247 0.0291 0.0322 0.0410 0.0419 0.0300
. p – 3 . 0.0195 0.0187 0.0246 0.0286 0.0320 0.0421 0.0425 0.0297
. p – 2.5 . 0.0185 0.0186 0.0242 0.0284 0.0323 0.0420 0.0421 0.0294
. p – 2 . 0.0164 0.0182 0.0244 0.0287 0.0314 0.0412 0.0412 0.0288
. p – 1.5 . 0.0156 0.0178 0.0243 0.0284 0.0316 0.0399 0.0410 0.0284
. p – 1 . 0.0138 0.0174 0.0237 0.0281 0.0313 0.0414 0.0425 0.0283
. p – 0.5 . 0.0127 0.0172 0.0238 0.0284 0.0313 0.0405 0.0410 0.0278
. ATM p . 0.0120 0.0166 0.0235 0.0281 0.0312 0.0409 0.0420 0.0277
. ATM c . 0.0120 0.0169 0.0237 0.0281 0.0313 0.0408 0.0414 0.0277
. c + 0.5 . 0.0112 0.0167 0.0237 0.0282 0.0315 0.0392 0.0416 0.0274
. c + 1 . 0.0109 0.0170 0.0233 0.0280 0.0308 0.0407 0.0417 0.0275
. c + 1.5 . 0.0107 0.0170 0.0241 0.0281 0.0309 0.0389 0.0410 0.0272
. c + 2 . 0.0112 0.0171 0.0234 0.0277 0.0306 0.0395 0.0420 0.0274
. c + 2.5 . 0.0119 0.0176 0.0240 0.0281 0.0312 0.0393 0.0412 0.0276
. c + 3 . 0.0125 0.0175 0.0241 0.0279 0.0310 0.0388 0.0411 0.0276
. c + 3.5 . 0.0133 0.0184 0.0242 0.0284 0.0318 0.0395 0.0406 0.0280
. c + 4 . 0.0138 0.0184 0.0246 0.0282 0.0311 0.0388 0.0410 0.0280
. c + 4.5 . 0.0141 0.0190 0.0246 0.0286 0.0313 0.0389 0.0411 0.0282
. c + 5 . 0.0150 0.0190 0.0251 0.0283 0.0310 0.0400 0.0413 0.0285
. c + 5.5 . 0.0154 0.0195 0.0254 0.0288 0.0315 0.0387 0.0405 0.0285
. c + 6 . 0.0159 0.0199 0.0253 0.0288 0.0322 0.0394 0.0420 0.0291
. c + 6.5 . 0.0166 0.0200 0.0256 0.0294 0.0326 0.0406 0.0418 0.0295
. c + 7 . 0.0173 0.0208 0.0258 0.0295 0.0324 0.0399 0.0417 0.0296
. c + 7.5 . 0.0192 0.0219 0.0264 0.0303 0.0335 0.0402 0.0416 0.0304
. ALL . 0.0191 0.0195 0.0251 0.0291 0.0319 0.0406 0.0416 0.0295

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0464 0.0307 0.0306 0.0322 0.0339 0.0371 0.0406 0.0359
0.0416 0.0278 0.0291 0.0307 0.0328 0.0364 0.0376 0.0337
0.0378 0.0249 0.0271 0.0290 0.0318 0.0364 0.0371 0.0320
0.0344 0.0226 0.0260 0.0276 0.0308 0.0376 0.0382 0.0310
0.0312 0.0209 0.0252 0.0280 0.0307 0.0377 0.0379 0.0302
0.0286 0.0201 0.0237 0.0277 0.0311 0.0383 0.0390 0.0298
0.0268 0.0192 0.0228 0.0278 0.0302 0.0382 0.0384 0.0290
0.0237 0.0184 0.0226 0.0270 0.0304 0.0386 0.0388 0.0285
0.0217 0.0176 0.0223 0.0267 0.0300 0.0387 0.0385 0.0279
0.0199 0.0165 0.0221 0.0262 0.0300 0.0403 0.0401 0.0279
0.0187 0.0164 0.0218 0.0261 0.0302 0.0405 0.0407 0.0278
0.0167 0.0159 0.0218 0.0263 0.0296 0.0399 0.0406 0.0272
0.0160 0.0156 0.0216 0.0206 0.0295 0.0390 0.0397 0.0268
0.0146 0.0154 0.0210 0.0256 0.0293 0.0403 0.0407 0.0267
0.0140 0.0152 0.0211 0.0257 0.0292 0.0396 0.0390 0.0262
0.0136 0.0147 0.0208 0.0253 0.0290 0.0400 0.0402 0.0262
0.0136 0.0152 0.0210 0.0253 0.0291 0.0400 0.0398 0.0263
0.0136 0.0149 0.0209 0.0254 0.0290 0.0381 0.0406 0.0261
0.0137 0.0153 0.0204 0.0250 0.0284 0.0398 0.0409 0.0262
0.0142 0.0156 0.0210 0.0248 0.0280 0.0378 0.0401 0.0259
0.0151 0.0162 0.0208 0.0242 0.0278 0.0380 0.0398 0.0260
0.0163 0.0169 0.0212 0.0245 0.0278 0.0374 0.0386 0.0261
0.0176 0.0171 0.0216 0.0242 0.0276 0.0366 0.0380 0.0261
0.0189 0.0180 0.0218 0.0246 0.0278 0.0370 0.0376 0.0265
0.0200 0.0187 0.0221 0.0244 0.0277 0.0357 0.0380 0.0266
0.0209 0.0193 0.0222 0.0248 0.0274 0.0354 0.0380 0.0268
0.0218 0.0201 0.0230 0.0243 0.0271 0.0359 0.0383 0.0272
0.0225 0.0208 0.0236 0.0251 0.0273 0.0343 0.0366 0.0272
0.0229 0.0215 0.0234 0.0250 0.0281 0.0344 0.0372 0.0275
0.0233 0.0219 0.0239 0.0257 0.0285 0.0352 0.0360 0.0278
0.0233 0.0228 0.0242 0.0256 0.0280 0.0340 0.0355 0.0276
0.0235 0.0238 0.0256 0.0264 0.0291 0.0339 0.0351 0.0282
0.0221 0.0191 0.0230 0.0262 0.0293 0.0376 0.0387 0.0280

M2 M3 M4 M5 M6 Q1 Q2 ALL
-0.0038 -0.0042 -0.0017 -0.0001 -0.0011 0.0056 0.0015 -0.0005
-0.0024 -0.0024 -0.0006 0.0010 0.0007 0.0058 0.0036 0.0008
-0.0017 -0.0011 0.0003 0.0020 0.0018 0.0058 0.0047 0.0017
-0.0010 0.0002 0.0013 0.0025 0.0022 0.0049 0.0043 0.0021
-0.0006 0.0011 0.0019 0.0026 0.0021 0.0044 0.0031 0.0021
-0.0005 0.0016 0.0025 0.0024 0.0023 0.0037 0.0026 0.0021
-0.0004 0.0019 0.0026 0.0026 0.0023 0.0031 0.0033 0.0022
-0.0002 0.0020 0.0025 0.0025 0.0021 0.0028 0.0036 0.0022
-0.0003 0.0021 0.0024 0.0024 0.0022 0.0022 0.0034 0.0021
-0.0003 0.0022 0.0025 0.0024 0.0020 0.0019 0.0024 0.0019
-0.0003 0.0023 0.0024 0.0024 0.0021 0.0015 0.0014 0.0017
-0.0003 0.0023 0.0026 0.0024 0.0019 0.0013 0.0006 0.0015
-0.0004 0.0022 0.0027 0.0025 0.0021 0.0009 0.0012 0.0016
-0.0008 0.0020 0.0027 0.0025 0.0020 0.0010 0.0018 0.0016
-0.0013 0.0020 0.0027 0.0027 0.0021 0.0010 0.0020 0.0016
-0.0017 0.0018 0.0027 0.0028 0.0021 0.0008 0.0018 0.0015
-0.0017 0.0018 0.0028 0.0027 0.0022 0.0008 0.0015 0.0014
-0.0023 0.0018 0.0028 0.0028 0.0025 0.0010 0.0009 0.0014
-0.0029 0.0017 0.0028 0.0030 0.0024 0.0008 0.0008 0.0012
-0.0035 0.0014 0.0031 0.0033 0.0029 0.0011 0.0009 0.0013
-0.0039 0.0010 0.0026 0.0034 0.0028 0.0015 0.0022 0.0014
-0.0045 0.0008 0.0028 0.0036 0.0034 0.0019 0.0026 0.0015
-0.0052 0.0004 0.0024 0.0037 0.0035 0.0023 0.0031 0.0015
-0.0056 0.0005 0.0024 0.0038 0.0040 0.0025 0.0030 0.0015
-0.0062 -0.0003 0.0024 0.0038 0.0034 0.0031 0.0030 0.0013
-0.0068 -0.0002 0.0024 0.0038 0.0039 0.0035 0.0031 0.0014
-0.0068 -0.0012 0.0021 0.0039 0.0039 0.0041 0.0030 0.0013
-0.0070 -0.0014 0.0018 0.0037 0.0041 0.0044 0.0038 0.0013
-0.0071 -0.0016 0.0018 0.0039 0.0042 0.0050 0.0048 0.0016
-0.0067 -0.0019 0.0016 0.0037 0.0042 0.0054 0.0058 0.0017
-0.0060 -0.0020 0.0016 0.0038 0.0044 0.0059 0.0063 0.0020
-0.0043 -0.0019 0.0008 0.0039 0.0043 0.0063 0.0065 0.0022
-0.0030 0.0005 0.0021 0.0029 0.0027 0.0030 0.0029 0.0016

XXX
NOTES: This table reports model accuracy in terms of MAE(σ) within each moneyness-maturity category; the estimations performed on the monthly data set. p – (c +) i refers to put
(call) options with strike equal to the ATM strike minus (plus) i USD – the strikes are, therefore, increasing. Only the central rows display ATM options, all others display OTM options.
Sub-table (a) refers to TS09-SV1, Sub-table (b) refers to SYSVJ1 (both models follow the original characterisation of the parameters); observe that the darker the color of the cell (red),
the worse the model performance. Sub-table (c) displays the difference between both models (compares models accuracy), that is, TS09-SV1 – SYSVJ1; observe that the darker the color
of the cell (blue), the more accurate our model is (the better our model performance).
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Table 1.8: Model performance of SYSVJ2 – monthly observations

(a) TS09-SV1 (b) SYSVJ2 (c) Diff. SYSVJ2 – TS09-SV1

MAE(σ) M2 M3 M4 M5 M6 Q1 Q2 ALL
. p – 7.5 . 0.0426 0.0265 0.0289 0.0321 0.0328 0.0428 0.0420 0.0354
. p – 7 . 0.0392 0.0253 0.0285 0.0317 0.0335 0.0422 0.0411 0.0345
. p – 6.5 . 0.0362 0.0238 0.0274 0.0310 0.0336 0.0422 0.0418 0.0337
. p – 6 . 0.0333 0.0229 0.0273 0.0301 0.0330 0.0425 0.0425 0.0331
. p – 5.5 . 0.0307 0.0220 0.0271 0.0307 0.0328 0.0422 0.0411 0.0324
. p – 5 . 0.0281 0.0217 0.0262 0.0301 0.0334 0.0419 0.0416 0.0319
. p – 4.5 . 0.0264 0.0210 0.0254 0.0305 0.0326 0.0413 0.0417 0.0313
. p – 4 . 0.0235 0.0204 0.0251 0.0295 0.0325 0.0414 0.0424 0.0307
. p – 3.5 . 0.0214 0.0197 0.0247 0.0291 0.0322 0.0410 0.0419 0.0300
. p – 3 . 0.0195 0.0187 0.0246 0.0286 0.0320 0.0421 0.0425 0.0297
. p – 2.5 . 0.0185 0.0186 0.0242 0.0284 0.0323 0.0420 0.0421 0.0294
. p – 2 . 0.0164 0.0182 0.0244 0.0287 0.0314 0.0412 0.0412 0.0288
. p – 1.5 . 0.0156 0.0178 0.0243 0.0284 0.0316 0.0399 0.0410 0.0284
. p – 1 . 0.0138 0.0174 0.0237 0.0281 0.0313 0.0414 0.0425 0.0283
. p – 0.5 . 0.0127 0.0172 0.0238 0.0284 0.0313 0.0405 0.0410 0.0278
. ATM p . 0.0120 0.0166 0.0235 0.0281 0.0312 0.0409 0.0420 0.0277
. ATM c . 0.0120 0.0169 0.0237 0.0281 0.0313 0.0408 0.0414 0.0277
. c + 0.5 . 0.0112 0.0167 0.0237 0.0282 0.0315 0.0392 0.0416 0.0274
. c + 1 . 0.0109 0.0170 0.0233 0.0280 0.0308 0.0407 0.0417 0.0275
. c + 1.5 . 0.0107 0.0170 0.0241 0.0281 0.0309 0.0389 0.0410 0.0272
. c + 2 . 0.0112 0.0171 0.0234 0.0277 0.0306 0.0395 0.0420 0.0274
. c + 2.5 . 0.0119 0.0176 0.0240 0.0281 0.0312 0.0393 0.0412 0.0276
. c + 3 . 0.0125 0.0175 0.0241 0.0279 0.0310 0.0388 0.0411 0.0276
. c + 3.5 . 0.0133 0.0184 0.0242 0.0284 0.0318 0.0395 0.0406 0.0280
. c + 4 . 0.0138 0.0184 0.0246 0.0282 0.0311 0.0388 0.0410 0.0280
. c + 4.5 . 0.0141 0.0190 0.0246 0.0286 0.0313 0.0389 0.0411 0.0282
. c + 5 . 0.0150 0.0190 0.0251 0.0283 0.0310 0.0400 0.0413 0.0285
. c + 5.5 . 0.0154 0.0195 0.0254 0.0288 0.0315 0.0387 0.0405 0.0285
. c + 6 . 0.0159 0.0199 0.0253 0.0288 0.0322 0.0394 0.0420 0.0291
. c + 6.5 . 0.0166 0.0200 0.0256 0.0294 0.0326 0.0406 0.0418 0.0295
. c + 7 . 0.0173 0.0208 0.0258 0.0295 0.0324 0.0399 0.0417 0.0296
. c + 7.5 . 0.0192 0.0219 0.0264 0.0303 0.0335 0.0402 0.0416 0.0304
. ALL . 0.0191 0.0195 0.0251 0.0291 0.0319 0.0406 0.0416 0.0295

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0475 0.0315 0.0311 0.0326 0.0343 0.0374 0.0417 0.0366
0.0425 0.0285 0.0294 0.0310 0.0331 0.0365 0.0384 0.0342
0.0386 0.0256 0.0273 0.0292 0.0319 0.0364 0.0373 0.0323
0.0350 0.0233 0.0262 0.0278 0.0308 0.0376 0.0381 0.0313
0.0318 0.0213 0.0253 0.0282 0.0307 0.0376 0.0376 0.0303
0.0291 0.0204 0.0239 0.0278 0.0311 0.0382 0.0386 0.0299
0.0271 0.0194 0.0229 0.0280 0.0302 0.0380 0.0380 0.0291
0.0240 0.0186 0.0227 0.0272 0.0304 0.0385 0.0384 0.0286
0.0219 0.0177 0.0224 0.0269 0.0299 0.0387 0.0381 0.0280
0.0200 0.0166 0.0222 0.0264 0.0300 0.0402 0.0395 0.0279
0.0188 0.0164 0.0218 0.0262 0.0302 0.0405 0.0399 0.0277
0.0167 0.0159 0.0219 0.0264 0.0296 0.0399 0.0396 0.0271
0.0159 0.0156 0.0217 0.0261 0.0295 0.0390 0.0388 0.0267
0.0144 0.0152 0.0211 0.0257 0.0293 0.0403 0.0399 0.0266
0.0137 0.0149 0.0211 0.0258 0.0292 0.0395 0.0383 0.0261
0.0132 0.0144 0.0208 0.0254 0.0290 0.0400 0.0397 0.0261
0.0132 0.0148 0.0209 0.0254 0.0291 0.0400 0.0392 0.0261
0.0130 0.0145 0.0208 0.0254 0.0289 0.0381 0.0401 0.0258
0.0132 0.0149 0.0203 0.0251 0.0283 0.0398 0.0404 0.0260
0.0135 0.0152 0.0208 0.0248 0.0279 0.0378 0.0394 0.0256
0.0143 0.0156 0.0205 0.0243 0.0277 0.0379 0.0391 0.0256
0.0154 0.0163 0.0209 0.0244 0.0276 0.0373 0.0379 0.0257
0.0168 0.0165 0.0214 0.0242 0.0274 0.0365 0.0375 0.0257
0.0181 0.0174 0.0215 0.0245 0.0275 0.0369 0.0370 0.0261
0.0192 0.0179 0.0217 0.0242 0.0276 0.0355 0.0373 0.0262
0.0202 0.0186 0.0218 0.0246 0.0272 0.0352 0.0373 0.0264
0.0212 0.0194 0.0226 0.0241 0.0269 0.0357 0.0379 0.0268
0.0219 0.0201 0.0232 0.0248 0.0271 0.0341 0.0360 0.0267
0.0224 0.0208 0.0230 0.0247 0.0279 0.0342 0.0366 0.0271
0.0228 0.0212 0.0236 0.0254 0.0282 0.0349 0.0355 0.0274
0.0229 0.0221 0.0237 0.0254 0.0278 0.0337 0.0349 0.0272
0.0232 0.0231 0.0251 0.0261 0.0289 0.0336 0.0346 0.0278
0.0219 0.0189 0.0229 0.0262 0.0292 0.0375 0.0382 0.0278

M2 M3 M4 M5 M6 Q1 Q2 ALL
-0.0049 -0.005 -0.0022 -0.0004 -0.0015 0.0054 0.0003 -0.0012
-0.0033 -0.0032 -0.0009 0.0008 0.0004 0.0057 0.0027 0.0003
-0.0024 -0.0017 0.0001 0.0017 0.0016 0.0058 0.0045 0.0014
-0.0016 -0.0004 0.0011 0.0023 0.0022 0.0049 0.0044 0.0018
-0.0011 0.0007 0.0018 0.0025 0.0022 0.0046 0.0035 0.0020
-0.0010 0.0013 0.0024 0.0023 0.0023 0.0038 0.0030 0.0020
-0.0007 0.0016 0.0024 0.0025 0.0024 0.0032 0.0037 0.0021
-0.0005 0.0018 0.0024 0.0023 0.0021 0.0029 0.0040 0.0021
-0.0005 0.0020 0.0023 0.0022 0.0022 0.0022 0.0039 0.0020
-0.0005 0.0021 0.0024 0.0022 0.0020 0.0019 0.0030 0.0019
-0.0003 0.0022 0.0023 0.0022 0.0021 0.0015 0.0021 0.0017
-0.0003 0.0023 0.0025 0.0022 0.0018 0.0013 0.0016 0.0016
-0.0003 0.0023 0.0026 0.0023 0.0021 0.0008 0.0022 0.0017
-0.0007 0.0022 0.0026 0.0024 0.0020 0.0011 0.0026 0.0017
-0.0010 0.0023 0.0027 0.0026 0.0020 0.0010 0.0027 0.0017
-0.0012 0.0022 0.0028 0.0027 0.0022 0.0008 0.0023 0.0017
-0.0012 0.0021 0.0028 0.0027 0.0022 0.0008 0.0022 0.0017
-0.0018 0.0022 0.0029 0.0028 0.0026 0.0010 0.0015 0.0016
-0.0023 0.0021 0.0030 0.0030 0.0025 0.0008 0.0013 0.0015
-0.0029 0.0018 0.0033 0.0032 0.0030 0.0010 0.0016 0.0016
-0.0030 0.0015 0.0029 0.0034 0.0029 0.0016 0.0029 0.0017
-0.0036 0.0013 0.0031 0.0037 0.0036 0.0020 0.0033 0.0019
-0.0043 0.0010 0.0027 0.0037 0.0037 0.0023 0.0037 0.0018
-0.0048 0.0010 0.0027 0.0040 0.0043 0.0026 0.0036 0.0019
-0.0054 0.0004 0.0028 0.0040 0.0036 0.0033 0.0036 0.0018
-0.0060 0.0005 0.0028 0.0040 0.0041 0.0036 0.0037 0.0018
-0.0062 -0.0004 0.0025 0.0042 0.0041 0.0043 0.0034 0.0017
-0.0065 -0.0006 0.0022 0.0040 0.0044 0.0046 0.0044 0.0018
-0.0065 -0.0009 0.0022 0.0041 0.0044 0.0052 0.0054 0.0020
-0.0062 -0.0012 0.0020 0.0040 0.0044 0.0057 0.0063 0.0021
-0.0056 -0.0014 0.0020 0.0041 0.0046 0.0062 0.0068 0.0024
-0.0040 -0.0013 0.0013 0.0042 0.0046 0.0066 0.0069 0.0026
-0.0028 0.0007 0.0021 0.0029 0.0027 0.0031 0.0033 0.0017

XXX
NOTES: This table reports model accuracy in terms of MAE(σ) within each moneyness-maturity category; the estimations performed on the monthly data set. p – (c +) i refers to put
(call) options with strike equal to the ATM strike minus (plus) i USD – the strikes are, therefore, increasing. Only the central rows display ATM options, all others display OTM options.
Sub-table (a) refers to TS09-SV1, Sub-table (b) refers to our more advanced model SYSVJ2 (both models follow the original characterisation of the parameters); observe that the darker
the color of the cell (red), the worse the model performance. Sub-table (c) displays the difference between both models (compares models accuracy), that is, TS09-SV1 – SYSVJ2; observe
that the darker the color of the cell (blue), the more accurate our model is.
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Table 1.9: Model performance of SYSVJ1 – daily observations

(a) TS09-SV1 (b) SYSVJ1 (c) Diff. SYSVJ1 – TS09-SV1

MAE(σ) M2 M3 M4 M5 M6 Q1 Q2 ALL
. p – 7.5 . 0.0770 0.0524 0.0411 0.0372 0.0370 0.0373 0.0392 0.0459
. p – 7 . 0.0732 0.0509 0.0403 0.0367 0.0370 0.0371 0.0390 0.0449
. p – 6.5 . 0.0701 0.0492 0.0394 0.0362 0.0370 0.0365 0.0392 0.0440
. p – 6 . 0.0672 0.0473 0.0385 0.0354 0.0366 0.0365 0.0393 0.0430
. p – 5.5 . 0.0644 0.0457 0.0378 0.0353 0.0364 0.0361 0.0394 0.0422
. p – 5 . 0.0618 0.0441 0.0371 0.0345 0.0363 0.0361 0.0391 0.0413
. p – 4.5 . 0.0594 0.0425 0.0364 0.0339 0.0357 0.0360 0.0397 0.0405
. p – 4 . 0.0569 0.0410 0.0358 0.0332 0.0353 0.0359 0.0398 0.0397
. p – 3.5 . 0.0546 0.0397 0.0350 0.0327 0.0349 0.0356 0.0398 0.0389
. p – 3 . 0.0524 0.0385 0.0342 0.0321 0.0346 0.0359 0.0397 0.0382
. p – 2.5 . 0.0503 0.0373 0.0335 0.0317 0.0339 0.0359 0.0402 0.0375
. p – 2 . 0.0483 0.0362 0.0329 0.0313 0.0335 0.0359 0.0396 0.0368
. p – 1.5 . 0.0465 0.0352 0.0323 0.0310 0.0330 0.0354 0.0398 0.0362
. p – 1 . 0.0447 0.0341 0.0316 0.0305 0.0325 0.0357 0.0397 0.0355
. p – 0.5 . 0.0431 0.0333 0.0309 0.0303 0.0321 0.0353 0.0396 0.0349
. ATM p . 0.0417 0.0324 0.0304 0.0301 0.0320 0.0349 0.0402 0.0345
. ATM c . 0.0416 0.0323 0.0304 0.0300 0.0320 0.0352 0.0394 0.0344
. c + 0.5 . 0.0405 0.0317 0.0298 0.0298 0.0316 0.0351 0.0398 0.0340
. c + 1 . 0.0394 0.0311 0.0294 0.0295 0.0314 0.0348 0.0395 0.0336
. c + 1.5 . 0.0387 0.0305 0.0290 0.0294 0.0311 0.0344 0.0392 0.0332
. c + 2 . 0.0380 0.0301 0.0287 0.0292 0.0311 0.0344 0.0391 0.0329
. c + 2.5 . 0.0375 0.0297 0.0284 0.0291 0.0310 0.0342 0.0387 0.0327
. c + 3 . 0.0372 0.0294 0.0282 0.0290 0.0308 0.0340 0.0385 0.0324
. c + 3.5 . 0.0371 0.0293 0.0280 0.0288 0.0309 0.0340 0.0388 0.0324
. c + 4 . 0.0372 0.0293 0.0278 0.0286 0.0308 0.0338 0.0387 0.0323
. c + 4.5 . 0.0375 0.0294 0.0278 0.0285 0.0311 0.0337 0.0385 0.0324
. c + 5 . 0.0380 0.0297 0.0277 0.0285 0.0309 0.0337 0.0384 0.0324
. c + 5.5 . 0.0386 0.0300 0.0278 0.0286 0.0311 0.0336 0.0387 0.0326
. c + 6 . 0.0394 0.0305 0.0280 0.0284 0.0310 0.0336 0.0388 0.0328
. c + 6.5 . 0.0405 0.0310 0.0282 0.0287 0.0312 0.0337 0.0390 0.0332
. c + 7 . 0.0418 0.0317 0.0284 0.0285 0.0314 0.0337 0.0389 0.0335
. c + 7.5 . 0.0437 0.0325 0.0288 0.0287 0.0314 0.0342 0.0393 0.0341
. ALL . 0.0481 0.0359 0.0320 0.0311 0.0330 0.0351 0.0393 0.0363

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0542 0.0348 0.0289 0.0291 0.0303 0.0351 0.0400 0.0361
0.0519 0.0336 0.0280 0.0282 0.0298 0.0345 0.0386 0.0350
0.0502 0.0324 0.0273 0.0276 0.0296 0.0338 0.0379 0.0341
0.0489 0.0314 0.0268 0.0271 0.0291 0.0337 0.0374 0.0335
0.0476 0.0307 0.0266 0.0272 0.0293 0.0334 0.0370 0.0331
0.0466 0.0301 0.0264 0.0270 0.0294 0.0334 0.0366 0.0328
0.0456 0.0294 0.0262 0.0269 0.0292 0.0334 0.0370 0.0325
0.0445 0.0287 0.0261 0.0267 0.0292 0.0333 0.0370 0.0322
0.0434 0.0281 0.0257 0.0266 0.0293 0.0331 0.0369 0.0319
0.0424 0.0276 0.0255 0.0264 0.0294 0.0334 0.0369 0.0317
0.0413 0.0271 0.0252 0.0263 0.0292 0.0334 0.0372 0.0314
0.0401 0.0265 0.0251 0.0262 0.0291 0.0334 0.0370 0.0311
0.0390 0.0260 0.0248 0.0260 0.0291 0.0329 0.0373 0.0307
0.0378 0.0254 0.0245 0.0257 0.0288 0.0331 0.0373 0.0304
0.0366 0.0249 0.0241 0.0256 0.0286 0.0327 0.0374 0.0300
0.0355 0.0244 0.0238 0.0253 0.0285 0.0324 0.0377 0.0297
0.0354 0.0243 0.0238 0.0253 0.0286 0.0326 0.0374 0.0297
0.0346 0.0240 0.0234 0.0252 0.0282 0.0326 0.0375 0.0293
0.0337 0.0236 0.0231 0.0248 0.0281 0.0323 0.0374 0.0290
0.0329 0.0232 0.0228 0.0247 0.0277 0.0319 0.0371 0.0286
0.0322 0.0228 0.0225 0.0244 0.0276 0.0318 0.0370 0.0283
0.0317 0.0225 0.0222 0.0244 0.0274 0.0317 0.0365 0.0280
0.0312 0.0222 0.0221 0.0242 0.0269 0.0316 0.0361 0.0278
0.0308 0.0221 0.0220 0.0240 0.0267 0.0315 0.0362 0.0276
0.0307 0.0219 0.0219 0.0239 0.0266 0.0313 0.0359 0.0275
0.0306 0.0219 0.0219 0.0238 0.0265 0.0311 0.0355 0.0273
0.0306 0.0219 0.0219 0.0237 0.0262 0.0311 0.0351 0.0272
0.0307 0.0220 0.0219 0.0241 0.0262 0.0309 0.0351 0.0273
0.0310 0.0221 0.0221 0.0238 0.0261 0.0308 0.0349 0.0272
0.0314 0.0222 0.0222 0.0241 0.0261 0.0307 0.0346 0.0273
0.0320 0.0224 0.0223 0.0240 0.0263 0.0305 0.0345 0.0274
0.0328 0.0227 0.0225 0.0243 0.0262 0.0307 0.0343 0.0277
0.0381 0.0257 0.0242 0.0255 0.0281 0.0324 0.0367 0.0300

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0228 0.0176 0.0122 0.0081 0.0067 0.0022 -0.0008 0.0098
0.0213 0.0173 0.0123 0.0085 0.0072 0.0026 0.0004 0.0099
0.0199 0.0167 0.0121 0.0086 0.0074 0.0027 0.0013 0.0098
0.0183 0.0159 0.0117 0.0083 0.0075 0.0028 0.0019 0.0095
0.0168 0.0150 0.0112 0.0080 0.0072 0.0028 0.0023 0.0090
0.0153 0.0141 0.0107 0.0075 0.0069 0.0027 0.0025 0.0085
0.0138 0.0131 0.0102 0.0070 0.0065 0.0026 0.0027 0.0080
0.0124 0.0123 0.0097 0.0065 0.0061 0.0026 0.0028 0.0075
0.0112 0.0115 0.0092 0.0061 0.0056 0.0025 0.0029 0.0070
0.0100 0.0108 0.0087 0.0057 0.0052 0.0025 0.0028 0.0065
0.0091 0.0102 0.0082 0.0054 0.0047 0.0025 0.0030 0.0061
0.0082 0.0097 0.0078 0.0051 0.0043 0.0025 0.0026 0.0058
0.0075 0.0092 0.0075 0.0050 0.0040 0.0025 0.0025 0.0054
0.0069 0.0087 0.0071 0.0048 0.0037 0.0026 0.0023 0.0052
0.0065 0.0083 0.0068 0.0047 0.0035 0.0026 0.0023 0.0050
0.0061 0.0080 0.0066 0.0047 0.0034 0.0025 0.0025 0.0048
0.0062 0.0080 0.0066 0.0047 0.0034 0.0026 0.0019 0.0048
0.0059 0.0077 0.0064 0.0046 0.0034 0.0025 0.0023 0.0047
0.0058 0.0075 0.0063 0.0047 0.0034 0.0025 0.0022 0.0046
0.0057 0.0074 0.0062 0.0047 0.0034 0.0025 0.0021 0.0046
0.0058 0.0073 0.0062 0.0048 0.0035 0.0026 0.0021 0.0046
0.0058 0.0072 0.0061 0.0047 0.0037 0.0025 0.0022 0.0046
0.0060 0.0072 0.0061 0.0048 0.0039 0.0024 0.0024 0.0047
0.0063 0.0072 0.0060 0.0048 0.0041 0.0025 0.0025 0.0048
0.0066 0.0073 0.0059 0.0047 0.0042 0.0025 0.0028 0.0049
0.0069 0.0075 0.0058 0.0047 0.0046 0.0025 0.0030 0.0050
0.0074 0.0077 0.0058 0.0047 0.0047 0.0027 0.0032 0.0052
0.0078 0.0081 0.0058 0.0046 0.0048 0.0027 0.0036 0.0054
0.0084 0.0084 0.0059 0.0046 0.0049 0.0028 0.0039 0.0056
0.0091 0.0088 0.0060 0.0046 0.0051 0.0030 0.0044 0.0058
0.0098 0.0093 0.0061 0.0045 0.0051 0.0032 0.0044 0.0061
0.0109 0.0099 0.0062 0.0044 0.0051 0.0035 0.0050 0.0064
0.0100 0.0102 0.0078 0.0056 0.0049 0.0026 0.0026 0.0063

XXX
NOTES: This table reports model accuracy in terms of MAE(σ) within each moneyness-maturity category; the estimations performed on the daily data set. p – (c +) i refers to put (call)
options with strike equal to the ATM strike minus (plus) i USD – the strikes are, therefore, increasing. Only the central rows display ATM options, all others display OTM options.
Sub-table (a) refers to TS09-SV1, Sub-table (b) refers to SYSVJ1 (both models follow the original characterisation of the parameters); observe that the darker the color of the cell (red),
the worse the model performance. Sub-table (c) displays the difference between both models (compares models accuracy), that is, TS09-SV1 – SYSVJ1; observe that the darker the color
of the cell (blue), the more accurate our model is (the better our model performance).
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Table 1.10: Model performance of SYSVJ2 – daily observations

(a) TS09-SV1 (b) SYSVJ2 (c) Diff. SYSVJ2 – TS09-SV1

MAE(σ) M2 M3 M4 M5 M6 Q1 Q2 ALL
. p – 7.5 . 0.0770 0.0524 0.0411 0.0372 0.0370 0.0373 0.0392 0.0459
. p – 7 . 0.0732 0.0509 0.0403 0.0367 0.0370 0.0371 0.0390 0.0449
. p – 6.5 . 0.0701 0.0492 0.0394 0.0362 0.0370 0.0365 0.0392 0.0440
. p – 6 . 0.0672 0.0473 0.0385 0.0354 0.0366 0.0365 0.0393 0.0430
. p – 5.5 . 0.0644 0.0457 0.0378 0.0353 0.0364 0.0361 0.0394 0.0422
. p – 5 . 0.0618 0.0441 0.0371 0.0345 0.0363 0.0361 0.0391 0.0413
. p – 4.5 . 0.0594 0.0425 0.0364 0.0339 0.0357 0.0360 0.0397 0.0405
. p – 4 . 0.0569 0.0410 0.0358 0.0332 0.0353 0.0359 0.0398 0.0397
. p – 3.5 . 0.0546 0.0397 0.0350 0.0327 0.0349 0.0356 0.0398 0.0389
. p – 3 . 0.0524 0.0385 0.0342 0.0321 0.0346 0.0359 0.0397 0.0382
. p – 2.5 . 0.0503 0.0373 0.0335 0.0317 0.0339 0.0359 0.0402 0.0375
. p – 2 . 0.0483 0.0362 0.0329 0.0313 0.0335 0.0359 0.0396 0.0368
. p – 1.5 . 0.0465 0.0352 0.0323 0.0310 0.0330 0.0354 0.0398 0.0362
. p – 1 . 0.0447 0.0341 0.0316 0.0305 0.0325 0.0357 0.0397 0.0355
. p – 0.5 . 0.0431 0.0333 0.0309 0.0303 0.0321 0.0353 0.0396 0.0349
. ATM p . 0.0417 0.0324 0.0304 0.0301 0.0320 0.0349 0.0402 0.0345
. ATM c . 0.0416 0.0323 0.0304 0.0300 0.0320 0.0352 0.0394 0.0344
. c + 0.5 . 0.0405 0.0317 0.0298 0.0298 0.0316 0.0351 0.0398 0.0340
. c + 1 . 0.0394 0.0311 0.0294 0.0295 0.0314 0.0348 0.0395 0.0336
. c + 1.5 . 0.0387 0.0305 0.0290 0.0294 0.0311 0.0344 0.0392 0.0332
. c + 2 . 0.0380 0.0301 0.0287 0.0292 0.0311 0.0344 0.0391 0.0329
. c + 2.5 . 0.0375 0.0297 0.0284 0.0291 0.0310 0.0342 0.0387 0.0327
. c + 3 . 0.0372 0.0294 0.0282 0.0290 0.0308 0.0340 0.0385 0.0324
. c + 3.5 . 0.0371 0.0293 0.0280 0.0288 0.0309 0.0340 0.0388 0.0324
. c + 4 . 0.0372 0.0293 0.0278 0.0286 0.0308 0.0338 0.0387 0.0323
. c + 4.5 . 0.0375 0.0294 0.0278 0.0285 0.0311 0.0337 0.0385 0.0324
. c + 5 . 0.0380 0.0297 0.0277 0.0285 0.0309 0.0337 0.0384 0.0324
. c + 5.5 . 0.0386 0.0300 0.0278 0.0286 0.0311 0.0336 0.0387 0.0326
. c + 6 . 0.0394 0.0305 0.0280 0.0284 0.0310 0.0336 0.0388 0.0328
. c + 6.5 . 0.0405 0.0310 0.0282 0.0287 0.0312 0.0337 0.0390 0.0332
. c + 7 . 0.0418 0.0317 0.0284 0.0285 0.0314 0.0337 0.0389 0.0335
. c + 7.5 . 0.0437 0.0325 0.0288 0.0287 0.0314 0.0342 0.0393 0.0341
. ALL . 0.0481 0.0359 0.0320 0.0311 0.0330 0.0351 0.0393 0.0363

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0548 0.0359 0.0295 0.0290 0.0302 0.0344 0.0404 0.0363
0.0533 0.0356 0.0294 0.0288 0.0304 0.0342 0.0394 0.0359
0.0523 0.0351 0.0292 0.0288 0.0306 0.0338 0.0390 0.0355
0.0513 0.0344 0.0291 0.0287 0.0305 0.0339 0.0386 0.0352
0.0503 0.0340 0.0292 0.0291 0.0308 0.0338 0.0384 0.0351
0.0494 0.0336 0.0293 0.0290 0.0311 0.0339 0.0379 0.0349
0.0485 0.0331 0.0292 0.0291 0.0311 0.0340 0.0382 0.0347
0.0475 0.0325 0.0293 0.0291 0.0311 0.0340 0.0380 0.0345
0.0463 0.0319 0.0290 0.0290 0.0313 0.0338 0.0377 0.0342
0.0452 0.0313 0.0288 0.0288 0.0314 0.0341 0.0375 0.0339
0.0440 0.0308 0.0285 0.0288 0.0312 0.0341 0.0379 0.0336
0.0427 0.0301 0.0284 0.0287 0.0312 0.0341 0.0373 0.0332
0.0415 0.0295 0.0281 0.0285 0.0310 0.0336 0.0375 0.0328
0.0402 0.0288 0.0277 0.0282 0.0307 0.0338 0.0374 0.0324
0.0389 0.0282 0.0272 0.0280 0.0306 0.0334 0.0374 0.0320
0.0377 0.0275 0.0269 0.0278 0.0305 0.0330 0.0381 0.0316
0.0377 0.0275 0.0269 0.0277 0.0305 0.0333 0.0373 0.0316
0.0367 0.0270 0.0264 0.0275 0.0301 0.0333 0.0378 0.0312
0.0356 0.0265 0.0260 0.0271 0.0300 0.0329 0.0377 0.0308
0.0348 0.0259 0.0256 0.0269 0.0295 0.0326 0.0376 0.0304
0.0340 0.0254 0.0252 0.0264 0.0294 0.0325 0.0375 0.0301
0.0334 0.0249 0.0247 0.0263 0.0291 0.0324 0.0371 0.0297
0.0328 0.0245 0.0244 0.0260 0.0286 0.0323 0.0368 0.0294
0.0324 0.0242 0.0241 0.0257 0.0284 0.0323 0.0370 0.0291
0.0322 0.0239 0.0238 0.0254 0.0281 0.0320 0.0368 0.0289
0.0320 0.0238 0.0236 0.0253 0.0281 0.0319 0.0366 0.0288
0.0321 0.0237 0.0235 0.0251 0.0276 0.0319 0.0363 0.0286
0.0321 0.0236 0.0233 0.0252 0.0275 0.0317 0.0365 0.0286
0.0323 0.0236 0.0233 0.0249 0.0274 0.0316 0.0364 0.0285
0.0327 0.0236 0.0233 0.0251 0.0273 0.0315 0.0363 0.0286
0.0333 0.0238 0.0233 0.0249 0.0274 0.0314 0.0361 0.0286
0.0340 0.0240 0.0233 0.0251 0.0272 0.0316 0.0363 0.0288
0.0401 0.0284 0.0265 0.0273 0.0297 0.0330 0.0375 0.0318

M2 M3 M4 M5 M6 Q1 Q2 ALL
0.0222 0.0164 0.0116 0.0082 0.0068 0.0029 -0.0012 0.0095
0.0199 0.0153 0.0109 0.0079 0.0066 0.0029 -0.0004 0.0090
0.0179 0.0141 0.0102 0.0075 0.0063 0.0027 0.0002 0.0084
0.0159 0.0129 0.0094 0.0068 0.0061 0.0025 0.0007 0.0077
0.0141 0.0117 0.0086 0.0062 0.0056 0.0023 0.0010 0.0071
0.0124 0.0105 0.0078 0.0054 0.0052 0.0021 0.0013 0.0064
0.0109 0.0094 0.0072 0.0048 0.0047 0.0020 0.0015 0.0058
0.0094 0.0085 0.0065 0.0042 0.0042 0.0019 0.0018 0.0052
0.0083 0.0077 0.0059 0.0037 0.0036 0.0018 0.0021 0.0047
0.0072 0.0071 0.0054 0.0032 0.0032 0.0018 0.0022 0.0043
0.0063 0.0066 0.0049 0.0029 0.0027 0.0018 0.0023 0.0039
0.0056 0.0061 0.0045 0.0026 0.0023 0.0018 0.0023 0.0036
0.0050 0.0057 0.0042 0.0025 0.0020 0.0018 0.0022 0.0033
0.0045 0.0053 0.0039 0.0023 0.0017 0.0018 0.0023 0.0031
0.0042 0.0051 0.0037 0.0023 0.0016 0.0019 0.0022 0.0030
0.0039 0.0049 0.0036 0.0023 0.0015 0.0019 0.0021 0.0029
0.0039 0.0049 0.0035 0.0023 0.0015 0.0019 0.0021 0.0029
0.0038 0.0047 0.0035 0.0023 0.0014 0.0019 0.0020 0.0028
0.0038 0.0046 0.0034 0.0024 0.0015 0.0019 0.0018 0.0028
0.0039 0.0046 0.0035 0.0026 0.0016 0.0019 0.0017 0.0028
0.0040 0.0047 0.0035 0.0027 0.0017 0.0018 0.0016 0.0029
0.0041 0.0047 0.0036 0.0028 0.0019 0.0018 0.0016 0.0030
0.0044 0.0049 0.0037 0.0030 0.0022 0.0017 0.0017 0.0031
0.0047 0.0051 0.0039 0.0031 0.0025 0.0017 0.0018 0.0032
0.0050 0.0053 0.0040 0.0032 0.0027 0.0017 0.0019 0.0034
0.0054 0.0056 0.0041 0.0033 0.0030 0.0018 0.0019 0.0036
0.0059 0.0060 0.0043 0.0034 0.0033 0.0018 0.0020 0.0038
0.0064 0.0064 0.0045 0.0034 0.0035 0.0019 0.0022 0.0041
0.0070 0.0069 0.0047 0.0035 0.0037 0.0020 0.0024 0.0043
0.0078 0.0073 0.0049 0.0035 0.0039 0.0022 0.0027 0.0046
0.0086 0.0079 0.0052 0.0036 0.0040 0.0023 0.0028 0.0049
0.0097 0.0086 0.0055 0.0036 0.0042 0.0026 0.0029 0.0053
0.0080 0.0075 0.0054 0.0038 0.0033 0.0020 0.0017 0.0045

XXX
NOTES: This table reports model accuracy in terms of MAE(σ) within each moneyness-maturity category; the estimations performed on the daily data set. p – (c +) i refers to put (call)
options with strike equal to the ATM strike minus (plus) i USD – the strikes are, therefore, increasing. Only the central rows display ATM options, all others display OTM options.
Sub-table (a) refers to TS09-SV1, Sub-table (b) refers to our more advanced model SYSVJ2 (both models follow the original characterisation of the parameters); observe that the darker
the color of the cell (red), the worse the model performance. Sub-table (c) displays the difference between both models (compares models accuracy), that is, TS09-SV1 – SYSVJ2; observe
that the darker the color of the cell (blue), the more accurate our model is.
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Appendix

1A Appendix for Proofs

1A.1 Proof of Proposition 1.1

From applying Itô’s Lemma for jump diffusion processes to F (t, T ) in (1.6) we have that

dF (t, T )

F (t, T )
=
(∫ T

t
µy(t, u)du+ vt

(σ2
Y (t, T )

2
+ σSσY (t, T )ρSy

)
−λEQ

t

[
eJS + JY (t, T )− 1

] )
dt

+
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
+
(
eJS+JY (t,T ) − 1

)
dNt. (1A.1)

In an arbitrage-free framework and given that, by definition, futures prices are martingales, the

drift term in equation (1A.1) must equal zero. Therefore we group together

(i) those terms whose expected value equals zero

√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
+
(
eJS+JY (t,T ) − 1

)
dNt − λEQ

t

[
eJS+JY (t,T ) − 1

]
dt, (1A.2)

(ii) the remaining terms whose expected value, therefore, also equals zero∫ T

t
µy(t, u)du+ vt

(σ2
Y (t, T )

2
+ σSσY (t, T )ρSy

)
−λEQ

t

[
eJS + JY (t, T )− 1

]
+ λEQ

t

[
eJS+JY (t,T ) − 1

]
(1A.3)

Observe that we had to artificially retrieve a new drift correction term in (i) so that the expected

value of the jump terms offset one another. The very same term had to be incorporated in (ii).

For equation (1A.1) to be a martingale, it must hold that

1

dt
EQ
t

[
dF (t, T )

F (t, T )

]
=

∫ T

t
µy(t, u)du+ vt

(σ2
Y (t, T )

2
+ σSσY (t, T )ρSy

)
− λEQ

t

[
eJS + JY (t, T )− 1

]
+ λEQ

t

[
eJS+JY (t,T ) − 1

]
= 0. (1A.4)
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Setting those terms in (ii) to zero and differentiating with respect to T lets us obtain the expres-
sion followed by the drift of y(t, T ) in (1.2)

µy(t, T ) = −vtσy(t, T )
(
σY (t, T ) + σSρSy

)
+λEQ

t

[(
eJS + Jy(t, T )− 1

)
−
(
eJS+Jy(t,T ) − 1

)]
.

(1A.5)

Thus, the dynamics of the futures under the martingale condition becomes

dF (t, T )

F (t, T )
=
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
−λEQ

t

[
eJS+JY (t,T ) − 1

]
dt+

(
eJS+JY (t,T ) − 1

)
dNt.

(1A.6)

From equation (1A.6), if one were to momentarily assume that there is only one jump in St but
no jump in y(t, T ), F (t, T ) would change by F (t, T )(eJS − 1); with one jump only in y(t, T )

but no jump in St, F (t, T ) would change by F (t, T )(eJY (t,T )−1); with one jump in both St and
y(t, T ), F (t, T ) would change by F (t, T )(eJS+JY (t,T ) − 1).

We define the processes st ≡ lnSt and f(t, T ) ≡ lnF (t, T ). Therefore, we have

df(t, T ) = dst + dY (t, T ). (1A.7)

From applying Itô’s Lemma for jump diffusion processes to st and Leibniz’s rule to equation
(1.2), we have

dst =
∂st
∂St

dSt +
1

2

∂2st
∂S2

t

dS2
t + JSdNt =

(
yt −

σ2
S

2
vt − λEQ

t

[
eJS − 1

] )
dt+ σS

√
vtdW

S
t

XXXXXXXXXXXXXXX + JSdNt, (1A.8)

dY (t, T ) =
(∫ T

t
µy(t, u)du− λEQ

t [JY (t, T )]− yt
)
dt+ σY (t, T )

√
vtdW

y
t + JY (t, T )dNt, (1A.9)

with σY (T, t) and JY (t, T ) as in (1.8) and (1.10), respectively. By substituting (1A.8) and
(1A.9) into (1A.7) we have

df(t, T ) =
(∫ T

t
µy(t, u)du−

σ2
S

2
vt − λEQ

t

[
eJS + JY (t, T )− 1

] )
dt

+
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
+
(
JS + JY (t, T )

)
dNt. (1A.10)

1A.2 Proof of Proposition 1.2

Integrating (1.2) over t between t and 0, we obtain the expression followed by y(t, T )

y(t, T ) = y(0, T ) +

∫ t

0
µy(u, T )du+

∫ t

0

√
vuσy(u, T )dW y

u − λ
∫ t

0
EQ
u [Jy(u, T )] du

+

∫ t

0
Jy(u, T )dNu, (1A.11)
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and substituting T for t into (1A.11) yields the expression followed by yt

yt = y(0, t) +

∫ t

0
µy(u, t)du+

∫ t

0

√
vuσy(u, t)dW

y
u − λ

∫ t

0
EQ
u [Jy(u, t)] du+

∫ t

0
Jy(u, t)dNu.

(1A.12)

For all 0 ≤ s ≤ t, we consider the following state variables χt and φt

χt = e−γ(t−s)χs −
∫ t

s
vu

(α
γ

+ σSρSy

)
e−γ(t−u)du+

∫ t

s

√
vue
−γ(t−u)dW y

u , (1A.13)

φt = e−2γ(t−s)φs +

∫ t

s
vu
α

γ
e−2γ(t−u)du, (1A.14)

which dynamics are obtained by applying Itô’s Lemma to (1A.13) and (1A.14) and subject to
φ0 = χ0 = 0

dχt = −
(
γχt + vt

(
σSρSy +

α

γ

))
dt+

√
vtdW

y
t , (1A.15)

dφt =
(
vt
α

γ
− 2γφt

)
dt. (1A.16)

Then, (1A.11) and (1A.12) are affine jump-diffusion functions of χt, φt and the jump-related
terms

y(t, T ) = y(0, T ) + σy(t, T )χt +
σ2
y(t, T )

α
φt − λ

∫ t

0
EQ
u [Jy(u, T )] du+

∫ t

0
Jy(u, T )dNu, (1A.17)

yt = y(0, t) + α (χt + φt)− λ
∫ t

0
EQ
u [Jy(u, t)] du+

∫ t

0
Jy(u, t)dNu. (1A.18)

1A.3 Proof of Proposition 1.3

Integrating the expression followed by dst in (1A.8) and after applying exponentials, we have

St = S0 exp

{∫ t

0

(
yu −

σ2
S

2
vu − λEQ

u

[
eJS − 1

] )
du+ σS

∫ t

0

√
vudW

S
u + JS

∫ t

0
dNu

}
. (1A.19)

From equations (1.6), (1.11) and (1.15), we have that the futures price F (t, T ) is given by

F (t, T ) = St exp

{∫ T

t

(
y(0, u) + σy(t, u)χt +

σ2
y(t, u)

α
φt − λ

∫ t

0
EQ
s [Jy(s, u)] ds

)
du

}

× exp

{∫ T

t

∫ t

0
Jy(s, u)dNsdu

}
= St

F (0, T )

F (0, t)
exp

{
σY (t, T )χt +

σ̂Y (t, T )

α
φt − λ

∫ t

0
EQ
u [JY (u, T )] du+

∫ t

0
JY (u, T )dNu

}
= S0

F (0, T )

F (0, t)
exp

{
σY (t, T )χt +

σ̂Y (t, T )

α
φt +

∫ t

0

(
yu −

σ2
S

2
vu

)
du+ σS

∫ t

0

√
vudW

S
u

}
exp

{
−λ
∫ t

0
EQ
u

[
eJS + JY (u, T )− 1

]
du+

∫ t

0

(
JS + JY (u, T )

)
dNu

}
, (1A.20)
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with

σ̂Y (t, T ) ≡
∫ T

t
σ2
y(t, u)du =

α2

2γ

(
1− e−2γ(T−t)

)
. (1A.21)

It is convenient to use st ≡ lnSt instead of St as a state variable. In this case, the log futures

prices f(t, T ) ≡ lnF (t, T ) are an affine jump-diffusion function of the following for state

variables χt, φt, st and the jump-related terms

f(t, T ) = st + f(0, T )− f(0, t) + σY (t, T )χt +
σ̂Y (t, T )

α
φt +

∫ t

0

(
yu −

σ2
S

2
vu

)
du

+ σS

∫ t

0

√
vudW

S
u − λ

∫ t

0
EQ
u

[
eJS + JY (u, T )− 1

]
du+

∫ t

0

(
JS + JY (u, T )

)
dNu.

(1A.22)

Rewriting equation (1A.22) in its integral form lets us see the evolution of the price of a futures

contract

F (t, T ) = F (0, T )×

exp

{∫ t

0

(
√
vu

(
σSdW

S
u + σY (u, T )dW y

u

)
−vu

2

(
σSdW

S
u + σY (u, T )dW y

u

)2
)
du

}
exp

{
−λ
∫ t

0
EQ
u

[
eJS + JY (u, T )− 1

]
du+

∫ t

0

(
eJS+JY (u,T ) − 1

)
dNu

}
, (1A.23)

which shows that F (t, T ) and F (t, t) ≡ St are Markov in a finite number of state variables.

1A.4 Proof of Proposition 1.4

We find the expressions followed by the terms A(τ), B(τ) and C(τ) similarly to Duffie et al.

(2000). The proof consists of showing that the CF ψ(t) ≡ ψ(iu, t, TOpt, T ) is a martingale

under Q. To this end, we conjecture that ψ(iu, t, TOpt, T ) is of the form in expression (1.17).

From applying Itô’s Lemma for jump diffusion processes to ψ(t), we obtain the following PIDE

dψ(t)

ψ(t)
=
(
−∂A(τ)

∂τ
− ∂B(τ)

∂τ
vt −

∂C(τ)

∂τ
λ
)
dt+B(τ)dvt + iu

dF (t, T )

F (t, T )
+
B2(τ)

2
dv2
t

− u2 + iu

2

(
dF (t, T )

F (t, T )

)2

+iuB(τ)dvt
dF (t, T )

F (t, T )
+ λ

∫ +∞

−∞
[ψ(t, J)− ψ(t)]$(J) dNt, (1A.24)

where τ ≡ TOpt − t, J ≡ JS + Jy(t, T ) is the jump size, $(J) is the distribution function of

the random variable J , and λ > 0 is the constant intensity parameter of the Poisson process Nt.

Based on the fact that the jump size J is independent of f(t, T ), we consider the jump integral
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term in (1A.24)∫ +∞

−∞
[ψ(t, J)− ψ(t)] $(J) dNt =

∫ +∞

−∞

(
EQ
t [eiu(f(t,T )+J)]− EQ

t [eiuf(t,T )]
)
$(J) dNt

=

∫ +∞

−∞
EQ
t [eiuf(t,T )]EQ

t [eiuJ − 1]$(J) dNt

= najbj (τ)− iu majbj (τ). (1A.25)

For ψ(t) to be a martingale, it must hold that

1

dt
EQ
t

[
dψt
ψt

]
=
(
−∂A(τ)

∂τ
+B(τ)κθ

)
+
(
−∂C(τ)

∂τ
+ najbj (τ)− iu majbj (τ)

)
λ

+
(
−∂B(τ)

∂τ
+ b0 +B(τ)b1 +B2(τ)b2

)
vt = 0, (1A.26)

with b0, b1 and b2 as in (1.21) and subject to the initial conditions A(0) = B(0) = C(0) = 0.
Since equation (1A.26) holds for all t, f(t, T ), vt and λ, then the terms in each parentheses must
vanish, reducing the problem to solving three much simpler ODEs

∂A(τ)

∂τ
= B(τ)κθ, (1A.27)

∂B(τ)

∂τ
= b0 +B(τ)b1 +B2(τ)b2, (1A.28)

∂C(τ)

∂τ
= najbj (τ)− iu majbj (τ), (1A.29)

for j = 1, 2 and following the jump assumptions listed in Subsection 1.2.1. The expressions
followed by the terms na1b1 , na2b2 ,ma1b1 and ma2b2 are in Table 1.5.

1B Appendix for Analytic Expressions

1B.1 Analytic Expression for B(τ)

We apply the following change of variable B(τ) = − y′(τ)
y(τ)d2(τ)

to (1.19) so that it becomes(
− y′(τ)

y(τ)b2

)′
= b0(τ) + b1(τ)

(
− y′(τ)

y(τ)b2

)
+b2

(
− y′(τ)

y(τ)b2

)2
. (1B.1)

Given that b2 is constant, it simplifies and we get the following homogeneous second order ODE

y′′(τ)−
(
c0(τ) + c1(τ)e−γτ

)
y′(τ) +

(
d0(τ) + d1(τ)e−γτ + d2(τ)e−2γτ

)
y(τ) = 0. (1B.2)

Equation (1.19) has an analytical solution which is given by

B(τ) =
2γ

σ2
v

(
β + µz + z

g′(z)

g(z)

)
, (1B.3)
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where the function g(z) is a linear combination of Kummer’s (M) and Tricomi’s (U) hypergeo-
metric functions

g(z) = k1M(a, b, z) + k2U(a, b, z), (1B.4)

g′(z) =
a

b
k1M(a+ 1, b+ 1, z)− ak2U(a+ 1, b+ 1, z), (1B.5)

with coefficients

a = −µb− βc1
ω

γ
− d1

ω

γ2
, xxx b = 1 + 2β +

c0

γ
,

µ = −1

2

(
1 +

c1ω

γ

)
, β =

−c0 ±
√
c2

0 − 4d0

2γ
,

ω = ± γ√
c2

1 − 4d2

, z =
e−γτ

ω
,

(1B.6)

and

c0 = −κ+ iuσv

(
ρSvσS + ρyv

α

γ

)
, d0 = −σ

2
v(u

2 + iu)

4

(
σ2
S +

α2

γ2
+ 2σSρSy

α

γ

)
,

c1 = −iuσvρyv
α

γ
e−γ(T−TOpt), d1 = +

σ2
v(u

2 + iu)

2

α

γ

(α
γ

+ ρSyσS

)
e−γ(T−TOpt),

c2= ... d2 = −σ
2
v(u

2 + iu)

4

α2

γ2
e−2γ(T−TOpt).

(1B.7)

In particular, if the initial condition is B(0) = 0, we have

k1 =
−βω − µ+ a

U(a+1,b+1, 1
ω

)

U(a,b, 1
ω

)

a
bM(a+ 1, b+ 1, 1

ω ) + aM(a, b, 1
ω )

U(a+1,b+1, 1
ω

)

U(a,b, 1
ω

)

,

k2 =
1− k1M(a, b, 1

ω )

U(a, b, 1
ω )

.

(1B.8)

The proof is in Sitzia (2018).

1B.2 Analytic Expression for the Alternative B(τ)

Given that σS = 0 and ρyv = ρFv, and alternatively to the expressions in (1B.7), the coefficients
in g(z) and g′(z) become

c0 = −κ+ iuσvρFv
α

γ
, d0 = −σ

2
v(u

2 + iu)

4

α2

γ2
,

c1 = −iuσvρFv
α

γ
e−γ(T−TOpt), d1 = +

σ2
v(u

2 + iu)

2

α2

γ2
e−γ(T−TOpt),

c2= ... d2 = −σ
2
v(u

2 + iu)

4

α2

γ2
e−2γ(T−TOpt).

(1B.9)
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The expressions followed by a, b, µ, β, ω and z remain as in (1B.6) under the original set-up.
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CHAPTER

2
Seasonality in Commodity Prices:
New Approaches for Pricing Plain

Vanilla Options

Abstract1

In this work we present a new term-structure model for commodity futures prices based on

Trolle & Schwartz (2009), which we extend by incorporating seasonal stochastic volatility rep-

resented with two different sinusoidal expressions. We obtain a quasi-analytical representation

of the characteristic function of the futures log-prices and closed-form expressions for stand-

ard European options’ prices using the fast Fourier transform (FFT) algorithm. We price plain

vanilla options on Henry Hub natural gas futures contracts, using our model and extant models.

We obtain higher accuracy levels with our model than with the extant models.

1Co-author: Viviana Fanelli, University of Bari “Aldo Moro”. This chapter refers to an article which is currently
under review at the journal Annals of Operations Research. It can be found at SSRN (id=3944647).
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2. Seasonality in Commodity Prices: New Approaches for Pricing Plain Vanilla Options

2.1 Introduction

Over the last few years, natural gas has become one of the most utilised energy sources world-

wide, second only to oil and coal, and is expected to overtake the latter by 2030. Natural gas

is used to fuel electricity power plants, as well as industrial, commercial and domestic cooking

and heating.

The countries with the largest production of natural gas are currently the United States,

Russia, Iran, Qatar, Canada, China and Norway. All of these countries serve their domestic

markets, and export excess around the world through pipelines or as liquefied natural gas. The

demand for natural gas is very high in western Europe, north America and north Asia, where it

is satisfied through dense pipeline networks.

The foremost global trading center is the Henry Hub (HH hereafter), located in the US. The

HH is strategically situated in the state of Louisiana, a major onshore production region and

close to offshore production. It is also connected to storage facilities, interstate and intrastate

pipeline systems; therefore, its production can be easily moved from supply basins and exported

to major consumption markets. These features make the HH the dominant global reference price

for natural gas, especially for futures contracts.

Gas production in the US is steadily increasing, while gas storage level also plays a key

role when looking at supply side. During periods of lower demand, production surplus can be

injected into storage facilities in the form of liquefied natural gas, which can later provide a

valuable cushion to meet demand peaks. However, liquefied natural gas storage can be utilised

to meet sudden demand increase or decrease only up to a point. Natural gas supply is always

affected by a relatively wide range of prices. Restrictions in the existing gas infrastructure

impact additional flows, rendering the supply curve very inelastic when prices are high. Overall

economic growth, weather and competing fuel prices are also significant factors in natural gas

demand.

Major demand-side players include: (i) industrial organisations which use it to produce

electricity due to its low price relative to coal, and as raw material to produce fertiliser, chemic-

als and hydrogen; (ii) transportation consumers using liquefied natural gas as vehicle fuel; (ii)

industrial, commercial and domestic consumers using it as fuel for heating and in some cases

cooling.

Weather is the main factor in natural gas price evolution, leading to seasonal price behaviour

and stochastic volatility. During the northern hemisphere’s fall and winter seasons, gas prices

are higher due to increased demand for heating, and it is very volatile. In northern spring and

summer, gas demand decreases, but production continues, as excess can be stored as liquefied
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natural gas, thus exhibiting less variability during this period. Considering the cyclical beha-

viour of natural gas prices is key to predict winter demand; therefore winter futures typically

trade at a premium compared to summer ones. Understanding the seasonality in natural gas

markets and the potential impact on its prices is useful for researchers and practitioners in the

field of trading strategies.

The aim of our paper is to find a suitable model for pricing natural gas in the spot and

futures markets, incorporating stochastic cost of carry and seasonal stochastic volatility. In this

perspective, we review a great deal of literature on spot and futures models. In Table 2.1 we list

the models for spot and futures prices we comment in this section in order to get a meaningful

framework of the existing models and highlight the gap in the literature we fill with our work.

Within it, we indicate what stochastic factors, volatility type and jumps they present, as well

as the number of parameters included. In addition, we reference Fanelli (2020) to provide a

concise survey of arbitrage pricing models for commodities.

In Black & Scholes (1973) (BS73) the spot price is modeled through a geometric Brownian

motion. Merton (1976) (Mer76) defines the spot dynamics by using a stochastic process which

includes iid jumps. Heston (1993) (Hes93) proposes a model with stochastic volatility for

pricing contracts on spot prices. And Bates (1996) (Bat96) uses a combination of stochastic

volatility and jump-diffusion processes for modeling spot prices when jump and volatility risks

are systematic and non-diversifiable.

Geman & Nguyen (1995) (GN95) assume that the spot price is the sum of two components:

one being seasonal and deterministic and the other stochastic and mean-reverting. Developing

two- and three-state variable models, they obtain futures prices is through the classical spot-

forward price relationship. Clewlow & Strickland (1999b) (CS99b) propose a one-factor model

with a time-decaying volatility of the forward prices using two parameters, and Clewlow &

Strickland (1999a) (CS99a) proposes the correspondent multi-dimensional model to Clewlow

& Strickland (1999b). The main strength of Clewlow & Strickland (1999a) is that it develops

a framework consistent with the market observable forward price curve as well as with the

volatilities and correlations of forward prices. Clewlow & Strickland (2000) (CS00) add a

long-term volatility parameter to the latter. In Sørensen (2002) (Sor02), commodity prices are

modeled as a sum of a deterministic seasonal component, a non-stationary state-variable, and

a stationary state-variable. Futures prices are established by standard no-arbitrage arguments.

Under the risk-neutral probability measure, Lucia & Schwartz (2002) (LS02) propose one-

and two-factor models for spot prices, and then a sinusoidal function to capture the seasonal

behaviour of the futures curve directly implied in the spot price dynamics. Richter & Sørensen
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(2002) (RS02) estimate a continuous-time stochastic volatility model for spot prices, reflecting

seasonality patterns in both the spot price and the volatility.

Trolle & Schwartz (2009) (TS09) develop a parsimonious and highly tractable model for

pricing commodity derivatives in the presence of unspanned stochastic volatility. They use two

factors to model the movements of the future prices under the risk-neutral probability measure,

the spot price and the forward cost of carry curve, and one or two variance factors to frame

their three- and four-factor model specification, namely SV1 or SV2. They then obtain an affine

model for futures curves and price standard American options on crude oil.

Back, Prokopczuk, Paschke & Rudolf (2013) (BPP13) propose one- and two-factor models

for the logarithm of the spot price, which shows a seasonal pattern. In particular, the spot price is

composed by two stochastic components which are mean-reverting and have seasonal volatility,

and an additional seasonal component. The forward dynamics is obtained by applying the spot-

forward price relationship. Arismendi, Back, Prokopczuk, Paschke & Rudolf (2016) (ABP16)

model the futures price under the risk-neutral measure where the instantaneous variance of

futures returns is described through a mean-reverting square-root process, where the long-term

parameter is seasonal.

Fanelli, Maddalena & Musti (2016) (FMM16) considers a seasonal path-dependent volat-

ility for electricity futures returns in the trading date, which is modeled following the Heath,

Jarrow & Morton (1992) framework, and they obtain the dynamics of futures prices. Fanelli &

Schmeck (2019) (FS19) focuses on the seasonality found in the implied volatility of electricity

option prices in the delivery period.

Schneider & Tavin (2018) (ST18) propose a multi-factor stochastic volatility model for

commodity futures contracts, with an expiry-dependent volatility term. This model is able to

capture the Samuelson volatility effect. Schneider & Tavin (2021) (ST21) extend their previ-

ous model by incorporating a seasonal mean-reverting level in the variance (they propose five

different expressions for this seasonal component).

We propose a three-factor model which we refer to as SYSSV2 for futures prices with three

stochastic factors: the spot price, the cost of carry curve and the instantaneous variance. The

variance follows a mean-reverting square-root process which incorporates the seasonality in its

long-run mean-reversion level. We obtain the futures prices in the original framework and also

propose an alternative characterisation or set-up of the parameters. We price standard European

options on HH natural gas futures contracts, with maturities ranging from approximately one to

two months up to one year. Our benchmark model is the three-factor version of TS09, which on

average we outperform slightly. However, a more granular analysis evidences that our model

2SYSSV stands for Stochastic cost of carry curve Y (t, T ) and Seasonal Stochastic Volatility vt.
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clearly outperforms the benchmark for short maturities and deep OTM (ATM and close to the

ATM) options under the original (alternative) set-up. In particular and for montly observations,

gains in model performance hit 1.74% when the set-up is the original and 3.53% when the set-

up is the alternative. Our model also outperforms ST21 especially for the short maturities and

deeper OTM put contracts, hitting a gain of a 3.13% (alternative set-up and simple harmonic

pattern). An additional benefit provided by the alternative set-up is that the calibration is much

quicker.

The remainder of this article is structured as follows: in Section 2.2 we present a novel

model formulation based on the unspanned stochastic volatility model of TS09, which we ex-

tend by introducing seasonality in the variance, and we derive the correspondent characteristic

function of the futures prices; in Section 2.3 we obtain the expression followed by standard

European call and put options by means of the fast Fourier transform algorithm; in Section 2.4

we describe how we perform the parameter estimation; in Section 2.5 we comment our model’s

results and those of other extant ones that are well known in the literature; and in Section 2.6

we present our conclusions and indicate future lines of research.

2.2 A New Three-Factor Model for Futures Prices on Com-
modities

In this work we derive a futures-based model which can exactly match any given futures curve

by specifying the futures initial values without incorporating any of the other model parameters.

It fits the initial futures curve by construction, which means that the seasonality in prices is

already incorporated. Moreover, our model is term-structured, presenting a seasonality pattern

in the dynamics of the futures variance. This new element affects the option pricing but not the

expression followed by the expected value of the futures prices.

In this section we formalise the dynamics of the futures prices in our novel model specific-

ation, compute the corresponding characteristic function, and indicate the technical conditions

under which the dynamics of the variance factor are defined. Let St denote the time-t spot

price of the commodity, and let y(t, T ) denote the time-t instantaneous forward cost of carry

maturing at time T , with y(t, t) = yt the time-t instantaneous spot cost of carry. We model the

evolution of the entire futures curve by specifying one process for St and another process for

y(t, T ). Also, let vt denote the instantaneous variance, which follows a mean-reverting process

as in Cox, Ingersoll & Ross (1985).
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2.2.1 The Model Under the Risk-Neutral Measure Q

Consider the following three-factor model. Let (Ω,F ,Q) be a probability space on which three

Brownian motion processes, W S
t ,W

y
t and W v

t , are defined for all 0 ≤ t ≤ T . Let F be the

filtration generated by these Brownian motions. The absence of arbitrage implies the existence

of a risk-neutral or equivalent martingale measure Q under which the processes followed by

St, y(t, T ) and vt are governed by the following dynamics

dSt
St

= ytdt+ σS
√
vt dW

S
t , (2.1)

dy(t, T ) = µy(t, T )dt+ σy(t, T )
√
vt dW

y
t , (2.2)

dvt = κ (θt − vt) dt+ σv
√
vt dW

v
t , (2.3)

with St, vt > 0, and allowing W S
t ,W

y
t and W v

t to be correlated with ρSy, ρSv and ρyv, which

denote pairwise correlations. θt is the time-varying long-run mean-reversion variance level. The

volatility of the spot price St is represented by σS , the volatility of the variance vt is represented

by σv, and the volatility of the forward cost of carry curve y(t, T ), which we assume that follows

a time-dampening form, is represented by

σy(t, T ) ≡ αe−γ(T−t), (2.4)

with σS, σv, κ, θt, α and γ > 0.

This novel model formulation consists of an expansion of the three-factor model specifica-

tion of TS09 with seasonal stochastic volatility (SSV hereafter). This seasonality is captured in

the deterministic expression followed by θt, which particular form we address in Section 2.2.1.

Volatility in (2.4) reflects the so-called Samuelson effect, which describes an empirical ob-

servation of the variations in futures prices increasing as the expiration date gets closer (see

also Samuelson (1965)).3 Figure 2.2a shows the time dependency for the implied volatilities in

the HH natural gas market. These volatilities are grouped by the contracts’ maturity month and

then averaged. An inverse time-dependent pattern can be clearly observed in the data, providing

evidence of the Samuelson effect in this market.

3This applies for a fixed maturity. Similarly, this effect can be seen in the futures variations which are, on a fixed
date, higher for those contracts with longer maturities. When t approaches T , the term converges to 1 and the full
volatility enters the dynamics. On the contrary, the volatility decreases when the time to maturity increases. This
approach is typically captured with a term-structure alteration in the diffusion of the futures dynamics of the form
followed by σy(t, T ) in expression (2.4).
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Seasonality Specifications

In Hylleberg (1992), the seasonality is defined as “. . . the systematic, although not necessarily

regular, intra-year movement caused by the changes of the weather, the calendar, and timing

of decisions, directly or indirectly through the production and consumption decisions made by

agents of the economy. These decisions are influenced by endowments, the expectations and

preferences of the agents, and the production techniques available in the economy.” Several

models incorporate SSV in the trading date t, such as GN95, RS02, ABP16, FMM16 and ST21.

The first two are spot models which explicitly present seasonality in prices and variance; the

last three are term-structure models which implicitly incorporate it in prices, explicitly in the

variance. Other models such as FS19 explicitly present it in the variance in the delivery period

rather than in the trade date, which is reasonable in electricity markets.

As indicated in BPR13, implied volatilities in option prices reflect how market participants

assess the future volatility pattern. In Figure 2.2b we show the seasonality for the quoted volat-

ilities in the HH natural gas market. These volatilities are grouped by the options’ trade month

and then averaged. A trigonometric function describes the seasonal pattern in implied volatilit-

ies with reasonable accuracy. Thus we present two seasonality functions for θt that can be used

as parametric forms to model seasonal variations of futures prices’s volatility. These functions

are deterministic and work with the following parameters: aθ > 0; bθ, cθ 6= 0 and t0 ∈ [0, 1[.

The parameter aθ determines the basic volatility level, bθ and cθ govern the magnitude of the

seasonality pattern, and t0 refers to the time of the year when the volatility reaches its maximum.

The simple (S) and multiple (M) harmonic expressions are defined as follows

θSt ≡ aθ + bθ cos
(
2π(t− t0)

)
, (2.5)

θMt ≡ aθ + bθ cos
(
2π(t− t0)

)
+cθ sin

(
2π(t− t0)

)
, (2.6)

which are continuous functions, differentiable everywhere and spend the same amount of time

low and high.

Using the property of complementary angles, adapting the expression followed by θSt in

(2.5) is straightforward in terms of using the sinus instead of the cosinus of the angle.4 With

regards to the combined harmonic expression, the expression followed by θMt in (2.6) is inspired

in Rogel-Salazar & Sapsford (2014).

The specification followed by the variance dynamics can only guarantee the positiveness of

the factor at all times if the Feller condition is met.5 In our model, the sufficient condition to

4By adding 3/12 to the value of t0.
5 In Hes93, the parameters obey that 2κθ > σ2

v , which is when the values of vt are strictly positive. We also
consider this restriction is met in all other multi-factor models analysed in this work.
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enforce the positivity of the variance is 2κ(aθ − bθ) > σ2
v for the simple harmonic expression.6

In Figure 2.3 we can observe futures prices and options volatilities for seven HH natural
gas contracts labeled M2-M8, spanning from January 2011 to December 2020. Sub-figure 2.3a
represents the time series for futures prices and Sub-figure 2.3b represents the ATM call option
volatilities. In Figure 2.4 we refer to the same futures contracts previously described; in Sub-
figure 2.4a we plot the futures’ returns, and in Sub-figure 2.4b we represent the histogram of
frequencies assigned to these returns. Directly related to what we can observe in this figure,
Table 2.2 provides evidence of the non-Gaussian returns by rejecting the null hypothesis of
normal prices returns by means of the Jarque-Bera test, applicable to each contract individually
and all contracts taken together.

We also want to highlight the importance of distinguishing between choosing a jump model
or a model presenting seasonality, when returns are non-Gaussian. A detailed analysis of the
data set has to lead us to correctly and realistically pick the type of model which best matches
the features of each particular asset.

Futures Dynamics

In this section we present a novel formulation for the futures’ dynamics, which consists of an
extension of TS09-SV1 that includes SSV. The form followed by this seasonality is inspired in
the work of FS19 and ST21.

Let F (t, T ) denote the time-t price of a futures contract that matures at time T . By definition
we have

F (t, T ) ≡Ste
∫ T
t y(t,u)du = Ste

Y (t,T ) (2.7)

with dynamics of St and y(t, T ) as in equations (2.1) and (2.2). In absence of arbitrage oppor-
tunities, the process followed by F (t, T ) must be a martingale under the risk-neutral measure
Q (see Duffie (2001)). We define f(t, T ) ≡ lnF (t, T ), with F (0, T ) > 0, f(0, T ) 6= 0. As ob-
served in TS09, from applying Itô’s Lemma to the futures price in equation (2.7) and setting the
drift to zero, it follows that the dynamics of F (t, T ) and f(t, T ), and the accumulated volatility
of y(t, T ) are given by

dF (t, T )

F (t, T )
=
√
vt

(
σSdW

S
t + σY (t, T )dW y

t

)
, (2.8)

df(t, T ) =
√
vt

(
σSdW

S
t + σY (t, T )dW y

t

)
−vt

2

(
σ2
S + σ2

Y (t, T ) + 2ρSyσSσY (t, T )
)
dt, (2.9)

σY (t, T ) ≡
∫ T

t
σy(t, u)du =

α

γ

(
1− e−γ(T−t)

)
. (2.10)

6For the multiple harmonic expression, the condition depends on the minimum value achieved by a combination
of the sinus and cosinus functions, reaching their minimum in different points.
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We define the futures dynamics based on firstly describing the dynamics of the spot price and

the forward cost of carry curve, to then modify the diffusion term in the futures dynamics

accordingly by introducing the accumulated volatility expression instead; that is, σY (t, T ) in

expression (2.10). Our model for futures prices is then defined by equations (2.8) and (2.3).

Rewriting the dynamics in equations (2.8) and (2.9) in their integral form time 0 up to time

t ≤ T lets us see the evolution of the futures prices and log-prices

F (t, T ) = F (0, T ) exp

{∫ t

0

(√
vu
(
σSdW

S
u + σY (u, T )dW y

u

)
−vu

2

(
σSdW

S
u + σY (u, T )dW y

u

)2)
du

}
,

(2.11)

f(t, T ) = f(0, T ) +

∫ t

0

(√
vu
(
σSdW

S
u + σY (u, T )dW y

u

)
−vu

2

(
σSdW

S
u + σY (u, T )dW y

u

)2)
du.

(2.12)

Following (Crosby & Frau 2021, Sec. 3), we refer to this set-up as the original set-up of the

parameters, where the expressions are defined in terms of St and y(t, T ): σS , σY (t, T ), ρSy, ρSv
and ρvy.

Alternative Characterisation of the Parameters

As initially indicated at the beginning of Sub-section 2.2.1 and shown in Sub-figure 2.2a, evid-

ence7 supports considering that the volatility of the futures σf (t, T ) follows a time-dampening

form such as

σf (t, T ) = α0 + αe−γ(T−t). (2.13)

Therefore, the expression which describes the volatility of the futures dynamics is

σF (t, T ) ≡
∫ T

t
σf (t, u)du = α0(T − t) +

α

γ

(
1− e−γ(T−t)

)
. (2.14)

This leads to more compact expressions defining the dynamics of the futures prices and log-

prices

dF (t, T )

F (t, T )
=
√
vtσF (t, T )dWF

t , (2.15)

df(t, T ) =
√
vtσF (t, T )dWF

t −
1

2
vtσ

2
F (t, T )dt. (2.16)

7We refer again to the so-called Samuelson effect, see Samuelson (1965). Recent works incorporating this stylised
fact are BPR13 and ST18, among others.
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Rewriting the dynamics in equations (2.15) and (2.16) in their integral form from time 0 up to
time t ≤ T lets us see the evolution of the futures prices and log-prices

F (t, T ) = F (0, T ) exp
{∫ t

0

√
vuσF (u, T )dWF

u −
1

2

∫ t

0
vuσ

2
F (u, T )du

}
, (2.17)

f(t, T ) = f(0, T ) +

∫ t

0

√
vuσF (u, T )dWF

u −
1

2

∫ t

0
vuσ

2
F (u, T )du. (2.18)

Following (Crosby & Frau 2021, Sec. 3), we refer to this set-up as the alternative characterisa-
tion of the parameters, where the expressions are defined in terms of F (t, T ). TS09-SV1 needs
only 7 parameters instead of the original 9

ΦX ≡ {σS , α, γ, κ, θ, σv, ρSy, ρSv, ρyv},

Φ? ≡ {α0, α, γ, κ, θ, σv, ρFv},

whereas our model needs up to 8-9 instead of the original 10-11, depending on the expression
chosen for θt

ΦX ≡ {α0, α, γ, κ, a
θ, bθ, (cθ), σv, ρSy, ρSv, ρyv},

Φ? ≡ {σS , α, γ, κ, aθ, bθ, (cθ), σv, ρFv}.

Therefore, our model is capable of replicating values generated with the original set-up using
two parameters less, which makes calibration much quicker as can be observed in Table 2.8.

2.2.2 Deriving the Characteristic Function

Options on natural gas expire (TOpt) one business day before the expiration date of the underly-
ing futures contract T , that is, TOpt = T − 1/252. The Fourier transform for the time-t standard
European option price can be expressed in terms of the characteristic function (CF hereafter)
ψ(iu, t, TOpt, T ), so it can be obtained by applying the Fourier inversion theorem. To price
options on futures we introduce the transform

ψ(iu; t, TOpt, T ) ≡ EQ
t [eiuf(TOpt,T )], (2.19)

with futures log-price dynamics as in equations (2.9) for the original set-up or (2.16) for the
alternative one. We define τ ≡ TOpt − t. The transform (2.19) has an exponential affine
solution as demonstrated in the following proposition:

Proposition 2.1 The Fourier transform in equation (2.19) is given by

ψ(iu; t, TOpt, T ) = eA(τ)+B(τ)vt+iuf(t,T ). (2.20)
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A(τ) and B(τ) solve the following system of ODEs

∂A(τ)

∂τ
= B(τ)κθt, (2.21)

∂B(τ)

∂τ
= b0 + b1B(τ) + b2B

2(τ), (2.22)

subject to the initial conditions A(0) = B(0) = 0, θt as in (2.5) or (2.6). The expressions
followed by the terms b0, b1 and b2 conditional to the original set-up (left column) and the
alternative set-up (right column) are

b0 = −1

2
(u2 + iu)

(
σ2
S + σ2

Y (t, T ) + 2ρSyσSσY (t, T )
)
, b0 = −1

2
(u2 + iu)σ2

F (t, T ),

b1 = −κ+ iuσv
(
ρSvσS + ρyvσY (t, T )

)
, b1 = −κ+ iuσvρFvσF (t, T ),

b2 =
σ2
v

2
, b2 =

σ2
v

2
.

(2.23)

Proof. See Appendix 2A.1 for proof.
The analytic expression followed by B(τ) in equation (2.20) is not affected by θt and reads

B(τ) =
2γ

σ2
v

(
β + µz + z

g′(z)

g(z)

)
, (2.24)

and the expressions followed by β, µ, z, g(z) and g′(z) can be found in Appendix 2B.1.
The following two propositions provide the analytic expressions followed by A(τ) in equa-

tion (2.20).

Proposition 2.2 When θt follows a single sinusoidal form as in expression (2.5), ODE (2.21)
has a quasi-analytical solution which is given by

A(τ) = m
(
A1(τ) +A2(τ) +A3(τ) +A4(τ) + k3

)
, (2.25)

with
A1(τ) = aθ

(
βτ − µz + ln g(z)

γ

)
,

A2(τ) = −bθ βy
s
τ

2π
,

A3(τ) = bθµz
ycτ − 2πγysτ
4π2 + γ2

,

A4(τ) = bθ
τ

ω

(
yc0g
′(ω−1)− τ

2

(
g′(ω−1) (yc0ζ1 − 2πys0) + yc0ζ2

))
,

(2.26)

with a, b, β, µ, z, g(z) and g(z) as defined in Appendix 2B.1, with

m = 2κγ/σ2
v ,

ycτ = cos (2π (T0 − τ − t0)) , yc0 = cos (2π (T0 − t0)) ,

ysτ = sin (2π (T0 − τ − t0)) , ys0 = sin (2π (T0 − t0)) ,

ζ1 = γ(1 + k1n1 + k2n2), ζ2 = γ(k1n3 + k2n4),

(2.27)

57



2. Seasonality in Commodity Prices: New Approaches for Pricing Plain Vanilla Options

and

n1 = (a− b)
(
M(a− 1, b, ω−1)−M(a, b, ω−1)

)
+M(a, b, ω−1)ω−1,

n2 = a
(
U(a, b, ω−1) + (b− a− 1)U(a+ 1, b, ω−1)

)
,

n3 =
a

b

(
(a− b)

(
M(a+ 1, b+ 1, ω−1)−M(a, b+ 1, ω−1)

)
+M(a+ 1, b+ 1, ω−1)ω−1

)
,

n4 = a
(
U(a, b, ω−1) +

(
b− ω−1

)
U(a+ 1, b+ 1, ω−1)

)
.

(2.28)

M and U are Kummer’s and Tricomi’s hypergeometric functions, as defined in Appendix 2B.1.
In particular, if the initial condition is A(0) = 0, we have that

k3 = x0 + xs0y
s
0 + xc0y

c
0,

x0 = aθ
µ

ω
,

xs0 = bθ
(
β

2π
− 2πµ

ω(4π2 + γ2)

)
,

xc0 = −bθ µγ

ω(4π2 + γ2)
.

(2.29)

Proof. See Appendix 2A.2 for proof.

Proposition 2.3 When θt follows a mixed sinusoidal form as in expression (2.6), ODE (2.21)
has a quasi-analytical solution which is given by

A(τ) = m
(
A1(τ) +A2(τ) +A3(τ) +A4(τ) +A5(τ) +A6(τ) +A7(τ) + k3

)
, (2.30)

with A1(τ), A2(τ), A3(τ) and A4(τ) as in Proposition 2.2, with

A5(τ) = cθβ
ycτ
2π
,

A6(τ) = cθµz
2πysτ − γycτ
4π2 + γ2

,

A7(τ) = cθ
τ

ω

(
ys0g
′(ω−1)− τ

2

(
g′(ω−1) (ys0ζ1 + 2πyc0) + ys0ζ2

))
,

(2.31)

with β, µ, z, g(z) and g(z) as defined in Appendix 2B.1; m, ycτ , y
c
0, y

s
τ , y

s
0, ζ1 and ζ2 as in expres-

sion (2.27).
In particular, if the initial condition is A(0) = 0, we have that

k3 = x0 + xs0 y
s
0 + xc0 y

c
0,

x0 = aθ
µ

ω
,

xs0 = bθ
(
β

2π
+

2πµ

ω(4π2 + γ2)

)
−cθ µγ

ω(4π2 + γ2)
,

xc0 = −bθ µγ

ω(4π2 + γ2)
+ cθ

(
β

2π
+

2πµ

ω(4π2 + γ2)

)
.

(2.32)
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Proof. See Appendix 2A.3 for proof.

In Proposition 2.2, if bθ = 0 we then have that θt = aθ, A2(τ) = A3(τ) = A4(τ) = 0, and

A(τ) = A1(τ). In Proposition 2.3, if bθ = cθ = 0 we have that θt = aθ, A2(τ) = A3(τ) =

A4(τ) = A5(τ) = A6(τ) = A7(τ) = 0, and therefore A(τ) = A1(τ). Under either situation,

our model is equivalent to TS09-SV1 and A(τ) reads

A(τ) = m(A1(τ) + kTS3 ),

kTS3 = x0 = aθ
µ

ω
.

(2.33)

Independently of the harmonic expression chosen and based on evidence, we assume that in

the long-run mean-reverting parameter θt there is only one peak per year.

Extant Models

The naturally nested models respective to ours is TS09-SV1. Additionally, we also consider

other extant models such as Mer76, Hes93 and Bat96. We compare the performance of our

model to jump-diffusion models to avoid mis interpreting cycles in prices as jumps. We also

include ST18 and ST21 in the list of extant models, the latter presenting SSV.8

Modeling the futures dynamics using jumps and stochastic volatility results in the futures

prices having non-Gaussian returns – a stylised fact in the energy markets. In Table 2.2 we

present the values for the four first moments of the distribution, and we perform the Jarque-

Bera normality test on monthly data. We reject the null hypothesis of normality in returns for

each of the labeled contracts M2-M8, and all contracts taken together. This implies that some

source of structure in the variance such as stochastic volatility is required, providing skewness

and/or kurtosis to the distribution of returns. Many earlier models include stochastic volatility

in their specification.

We consider one-, two- and three-factor extant models, a mix of spot-based and term-

structure models. To compare them from a commodity perspective, we transform the original

spot-based specification in Mer76, Hes93 and Bat96 to their corresponding futures prices dy-

namics.9 Hereafter we will refer to their futures-equivalent specification, but naming them in

their original form. In this work we consider a panel of six extant models plus ours; in Section

2.5 we compare their pricing performances.

For each model, next we describe the components of the Fourier transform described in

equation (2.20). BS73 models the spot prices requiring only the independent term A(τ); Mer76

extends BS73 incorporating iid jumps in the spot price, the jump-related terms are included in

8In this work, we consider the one-dimensional form of both models.
9Option prices for commodities’s futures are quoted in the markets using Black (1976).
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A(τ); Hes93 extends BS73 with stochastic variance, it uses A(τ) and the stochastic variance-
related term B(τ); Bat96 extends Hes93 with iid jumps in the spot price, it uses A(τ) and
B(τ); TS09, ST18, ST21 and our model are term-structure models with stochastic prices and
variances, which require both terms A(τ) and B(τ). For instance, ST21 and our model incor-
porate seasonality in the variance, whereas TS09 and ST18 do not. Both TS09 as well as our
model describe the dynamics of the spot price and the cost of carry before obtaining the futures
prices’ dynamics.

In Table 2.3 we present the dynamics followed by the models in the above list as well as
ours. This table is complemented by Figure 2.1, which visually represents the links between the
different models in terms of factors, seasonality and jumps. The expressions followed by the
dynamics of A(τ) and B(τ) in equation (2.20) and their solutions can be found in Tables 2.4
and 2.5, respectively.

Key advantages of the most recent models including ours include improved approxima-
tion to the real price behaviour and better description of the implied volatility surface. In our
case, adding up to three seasonality-related parameters provides more flexibility to replicate the
volatility surface quoted in the market, allowing for a wider range of possible shapes (e.g., the
Samuelson effect and the seasonal temperatures affecting the natural gas demand). The im-
plementation is not straightforward; it does not require the addition of new terms to the CF in
TS09, but the variance term B(τ) must be modified due to the seasonal component introduced.

2.3 Pricing of Standard European Options

In this section we price standard European options on futures contracts using the CF previously
computed. Let C(t, TOpt, T,K) and P(t, TOpt, T,K) denote the time-t prices of a standard
European call (hereafter, call) and a standard European put (hereafter, put) option expiring at
time TOpt with strike K on a futures contract expiring at time T , with 0 < t < T < TOpt. This
option can be priced quasi-analytically within the framework we describe in this section. In our
empirical work and from the different pricing approaches based on the CF, we follow the fast
Fourier transform (FFT) methodology.10

2.3.1 The Fast Fourier Transform

Carr & Madan (1999) obtain a pricing formula for options which enables a computationally ef-
ficient FFT algorithm. Its popularity stems from its remarkable speed: while prior computation
approaches require N2 operations, the FFT requires only N ln(N) steps.

10See, e.g., Schmelzle (2010) for a classification of the different Fourier-based approaches.
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In the following proposition we present the expressions followed by the prices of standard

European call and put options prices:

Proposition 2.4 The time-t price of a call and a put option expiring at time TOpt with strike K
on a time-t futures contract expiring at time T is given by

C(t, TOpt, T,K) = P (t, TOpt)
e−α ln(K)

π

∫ ∞
0
<

[
e−iu ln(K)ψt(u− i(1 + α), t, TOpt, T )

α(α+ 1)− u2 + iu(1 + 2α)

]
du,

P(t, TOpt, T,K) = P (t, TOpt)
e−α ln(K)

π

∫ ∞
0
<

[
e−iu ln(K)ψt(u− i(1− α), t, TOpt, T )

α(α− 1)− u2 + iu(1− 2α)

]
du,

(2.34)

where P (TOpt, t) is the time-t price of a zero-coupon bond maturing at TOpt and α is the control
parameter.11

Proof. The proof is in Carr & Madan (1999).

This approach presents two advantages: firstly, it permits the use of the computationally

efficient FFT; secondly, it only requires the evaluation of one integral, as opposed to the two in-

tegrals required when using former perspectives as in Hes93 or Duffie, Pan & Singleton (2000).

2.4 Market Data and Parameters Estimation

Market Data

We consider HH natural gas futures and options traded on the New York Mercantile Exchange

(NYMEX), which we obtain from Refinitiv Eikon (formerly, Thomson-Reuters’ Datastream).

The data set consist of observations of closing prices (quoted in USD) for futures and market

implied volatilities for the corresponding options. There are monthly contracts listed for the

current year and the next 12 calendar years for both futures and options. For futures, trading

months are the 72 consecutive months commencing with the next calendar month, and trading

terminates three business days prior to the first calendar day of the delivery month. For options,

trading months are the 12 consecutive months plus contracts extending up to 72 months and

traded in a quarterly manner, and trading terminates at the close of business on the business

day preceding the expiration of the underlying futures contract. There are 20 strike prices in

11α has to be chosen to ensure it makes the modified option price square-integrable and to obtain good numerical
accuracy – a sufficient condition for the Fourier transform to exist. This parameter has to be wisely chosen as it
might produce very oscillatory arguments of the integral if too big, or it might approach a point mass around 0 if
too small.
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increments of 0.05 USD above and below the ATM strike price in all months. The ATM strike

price is nearest to previous day’s close of the underlying futures contract.12

The 10-year period considered spans from January 3rd 2011 to December 31st 2020 and the

market data set is at monthly and daily frequency. When the data is observed on a monthly basis,

the observations correspond to the last business day of each month in the considered period. We

are considering seven futures contracts labeled M2, M3, . . . , M813 and their correspondent ATM

and OTM quoted options, call and put, for 16 degrees of moneyness (ATM plus 15 degrees of

moneyness, from the ATM level ±0.05 i USD, for i = 1 : 15 (that is, ±0, 0.05, 0.1 . . . 0.75)),

making it 32 options per contract and 224 options per observation date.

The number of monthly (daily) observations equals 120 (2,521), making it 840 (17,647)

futures prices and 26,880 (564,480) options volatilities. From these volatilities, we consider

21,972 (526,142) as valid after a cleansing process, which results in 81.74% (93.21%).

Parameters Estimation

We define our model dynamics directly under Q, therefore the parameter estimation is per-

formed under this measure. Subject to the original characterisation of the parameters, the 10

parameters in our model are ΦX
t ≡ {σS, α, γ, κ, aθ, bθ, cθ, ρSy, ρSv, ρyv}, whereas conditional to

the alternative set-up, the 8 parameters are Φ?
t ≡ {α0, α, γ, κ, a

θ, bθ, cθ, ρFv}.
In this work we study the empirical pricing performance of the models using the least-

squares estimation method, under which the procedure to obtain the parameter estimates Φ?
t for

every observation date t is defined as

Φ?
t = arg min

Φt

MAEσt (Φt) = Φt
argmin

1

Nt

Nt∑
i=1

∣∣σ̂t,i(Φt)− σt,i
∣∣,

Φ?
t = arg min

Φt

RMSEσt (Φt) = Φt
argmin

√√√√ 1

Nt

Nt∑
i=1

(
σ̂t,i(Φt)− σt,i

)2
,

(2.35)

where σt,i is the observed market volatility of option i out of Nt used for the estimation at time

t, and σ̂t,i(Φt) is the theoretical model volatility based on a set of parameters. We compute

implied volatilities employing the standard model of Black (1976). Parameters are not allowed

to take values that are inconsistent with the model framework. Disregarding the seasonality, the

following restrictions are applied for the original set-up: σS = 1;α, γ, κ, σv > 0; ρSy, ρSv, ρyv ∈
(−1, 1); for the alternative set-up: α = 1;α0, γ, κ, σv > 0; ρFv ∈ (−1, 1). Furthermore, the

12Contract specifications for futures and options on HH natural gas can be found at CME home.
13They are the second to the eighth available maturity contracts.
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parameters governing the seasonality are restricted to ensure their uniqueness: aθ > 0, aθ ≥
|bθ|, aθ ≥ |cθ| and t0 ∈ [0, 1[, with January 1st representing the time origin.

We fix the value of the parameter t0 based on the evidence in the seasonal behaviour of our

underlying asset, the HH natural gas futures’ prices. In order to obtain this evidence, we analyse

the ATM Black volatilities quoted in the market for the shortest available contract (in the case

that these volatilitites were not available, we consider the contract for the following available

maturity and so on, until we find values).14 For model sub-specification S (single sinusoidal pat-

tern), we calibrate the values for aθ and bθ for 12 different values of t0 (1/12, 2/12, . . . , 12/12)

in order to obtain the correspondent values of R2. We find that the highest values are obtained

when the peak corresponds to the end of October, that is, t0 = 10/12. For sub-specification M

(multiple sinusoidal pattern), we proceed in a similar way with the three parameters involved.

In this case, the value of t0 does not affect the value of the R2. Therefore we set t0 = 10/12.

The results of this analysis can be found in Table 2.6.

2.5 Results

In this section we implement our novel term-structure model SSYSV described in Sections 2.2

and 2.3, which displays stochastic spot prices and forward cost of carry curves (equivalent to

stochastic futures prices) as well as SSV. For a panel of models, we calibrate their parameters

for pricing ATM and OTM options, spanning different strikes and maturities, over a time period

of exactly 10 years. The results are obtained using analytical expressions for the CF of the

futures log-prices. Following Carr & Madan (1999), we use Simpson’s rule to calculate the

integral in the pricing functions (2.34) numerically, for which we use Matlab’s built-in function

simps. We use a standard fourth order Runge-Kutta algorithm to solve the system of ODEs

(2.21)-(2.22), for which we use Matlab’s built-in function ode45. We consider an integral step

of 1/10 and an upper bound of 60, which implies 600 evaluation points. We set the value of

the control parameter α to 0.75. The experiments are implemented in a HP laptop computer

configured with an Intel Core i7 2.60 GHz 16 GB RAM and SSD hard drive, running Windows

10 64 bits, Matlab version R2020b 64 bits and Microsoft Office 365 64 bits.

On Deciding the Value for the Seasonal Peak

In Table 2.6 we present a detailed analysis based on the values ofR2 when regressing the market

variance vt in terms of a cosinus only (S), sinus only (M(bθ = 0)) and both harmonic functions

14We have not chosen the shorter maturity contract M2 due to the lack of many ATM option values in the entire
time series, especially during the first half of the sample.
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(M ). The values that t0 can get are described in Section 2.4.

We start by calculating the values of R2 per peak value, considering the whole sample

period.15 The values we obtain are quite small but it provides direction for t0 in the gas market.

The highest value for R2 (5.95% for the single patter, 6.15% for the mixed pattern) is obtained

for t0 = 10/12 (end of October), and is aligned with the gas market performance. Sub-table

2.6a considers the whole period 2011-2020 and checks the effect of each value of t0. For

the simple S specification of the seasonality, best results are obtained when t0 = 4/12, 10/12

(R2 = 5.95% for the single pattern, 6.15% for the mixed pattern). October is easily identified

as peak and April is the valley, so we set t0 = 10/12. For the mixed M specification, all values

perform equally. There is a clear explanation for the small overall value of R2 considering

the whole time series, as we did not isolate other economic factors from the analysis such as

economic news, among others.

Subsequently we calculate the values of R2 per individual year, already considering t0 =

10/12 as peak. We can see the results in Sub-table 2.6b. The value for R2 is clearly larger for

the mixed pattern, which allows us to identify what years adjust best to a pure harmonic pattern,

though not considering other elements. Some years present very good adjustment, such as 2012

(R2 = 74.89%) and 2019 (R2 = 84.85%); others display very poor performance, such as 2011

(R2 = 10.01%) and 2013 (R2 = 14.16%). Taking all the years together might not be the best

analysis perspective; however, the value delivered for t0 works quite well overall when there is

no noise in the time series.

Lastly, we perform an extra analysis taking averages per trade month in the variance vt for

the whole period and all contracts. The results can be found in Sub-table 2.6c. We check the

effect of each month as peak of the variance series once more, where as the best performances

in terms of R2 correspond to t0 = 4/12, 10/12 (54.40% for the single pattern, 56.28% for the

mixed pattern). We identify October as peak and April as valley again due to the same initial

drivers. In complement to this, Figure 2.2b presents the regression of the market variance in

terms of the cosinus function (single pattern).

Results in Table 2.7 are in line with those in Table 2.6. In it we provide evidence of our

model’s peak value for best performance compared to our benchmark TS09-SV1. As expected,

we identify the biggest improvement when t0 = 10/12. The smallest error corresponds to

t0 = 10/12 for the single pattern; for the mixed one the smallest error is identified for different

values of t0. One of these corresponds to the month with the smallest error for the single pattern,

therefore we refer to this value of t0 as the best performing month for both patterns, with lowest

errors in both cases (4.26% and 4.25%). Additionally and following results in Sub-table 2.6b,

15In Table 2.6 we only consider the futures contract labeled M3.

64



2.5 Results

we perform an equivalent analysis based on two individual years (2019 and 2020) for which

results are reported in Table 2.9.

All these analyses are performed using monthly observations and the original parameters

set-up. Similar results are obtained using daily observations and the alternative set-up.16

On Interpreting the Pricing Errors

Based on t0 = 10/12 and for the period described in Section 2.4, our calibration results are

reported in Table 2.8. We perform two sets of analysis: Sub-table (a) considers monthly data,

whereas Sub-table (b) focuses on daily data. For each model considered, we display the para-

meters’ estimates, the pricing errors MAE(σ) and RMSE(σ), and the computation times. Under

the original (alternative) set-up, the average MAE(σ) for our model is 4.18% (4.25%), this is

a 0.15% (0.09%) less than TS09-SV1,17 almost identical error values. Lastly, we carry out a

transverse analysis of the distribution of the errors between our model and TS09-SV1.

Next we compare model performances based on the monthly data set by means of the

MAE(σ) estimates. Tables 2.10 and 2.11 (2.12 and 2.13) follow the original (alternative) char-

acterisation of the parameters. Sub-tables (a) display the errors using the benchmark model

TS09-SV1; Sub-tables (b) display the errors using our model, following sub-specifications S

and M respectively. Both models perform worst (that is, present larger errors) for shorter ma-

turity contracts, after which the model performance improves for both. Sub-tables (c) display

the difference in errors between both models, with larger values indicating that our model out-

performs the benchmark. In this sub-table we observe the most significant improvement, spe-

cifically (i) for deeper OTM options, particularly puts in shorter maturity contracts (i.e. M2

and M3) dealing with the original set-up; and (ii) for closer-to-the-ATM options, particularly

puts in the very short maturity contracts (i.e. M2) when we deal with the alternative set-up,

where improvement reaches 3.5%. For longer maturity contracts, both models display similar

performance. In particular and for montly observations, gains in model performance hit 1.30%

when the set-up is the original for the simple harmonic pattern; 1.74% when the set-up is the

original for the multiple harmonic pattern. 2.92% when the set-up is the alternative for the

simple harmonic pattern; 3.53% when the set-up is the alternative for the multiple harmonic

pattern.

In our panel we also include another very recent model which also presents seasonality in

the futures’ variance as well as its equivalent one without seasonality, these are ST21 and ST18.

In Table 2.14 we compare ST21 with our model SYSSVS , both from a futures’ perspective and

16The proof is available by direct request to the authors.
17Our model consists of an extension of TS09, therefore we compare both performances.
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with identical seasonality specification. We find that our model clearly outperforms ST21 for
short maturities and deeper OTM put options where the gain reaches a 3.13% (alternative set-up
and simple harmonic pattern).

We had initially expected Hes93 and more clearly Mer76 to underperform compared to our
model and benchmark, given that jump models’ parameters are quite unstable. We identify that
the jump model in Bat96 slightly outperforms our model and its benchmark. The difference (in
percentage) arises on the second digit and it is minor. A detailed analysis should be carried out
in the difference in the statistic error surface in order to identify a pattern(s) per contract lengths
and/or moneyness levels.

2.6 Conclusions and Further Research

Volatility in many commodity markets follows a pronounced seasonal pattern while also fluc-
tuating stochastically. In this paper, we extend the stochastic volatility model of TS09 to allow
volatility to vary with the seasonal cycle. We develop a model that enables deriving quasi-
analytical solutions for pricing options on futures prices. We empirically study its performance
in pricing Henry Hub natural gas standard European options. We estimate our model using a
cross-section of options prices considering a series of 10 years of futures contracts. Results
show that the SSV model we suggest increases the accuracy of pricing options on HH natural
gas. When our models follow an original set-up, accuracy increases especially for shorter ma-
turity contracts and deeper OTM options. We also propose an alternative set-up, whereby we
obtain better pricing performance for shorter maturity contracts and closer to the ATM options.
An additional benefit of this alternative set-up consists of improving the speed of calculation.

We conclude the paper by outlining areas for future research. Many commodity assets
exhibit jumps not only in prices but also in volatility, especially the natural gas. We identify that
the jump model in Bat96 slightly outperforms our model and its benchmark; we can leverage
this finding to study the inclusion of jumps in a future line of research. We also consider
modeling the jump intensity according to a seasonal function. Another research field of interest
are calendar spread options which are also common in energy markets, and their pricing requires
to know the expression followed by the joint CF for the two futures involved.

2.7 Figures and Tables
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Figure 2.1: Diagram of extant models

NOTES: In this figure we represent in a visual manner the factors affecting each of the considered models in this work, the existence of the type
of seasonal effect and/or jumps. This figure complements the information in Section 2.2.2 and Table 2.3.

Figure 2.2: Stylised facts in the variance

(a) Samuelson effect (b) Seasonality in the variance

xxx
NOTES: This figure presents two stylised facts in the natural gas market. Sub-figure (a) shows the Samuelson effect of the implied volatilities
of futures options grouped by contract (that is, from closest to maturity to more distant ones). Sub-figure (b) shows the seasonal pattern of
the implied volatilities of futures options grouped by trade month. The seasonal volatility pattern is approximated by a trigonometric function
following expression (2.5). For both sub-figures, the period considered spans from 01/2011 to 12/2020 (monthly observations), and only ATM
options are considered. We compute implied volatilities employing the standard model of Black (1976).
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Figure 2.3: Futures prices and ATM options volatilitites – monthly data

(a) Futures Prices

XXX
(b) Option Volatilities

XXX
NOTES: Sub-figure (a) presents the prices of the futures contracts labeled M2-M8. Sub-figure (b) presents the volatilities of quoted ATM call
options on the futures labeled M2-M8. All values correspond to monthly observations.

68



2.7 Figures and Tables

Figure 2.4: Futures returns – monthly data

(a) Futures Returns

xxx
(b) Histogram of Returns

xxx
NOTES: Sub-figure (a) presents the returns of the futures contracts labeled M2-M8. In Sub-figure (b) we can see in blue the correspondent
histogram to the returns in (a), the curve in red represents the equivalent PDF of a normal distribution with the same mean and standard
deviation. All values correspond to monthly observations.
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Table 2.1: Factors and features per model

Model Dimension Stochastic Factors Seasonality Jumps Parameter
Single Mult. St y(t, T ) F (t, T ) vt Prices Vols. SSV St y(t, T ) vt Count

BS73 X X 1
Mer76 X X X 4
Hes93 X X X 4
Bat96 X X X X 7
GN95 X X X X X X 17
CS99a X X 2
CS99b X X 2
CS00 X X 3
LS02 X X X 13
Sor02 X X X 6
RS02 X X X X X X 10
TS09-SV1 X X X ? X 9(7)
BPP13 X X X X 7,8
ABP16 X X X X X 5
FMM16 X X X 36
FS19 X X X X 15
ST18 X X X 5
ST21 X X X X X 6
SYSSV X X X ? X X X 10,11(8,9)

NOTES: For each model mentioned in Section 2.1, this table enumerates the factors considered, the type of seasonality, the jumps and the
parameter count. The column Dimension accounts for the dimensional setting of the model (single or multiple). The acronyms whereby we
refer to the models can be found in Section 2.1. In those models presenting alternative characterisation of the parameters (as defined in Section
2.2.1) and in the columns for the stochastic factors, F (t, T ) replaces St and y(t, T ); this is indicated with the symbol ? and the correspondent
parameter count appears in brackets. We refer to our model as SYSSV. The number of parameters indicated for GN95 corresponds to the
two-state variable model; for LS02 corresponds to the one-factor model.
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Table 2.2: Futures returns and Jarque-Bera test

(a) Monthly Observations

Contract Min. Max. Mean Std. Dev. Skew. Kurt. JB Stat. p-Value Test
M2 -43.82% 40.02% -0.35% 10.61% -0.2939 6.4480 5.929 0.0442 R
M3 -40.29% 29.69% -0.34% 9.77% -0.4977 5.7563 6.329 0.0396 R
M4 -22.97% 20.21% -0.35% 7.98% 0.0011 3.3583 6.915 0.0331 R
M5 -20.31% 19.83% -0.40% 7.35% 0.0527 3.1785 7.865 0.0258 R
M6 -18.99% 25.15% -0.45% 7.29% 0.1753 3.4847 9.167 0.0190 R
M7 -18.90% 32.80% -0.48% 8.19% 0.7649 5.9847 10.527 0.0142 R
M8 -19.50% 17.25% -0.37% 5.97% 0.0752 4.3030 11.064 0.0127 R
ALL -43.82% 40.02% -0.39% 8.27% -0.0700 6.0021 1,567.737 0.0010 R

XXX
(b) Daily Observations

Contract Min. Max. Mean Std. Dev. Skew. Kurt. JB Stat. p-Value Test
M2 -20.21% 17.13% -0.02% 2.43% 0.1865 9.0481 119.964 0.0010 R
M3 -37.70% 26.79% -0.02% 2.34% -0.8969 38.3860 128.552 0.0010 R
M4 -10.11% 22.96% -0.02% 1.97% 0.6833 11.7360 143.408 0.0010 R
M5 -13.87% 14.89% -0.02% 1.85% 0.0712 8.9002 175.663 0.0010 R
M6 -11.32% 13.26% -0.03% 1.74% 0.1228 8.6686 213.328 0.0010 R
M7 -12.80% 14.00% -0.03% 1.65% -0.1090 9.0187 228.004 0.0010 R
M8 -14.84% 9.21% -0.02% 1.85% -0.7251 10.2528 227.048 0.0010 R
ALL -37.70% 26.79% -0.02% 1.96% -0.1119 18.9926 33,600.777 0.0010 R

XXX
NOTES: JB accounts for the Jarque-Bera normality test. The null hypothesis refers to the normal distribution of futures returns. The critical
value associated to a significance level of 0.05 is 5.991. When the value of Test is R (CR), we reject (cannot reject) the null hypothesis at 95%.
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Table 2.3: Models dynamics

Model Dynamics Volatility

BS73
[

dSt
St

= ytdt+ σSdW
S
t σS constant

dF (t,T )
F (t,T )

= σFdW
F
t σS constant

Mer76 dSt
St

=
(
yt − λEQ

t

[
eJS − 1

] )
dt+ σSdW

S
t +

(
eJS − 1

)
dNt σS constant

dF (t,T )
F (t,T )

= −λEQ
t

[
eJF − 1

]
dt+ σFdW

F
t +

(
eJF − 1

)
dNt σF constant

Hes93 dSt
St

= ytdt+
√
vtdW

S
t σS = 1

dvt = κ (θ − vt) dt+ σv
√
vtdW

v
t σv constant

dF (t,T )
F (t,T )

= σF
√
vtdW

F
t σF constant

Bat96 dSt
St

=
(
yt − λEQ

t

[
eJS − 1

] )
dt+

√
vtdW

S
t +

(
eJS − 1

)
dNt σS = 1

dvt = κ (θ − vt) dt+ σv
√
vtdW

v
t σv constant

dF (t,T )
F (t,T )

= −λEQ
t

[
eJF − 1

]
dt+

√
vtdW

F
t +

(
eJF − 1

)
dNt σF constant

TS09-SV1 dSt
St

= ytdt+ σS
√
vtdW

S
t σS constant

dy(t, T ) = µy(t, T )dt+ σy(t, T )
√
vtdW

y
t σy(t, T ) = αe−γ(T−t)

dvt = κ (θ − vt) dt+ σv
√
vtdW

v
t σv constant

dF (t,T )
F (t,T )

=
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
σY (t, T ) =

∫ T
t
σy(t, u)du

TS09-SV1? dF (t,T )
F (t,T )

=
√
vtσF (t, T )dW F

t σf (t, T ) = α0 + αe−γ(T−t), α = 1

σF (t, T ) =
∫ T
t
σf (t, u)du

ST18 dF (t,T )
F (t,T )

=
∑n

i=1 σFi(t, T )
√
vi,tdW

Fi
t σFi(t, T ) = e−γi(T−t), αi = 1

dvi,t = κi (θi − vi,t) dt+ σvi
√
vi,tdW

vi
t σvi constant

ST21 dF (t,T )
F (t,T )

=
∑n

i=1 σFi(t, T )
√
vi,tdW

Fi
t σFi(t, T ) = e−γi(T−t), αi = 1

dvi,t = κi (θt − vi,t) dt+ σvi
√
vi,tdW

vi
t σvi constant

xxxxxθt = aθ + bθ cos(2π(t+ t0))

SYSSV dSt
St

= ytdt+ σS
√
vtdW

S
t σS constant

dy(t, T ) = µy(t, T )dt+ σy(t, T )
√
vtdW

y
t σy(t, T ) = αe−γ(T−t), α = 1

dvt = κ (θt − vt) dt+ σv
√
vtdW

v
t σv constant

xxxxxθSt = aθ + bθ cos(2π(t+ t0))

xxxxxθMt = aθ + bθ cos(2π(t+ t0)) + cθ sin(2π(t+ t0))
dF (t,T )
F (t,T )

=
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
σY (t, T ) =

∫ T
t
σy(t, u)du

SYSSV? dF (t,T )
F (t,T )

=
√
vtσF (t, T )dW F

t σf (t, T ) = α0 + αe−γ(T−t), α = 1

σF (t, T ) =
∫ T
t
σf (t, u)du

XXX
NOTES: This table presents the model dynamics and their correspondent volatility expressions for the models described in Section 2.2.2 andr
model SYSSV. For the first four models, the last equation refers to their corresponding futures’ price dynamics. Those models presenting an
alternative set-up of the parameters (i.e., TS09-SV1 and SYSSV) appear with the symbol ?.
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Table 2.4: Fourier transforms – ODEs and parameters

(a) ODEs

Model XXX ∂A(τ)/∂τ XXX XXXXXxXXX ∂B(τ)/∂τ XXXXXxXXX
BS73 b0 −
Mer76 b0 + (nJ − iumJ) −
Hes93 B(τ)κθ b0 + b1B(τ) + b2B

2(τ)

Bat96 xxxxxxxB(τ)κθ + (nJ − iumJ)xxxxxxx b0 + b1B(τ) + b2B
2(τ)

TS09 B(τ)κθ b0 + b1B(τ) + b2B
2(τ)

ST18 B(τ)κθ b0 + b1B(τ) + b2B
2(τ)

ST21 B(τ)κθt b0 + b1B(τ) + b2B
2(τ)

SYSSVX B(τ)κθt b0 + b1B(τ) + b2B
2(τ)

XXX
(b) Parameters

Model b0 b1 b2

BS73 −σ2
S

2
− −

Mer76 −σ2
S

2
− −

Hes93 −1
2
(u2 + iu) −κ+ iuσvρSv

σ2
v

2

Bat96 −1
2
(u2 + iu) −κ+ iuσvρSv

σ2
v

2

TS09X −1
2
(u2 + iu)(σ2

S + σ2
Y (t, T ) + 2ρSyσSσY (t, T )) −κ+ iuσv(ρSvσS + ρyvσY (t, T )) σ2

v

2

TS09? −1
2
(u2 + iu)σ2

F (t, T ) −κ+ iuσvρFvσF (t, T ) σ2
v

2

ST18 −1
2
(u2 + iu)σ2

F (t, T ) −κ+ iuσvρFvσF (t, T ) σ2
v

2

ST21 −1
2
(u2 + iu)σ2

F (t, T ) −κ+ iuσvρFvσF (t, T ) σ2
v

2

SYSSVX −1
2
(u2 + iu)(σ2

S + σ2
Y (t, T ) + 2ρSyσSσY (t, T )) −κ+ iuσv(ρSvσS + ρyvσY (t, T )) σ2

v

2

SYSSV? −1
2
(u2 + iu)σ2

F (t, T ) −κ+ iuσvρFvσF (t, T ) σ2
v

2

XXX
NOTES: This table presents the expressions followed by the ODEs for the models described in Section 2.2.2 and our model SYSSV. Observe
that BS73, Mer76, Hes93 and Bat96 are expressed in terms of the futures prices. The expression followed by σF (t, T ) in each model can be
found in Table 2.3. The expressions followed by the jump terms are

nJ = eiuµJ−
1
2
σ2
Ju

2 − 1, mJ = eµJ+ 1
2
σ2
J − 1, (2.36)

with µJ and σ2
J corresponding to the mean and the variance of the jump in the price, respectively.
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Table 2.5: Fourier transforms – solutions to ODEs

Model A(τ) B(τ)

BS73
[

b0τ −

Mer76
[

(b0 + nJ − iumJ)τ −

Hes93
[

κθ
σ2
v

(
(κ− iuσvρFv − d)τ − 2 ln 1−ge−dτ

1−g

)
κ−iuσvρFv−d

σ2
v

(
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1−ge−dτ

)
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[
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σ2
v
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)
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σ2
v
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1−ge−dτ

)
TS09-SV1
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v
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)
+k3
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σ2
v
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)
ST18

[
2κθ
σ2
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)
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′(z)
g(z)
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m(A1(τ) + A2(τ) + A3(τ) + A4(τ) + k3) 2γ

σ2
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g(z)

)
SYSSV
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σ2
v

(
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g(z)
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(
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γ

(
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))[
A2(τ) = −bθ β

2π
ysτ[

A3(τ) = bθ µz
4π2+γ2

(
γycτ − 2πysτ
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A4(τ) = bθ τ

ω

(
yc0g
′(ω−1)− τ

2

(
g′(ω−1) (yc0ζ1 − 2πys0) + yc0ζ2

))[
A5(τ) = cθ β

2π
ycτ[

A6(τ) = cθ µz
4π2+γ2

(
2πysτ − γycτ

)[
A7(τ) = cθ τ

ω

(
ys0g
′(ω−1)− τ

2

(
g′(ω−1) (ys0ζ1 + 2πyc0) + ys0ζ2

))
XXX
NOTES: This table presents the correspondent solution to the ODEs presented in Table 2.4. Observe that BS73, Mer76, Hes93 and Bat96 are
expressed in terms of the futures prices. As per our model SYSSV, these expressions correspond to (2.21)-(2.22). The terms b0, b1 and b2
can be found in expressions (2.23). For TS09-SV1 and our model, z, g(z), g′(z), β, µ are in Appendix 2B.1; for ST18 and ST21, they are
in Appendix 2B.2; m is as in expression (2.27). The expressions followed by k3 in TS09-SV1 and SYSSV can be seen in equations (2.33)
and (2.29) or (2.32), correspondingly. The values for nJ ,mJ and b0, b1, b2 can be found in Table 2.4. For BS73 and Mer96, observe that
σY (t, T ) = 0 (equivalently, σF (t, T ) = σS ). For Hes93 and Bat96, σS = 1 and σY (t, T ) = 0 (equivalently, σF (t, T ) = σS = 1); for
these models, g and d read

g =
κ− iuσvρFv + d

κ− iuσvρFv − d
, d =

√
(κ− iuσvρFv)2 + σ2

v(u
2 + iu). (2.37)
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2.7 Figures and Tables

Table 2.6: R2 analysis

(a) R2 per peak, years 2011-2020

R2 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12
S 0.66% 0.22% 2.63% 5.47% 5.95% 3.55% 0.66% 0.22% 2.63% 5.95% 5.47% 3.55%

M(bθ = 0) 5.47% 5.95% 3.55% 0.66% 0.22% 2.63% 5.47% 5.95% 3.55% 0.22% 0.66% 2.63%

M 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15%

XXX
(b) R2 per year, peak t0 = 10/12

R2 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 All
S 0.08% 58.76% 7.13% 43.48% 10.09% 1.95% 38.21% 28.73% 79.12% 0.67% 5.95%

M(bθ = 0) 9.96% 14.60% 6.84% 12.66% 41.60% 38.19% 27.74% 9.42% 6.38% 23.00% 0.22%

M 10.01% 74.89% 14.16% 58.85% 52.51% 40.48% 66.93% 38.59% 84.85% 23.53% 6.15%

XXX
(c) R2 per peak, years 2011-2020 – averaged values

R2 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12
S 1.78% 23.49% 49.85% 54.40% 32.79% 6.43% 1.78% 23.49% 49.85% 54.40% 32.79% 6.43%

M(bθ = 0) 54.50% 32.79% 6.43% 1.78% 23.49% 49.85% 54.50% 32.79% 6.43% 1.78% 23.49% 49.85%

M 56.28% 56.28% 56.28% 56.28% 56.28% 56.28% 56.28% 56.28% 56.28% 56.28% 56.28% 56.82%

XXX
NOTES: These tables present the values of R2 calculated when regressing the series of ATM market variance vt (squared of the quoted
volatility) for the shortest futures contract available (in this case, M3) in terms of a cosinus and/or sinus functions. Sub-table (a) considers
the whole sample period 2011-2020 and checks the effect of each month as peak of the volatility series. Sub-table (b) considers each year
individually in the whole sample period and checks the effect of t0 = 10/12 as peak of the series. Sub-table (c) considers the whole sample
period and checks the effect of each month as peak of the series, on averaged values. With M(bθ = 0) we refer to a new simple pattern based
only on the sinus. In bold we highlight those cases which present higher R2 values for the simple sinusoidal pattern S.

Table 2.7: MAE(σ) analysis

MAE(σ) 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12
Ø 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34%

S 4.35% 4.33% 4.28% 4.26% 4.29% 4.34% 4.33% 4.33% 4.29% 4.26% 4.29% 4.33%

M 4.28% 4.31% 4.28% 4.25% 4.25% 4.26% 4.28% 4.31% 4.28% 4.25% 4.25% 4.26%

XXX
NOTES: This table presents MAE(σ) errors performed by our model, calculated when regressing the series of ATM market variance vt (squared
of the quoted volatility) for the shortest futures contract available (in this case, M3) in terms of a cosinus and/or sinus functions. We use the
symbol Ø to identify the lack of seasonality in the variance vt, this is equivalent to a constant θt parameter, namely the TS09-SV1 model. In
bold we highlight those cases which present smaller error values for the simple sinusoidal pattern S.
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2. Seasonality in Commodity Prices: New Approaches for Pricing Plain Vanilla Options

Table 2.8: Estimated parameters, errors and computation time – monthly and daily observations

(a) Monthly observations

Model SYSSV ST21 ST18 TS09-SV1 Bat96 Hes93 Mer76
Seasonality Type Multiple Simple
Set-up ? X ? X ? X

σS – 1.0000 – 1.0000 – – – 1.0000 – – 0.2591

α0 1.5886 – 1.4311 – – – 2.4336 – – – –
α 1.0000 1.5454 1.0000 1.5438 – – 1.0000 1.5144 – – –
γ 22.9148 0.2921 13.9186 0.4525 1.2394 1.2475 18.6119 0.2804 – – –
κ 17.7878 1.1011 15.1016 1.1192 2.4543 2.4879 40.4542 1.2827 5.8069 5.6512 –
aθ, θ 0.0276 0.5168 0.0335 0.5028 0.2294 0.2289 0.0100 0.4486 0.0152 0.0774 –
bθ 0.0037 0.0007 0.0039 0.0013 −0.0070 – – – – – –
cθ 0.0018 −0.0002 – – – – – – – – –
σv 0.9916 0.5532 0.9175 0.5697 0.3308 0.2630 0.7934 0.5754 0.1375 0.0689 –
ρSy – −1.0000 – −1.0000 – – – −1.0000 – – –
ρSv – 0.1144 – 0.1042 – – – 0.2191 −1.0000 0.9999 –
ρyv – −0.1300 – −0.1092 – – – −0.3845 – – –
ρFv 0.0872 – 0.0972 – 0.1800 0.2242 0.1647 – – – –
λ – – – – – – – – 5.3309 – 5.9153

µJ – – – – – – – – 0.0451 – 0.0737

σJ – – – – – – – – 0.0803 – 0.0013

Parameter Count 9 11 8 10 6 5 7 9 7 4 4

MAE(σ) 0.0416 0.0425 0.0420 0.0426 0.0434 0.0436 0.0433 0.0434 0.0432 0.0480 0.0766

RMSE(σ) 0.0586 0.0596 0.0591 0.0597 0.0607 0.0608 0.0600 0.0605 0.0611 0.0657 0.1002

Comput. Time 0.1474 0.1567 0.1149 0.0785 0.0394 0.0639 0.1219 0.1108 0.6661 0.0981 0.2204
xxx

(b) Daily observations

Model. SYSSV ST21 ST18 TS09-SV1 Bat96 Hes93 Mer76
Seasonality Type Multiple Simple
Set-up ? X ? X ? X

σS – 1.0000 – 1.0000 – – – 1.0000 – – 0.2826

α0 1.8058 – 1.4354 – – – 1.5586 – – – –
α 1.0000 1.4060 1.0000 1.4268 – – 1.0000 1.4082 – – –
γ 24.7212 0.4387 21.2379 0.2795 1.2230 1.2598 24.0451 0.2953 – – –
κ 21.4165 1.2444 13.9554 1.2389 2.1558 2.1077 16.1562 1.3894 5.6808 5.8078 –
aθ, θ 0.0197 0.4190 0.0349 0.4507 0.3013 0.3435 0.0284 0.4150 0.0300 0.0893 –
bθ 0.0018 −0.0000 0.0012 0.0002 −0.0095 – – – – – –
cθ 0.0023 −0.0003 – – – – – – – – –
σv 0.9191 0.5383 0.9870 0.6194 0.2579 0.2923 0.9548 0.6638 0.2324 0.0769 –
ρSy – −0.9999 – −0.9991 – – – −0.9994 – – –
ρSv – 0.0240 – 0.0865 – – – 0.1214 −1.0000 0.9987 –
ρyv – −0.0184 – −0.1076 – – – −0.1875 – – –
ρFv 0.1079 – 0.0918 – 0.1962 0.2471 0.0976 – – – –
λ – – – – – – – – 1.1827 – 2.0685

µJ – – – – – – – – 0.1816 – 0.1149

σJ – – – – – – – – 0.0352 – 0.0000

Parameter Count 9 11 8 10 6 5 7 9 7 4 4

MAE(σ) 0.0437 0.0438 0.0443 0.0442 0.0445 0.0446 0.0442 0.0444 0.0439 0.0463 0.0670

RMSE(σ) 0.0620 0.0625 0.0625 0.0625 0.0626 0.0627 0.0624 0.0626 0.0632 0.0660 0.0950

Comput. Time 3.8576 5.9236 2.0122 2.0370 0.7694 0.6831 1.1509 1.1935 9.0950 2.3092 4.6260
xxx

NOTES: MAE(σ) represents the mean absolute pricing error in option volatilities, RMSE(σ) represents the square root of the quadratic mean
of errors in option volatilities. For the computation time we use analytical solutions; values are expressed in hours.
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2.7 Figures and Tables

Table 2.9: Estimated parameters, errors and computation time – monthly observations, single years

(a) 2019

Model SYSSV ST21 ST18 TS09-SV1 Bat96 Hes93 Mer76
Seasonality Type Multiple Simple
Set-up ? X ? X ? X

σS – 1.0000 – 1.0000 – – – 1.0000 – – 0.2697

α0 1.6432 – 1.5596 – – – 2.0264 – – – –
α 1.0000 1.4298 1.0000 1.5470 – – 1.0000 1.6168 – – –
γ 13.7456 0.3180 15.3799 0.3035 1.3576 1.4247 33.1492 0.3769 – – –
κ 19.7671 1.7262 17.9145 1.3992 2.5633 2.6944 26.9385 1.7346 6.8128 6.5113 –
aθ, θ 0.0203 0.3175 0.0234 0.3936 0.2095 0.2168 0.0121 0.3478 0.0001 0.0661 –
bθ 0.0027 0.0004 0.0032 0.0008 −0.0088 – – – – – –
cθ 0.0010 −0.0005 – – – – – – – – –
σv 0.8159 0.6970 0.9048 0.6954 0.7529 0.8017 0.6763 0.7550 0.0831 0.0733 –
ρSy – −1.0000 – −1.0000 – – – −1.0000 – – –
ρSv – 0.0768 – 0.1028 – – – 0.1104 1.0000 0.7453 –
ρyv – −0.1668 – −0.1999 – – – −0.2431 – – –
ρFv 0.1158 – 0.1013 – 0.0656 0.0657 0.1491 – – – –
λ – – – – – – – – 3.1753 – 0.4189

µJ – – – – – – – – −0.0102 – 0.1473

σJ – – – – – – – – 0.1304 – 0.0009

Parameter Count 9 11 8 10 6 5 7 9 7 4 4

MAE(σ) 0.0537 0.0536 0.0540 0.0549 0.0542 0.0544 0.0540 0.0544 0.0561 0.0601 0.0790

RMSE(σ) 0.0679 0.0677 0.0681 0.0686 0.0698 0.0697 0.0689 0.0691 0.0709 0.0766 0.1052

Comput. Time 0.0104 0.1781 0.0151 0.2136 0.0142 0.0130 0.0098 0.0754 0.0373 0.0182 0.0161
xxx

(b) 2020

Model SYSSV ST21 ST18 TS09-SV1 Bat96 Hes93 Mer76
Seasonality Type Multiple Simple
Set-up ? X ? X ? X

σS – 1.0000 – 1.0000 – – – 1.0000 – – 0.3672

α0 1.4472 – 1.3812 – – – 1.4591 – – – –
α 1.0000 1.4651 1.0000 1.4677 – – 1.0000 1.2039 – – –
γ 15.1775 0.5065 20.6621 0.5008 1.0145 0.9789 14.3886 0.2657 – – –
κ 14.3425 0.9107 12.7726 0.9857 2.0569 1.9654 10.0686 1.7874 4.4405 3.2484 –
aθ, θ 0.0398 0.6223 0.0427 0.6390 0.2170 1.1986 0.0121 0.3501 0.0010 0.0161 –
bθ 0.0105 0.0061 0.0037 0.0066 −0.0279 – – – – – –
cθ 0.0018 −0.0010 – – – – – – – – –
σv 0.3793 0.4924 0.0500 0.5079 0.1330 0.1562 0.0836 0.5801 0.0515 0.0749 –
ρSy – −0.9992 – −0.9998 – – – −0.9979 – – –
ρSv – 0.0204 – 0.0379 – – – 0.1399 0.7723 0.9998 –
ρyv – 0.0045 – 0.0147 – – – −0.2782 – – –
ρFv 0.2465 – 0.2249 – 0.5812 0.5417 0.9998 – – – –
λ – – – – – – – – 7.0755 – 7.3694

µJ – – – – – – – – 0.0762 – 0.0712

σJ – – – – – – – – 0.0018 – 0.0009

Parameter Count 9 11 8 10 6 5 7 9 7 4 4

MAE(σ) 0.0543 0.0540 0.0538 0.0548 0.0577 0.0588 0.0554 0.0573 0.0601 0.0639 0.1052

RMSE(σ) 0.0684 0.0696 0.0681 0.00704 0.0757 0.0765 0.0701 0.0750 0.0766 0.0822 0.1276

Comput. Time 0.0107 0.2723 0.0155 0.2736 0.0112 0.0154 0.0126 0.0754 0.0481 0.0188 0.0215
xxx

NOTES: MAE(σ) represents the mean absolute pricing error in option volatilities, RMSE(σ) represents the square root of the quadratic mean
of errors in option volatilities. For the computation time we use analytical solutions; values are expressed in hours.
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Table 2.10: MAE(σ) – simple harmonic pattern and original set-up

(a) TS09-SV1 (b) SYSSVS (c) Diff. TS09-SV1 − SYSSVS

MAE(σ) M2 M3 M4 M5 M6 M7 M8 ALL
. p – 7.5 . 0.0798 0.0557 0.0502 0.0487 0.0424 0.0345 0.0328 0.0492
. p – 7 . 0 0.0540 0.0504 0.0459 0.0425 0.0351 0.0337 0.0436
. p – 6.5 . 0 0.0498 0.0486 0.0478 0.0420 0.0353 0.0327 0.0427
. p – 6 . 0 0.0501 0.0483 0.0483 0.0447 0.0364 0.0327 0.0434
. p – 5.5 . 0 0.0451 0.0478 0.0470 0.0440 0.0342 0.0320 0.0417
. p – 5 . 0.0657 0.0445 0.0462 0.0465 0.0436 0.034 0.0326 0.0447
. p – 4.5 . 0.0937 0.0427 0.0451 0.0453 0.0457 0.0345 0.0317 0.0484
. p – 4 . 0.0532 0.0420 0.0444 0.0475 0.0438 0.0345 0.0316 0.0424
. p – 3.5 . 0.0463 0.0410 0.0445 0.0464 0.0454 0.0343 0.0319 0.0414
. p – 3 . 0.0424 0.0398 0.0437 0.0473 0.0457 0.0353 0.0314 0.0408
. p – 2.5 . 0.0397 0.0389 0.0438 0.0478 0.0457 0.0358 0.0320 0.0405
. p – 2 . 0 0.0372 0.0435 0.0472 0.0465 0.0337 0.0321 0.0400
. p – 1.5 . 0.0388 0.0374 0.0444 0.0489 0.0494 0.0352 0.0327 0.0410
. p – 1 . 0.0604 0.0367 0.0446 0.0491 0.0473 0.0375 0.0325 0.0440
. p – 0.5 . 0.0378 0.0361 0.0443 0.0489 0.0480 0.0363 0.0318 0.0405
. ATM p . 0.0369 0.0354 0.0432 0.0472 0.0471 0.0351 0.0305 0.0393
. ATM c . 0.0371 0.0363 0.0445 0.0483 0.0471 0.0359 0.0324 0.0402
. c + 0.5 . 0 0.0351 0.0430 0.0481 0.0476 0.0373 0.0315 0.0404
. c + 1 . 0 0.0351 0.0434 0.0486 0.0481 0.0383 0.0317 0.0409
. c + 1.5 . 0 0.0354 0.0434 0.0480 0.0481 0.0379 0.0323 0.0409
. c + 2 . 0 0.0354 0.0442 0.0496 0.0490 0.0384 0.0325 0.0415
. c + 2.5 . 0 0.0357 0.0442 0.0496 0.0501 0.0378 0.0337 0.0418
. c + 3 . 0 0.0362 0.0447 0.0503 0.0499 0.0397 0.0342 0.0425
. c + 3.5 . 0.0577 0.0368 0.0447 0.0502 0.0514 0.0389 0.0348 0.0449
. c + 4 . 0 0.0369 0.0451 0.0519 0.0519 0.0405 0.0350 0.0436
. c + 4.5 . 0.0605 0.0371 0.0452 0.0521 0.0529 0.0412 0.0351 0.0463
. c + 5 . 0.0623 0.0375 0.0458 0.0513 0.0533 0.0411 0.0359 0.0467
. c + 5.5 . 0 0.0380 0.0463 0.0520 0.0536 0.0424 0.0374 0.045
. c + 6 . 0.0567 0.0387 0.0466 0.0532 0.0559 0.0433 0.0372 0.0474
. c + 6.5 . 0 0.0386 0.0472 0.0524 0.0556 0.0426 0.0371 0.0456
. c + 7 . 0 0.0389 0.0466 0.0545 0.0552 0.0438 0.0386 0.0463
. c + 7.5 . 0.0671 0.0396 0.0478 0.0532 0.0557 0.0459 0.0387 0.0497
. ALL . 0.0551 0.0399 0.0455 0.0492 0.0484 0.0377 0.0335 0.0434

M2 M3 M4 M5 M6 M7 M8 ALL
0.0750 0.0497 0.0487 0.0488 0.0422 0.0337 0.0325 0.0472

0 0.0474 0.0479 0.0459 0.0425 0.0341 0.0326 0.0417
0 0.0464 0.0466 0.0479 0.0421 0.0347 0.032 0.0416
0 0.0465 0.0466 0.0485 0.0446 0.0357 0.0315 0.0422
0 0.0418 0.0459 0.0473 0.0440 0.0334 0.0309 0.0405

0.0527 0.0414 0.0445 0.0464 0.0437 0.0333 0.0313 0.0419
0.0870 0.0399 0.0433 0.0460 0.0459 0.0336 0.0308 0.0466
0.0460 0.0391 0.0425 0.0481 0.0442 0.0337 0.0303 0.0406
0.0416 0.0382 0.0430 0.0471 0.0455 0.0334 0.0310 0.0400
0.0395 0.0372 0.0421 0.0475 0.0457 0.0344 0.0305 0.0396
0.0373 0.0362 0.0426 0.0479 0.0460 0.0349 0.0312 0.0395

0 0.0346 0.0420 0.0476 0.0467 0.0329 0.0310 0.0391
0.0359 0.0350 0.0431 0.0494 0.0497 0.0344 0.0319 0.0399
0.0558 0.0344 0.0436 0.0495 0.0477 0.0369 0.0316 0.0428
0.0345 0.0341 0.0436 0.0493 0.0482 0.0356 0.0311 0.0395
0.0338 0.0333 0.0423 0.0475 0.0474 0.0345 0.0305 0.0385
0.0338 0.0343 0.0439 0.0487 0.0473 0.0351 0.0319 0.0393

0 0.0331 0.0421 0.0486 0.0479 0.0366 0.0314 0.0400
0 0.0333 0.0429 0.0491 0.0484 0.0377 0.0315 0.0405
0 0.0339 0.0430 0.0486 0.0486 0.0374 0.0321 0.0406
0 0.0341 0.0439 0.0503 0.0494 0.0379 0.0324 0.0413
0 0.0346 0.0438 0.0505 0.0505 0.0374 0.0336 0.0417
0 0.0353 0.0446 0.0512 0.0503 0.0393 0.0340 0.0425

0.0568 0.0361 0.0447 0.0510 0.0518 0.0387 0.0343 0.0448
0 0.0364 0.0452 0.0528 0.0523 0.0404 0.0345 0.0436

0.0600 0.0367 0.0452 0.0530 0.0533 0.0409 0.0349 0.0463
0.0616 0.0373 0.0464 0.0524 0.0536 0.0411 0.0354 0.0468

0 0.038 0.0471 0.0530 0.0540 0.0422 0.0369 0.0452
0.0558 0.0388 0.0475 0.0546 0.0565 0.0432 0.0368 0.0476

0 0.0388 0.0482 0.0538 0.0560 0.0424 0.0366 0.0460
0 0.0391 0.0477 0.0559 0.0556 0.0435 0.0382 0.0467

0.0663 0.0397 0.0490 0.0544 0.0562 0.0457 0.0383 0.0499
0.0514 0.0380 0.0448 0.0498 0.0487 0.0371 0.0329 0.0426

M2 M3 M4 M5 M6 M7 M8 ALL
0.0048 0.0059 0.0014 -0.0001 0.0002 0.0008 0.0003 0.0019

0 0.0067 0.0025 0.0000 0.0000 0.0010 0.0010 0.0019
0 0.0033 0.0020 0.0000 -0.0001 0.0007 0.0007 0.0011
0 0.0037 0.0017 -0.0002 0.0001 0.0006 0.0012 0.0012
0 0.0033 0.0020 -0.0003 0.0000 0.0008 0.0012 0.0012

0.0130 0.0031 0.0016 0.0001 -0.0001 0.0007 0.0012 0.0028
0.0068 0.0028 0.0018 -0.0007 -0.0002 0.0009 0.0009 0.0018
0.0072 0.0029 0.0019 -0.0006 -0.0004 0.0008 0.0014 0.0019
0.0047 0.0028 0.0015 -0.0006 0.0000 0.0009 0.0010 0.0015
0.0029 0.0026 0.0016 -0.0003 0.0000 0.0008 0.0009 0.0012
0.0024 0.0027 0.0012 -0.0001 -0.0003 0.0009 0.0008 0.0011

0 0.0026 0.0015 -0.0003 -0.0002 0.0008 0.0010 0.0009
0.0030 0.0024 0.0013 -0.0005 -0.0003 0.0008 0.0008 0.0011
0.0046 0.0024 0.0009 -0.0004 -0.0005 0.0006 0.0010 0.0012
0.0034 0.0020 0.0008 -0.0004 -0.0001 0.0007 0.0007 0.0010
0.0031 0.0021 0.0009 -0.0003 -0.0003 0.0006 0.0001 0.0009
0.0034 0.0021 0.0006 -0.0004 -0.0002 0.0008 0.0005 0.0010

0 0.0020 0.0008 -0.0006 -0.0003 0.0007 0.0001 0.0005
0 0.0019 0.0006 -0.0005 -0.0003 0.0006 0.0002 0.0004
0 0.0016 0.0005 -0.0005 -0.0005 0.0006 0.0001 0.0003
0 0.0013 0.0003 -0.0008 -0.0003 0.0005 0.0001 0.0002
0 0.0011 0.0003 -0.0009 -0.0004 0.0004 0.0001 0.0001
0 0.0009 0.0001 -0.0009 -0.0004 0.0004 0.0003 0.0000

0.0010 0.0007 0.0001 -0.0008 -0.0004 0.0002 0.0004 0.0002
0 0.0005 -0.0001 -0.0009 -0.0004 0.0002 0.0004 -0.0001

0.0005 0.0004 0.0000 -0.0009 -0.0004 0.0003 0.0002 0.0000
0.0007 0.0002 -0.0006 -0.0012 -0.0003 0.0000 0.0005 -0.0001

0 0.0000 -0.0008 -0.0010 -0.0004 0.0002 0.0005 -0.0003
0.0009 -0.0001 -0.0009 -0.0014 -0.0006 0.0001 0.0003 -0.0002

0 -0.0002 -0.0010 -0.0014 -0.0005 0.0002 0.0005 -0.0004
0 -0.0002 -0.0011 -0.0014 -0.0004 0.0003 0.0005 -0.0004

0.0009 -0.0001 -0.0011 -0.0012 -0.0004 0.0003 0.0004 -0.0002
0.0037 0.0020 0.0007 -0.0006 -0.0003 0.0006 0.0006 0.0008

XXX
NOTES: This table reports model accuracy in terms if options MAE(σ) within each moneyness-maturity category, with the estimations performed on the monthly data set. p – (c +) i refers
to the put (call) options with strike equal to the ATM strike – (+) i USD. Only the central row refers to ATM options, all the others refer to OTM options; strikes are increasing. Sub-table
(a) refers to TS09-SV1 and Sub-table (b) refers to SYSSVS , both models expressed following the original set-up of the parameters: observe that the darker the color of the cell (red), the
worse the model performance. Sub-table (c) indicates the difference between both models; the darker the color of the cell (blue), the better the performance of our model. Values of 0

indicate the lack of quoted options for this combination of contract and moneyness.
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Table 2.11: MAE(σ) – multiple harmonic pattern and original set-up

(a) TS09-SV1 (b) SYSSVM (c) Diff. TS09-SV1 − SYSSVM

MAE(σ) M2 M3 M4 M5 M6 M7 M8 ALL
. p – 7.5 . 0.0798 0.0557 0.0502 0.0487 0.0424 0.0345 0.0328 0.0492
. p – 7 . 0 0.0540 0.0504 0.0459 0.0425 0.0351 0.0337 0.0436
. p – 6.5 . 0 0.0498 0.0486 0.0478 0.0420 0.0353 0.0327 0.0427
. p – 6 . 0 0.0501 0.0483 0.0483 0.0447 0.0364 0.0327 0.0434
. p – 5.5 . 0 0.0451 0.0478 0.0470 0.0440 0.0342 0.0320 0.0417
. p – 5 . 0.0657 0.0445 0.0462 0.0465 0.0436 0.0340 0.0326 0.0447
. p – 4.5 . 0.0937 0.0427 0.0451 0.0453 0.0457 0.0345 0.0317 0.0484
. p – 4 . 0.0532 0.0420 0.0444 0.0475 0.0438 0.0345 0.0316 0.0424
. p – 3.5 . 0.0463 0.0410 0.0445 0.0464 0.0454 0.0343 0.0319 0.0414
. p – 3 . 0.0424 0.0398 0.0437 0.0473 0.0457 0.0353 0.0314 0.0408
. p – 2.5 . 0.0397 0.0389 0.0438 0.0478 0.0457 0.0358 0.0320 0.0405
. p – 2 . 0 0.0372 0.0435 0.0472 0.0465 0.0337 0.0321 0.0400
. p – 1.5 . 0.0388 0.0374 0.0444 0.0489 0.0494 0.0352 0.0327 0.0410
. p – 1 . 0.0604 0.0367 0.0446 0.0491 0.0473 0.0375 0.0325 0.0440
. p – 0.5 . 0.0378 0.0361 0.0443 0.0489 0.0480 0.0363 0.0318 0.0405
. ATM p . 0.0369 0.0354 0.0432 0.0472 0.0471 0.0351 0.0305 0.0393
. ATM c . 0.0371 0.0363 0.0445 0.0483 0.0471 0.0359 0.0324 0.0402
. c + 0.5 . 0 0.0351 0.0430 0.0481 0.0476 0.0373 0.0315 0.0404
. c + 1 . 0 0.0351 0.0434 0.0486 0.0481 0.0383 0.0317 0.0409
. c + 1.5 . 0 0.0354 0.0434 0.0480 0.0481 0.0379 0.0323 0.0409
. c + 2 . 0 0.0354 0.0442 0.0496 0.0490 0.0384 0.0325 0.0415
. c + 2.5 . 0 0.0357 0.0442 0.0496 0.0501 0.0378 0.0337 0.0418
. c + 3 . 0 0.0362 0.0447 0.0503 0.0499 0.0397 0.0342 0.0425
. c + 3.5 . 0.0577 0.0368 0.0447 0.0502 0.0514 0.0389 0.0348 0.0449
. c + 4 . 0 0.0369 0.0451 0.0519 0.0519 0.0405 0.0350 0.0436
. c + 4.5 . 0.0605 0.0371 0.0452 0.0521 0.0529 0.0412 0.0351 0.0463
. c + 5 . 0.0623 0.0375 0.0458 0.0513 0.0533 0.0411 0.0359 0.0467
. c + 5.5 . 0 0.0380 0.0463 0.0520 0.0536 0.0424 0.0374 0.0450
. c + 6 . 0.0567 0.0387 0.0466 0.0532 0.0559 0.0433 0.0372 0.0474
. c + 6.5 . 0 0.0386 0.0472 0.0524 0.0556 0.0426 0.0371 0.0456
. c + 7 . 0 0.0389 0.0466 0.0545 0.0552 0.0438 0.0386 0.0463
. c + 7.5 . 0.0671 0.0396 0.0478 0.0532 0.0557 0.0459 0.0387 0.0497
. ALL . 0.0551 0.0399 0.0455 0.0492 0.0484 0.0377 0.0335 0.0434

M2 M3 M4 M5 M6 M7 M8 ALL
0.0623 0.0470 0.0473 0.0481 0.0416 0.0332 0.0321 0.0445

0 0.0468 0.0461 0.0455 0.0423 0.0334 0.0327 0.0411
0 0.0440 0.0453 0.0473 0.0420 0.0341 0.0318 0.0407
0 0.0442 0.0455 0.0480 0.0442 0.0351 0.0315 0.0414
0 0.0397 0.0446 0.0467 0.0436 0.0328 0.0310 0.0397

0.0494 0.0393 0.0434 0.0460 0.0434 0.0328 0.0313 0.0408
0.0785 0.0378 0.0422 0.0457 0.0457 0.0331 0.0306 0.0448
0.0437 0.0369 0.0413 0.0477 0.0440 0.0332 0.0303 0.0396
0.0396 0.0361 0.0420 0.0467 0.0452 0.0329 0.0308 0.0391
0.0373 0.0354 0.0410 0.0470 0.0453 0.0339 0.0304 0.0386
0.0347 0.0344 0.0417 0.0474 0.0456 0.0345 0.0310 0.0385

0 0.0330 0.0410 0.0471 0.0464 0.0324 0.0309 0.0385
0.0333 0.0334 0.0421 0.0489 0.0492 0.0338 0.0316 0.0389
0.0513 0.0329 0.0427 0.0490 0.0472 0.0364 0.0315 0.0416
0.0322 0.0327 0.0427 0.0488 0.0476 0.0351 0.0310 0.0386
0.0318 0.0320 0.0415 0.0469 0.0468 0.0341 0.0304 0.0377
0.0317 0.0329 0.0431 0.0480 0.0468 0.0345 0.0317 0.0384

0 0.0319 0.0413 0.0480 0.0473 0.0361 0.0314 0.0393
0 0.0321 0.0421 0.0485 0.0479 0.0372 0.0315 0.0399
0 0.0328 0.0422 0.0479 0.0480 0.0370 0.0321 0.0400
0 0.0331 0.0431 0.0495 0.0488 0.0375 0.0324 0.0408
0 0.0337 0.0431 0.0495 0.0500 0.0372 0.0335 0.0412
0 0.0344 0.0438 0.0503 0.0499 0.0390 0.0339 0.0419

0.0557 0.0352 0.0438 0.0501 0.0515 0.0387 0.0342 0.0442
0 0.0356 0.0444 0.0517 0.0519 0.0402 0.0344 0.0430

0.0595 0.0360 0.0444 0.0519 0.0530 0.0404 0.0348 0.0457
0.0613 0.0365 0.0454 0.0513 0.0534 0.0409 0.0352 0.0463

0 0.0374 0.0461 0.0518 0.0538 0.0417 0.0368 0.0446
0.0562 0.0383 0.0463 0.0532 0.0559 0.0428 0.0367 0.0471

0 0.0383 0.0470 0.0523 0.0558 0.0419 0.0364 0.0453
0 0.0387 0.0465 0.0544 0.0554 0.0428 0.0380 0.0460

0.0657 0.0395 0.0478 0.0531 0.0559 0.0452 0.0381 0.0493
0.0485 0.0366 0.0438 0.0490 0.0483 0.0367 0.0328 0.0418

M2 M3 M4 M5 M6 M7 M8 ALL
0.0174 0.0087 0.0029 0.0006 0.0007 0.0013 0.0007 0.0046

0 0.0072 0.0043 0.0004 0.0002 0.0018 0.0010 0.0025
0 0.0057 0.0033 0.0006 0.0000 0.0012 0.0009 0.0019
0 0.0059 0.0029 0.0003 0.0005 0.0013 0.0011 0.0020
0 0.0054 0.0032 0.0003 0.0003 0.0014 0.0011 0.0020

0.0164 0.0052 0.0028 0.0006 0.0002 0.0012 0.0013 0.0039
0.0153 0.0049 0.0028 -0.0004 0.0001 0.0014 0.0011 0.0036
0.0095 0.0051 0.0030 -0.0002 -0.0001 0.0013 0.0013 0.0028
0.0067 0.0049 0.0026 -0.0003 0.0002 0.0014 0.0011 0.0024
0.0051 0.0045 0.0026 0.0002 0.0004 0.0014 0.0010 0.0022
0.0050 0.0044 0.0022 0.0003 0.0001 0.0013 0.0010 0.0020

0 0.0042 0.0025 0.0001 0.0001 0.0013 0.0011 0.0016
0.0056 0.0040 0.0023 0.0000 0.0002 0.0014 0.0010 0.0021
0.0090 0.0039 0.0018 0.0002 0.0001 0.0011 0.0010 0.0024
0.0057 0.0034 0.0016 0.0000 0.0004 0.0011 0.0008 0.0019
0.0051 0.0033 0.0017 0.0003 0.0002 0.0010 0.0001 0.0017
0.0054 0.0034 0.0014 0.0003 0.0003 0.0014 0.0007 0.0018

0 0.0032 0.0016 0.0001 0.0003 0.0012 0.0001 0.0011
0 0.0030 0.0013 0.0001 0.0002 0.0011 0.0002 0.0010
0 0.0026 0.0012 0.0001 0.0002 0.0009 0.0002 0.0009
0 0.0023 0.0011 0.0000 0.0002 0.0009 0.0001 0.0008
0 0.0020 0.0010 0.0001 0.0001 0.0006 0.0002 0.0007
0 0.0018 0.0009 0.0000 0.0000 0.0007 0.0003 0.0006

0.0021 0.0015 0.0009 0.0001 -0.0001 0.0002 0.0005 0.0007
0 0.0013 0.0008 0.0001 0.0000 0.0003 0.0006 0.0005

0.0010 0.0011 0.0008 0.0002 -0.0001 0.0008 0.0003 0.0006
0.0010 0.0009 0.0004 0.0000 -0.0002 0.0002 0.0007 0.0004

0 0.0006 0.0002 0.0001 -0.0002 0.0007 0.0006 0.0004
0.0006 0.0005 0.0003 0.0000 0.0000 0.0005 0.0004 0.0003

0 0.0003 0.0002 0.0001 -0.0002 0.0007 0.0007 0.0003
0 0.0002 0.0001 0.0001 -0.0002 0.0010 0.0007 0.0003

0.0014 0.0001 0.0000 0.0002 -0.0002 0.0008 0.0006 0.0004
0.0066 0.0033 0.0017 0.0001 0.0001 0.0010 0.0007 0.0016

XXX
NOTES: This table reports model accuracy in terms if options MAE(σ) within each moneyness-maturity category, with the estimations performed on the monthly data set. p – (c +) i refers
to the put (call) options with strike equal to the ATM strike – (+) i USD. Only the central row refers to ATM options, the others refer to OTM options; strikes are increasing. Sub-table
(a) refers to TS09-SV1 and Sub-table (b) refers to SYSSVM , both models expressed following the original set-up of the parameters: observe that the darker the color of the cell (red), the
worse the model performance. Sub-table (c) indicates the difference between both models; the darker the color of the cell (blue), the better the performance of our model. Values of 0

indicate the lack of quoted options for this combination of contract and moneyness.

79



2.Seasonality
in

C
om

m
odity

P
rices:

N
ew

A
pproaches

for
P

ricing
P

lain
Vanilla

O
ptions

Table 2.12: MAE(σ) – simple harmonic pattern and alternative set-up

(a) TS09-SV1 (b) SYSSVS (c) Diff. TS09-SV1 − SYSSVS

MAE(σ) M2 M3 M4 M5 M6 M7 M8 ALL
. p – 7.5 . 0.0672 0.0450 0.0499 0.0515 0.0456 0.0337 0.0307 0.0462
. p – 7 . 0 0.0430 0.0496 0.0481 0.0450 0.0334 0.0315 0.0418
. p – 6.5 . 0 0.0412 0.0478 0.0495 0.0434 0.0341 0.0309 0.0411
. p – 6 . 0 0.0415 0.0474 0.0493 0.0463 0.0350 0.0310 0.0417
. p – 5.5 . 0 0.0373 0.0467 0.0477 0.0451 0.0324 0.0306 0.0400
. p – 5 . 0.0594 0.0367 0.0451 0.0475 0.0445 0.0324 0.0310 0.0424
. p – 4.5 . 0.0593 0.0356 0.0438 0.0455 0.0463 0.0326 0.0308 0.0420
. p – 4 . 0.0576 0.0346 0.0429 0.0478 0.0442 0.0328 0.0310 0.0416
. p – 3.5 . 0.0580 0.0339 0.0433 0.0465 0.0459 0.0326 0.0315 0.0417
. p – 3 . 0.0577 0.0337 0.0422 0.0473 0.0458 0.0336 0.0312 0.0416
. p – 2.5 . 0.0593 0.0328 0.0426 0.0479 0.0456 0.0342 0.0318 0.0420
. p – 2 . 0 0.0319 0.0422 0.0471 0.0466 0.0322 0.0321 0.0387
. p – 1.5 . 0.0625 0.0324 0.0432 0.0485 0.0491 0.0337 0.0327 0.0431
. p – 1 . 0.0506 0.0318 0.0436 0.0489 0.0471 0.0363 0.0335 0.0417
. p – 0.5 . 0.0660 0.0323 0.0435 0.0487 0.0481 0.0351 0.0327 0.0438
. ATM p . 0.0662 0.0322 0.0423 0.0471 0.0472 0.0341 0.0320 0.0430
. ATM c . 0.0675 0.0327 0.0438 0.0484 0.0473 0.0346 0.0332 0.0439
. c + 0.5 . 0 0.0324 0.0421 0.0478 0.0478 0.0362 0.0331 0.0399
. c + 1 . 0 0.0332 0.0428 0.0484 0.0484 0.0372 0.0334 0.0406
. c + 1.5 . 0 0.0343 0.0429 0.0480 0.0483 0.0371 0.0338 0.0407
. c + 2 . 0 0.0348 0.0438 0.0492 0.0494 0.0378 0.0340 0.0415
. c + 2.5 . 0 0.0356 0.0437 0.0494 0.0506 0.0374 0.0351 0.0420
. c + 3 . 0 0.0366 0.0443 0.0501 0.0504 0.0393 0.0357 0.0427
. c + 3.5 . 0.0604 0.0374 0.0444 0.0502 0.0519 0.0389 0.0358 0.0456
. c + 4 . 0 0.0379 0.0448 0.0517 0.0525 0.0405 0.0366 0.0440
. c + 4.5 . 0.0612 0.0382 0.0448 0.0521 0.0534 0.0408 0.0364 0.0467
. c + 5 . 0.0610 0.0391 0.0456 0.0511 0.0541 0.0412 0.0372 0.0470
. c + 5.5 . 0 0.0399 0.0463 0.0520 0.0543 0.0422 0.0390 0.0456
. c + 6 . 0.0618 0.0402 0.0464 0.0529 0.0561 0.0432 0.0384 0.0485
. c + 6.5 . 0 0.0405 0.0470 0.0522 0.0563 0.0424 0.0385 0.0462
. c + 7 . 0 0.0404 0.0463 0.0546 0.0560 0.0433 0.0399 0.0467
. c + 7.5 . 0.0626 0.0410 0.0475 0.0534 0.0565 0.0455 0.0394 0.0494
. ALL . 0.0611 0.0366 0.0448 0.0494 0.0490 0.0367 0.0339 0.0433

M2 M3 M4 M5 M6 M7 M8 ALL
0.0623 0.0470 0.0473 0.0481 0.0416 0.0332 0.0321 0.0445

0 0.0468 0.0461 0.0455 0.0423 0.0334 0.0327 0.0411
0 0.0440 0.0453 0.0473 0.0420 0.0341 0.0318 0.0407
0 0.0442 0.0455 0.0480 0.0442 0.0351 0.0315 0.0414
0 0.0397 0.0446 0.0467 0.0436 0.0328 0.0310 0.0397

0.0494 0.0393 0.0434 0.0460 0.0434 0.0328 0.0313 0.0408
0.0785 0.0378 0.0422 0.0457 0.0457 0.033 0.0306 0.0448
0.0437 0.0369 0.0413 0.0477 0.0440 0.0332 0.0303 0.0396
0.0396 0.0361 0.0420 0.0467 0.0452 0.0329 0.0308 0.0391
0.0373 0.0354 0.0410 0.0470 0.0453 0.0339 0.0304 0.0386
0.0347 0.0344 0.0417 0.0474 0.0456 0.0345 0.0310 0.0385

0 0.0330 0.0410 0.0471 0.0464 0.0324 0.0309 0.0385
0.0333 0.0334 0.0421 0.0489 0.0492 0.0338 0.0316 0.0389
0.0513 0.0329 0.0427 0.0490 0.0472 0.0364 0.0315 0.0416
0.0322 0.0327 0.0427 0.0488 0.0476 0.0351 0.0310 0.0386
0.0318 0.0320 0.0415 0.0469 0.0468 0.0341 0.0304 0.0377
0.0317 0.0329 0.0431 0.0480 0.0468 0.0345 0.0317 0.0384

0 0.0319 0.0413 0.0480 0.0473 0.0361 0.0314 0.0393
0 0.0321 0.0421 0.0485 0.0479 0.0372 0.0315 0.0399
0 0.0328 0.0422 0.0479 0.0480 0.0370 0.0321 0.0400
0 0.0331 0.0431 0.0495 0.0488 0.0375 0.0324 0.0408
0 0.0337 0.0431 0.0495 0.0500 0.0372 0.0335 0.0412
0 0.0344 0.0438 0.0503 0.0499 0.039 0.0339 0.0419

0.0557 0.0352 0.0438 0.0501 0.0515 0.0387 0.0342 0.0442
0 0.0356 0.0444 0.0517 0.0519 0.0402 0.0344 0.0430

0.0595 0.036 0.0444 0.0519 0.0530 0.0404 0.0348 0.0457
0.0613 0.0365 0.0454 0.0513 0.0534 0.0409 0.0352 0.0463

0 0.0374 0.0461 0.0518 0.0538 0.0417 0.0368 0.0446
0.0562 0.0383 0.0463 0.0532 0.0559 0.0428 0.0367 0.0471

0 0.0383 0.0470 0.0523 0.0558 0.0419 0.0364 0.0453
0 0.0387 0.0465 0.0544 0.0554 0.0428 0.0380 0.0460

0.0657 0.0395 0.0478 0.0531 0.0559 0.0452 0.0381 0.0493
0.0485 0.0366 0.0438 0.0490 0.0483 0.0367 0.0328 0.0418

M2 M3 M4 M5 M6 M7 M8 ALL
0.0049 -0.0019 0.0026 0.0034 0.0040 0.0005 -0.0014 0.0017

0 -0.0038 0.0034 0.0026 0.0027 0.0001 -0.0012 0.0006
0 -0.0028 0.0025 0.0022 0.0014 0.0000 -0.0009 0.0004
0 -0.0028 0.0019 0.0013 0.0021 -0.0001 -0.0005 0.0003
0 -0.0024 0.0021 0.0010 0.0015 -0.0004 -0.0003 0.0002

0.0101 -0.0026 0.0017 0.0015 0.0011 -0.0004 -0.0003 0.0016
-0.0192 -0.0022 0.0016 -0.0002 0.0006 -0.0004 0.0001 -0.0028
0.0139 -0.0023 0.0016 0.0001 0.0002 -0.0004 0.0007 0.0020
0.0184 -0.0023 0.0013 -0.0002 0.0007 -0.0004 0.0007 0.0026
0.0204 -0.0017 0.0012 0.0002 0.0005 -0.0003 0.0008 0.0030
0.0245 -0.0017 0.0010 0.0004 0.0000 -0.0003 0.0008 0.0035

0 -0.0011 0.0012 0.0000 0.0002 -0.0002 0.0012 0.0002
0.0292 -0.0010 0.0011 -0.0005 -0.0002 -0.0001 0.0011 0.0042
-0.0007 -0.0011 0.0009 0.0000 -0.0001 -0.0001 0.002 0.0001
0.0338 -0.0004 0.0008 -0.0002 0.0004 -0.0001 0.0017 0.0052
0.0344 0.0002 0.0008 0.0002 0.0004 0.0000 0.0016 0.0054
0.0358 -0.0002 0.0007 0.0003 0.0005 0.0001 0.0015 0.0055

0 0.0006 0.0008 -0.0002 0.0005 0.0002 0.0017 0.0006
0 0.0011 0.0007 -0.0001 0.0005 0.0000 0.0018 0.0007
0 0.0014 0.0007 0.0000 0.0003 0.0001 0.0017 0.0007
0 0.0017 0.0006 -0.0003 0.0006 0.0002 0.0016 0.0007
0 0.0019 0.0006 -0.0001 0.0006 0.0002 0.0016 0.0008
0 0.0021 0.0006 -0.0002 0.0006 0.0002 0.0018 0.0009

0.0047 0.0022 0.0006 0.0002 0.0004 0.0002 0.0015 0.0014
0 0.0023 0.0004 0.0000 0.0006 0.0003 0.0022 0.0010

0.0017 0.0022 0.0003 0.0002 0.0004 0.0004 0.0016 0.0010
-0.0004 0.0026 0.0002 -0.0002 0.0006 0.0003 0.002 0.0008

0 0.0025 0.0001 0.0001 0.0006 0.0005 0.0022 0.0010
0.0057 0.0019 0.0001 -0.0003 0.0002 0.0004 0.0017 0.0014

0 0.0022 0.0000 -0.0001 0.0005 0.0005 0.0021 0.0009
0 0.0016 -0.0002 0.0002 0.0006 0.0005 0.0020 0.0008

-0.0032 0.0015 -0.0003 0.0003 0.0006 0.0004 0.0013 0.0001
0.0126 -0.0001 0.0010 0.0004 0.0007 0.0001 0.0011 0.0015

XXX
NOTES: This table reports model accuracy in terms if options MAE(σ) within each moneyness-maturity category, with the estimations performed on the monthly data set. p – (c +) i refers
to the put (call) options with strike equal to the ATM strike - (+) i USD. Only the central row refers to ATM options, all the others refer to OTM options; strikes are increasing. Sub-table
(a) refers to TS09-SV1 and Sub-table (b) refers to SYSSVS , both models expressed following the original set-up of the parameters: observe that the darker the color of the cell (red), the
worse the model performance. Sub-table (c) indicates the difference between both models; the darker the color of the cell (blue), the better the performance of our model. Values of 0

indicate the lack of quoted options for this combination of contract and moneyness.
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Table 2.13: MAE(σ) – multiple harmonic pattern and alternative set-up

(a) TS09-SV1 (b) SYSSVM (c) Diff. TS09-SV1 − SYSSVM

MAE(σ) M2 M3 M4 M5 M6 M7 M8 ALL
. p – 7.5 . 0.0672 0.0450 0.0499 0.0515 0.0456 0.0337 0.0307 0.0462
. p – 7 . 0 0.0430 0.0496 0.0481 0.0450 0.0334 0.0315 0.0418
. p – 6.5 . 0 0.0412 0.0478 0.0495 0.0434 0.0341 0.0309 0.0411
. p – 6 . 0 0.0415 0.0474 0.0493 0.0463 0.0350 0.0310 0.0417
. p – 5.5 . 0 0.0373 0.0467 0.0477 0.0451 0.0324 0.0306 0.0400
. p – 5 . 0.0594 0.0367 0.0451 0.0475 0.0445 0.0324 0.0310 0.0424
. p – 4.5 . 0.0593 0.0356 0.0438 0.0455 0.0463 0.0326 0.0308 0.0420
. p – 4 . 0.0576 0.0346 0.0429 0.0478 0.0442 0.0328 0.0310 0.0416
. p – 3.5 . 0.0580 0.0339 0.0433 0.0465 0.0459 0.0326 0.0315 0.0417
. p – 3 . 0.0577 0.0337 0.0422 0.0473 0.0458 0.0336 0.0312 0.0416
. p – 2.5 . 0.0593 0.0328 0.0426 0.0479 0.0456 0.0342 0.0318 0.0420
. p – 2 . 0 0.0319 0.0422 0.0471 0.0466 0.0322 0.0321 0.0387
. p – 1.5 . 0.0625 0.0324 0.0432 0.0485 0.0491 0.0337 0.0327 0.0431
. p – 1 . 0.0506 0.0318 0.0436 0.0489 0.0471 0.0363 0.0335 0.0417
. p – 0.5 . 0.0660 0.0323 0.0435 0.0487 0.0481 0.0351 0.0327 0.0438
. ATM p . 0.0662 0.0322 0.0423 0.0471 0.0472 0.0341 0.0320 0.0430
. ATM c . 0.0675 0.0327 0.0438 0.0484 0.0473 0.0346 0.0332 0.0439
. c + 0.5 . 0 0.0324 0.0421 0.0478 0.0478 0.0362 0.0331 0.0399
. c + 1 . 0 0.0332 0.0428 0.0484 0.0484 0.0372 0.0334 0.0406
. c + 1.5 . 0 0.0343 0.0429 0.0480 0.0483 0.0371 0.0338 0.0407
. c + 2 . 0 0.0348 0.0438 0.0492 0.0494 0.0378 0.0340 0.0415
. c + 2.5 . 0 0.0356 0.0437 0.0494 0.0506 0.0374 0.0351 0.0420
. c + 3 . 0 0.0366 0.0443 0.0501 0.0504 0.0393 0.0357 0.0427
. c + 3.5 . 0.0604 0.0374 0.0444 0.0502 0.0519 0.0389 0.0358 0.0456
. c + 4 . 0 0.0379 0.0448 0.0517 0.0525 0.0405 0.0366 0.0440
. c + 4.5 . 0.0612 0.0382 0.0448 0.0521 0.0534 0.0408 0.0364 0.0467
. c + 5 . 0.0610 0.0391 0.0456 0.0511 0.0541 0.0412 0.0372 0.0470
. c + 5.5 . 0 0.0399 0.0463 0.0520 0.0543 0.0422 0.0390 0.0456
. c + 6 . 0.0618 0.0402 0.0464 0.0529 0.0561 0.0432 0.0384 0.0485
. c + 6.5 . 0 0.0405 0.0470 0.0522 0.0563 0.0424 0.0385 0.0462
. c + 7 . 0 0.0404 0.0463 0.0546 0.0560 0.0433 0.0399 0.0467
. c + 7.5 . 0.0626 0.0410 0.0475 0.0534 0.0565 0.0455 0.0394 0.0494
. ALL . 0.0611 0.0366 0.0448 0.0494 0.0490 0.0367 0.0339 0.0433

M2 M3 M4 M5 M6 M7 M8 ALL
0.0609 0.0453 0.0479 0.0489 0.0426 0.0334 0.0308 0.0443

0 0.0433 0.0476 0.0460 0.0427 0.0335 0.0307 0.0406
0 0.0419 0.0467 0.0481 0.0423 0.0342 0.0306 0.0406
0 0.0426 0.0470 0.0486 0.0449 0.0353 0.0300 0.0414
0 0.0384 0.0464 0.0476 0.0441 0.0329 0.0296 0.0398

0.0490 0.0378 0.0451 0.0467 0.0438 0.0329 0.0298 0.0407
0.0580 0.0365 0.0439 0.0459 0.0459 0.0332 0.0298 0.0419
0.0441 0.0355 0.0431 0.0482 0.0441 0.0333 0.0292 0.0396
0.0413 0.0348 0.0436 0.0470 0.0455 0.0331 0.0300 0.0393
0.0385 0.0341 0.0428 0.0477 0.0458 0.0341 0.0298 0.0390
0.0366 0.0331 0.0433 0.0481 0.0460 0.0347 0.0305 0.0389

0 0.0318 0.0428 0.0476 0.0467 0.0327 0.0305 0.0387
0.0332 0.0323 0.0439 0.0495 0.0497 0.0342 0.0311 0.0391
0.0181 0.0315 0.0443 0.0496 0.0476 0.0365 0.0313 0.0370
0.0319 0.0315 0.0443 0.0492 0.0481 0.0354 0.0309 0.0388
0.0316 0.0309 0.0430 0.0475 0.0473 0.0344 0.0310 0.0379
0.0323 0.0316 0.0445 0.0486 0.0472 0.0349 0.0317 0.0387

0 0.0309 0.0428 0.0485 0.0478 0.0367 0.0319 0.0398
0 0.0315 0.0434 0.0490 0.0483 0.0376 0.0319 0.0403
0 0.0323 0.0436 0.0484 0.0484 0.0374 0.0325 0.0404
0 0.0326 0.0444 0.0501 0.0492 0.0381 0.0327 0.0412
0 0.0332 0.0443 0.0502 0.0502 0.0376 0.0339 0.0415
0 0.0343 0.0451 0.0509 0.0501 0.0395 0.0341 0.0423

0.0408 0.0353 0.0451 0.0506 0.0515 0.0390 0.0344 0.0424
0 0.036 0.0456 0.0525 0.0520 0.0407 0.0347 0.0436

0.0472 0.0364 0.0456 0.0525 0.0530 0.0412 0.0352 0.0445
0.0492 0.0374 0.0466 0.0519 0.0533 0.0414 0.0355 0.0450

0 0.0383 0.0473 0.0524 0.0536 0.0426 0.0371 0.0452
0.0507 0.0390 0.0476 0.0538 0.0560 0.0435 0.0372 0.0468

0 0.0394 0.0484 0.0529 0.0556 0.0428 0.0367 0.0460
0 0.0398 0.0477 0.0551 0.0553 0.0439 0.0384 0.0467

0.0558 0.0405 0.0490 0.0536 0.0558 0.0461 0.0383 0.0484
0.0423 0.0359 0.0452 0.0496 0.0486 0.0371 0.0326 0.0416

M2 M3 M4 M5 M6 M7 M8 ALL
0.0063 -0.0002 0.0020 0.0026 0.0030 0.0003 0.0000 0.0020

0 -0.0003 0.0020 0.0021 0.0023 -0.0001 0.0007 0.0011
0 -0.0006 0.0011 0.0014 0.0011 -0.0002 0.0003 0.0005
0 -0.0012 0.0004 0.0007 0.0014 -0.0003 0.0010 0.0003
0 -0.0011 0.0004 0.0001 0.0011 -0.0005 0.0010 0.0002

0.0104 -0.0012 0.0000 0.0008 0.0007 -0.0005 0.0012 0.0016
0.0012 -0.0010 -0.0001 -0.0004 0.0004 -0.0006 0.0010 0.0001
0.0135 -0.0009 -0.0002 -0.0004 0.0001 -0.0005 0.0018 0.0019
0.0167 -0.0009 -0.0004 -0.0005 0.0004 -0.0006 0.0015 0.0023
0.0192 -0.0004 -0.0006 -0.0005 0.0001 -0.0005 0.0013 0.0027
0.0227 -0.0004 -0.0007 -0.0002 -0.0004 -0.0005 0.0013 0.0031

0 0.0001 -0.0006 -0.0005 -0.0002 -0.0005 0.0016 0.0000
0.0292 0.0001 -0.0007 -0.0010 -0.0006 -0.0005 0.0016 0.0040
0.0325 0.0003 -0.0007 -0.0007 -0.0005 -0.0003 0.0022 0.0047
0.0342 0.0008 -0.0007 -0.0005 -0.0001 -0.0003 0.0018 0.0050
0.0346 0.0014 -0.0007 -0.0004 -0.0001 -0.0003 0.0010 0.0051
0.0353 0.0011 -0.0007 -0.0002 0.0001 -0.0004 0.0014 0.0052

0 0.0016 -0.0007 -0.0007 0.0000 -0.0004 0.0012 0.0002
0 0.0017 -0.0006 -0.0006 0.0001 -0.0004 0.0015 0.0003
0 0.0019 -0.0007 -0.0005 -0.0001 -0.0003 0.0014 0.0003
0 0.0022 -0.0007 -0.0008 0.0002 -0.0003 0.0014 0.0003
0 0.0024 -0.0006 -0.0007 0.0004 -0.0002 0.0012 0.0004
0 0.0023 -0.0007 -0.0007 0.0004 -0.0002 0.0016 0.0004

0.0195 0.0021 -0.0008 -0.0004 0.0004 -0.0001 0.0014 0.0032
0 0.0020 -0.0008 -0.0007 0.0005 -0.0002 0.0019 0.0004

0.0140 0.0018 -0.0008 -0.0004 0.0004 -0.0004 0.0012 0.0023
0.0117 0.0018 -0.0010 -0.0008 0.0008 -0.0002 0.0017 0.0020

0 0.0016 -0.0010 -0.0005 0.0007 -0.0004 0.0019 0.0004
0.0111 0.0013 -0.0012 -0.0009 0.0001 -0.0003 0.0013 0.0016

0 0.0011 -0.0014 -0.0006 0.0007 -0.0004 0.0018 0.0002
0 0.0006 -0.0015 -0.0005 0.0007 -0.0005 0.0016 0.0001

0.0067 0.0005 -0.0015 -0.0002 0.0007 -0.0005 0.0011 0.0010
0.0188 0.0006 -0.0004 -0.0002 0.0005 -0.0003 0.0013 0.0017

XXX
NOTES: This table reports model accuracy in terms if options MAE(σ) within each moneyness-maturity category, with the estimations performed on the monthly data set. p – (c +) i refers
to the put (call) options with strike equal to the ATM strike – (+) i USD. Only the central row refers to ATM options, all the others refer to OTM options; strikes are increasing. Sub-table
(a) refers to TS09-SV1 and Sub-table (b) refers to SYSSVM , both models expressed following the original set-up of the parameters: observe that the darker the color of the cell (red), the
worse the model performance. Sub-table (c) indicates the difference between both models; the darker the color of the cell (blue), the better the performance of our model. Values of 0

indicate the lack of quoted options for this combination of contract and moneyness.
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Table 2.14: MAE(σ) – simple harmonic patterns

(a) SYSSVS (b) ST21 (c) Diff. ST21 − SYSSVS

MAE(σ) M2 M3 M4 M5 M6 M7 M8 ALL
. p – 7.5 . 0.0623 0.0470 0.0473 0.0481 0.0416 0.0332 0.0321 0.0445
. p – 7 . 0 0.0468 0.0461 0.0455 0.0423 0.0334 0.0327 0.0411
. p – 6.5 . 0 0.0440 0.0453 0.0473 0.0420 0.0341 0.0318 0.0407
. p – 6 . 0 0.0442 0.0455 0.0480 0.0442 0.0351 0.0315 0.0414
. p – 5.5 . 0 0.0397 0.0446 0.0467 0.0436 0.0328 0.0310 0.0397
. p – 5 . 0.0494 0.0393 0.0434 0.0460 0.0434 0.0328 0.0313 0.0408
. p – 4.5 . 0.0785 0.0378 0.0422 0.0457 0.0457 0.0330 0.0306 0.0448
. p – 4 . 0.0437 0.0369 0.0413 0.0477 0.0440 0.0332 0.0303 0.0396
. p – 3.5 . 0.0396 0.0361 0.0420 0.0467 0.0452 0.0329 0.0308 0.0391
. p – 3 . 0.0373 0.0354 0.0410 0.0470 0.0453 0.0339 0.0304 0.0386
. p – 2.5 . 0.0347 0.0344 0.0417 0.0474 0.0456 0.0345 0.0310 0.0385
. p – 2 . 0 0.0330 0.0410 0.0471 0.0464 0.0324 0.0309 0.0385
. p – 1.5 . 0.0333 0.0334 0.0421 0.0489 0.0492 0.0338 0.0316 0.0389
. p – 1 . 0.0513 0.0329 0.0427 0.0490 0.0472 0.0364 0.0315 0.0416
. p – 0.5 . 0.0322 0.0327 0.0427 0.0488 0.0476 0.0351 0.0310 0.0386
. ATM p . 0.0318 0.0320 0.0415 0.0469 0.0468 0.0341 0.0304 0.0377
. ATM c . 0.0317 0.0329 0.0431 0.0480 0.0468 0.0345 0.0317 0.0384
. c + 0.5 . 0 0.0319 0.0413 0.0480 0.0473 0.0361 0.0314 0.0393
. c + 1 . 0 0.0321 0.0421 0.0485 0.0479 0.0372 0.0315 0.0399
. c + 1.5 . 0 0.0328 0.0422 0.0479 0.0480 0.0370 0.0321 0.0400
. c + 2 . 0 0.0331 0.0431 0.0495 0.0488 0.0375 0.0324 0.0408
. c + 2.5 . 0 0.0337 0.0431 0.0495 0.0500 0.0372 0.0335 0.0412
. c + 3 . 0 0.0344 0.0438 0.0503 0.0499 0.0390 0.0339 0.0419
. c + 3.5 . 0.0557 0.0352 0.0438 0.0501 0.0515 0.0387 0.0342 0.0442
. c + 4 . 0 0.0356 0.0444 0.0517 0.0519 0.0402 0.0344 0.0430
. c + 4.5 . 0.0595 0.0360 0.0444 0.0519 0.0530 0.0404 0.0348 0.0457
. c + 5 . 0.0613 0.0365 0.0454 0.0513 0.0534 0.0409 0.0352 0.0463
. c + 5.5 . 0 0.0374 0.0461 0.0518 0.0538 0.0417 0.0368 0.0446
. c + 6 . 0.0562 0.0383 0.0463 0.0532 0.0559 0.0428 0.0367 0.0471
. c + 6.5 . 0 0.0383 0.0470 0.0523 0.0558 0.0419 0.0364 0.0453
. c + 7 . 0 0.0387 0.0465 0.0544 0.0554 0.0428 0.0380 0.0460
. c + 7.5 . 0.0657 0.0395 0.0478 0.0531 0.0559 0.0452 0.0381 0.0493
. ALL . 0.0485 0.0366 0.0438 0.0490 0.0483 0.0367 0.0328 0.0418

M2 M3 M4 M5 M6 M7 M8 ALL
0.0937 0.0574 0.0529 0.0507 0.0433 0.0326 0.0320 0.0518

0 0.0544 0.0527 0.0472 0.0430 0.0331 0.0324 0.0438
0 0.0503 0.0507 0.0489 0.0422 0.0338 0.0316 0.0429
0 0.0506 0.0501 0.0487 0.0450 0.0351 0.0317 0.0435
0 0.0455 0.0492 0.0473 0.0441 0.0328 0.0310 0.0417

0.0574 0.0447 0.0474 0.0471 0.0437 0.0328 0.0317 0.0436
0.0947 0.0430 0.0459 0.0452 0.0455 0.0332 0.0314 0.0484
0.0491 0.0423 0.0450 0.0476 0.0435 0.0329 0.0310 0.0416
0.0444 0.0411 0.0451 0.0462 0.0450 0.0328 0.0316 0.0409
0.0423 0.0399 0.0442 0.0471 0.0454 0.0336 0.0312 0.0405
0.0398 0.0389 0.0444 0.0477 0.0453 0.0340 0.0316 0.0402

0 0.0373 0.0439 0.0469 0.0460 0.0326 0.0319 0.0398
0.0383 0.0375 0.0449 0.0485 0.0489 0.0336 0.0327 0.0406
0.0603 0.0369 0.0449 0.0489 0.0468 0.0364 0.0327 0.0438
0.0367 0.0364 0.0447 0.0484 0.0476 0.0353 0.0321 0.0402
0.0361 0.0356 0.0436 0.0470 0.0466 0.0341 0.0308 0.0391
0.0360 0.0367 0.0449 0.0483 0.0466 0.0350 0.0324 0.0400

0 0.0356 0.0435 0.0477 0.0472 0.0354 0.0318 0.0402
0 0.0358 0.0440 0.0482 0.0477 0.0369 0.0321 0.0408
0 0.0362 0.0439 0.0477 0.0477 0.0363 0.0327 0.0408
0 0.0363 0.0447 0.0491 0.0485 0.0369 0.0332 0.0415
0 0.0367 0.0448 0.0492 0.0496 0.0364 0.0340 0.0418
0 0.0374 0.0453 0.0499 0.0494 0.0383 0.0348 0.0425

0.0594 0.0380 0.0455 0.0499 0.0507 0.0377 0.0349 0.0452
0 0.0383 0.0459 0.0515 0.0513 0.0393 0.0355 0.0436

0.0631 0.0386 0.0462 0.0518 0.0523 0.0397 0.0355 0.0467
0.0667 0.0391 0.0466 0.0508 0.0527 0.0397 0.0363 0.0474

0 0.0397 0.0471 0.0516 0.0529 0.0406 0.0379 0.0450
0.0625 0.0406 0.0475 0.0526 0.0550 0.0416 0.0376 0.0482

0 0.0406 0.0477 0.0517 0.0548 0.0406 0.0376 0.0455
0 0.0410 0.0472 0.0541 0.0544 0.0417 0.0388 0.0462

0.0757 0.0421 0.0483 0.0527 0.0548 0.0438 0.0385 0.0508
0.0562 0.0408 0.0463 0.0491 0.0481 0.0362 0.0335 0.0434

M2 M3 M4 M5 M6 M7 M8 ALL
0.0313 0.0104 0.0056 0.0026 0.0016 -0.0006 -0.0002 0.0073

0 0.0076 0.0066 0.0016 0.0008 -0.0003 -0.0003 0.0027
0 0.0063 0.0054 0.0016 0.0003 -0.0003 -0.0002 0.0022
0 0.0064 0.0046 0.0007 0.0007 0.0000 0.0002 0.0021
0 0.0058 0.0046 0.0006 0.0005 0.0001 0.0000 0.0019

0.0081 0.0054 0.0040 0.0011 0.0004 0.0000 0.0005 0.0028
0.0163 0.0052 0.0037 -0.0005 -0.0002 0.0001 0.0007 0.0036
0.0054 0.0053 0.0037 -0.0001 -0.0004 -0.0003 0.0007 0.0020
0.0048 0.0050 0.0032 -0.0005 -0.0002 -0.0001 0.0008 0.0018
0.0050 0.0046 0.0032 0.0001 0.0002 -0.0003 0.0008 0.0019
0.0050 0.0044 0.0027 0.0003 -0.0003 -0.0005 0.0006 0.0017

0 0.0043 0.0029 -0.0002 -0.0004 0.0002 0.0010 0.0013
0.0050 0.0041 0.0027 -0.0004 -0.0003 -0.0002 0.0010 0.0017
0.0090 0.0040 0.0021 0.0000 -0.0003 -0.0001 0.0012 0.0023
0.0045 0.0037 0.0020 -0.0005 0.0000 0.0002 0.0011 0.0016
0.0043 0.0036 0.0021 0.0001 -0.0002 -0.0001 0.0004 0.0015
0.0043 0.0038 0.0018 0.0002 -0.0002 0.0005 0.0008 0.0016

0 0.0037 0.0021 -0.0003 -0.0001 -0.0006 0.0005 0.0009
0 0.0036 0.0019 -0.0003 -0.0002 -0.0003 0.0006 0.0009
0 0.0033 0.0017 -0.0002 -0.0003 -0.0007 0.0006 0.0007
0 0.0032 0.0016 -0.0005 -0.0003 -0.0006 0.0008 0.0007
0 0.0031 0.0017 -0.0004 -0.0005 -0.0008 0.0005 0.0006
0 0.0029 0.0016 -0.0004 -0.0005 -0.0007 0.0009 0.0006

0.0038 0.0028 0.0016 -0.0002 -0.0008 -0.0010 0.0007 0.0010
0 0.0027 0.0015 -0.0002 -0.0006 -0.0009 0.0011 0.0006

0.0035 0.0026 0.0017 -0.0001 -0.0006 -0.0008 0.0007 0.0010
0.0053 0.0026 0.0012 -0.0005 -0.0008 -0.0012 0.0012 0.0011

0 0.0024 0.0009 -0.0002 -0.0009 -0.0011 0.0011 0.0004
0.0064 0.0024 0.0011 -0.0006 -0.0009 -0.0013 0.0008 0.0011

0 0.0024 0.0007 -0.0006 -0.0010 -0.0013 0.0012 0.0002
0 0.0023 0.0007 -0.0004 -0.0010 -0.0012 0.0009 0.0002

0.0100 0.0026 0.0006 -0.0003 -0.0011 -0.0014 0.0004 0.0015
0.0078 0.0041 0.0025 0.0001 -0.0002 -0.0005 0.0006 0.0017

XXX
NOTES: This table reports model accuracy in terms if options MAE(σ) within each moneyness-maturity category, with the estimations performed on the monthly data set. p – (c +) i refers
to the put (call) options with strike equal to the ATM strike – (+) i USD. The central row refers to ATM options, the others refer to OTM options; strikes are increasing. Sub-table (a) refers
to our model SYSSVS and Sub-table (b) refers to ST21. Our model is expressed following the alternative set-up, both models use a same simple harmonic function: the darker the color of
the cell (red), the worse the performance. Sub-table (c) indicates the difference between both models; the darker the color of the cell (blue), the better the performance of our model. Values
of 0 indicate the lack of quoted options for this combination of contract and moneyness.
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Appendix

2A Appendix for Proofs

2A.1 Proof of Proposition 2.1

We find the expressions followed by the terms A(τ) and B(τ) similarly to Duffie et al. (2000)

and Collin-Dufresne & Goldstein (2002). The proof consists of showing that the process ψ(t) ≡
ψ(iu; t, TOpt, T ) is a martingale under Q. To this end, we conjecture that ψ(iu; t, TOpt, T ) is of

the form in equation (2.20). From applying Itô’s Lemma for jump diffusion processes to ψ(t),

we obtain the following partial integro-differential equation (PIDE)

dψ(t)

ψ(t)
= −

(∂A(TOpt − t)
∂(TOpt − t)

+
∂B(TOpt − t)
∂(TOpt − t)

vt

)
dt+B(TOpt − t)dvt + iu

dF (t, T )

F (t, T )

+
1

2
B2(TOpt − t)dv2

t −
1

2
(u2 + iu)

(
dF (t, T )

F (t, T )

)2

+iuB(TOpt − t)dvt
dF (t, T )

F (t, T )
. (2A.1)

For ψ(t) to be a martingale and with τ ≡ TOpt − t, it must hold that

1

dt
EQ
t

[
dψ(t)

ψ(t)

]
=
(
−∂A(τ)

∂τ
+B(τ)κ θt

)
+
(
−∂B(τ)

∂τ
+ b0 + b1B(τ) + b2B

2(τ)
)
vt = 0. (2A.2)

Subject to the initial condition B(0) = 0 and conditional to the original parameters set-up, we

have that

b0 = −1

2
(u2 + iu)

(
σ2
S + σ2

Y (t, T ) + 2ρSyσSσY (t, T )
)
, (2A.3)

b1 = −κ+ iuσv

(
ρSvσS + ρyvσY (t, T )

)
, (2A.4)

and conditional to our alternative set-up (as defined in Section 2.2.1), we have that

b0 = −1

2
(u2 + iu)σ2

F (t, T ), (2A.5)

b1 = −κ+ iuσvρFvσF (t, T ), (2A.6)
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and the constant term b2 being unconditional to the set-up

b2 =
σ2
v

2
. (2A.7)

Since equation (2A.2) holds for all t, f(t, T ) and vt then the terms in each parentheses must
vanish, reducing the problem to solving two much simpler ODEs

∂A(τ)

∂τ
= B(τ)κ θt, (2A.8)

∂B(τ)

∂τ
= b0 + b1B(τ) + b2B

2(τ). (2A.9)

Hence, ψ(t) is a martingale provided thatA(τ) andB(τ) satisfy (2A.8) and (2A.9), respectively.
The expression followed by B(τ) can be found in Appendix 2B.1. Depending on the functional
form followed by θt, the solution to A(τ) can be found in Appendix 2A.2 (single sinusoidal
pattern) or 2A.3 (mixed sinusoidal pattern).

2A.2 Proof of Proposition 2.2

With B(τ) as in equation (2.24) and θt following the single sinusoidal pattern defined in ex-
pression (2.5), equation (2.21) becomes1

∂A(τ)

∂τ
= B(τ)κ

(
aθ + bθ cos

(
2π(TOpt − τ − t0)

))
=

2κγ

σ2
v

(
β + µz + z

g′(z)

g(z)

)(
aθ + bθ cos

(
2π(TOpt − τ − t0)

))
= m

(
A′1(τ) +A′2(τ) +A′3(τ) +A′4(τ)

)
, (2A.10)

with the constant m and each integrand being

m = 2κγ/σ2
v ,

A′1(τ) = aθ
(
β + µz + z

g′(z)

g(z)

)
,

A′2(τ) = bθβ cos
(
2π(TOpt − τ − t0)

)
,

A′3(τ) = bθµ cos
(
2π(TOpt − τ − t0)

)
z,

A′4(τ) = bθ cos
(
2π(TOpt − τ − t0)

)
z
g′(z)

g(z)
,

(2A.11)

the expressions followed by β, µ, z, g(z) and g′(z) can be found in Appendix 2B.1.
Equation (2A.10) has a quasi-analytical solution which is given by2

A(τ) = m
(
A1(τ) +A2(τ) +A3(τ) +A4(τ) + k3

)
. (2A.12)

1Given that τ ≡ TOpt − t, we use the equality t− t0 = TOpt − τ − t0 in the expression followed by θt.
2We say that it is quasi-analytical due to expression followed by the term A4(τ).
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The proof forA1(τ) is in Sitzia (2018), A2(τ) is direct andA3(τ) is calculated using integration
by parts3

A1(τ) = +aθ
(
βτ − 1

γ

(
µz + ln g(z)

))
, A1(0) = −aθ µ

γω
,

A2(τ) = −bθ βy
s
τ

2π
, A2(0) = −bθ βy

s
0

2π
,

A3(τ) = +bθ
µz
(
γycτ − 2πysτ

)
4π2 + γ2

, A3(0) = +bθµ
γyc0 − 2πys0
ω(4π2 + γ2)

.

(2A.13)

with ycτ , y
c
0, y

s
τ , y

s
0 and m as in (2.27). Since A′4(τ) is not integrable, we cannot directly obtain

an analytic expression for A4(τ) but, alternatively, we can approximate A′4(τ) as a polyno-
mial around τ = 0 using a second order Taylor expansion.4 We compute the integral of each
polynomial and we get

A4,1(τ) = +bθ
τ

ω
yc0g
′ (ω−1

)
,

A4,2(τ) = −bθ τ
2

2ω

(
g′
(
ω−1

) (
−2πys0 + γyc0

(
1 + k1n1 + k2n2

))
+γyc0

(
k1n3 + k2n4

))
,

A4(τ) = A4,1(τ) +A4,2(τ),

(2A.14)

with A4,1(0) = A4,2(0) = A4,3(0) = 0; with n1, n2, n3, n4 as in (2.28).
In particular, if the initial condition is A(0) = 0 and given (2.25), we have that

k3 = −(A1(0) +A2(0) +A3(0) +A4(0)) = x0 + xs0y
s
0 + xc0y

c
0, (2A.15)

where
x0 = aθ

µ

γω
,

xs0 = bθ
( β

2π
+

2πµ

ω(4π2 + γ2)

)
,

xc0 = −bθ µγ

ω(4π2 + γ2)
.

(2A.16)

2A.3 Proof of Proposition 2.3

With B(τ) as in equation (2.24) and θt following the multiple sinusoidal pattern defined in
expression (2.6), equation (2.21) becomes1

∂A(τ)

∂τ
= B(τ)κ

(
aθ + bθ cos

(
2π(TOpt − τ − t0)

)
+cθ sin

(
2π(TOpt − τ − t0)

))
=

2κγ

σ2
v

(
β + µz + z

g′(z)

g(z)

)(
aθ + bθ cos

(
2π(TOpt − τ − t0)

)
+cθ sin

(
2π(TOpt − τ − t0)

))
= m

(
A′1(τ) +A′2(τ) +A′3(τ) +A′4(τ) +A′5(τ) +A′6(τ) +A′7(τ)

)
, (2A.17)

3The proof is available by direct request to the authors.
4This closed-form expression is found thanks to Matlab’s Symbolic Maths Toobox.
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the expressions followed by β, µ, z, g(z) and g′(z) can be found in Appendix 2B.1, each integ-

rand being
A′5(τ) = cθsin

(
2π(TOpt − τ − t0)

)
β,

A′6(τ) = cθsin
(
2π(TOpt − τ − t0)

)
µz,

A′7(τ) = cθsin
(
2π(TOpt − τ − t0)

)
z
g′(z)

g(z)
.

(2A.18)

Equation (2A.17) has a quasi-analytical solution which is given by5

A(τ) = m
(
A1(τ) +A2(τ) +A3(τ) +A4(τ) +A5(τ) +A6(τ) +A7(τ) + k3

)
. (2A.19)

The expressions followed by A′1(τ)-A′4(τ) and A1(τ)-A4(τ) are the same as in Appendix 2A.2,

A5(τ) is direct and A6(τ) is calculated using integration by parts3

A5(τ) = cθ
βycτ
2π

, A5(0) = cθ
βyc0
2π

,

A6(τ) = cθ
µz
(
2πysτ + γycτ

)
4π2 + γ2

, A6(0) = cθ
µ(2πyc0 + γys0)

ω(4π2 + γ2)
,

(2A.20)

with ycτ , y
c
0, y

s
τ , y

s
0 and m as in expressions (2.27). Similarly to what occurred with A′4(τ), A′7(τ)

is not integrable, and we approximate it using a second order Taylor expansion around τ = 0.4

We compute the integral of each polynomial and we get the following expressions

A7,1(τ) = +cθ
τ

ω
ys0g
′ (ω−1

)
,

A7,2(τ) = −cθ τ
2

2ω

(
g′
(
ω−1

) (
2πyc0 + γys0

(
1 + k1n1 + k2n2

))
+γyS0

(
k1n3 + k2n4

))
,

A7(τ) = A7,1(τ) +A7,2(τ),

(2A.21)

with A7,1(0) = A7,2(0) = A7,3(0) = 0; with n1, n2, n3, n4 as in (2.28).

In particular, if the initial condition is A(0) = 0 and given (2A.19), we have that

k3 = −(A1(0) +A2(0) +A3(0) +A4(0) +A5(0) +A6(0) +A7(0)) = x0 + xs0y
s
0 + xc0y

c
0, (2A.22)

where
x0 = aθ

µ

γω
,

xs0 = −cθ µγ

ω(4π2 + γ2)
+ bθ

( β
2π

+
2πµ

ω(4π2 + γ2)

)
,

xc0 = −bθ µγ

ω(4π2 + γ2)
+ cθ

( β
2π

+
2πµ

ω(4π2 + γ2)

)
,

(2A.23)

and with A1(0)-A4(0) as in Appendix 2A.2.

5We say that it is quasi-analytical due to expressions followed by the terms A4(τ) and A7(τ).
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2B Appendix for Analytic Expressions

2B.1 Analytic Expression for B(τ)

Equation (2.22) has an analytical solution which is given by

B(τ) =
2γ

σ2
v

(
β + µz + z

g′(z)

g(z)

)
, (2B.1)

where the function g(z) is a linear combination of Kummer’s (M) and Tricomi’s (U) hyper-

geometric functions, whilst k1 and k2 are constants determined by the initial conditions of the

differential equation

g(z) = k1M(a, b, z) + k2U(a, b, z), (2B.2)

g′(z) =
a

b
k1M(a+ 1, b+ 1, z)− ak2U(a+ 1, b+ 1, z), (2B.3)

with

a = −
(
µb+ βc1

ω

γ
+ d1

ω

γ2

)
, µ = −1

2

(
1 +

c1ω

γ

)
, (2B.4)

b = 1 + 2β +
c0

γ
, β =

−c0 ±
√
c2

0 − 4d0

2γ
, (2B.5)

ω = ± γ√
c2

1 − 4d2

, z =
e−γτ

ω
. (2B.6)

From the pair of possible values for β and ω, we choose ± = + for β and ± = − for ω.

In particular, if the initial condition is B(0) = 0, we have the following constants

k1 =
a
U(a+1,b+1, 1

ω
)

U(a,b, 1
ω

)
− βω − µ

a
bM(a+ 1, b+ 1, 1

ω ) + aM(a, b, 1
ω )

U(a+1,b+1, 1
ω

)

U(a,b, 1
ω

)

, (2B.7)

k2 =
1− k1M(a, b, 1

ω )

U(a, b, 1
ω )

. (2B.8)

We apply the change of variable B(τ) = − y′(τ)
y(τ)b2

to equation (2.22) and we get

(
y′(τ)

y(τ)

)2 1

b2
− y′′(τ)

y(τ)

1

b2
= b0 +

y′(τ)

y(τ)

b1
b2

+

(
y′(τ)

y(τ)

)2 1

b2
, (2B.9)

which leads to the following homogeneous second order ODE with no constant coefficients

y′′(τ)−
(
c0 + c1e

−γτ)y′(τ) +
(
d0 + d1e

−γτ + d2e
−2γτ

)
y(τ) = 0. (2B.10)
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Conditional to the original (alternative) characterisation6, b0, b1 and b2 are as in the left (right)
column in expressions (2.23).7 Conditional to the original set-up, the coefficients in g(z) and
g′(z) are

c0 = −κ+ iuσv

(
σSρSv + ρyv

α

γ

)
, d0 = −(u2 + iu)

q2

2

(
σ2
S +

α2

γ2
+ 2ρSyσS

α

γ

)
,

c1 = −iuσvρyv
α

γ
e−γ(T−TOpt), d1 = q2(u2 + iu)

α

γ

(α
γ

+ ρSyσS

)
e−γ(T−TOpt),

c2= ... d2 = −(u2 + iu)
q2

2

α2

γ2
e−2γ(T−TOpt).

(2B.11)

Alternatively, and conditional to the alternative set-up, the coefficients in g(z) and g′(z) are

c0 = −κ+ iuσvρFv
α

γ
, d0 = −(u2 + iu)

q2

2

α2

γ2
,

c1 = −iuσvρFv
α

γ
e−γ(T−TOpt), d1 = q2(u2 + iu)

α2

γ2
e−γ(T−TOpt),

c2= ... d2 = −(u2 + iu)
q2

2

α2

γ2
e−2γ(T−TOpt).

(2B.12)

In the case of the original set-up, the proof is in Sitzia (2018). In the alternative set-up, we have
followed the steps described in that work to obtain the correspondent expressions.3

2B.2 Solutions to Schneider-Tavin (2018, 2021)

For both models, the CF in (2.19) is given by the Fourier transform in equation (2.20).
B(τ) solves the ODE in (2.22), with b0, b1 and b2 as in expressions (2.23), right column

(alternative set-up). Following the methodology described in Sitzia (2018), we apply the change
of variable B(τ) = − y′(τ)

y(τ)b2
to equation (2.22), so that it becomes(

− y′(τ)

y(τ)b2

)′
= b0(τ) + b1(τ)

(
− y′(τ)

y(τ)b2

)
+b2

(
− y′(τ)

y(τ)b2

)2
. (2B.13)

Grouping constant parameters and exponentials, we get to the following second order ODE8

y′′(τ)−
(
c0 + c1(τ)αe−λτ

)
y′(τ) + c2(τ)

(
αe−λτ

)2
y(τ) = 0, (2B.14)

with coefficients
c0 = −κ,

c1 = −iuσvρFvαe−λ(T−TOpt),

c2 = −σ
2
v(u

2 + iu)

4

(
αe−λ(T−TOpt)

)2
.

(2B.15)

6As defined in Section 2.2.1.
7Observe that the expression followed by b2 is unconditional to the set-up.
8See that c2 is d2 in Sitzia (2018).
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Now we apply a last substitution using some parameters ω, β and µ which will be determined
in order to simplify the above equation into a confluent hypergeometric equation g(z). These
parameters are given by

µ = −1

2

(
1 +

c1ω

λ

)
, β = −c0

λ
,

ω =
γ√

c2
1 − 4d2

, z =
e−λτ

ω
.

(2B.16)

The function g(z) is a linear combination of Kummer’s (M) and Tricomi’s (U) hypergeometric
functions

g(z) = k1M(a, b, z) + k2U(a, b, z), (2B.17)

g′(z) =
a

b
k1M(a+ 1, b+ 1, z)− ak2U(a+ 1, b+ 1, z), (2B.18)

with parameters

a = −µb+ ω
c0c1

2λ
, b = 1− β. (2B.19)

The expressions followed by k1, k2 and B(τ) are the same as in TS09 and our model, they can
be found in Appendix 2B.1. In ST18, A(τ) solves the same ODE as for TS09. The integral is
direct, its analytical solution and k3 are given by equations (2.33). In ST21, A(τ) solves the
same ODE (2.21) as in our model. While A(τ) depends on the specification of θt, in this work
we only focus on their sinusoidal pattern, defined in equation (2.5). The integral of A(τ) is not
direct any more. We provide it in Proposition 2.2 with proof in Appendix 2A.2.
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CHAPTER

3
Spread Options on Commodity

Prices

Abstract1

In this work we perform a pricing exercise of different types of European spread options; we

particularly focus on calendar and crack spread options. We present the expressions followed by

the joint characteristic functions of the underlying log-prices for a panel of bivariate processes.

We follow different methodologies for option valuation, and compare accuracy and processing

times obtained using each one.

1Co-authors: Gianluca Fusai, Bayes Business School, City University of London; and Ioannis Kyriakou, Bayes
Business School, City University of London. This chapter refers to an article which is currently a work in progress.
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3. Spread Options on Commodity Prices

3.1 Introduction

Spread options focus on spreads in the commodity markets, especially energy, both for spot and

futures. In these markets, spread options are usually based on differences between prices of the

same commodity at two different locations (location spreads, e.g., Brent crude oil delivered in

the UK v. WTI crude oil delivered in the US) or at different times (calendar spreads), between

the prices of inputs and outputs (production spreads), or between the prices of different grades of

the same commodity (quality spreads). Other relevant spread options in the energy markets are

crack spread options, which are defined by the difference between prices of refined oil qualities.

There is a specific literature analysing the price of spread options in energy markets. In

it, the traditional approach to model the spread is by modeling each asset separately. Spread

options have been thoroughly studied in a bivariate Black & Scholes (1973) framework deriving

a formula for the price. Margrabe (1978) pioneered spread option pricing deriving an analytical

solution for the price of an exchange option, equivalent to a spread option with zero strike value.

Other authors provide approximation formulas for any strike level to overcome that restric-

tion. Kirk & Aron (1995) are the first to provide a solution still commonly used by practitioners.

Assuming that the two underlying futures follow a bivariate geometric Brownian motion, they

propose that the value of the second price plus the strike is log-normally distributed. In this

context they obtain an approximation formula for the spread option generalising the Margrabe

formula. Numerous extensions of the Kirk model have been proposed suggesting improve-

ments, but all still based on similar assumptions. Bjerksund & Stlensland (2011) present a

slight twist of Kirk’s approach, deriving a formula for the spread value where the lower bound

produced is extremely accurate, and the precision is much greater. Venkatramanan & Alexander

(2011) express the price of a spread option as the sum of the prices of two compound options,

deriving a new analytic approximation for the price of European spread options.

Dempster & Hong (2002) introduce an integration methodology based on the two-dimensio-

nal fast Fourier transform (henceforth FFT) approach for spread option pricing that is effcient

for geometric Brownian motion and more sophisticated price processes.

Hurd & Zhou (2010) introduce a new formula for general spread option pricing based on

Fourier analysis of the payoff function. They develop a numerical integration method for com-

puting spread options in two dimensions using the FFT methods introduced by Carr & Madan

(1999), and prove its effectiveness. Their methodology is applicable to a variety of spread op-

tion payoffs in any model for which the joint characteristic function (henceforth JCF) is given

analytically.
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Caldana & Fusai (2013) recently proposed a very fast one-dimensional Fourier method that

extends the approximation given by Bjerksund & Stlensland (2011) to any model for which the

JCF of the underlying assets forming the spread in known analytically. They propose an accur-

ate method for pricing European spread options by extending the lower bound approximation

of Bjerksund & Stlensland (2011). They perform a pricing exercise using bivariates processes

for models including jumps and stochastic volatility. They test the models’ performances com-

paring their results to Monte Carlo simulations and Hurd & Zhou (2010).

In line with the performance analysis carried out in Caldana & Fusai (2013), we also con-

sider other noteworthy works. Alfeus & Schloegl (2018) perform an applied exercise on bivari-

ate models including Black & Scholes (1973) and Heston (1993), among others. They explore

the performance of the highly efficient Hurd & Zhou (2010) technique comparing it with Monte

Carlo simulations and the lower bound approximation of Caldana & Fusai (2013). Schneider &

Tavin (2018) introduce a futures-based model capable of capturing the main features of crude

oil futures and options contracts, such as the Samuelson volatility effect and the volatility smile.

They calculate the JCF of two futures contracts in the model and price calendar spread options.

Devising an empirical application using the Caldana & Fusai (2013) methodology, they show

that in contrast to simpler nested models, their model can be successfully calibrated to market

prices of vanilla and calendar spread options.

To the best of our knowledge, Schneider & Tavin (2018) is the only work in the literature

focused on pricing European calendar spread options by providing the JCF expressions on the

term-structure model they present. In this work, we take that approach one step further to calcu-

late them for two different types of European spread options, calendar and crack. We perform

an applied pricing exercise on a panel of nine models, and compare the accuracy and computing

times between the Carr & Madan (1999) and Caldana & Fusai (2013) methodologies.

The remainder of this article is structured as follows: in Section 3.2 we define what a Four-

ier transform is and how to price European options with it; in Section 3.4 we indicate the list of

extant models which conform the panel for which we perform our pricing exercise, we present

the JCFs followed by the underlying(s) involved in the calendar and crack spreads respectively,

and for the panel of models; is Section 3.3 we introduce the spread options pricing methodolo-

gies we follow in this work; in Section 3.5 we present the pricing results we obtain using the

Fourier inversion methods we follow and compare their corresponding computation times for

illustration; and in Section 3.6 we present our conclusions and indicate future lines of research.
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3. Spread Options on Commodity Prices

3.2 The Characteristic Function

Since Stein & Stein (1991) first used the Fourier inversion method to find the distribution of the
underlying asset in a stochastic volatility model, the Fourier transform methods have become
a very active field of financial mathematics. Heston (1993) applied the characteristic function
approach to obtain an analytic representation for the valuation of standard European options
in the Fourier domain. Duffie, Pan & Singleton (2000) produced a comprehensive survey in-
dicating that Fourier transform methods are applicable to a wide range of stochastic processes
in the form of exponential affine diffusions. Carr & Madan (1999) pioneered the use of the
FFT technique by mapping the Fourier transform directly to option prices via the single char-
acteristic function (SCF henceforth). Since then, many efficient numerical methods using FFT
techniques have been proposed, and many authors have discussed these methods in rigorous
detail.

3.2.1 The Fourier Transform

Let f be a random variable with a probability density function g(f), a piecewise continuous
real function over R which satisfies the integrability condition∫ ∞

−∞
|g(f)|df <∞. (3.1)

With u ∈ R, the Fourier transform of g(f) is defined by

G(f) =

∫ ∞
−∞

eiufg(f)df. (3.2)

Given G(f), g(f) can be recovered by the Fourier inversion formula

g(f) =
1

2π

∫ ∞
−∞

e−iufG(u)du. (3.3)

In our case, f ≡ lnF (t, T ) represents the time-t log-price of a futures contract F maturing
at time T . To price European options on futures contracts we introduce the transform ΦF (u),
which can be expressed in terms of the characteristic function of g(f)

ΦF (u) ≡ EQ
0 [eiuf(t,T )] =

∫ ∞
−∞

eiuf(t,T )g(f)df. (3.4)

3.2.2 Fourier Inversion Methods

Apart from Monte Carlo simulations, European options prices are also available by Fourier
inversion methods since the expression followed by the SCF or the JCF is known.
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3.3 Pricing of Options

Two major approaches exist in the literature to date for pricing standard European options.
The first one delivers option prices with respect to the Fourier inversion of cumulative distri-
bution functions in likeness to the classical Black-Scholes formula, as represented by Heston
(1993) and Bakshi & Madan (2000). The alternative approach considers the pricing of options
analogue to the Fourier inversion of the density function, as in Carr & Madan (1999) and Lewis
(2001), among others. The Carr & Madan (1999) approach presents two advantages over the
first one: it permits the use of the computationally efficient FFT; and only requires the evalu-
ation of one integral (two integrals required in Heston (1993) or in Duffie et al. (2000)). Both
Fourier inversion methodologies are applicable to a wide range of European options.

To price spread options, we are aware of three efficient methods. In Hurd & Zhou (2010),
the JCF of the calendar payoff function with a strike K = 1 is calculated analytically, and the
price of the corresponding option is then deduced from this result. This method needs a double
integral to be evaluated numerically using the two-dimensional FFT. The formula in Bjerksund
& Stlensland (2011) for a bivariate GBM process is generalised by Caldana & Fusai (2013) to
models for which the JCF of the prices forming the spread is known analytically. These methods
give a lower bound for the European spread option price. As commented in (Schneider & Tavin
2018, Sec. 3.1), this bound is very close to the actual price and therefore they regard it as the
spread option price itself; moreover, the formula is exact when K = 0. This method relies on a
one-dimensional Fourier inversion. The main point in this methodology is that the approximated
option price is obtained through a univariate Fourier inversion. Le Courtois & Walter (2015)
propose a third method which is more direct than former ones, but requires the marginals and
JCF of the spread prices. A double integral of the payoff function times the joint density of the
two contracts has to be evaluated.

In this work we focus on the pricing of European spread and plain vanilla options and we
rely on two inversion methods to price them. We use the methodology described in Carr &
Madan (1999) for both option types, and specifically for spread options we also use the one
described in Caldana & Fusai (2013).

3.3 Pricing of Options

Let St be a spot price process and let F (t, T ) be a futures price process. By definition, we have
that

F (t, T ) ≡ Ste
∫ T
t y(t,u)du, (3.5)

where y(t, T ) = r(t, T ) − q(t, T ) denotes the forward cost of carry curve, r(t, T ) refers to the
risk-free interest rate and q(t, T ) is the convenience yield forward curve. In the panel featured
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3. Spread Options on Commodity Prices

in Section 3.4 we consider models originally conceived for spot prices and others for futures

prices. Depending on the market, in most of the cases commodity prices are quoted in the

form of future prices, since spot prices are not always available. Therefore, we generalise

our expressions’ form of by assuming futures prices by default. Observe that in the case of

T = t, time-t futures prices maturing instantaneously coincide with time-t spot prices, that is,

F (t, t) ≡ St, therefore we can easily move from spot- to futures-based equations.

Since he option’s expiration date TOpt occurs prior to the expiration date of the underlying

futures contract T , that is, TOpt < T ,2 we are interested in considering the transforms in Section

3.4 when t = TOpt. In order to evaluate options, the discounted expectation of the payoff must

be calculated under the risk-neutral measure Q. We define P (t, TOpt) as the time-t price of

a zero-coupon bond maturing at TOpt, assuming a continuously compounded risk-free interest

rate. Given that each asset’s currency coincides, we assume a unique interest rate curve. We

assume constant interest rates r, convenience yields q and, therefore, cost of carries y. Recall

that we defined the futures log-prices f(t, T ) ≡ lnF (t, T ).

3.3.1 Plain Vanilla Options

A standard European call option on F pays at expiry time TOpt the amount

CPV (T,K) = max(FT −K, 0), (3.6)

where FT is a financial quantity on F observed and maturing at time T . We restrict to the case

of one risky asset described by its corresponding SDEs as can be seen in Tables 3.1 and 3.2.

The time-t arbitrage-free fair price of the call option is

CPV (t, TOpt, T,K) = P (t, TOpt)EQ[max(FT −K, 0)]. (3.7)

Consider the SCF ΦF (u) in equation (3.4). Following Carr & Madan (1999) and with ΦF (u)

representing the SCF of the futures price, the time-t price of a standard European call option

expiring at time TOpt with strike K on a time-t futures contract expiring at time T F (t, T ) is

given by

C(t, TOpt, T,K) = P (t, TOpt)
e−α ln(K)

π

∫ ∞
t
<

[
e−iu ln(K)ΦF (u− i(1 + α))

α(α+ 1)− u2 + iu(1 + 2α)

]
du, (3.8)

with α being the control parameter.3 The proof is in Carr & Madan (1999).

2One and three business days for the Henry Hub natural gas and for the West Texas Intermediate crude oil markets.
3It tunes an exponentially decaying term introduced to allow the integration in the Fourier space.
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3.3.2 Spread Options

Spread options are derivatives whose payoff depends on the difference of two financial quant-
ities. These can refer either to contracts on the same underlying asset with different maturities,
or to contracts with the same maturity but on different assets. The former case is known as an
intra-commodity calendar spread option. The latter is known as an inter-commodity spread, of
which there are different varieties such as crack spreads and spark spreads. In this work we
focus on calendar and crack types of European spread options.4 We assume bivariate processes
only for prices, and we make the assumption of common variances and cost of carry processes
when they apply.

Calendar Spread Options

In commodity markets it is quite common to have options which depend on the value of a single
underlying asset, which is evaluated at two particular future times T2 > T1 > 0. We assume
that σFT1 = σFT2 = σF .

A European calendar spread call option on F pays at expiry time TOpt the amount

CCal(T1, T2,K) = max(FT1 − FT2 −K, 0), (3.9)

where FT1 and FT2 are two financial quantities on F observed and maturing at times T1 and T2,
respectively. We restrict to the case of one risky asset described by its SDEs. The expressions
followed by the JCF terms can be found in Table 3.5b.

The time-t arbitrage-free fair price of the calendar call spread option is

CCal(t, T1, T2, TOpt,K) = P (t, TOpt)EQ[max(FT1 − FT2 −K, 0)]. (3.10)

Let u = (u1, u2)ᵀ ∈ R2 and F(t, T1, T2) =
(
F (t, T1), F (t, T2)

)ᵀ. Consider the JCF

ΦF(u) ≡ EQ
t [eiu1 lnFT1+iu2 lnFT2 ] = EQ

t [eiu
ᵀ ln F(T1,T2)]. (3.11)

For illustration purposes, a general bivariate GBM process for futures under Q is represented as

dF (t, T1)

F (t, T1)
= σFdW

F
t , xxx

dF (t, T2)

F (t, T2)
= σFdW

F
t , (3.12)

and a bivariate Hes93 process for futures under Q is represented as

dF (t, T1)

F (t, T1)
= σF

√
vtdW

F
t , xxx

dF (t, T2)

F (t, T2)
= σF

√
vtdW

F
t ,

dvt = κ(θ − vt)dt+ σv
√
vtdW

v
t , xxxEt[dWF

t , dW
v
t ] = ρFvdt.

(3.13)

4Information on traded spread options on energy futures can be found at CME home.
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3. Spread Options on Commodity Prices

Crack Spread Options

Crack spread options are defined on two underlying assets observed at a common maturity

date T > 0. We assume bivariate price processes (i.e., each asset presents its own price dy-

namics, which are correlated with ρ12). For stochastic volatility models, we also consider a

common variance factor.5 However, the correlation between prices and variance can differ

between assets, i.e. ρF1v 6= ρF2v; we assume that σFT1 6= σFT2 . We define the log-future prices

f1(t, T ) ≡ lnF1(t, T ) and f2(t, T ) ≡ lnF2(t, T ).

A European crack spread call option on F1 and F2 pays at expiry time TOpt the amount

CCra(T,K) = max(F1,T − F2,T −K, 0), (3.14)

where F1,T and F2,T are two financial quantities on assets F1 and F2 respectively, observed and

maturing at time T . We restrict to the case of two risky assets, described by their SDEs and

subject to correlation
〈
dW F1

t , dW F2
t

〉
= ρ12dt. The expressions followed by the JCF terms can

be found in Table 3.5b.

The time-t no-arbitrage fair price of the crack call spread option is

CCra(t, TOpt, T,K) = P (t, TOpt)EQ
t [max(F1,T − F2,T −K, 0)]. (3.15)

Let u = (u1, u2)ᵀ ∈ R2 and F(t, T ) =
(
F1(t, T ), F2(t, T )

)ᵀ. Consider the JCF

ΦF(u) ≡ EQ
t [eiu1 lnF1,T+iu2 lnF2,T ] = EQ

t [eiu
ᵀ ln F(T )]. (3.16)

For illustration purposes, a general bivariate GBM process for futures under Q is represented as

dF1(t, T )

F1(t, T )
= σF1dW

F1
t , xxx

dF2(t, T )

F2(t, T )
= σF2dW

F2
t , xxxEt[dWF1

t , dWF2
t ] = ρ12dt, (3.17)

and a bivariate Hes93 process for futures under Q is represented as

dF1(t, T )

F1(t, T )
= σF1

√
vtdW

F1
t , xxx

dF2(t, T )

F2(t, T )
= σF2

√
vtdW

F2
t , xxxEt[dWF1

t , dWF2
t ] = ρ12dt,

dvt = κ(θ − vt)dt+ σv
√
vtdW

v
t , xxxEt[dW

F1
t , dW v

t ] = ρF1vdt, xxxEt[dW
F2
t , dW v

t ] = ρF2vdt.
(3.18)

Since the spread is defined on two different assets, the correlation between assets ρ12 plays a

key role.

Consider the JCFs of the two futures forming the spread ΦF(u) in (3.11) for calendar spread

options and (3.16) for crack spread options. Next we introduce two different methodologies for

5Meaning that the model parameters and the initial value of the variance process coincide.
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pricing these options. Following Carr & Madan (1999), the time-t price of a European spread
call option expiring at time TOpt with strike K on these futures is given by

C(t, TOpt, T,K) = P (t, TOpt)
e−α lnK

π

∫ ∞
t
<
[

e−iu lnKΦF(u1 − i(1 + α), u2 − i(1 + α))

α(α+ 1)− (u1 + u2)2 + i(u1 + u2)(1 + 2α)

]
du,

(3.19)

with α being the control parameter.3

Following Caldana & Fusai (2013) and only if the JCF of the underlying assets forming the
spread is known analytically, the time-t price of the approximate European spread call option
expiring at time TOpt with strike K on these futures is given by

C(t, TOpt, T,K) = P (t, TOpt)
e−δk

π

(∫ ∞
t

e−iukψF (u)du

)+

, (3.20)

where

ψF (u) =
eiη ln ΦF(0,−iα)

iη

(
ΦF(η − i,−αη)− ΦF(η,−αη − i)−KΦF(η,−αη)

)
, (3.21)

and
η = u− iδ, xxxα =

F2

F2 +K
,xxxk = ln(F2 +K), (3.22)

with δ being the control parameter.3 The proof is in Caldana & Fusai (2013).
Whereas α and k strictly refer to the futures prices, the JCF ΦF(u) can refer to either the

log-spot or log-futures prices. Note that F2 strictly refers to a futures price (never a spot price).
For calendar spread options, it represents the future’s price maturing at the most distant date
F (t, T2); for crack spread options, it refers to the future’s price of the second asset involved in
the spread F2(t, T ).

For all types of options discussed in this section, the value of the equivalent European put
option prices can be computed using the expression for the put-call parity.

3.4 Panel of Models

In the following sections we present the expressions followed by JCF terms for a panel of
nine models. We blend non-Gaussian and multi-factor models, some of which present seasonal
stochastic volatility or jumps. Our panel consists of the following models: Black & Scholes
(1973) or BS73; Merton (1976) or Mer76 extends BS73 by incorporating jumps in the spot
price; Heston (1993) or Hes93 extends BS73 by incorporating instantaneous stochastic volatil-
ity; Bates (1996) or Bat96 is a combination of Mer76 and Hes93; Trolle & Schwartz (2009)-
SV1 or TS09 extends Hes93 by incorporating a stochastic cost of carry forward curve; Crosby
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3. Spread Options on Commodity Prices

& Frau (2021) or SYSVJ6 extends TS09 by incorporating jumps in the spot and in the cost of

carry forward curve; Frau & Fanelli (2021) or SYSSV7 extends TS09 by introducing seasonal-

ity in the variance; Schneider & Tavin (2018) or ST18 presents a two-factor model for futures

prices with stochastic volatility together with a time-decaying deterministic term accounting

for the Samuelson effect; and Schneider & Tavin (2021) or ST21 extends ST18 by introdu-

cing seasonality in the variance. A key difference between the pairs of models ST18 & ST21

and TS09 & SYSSV consists of the expression followed by the volatility of the futures prices:

whereas the former pair are future-based models, the latter are spot-based models which futures

dynamics are derived from applying Itô’s Lemma to the futures dynamics as well as imposing

the martingale condition.8

The first seven models are originally defined in terms of spot prices; we also present their

dynamics in terms of futures’ prices. Instead of presenting each of the models’ price and log-

price dynamics individually, they can all be found in Tables 3.1 and 3.2. The last two models

were originally defined following a multi-dimensional set-up, but in this work we consider them

in a uni-dimensional form. The main features of these models are summarised in Table 3.3. In

Tables 3.4 and 3.5 we present the ODEs followed by each of the terms forming the SCF and the

JCF, and their respective solutions.

In the case of spot-based models, the equations we obtain in Sections 3.4.2 and 3.4.3 can be

directly applied to futures prices by replacing one price for the other and setting y = r − q =

0. Regarding jump models (i.e., Mer76, Bat96 and SYSVJ), we assume that there are only

idiosyncratic jumps which are not correlated. In this panel we incorporate two recent extensions

of the TS09 model: for SYSVJ we only consider i.i.d. jumps in spot prices; for SYSSV we only

consider the simple sinusoidal form; and for ST21 we only consider the sinusoidal form.

ST18 and ST21 encompass Hes93 as a nested model: when γ = 0 in ST18, it reduces to

Hes93 for futures curves. In ST18, the authors also derive closed-form solutions for the model,

presenting the JCF followed by the log-futures aimed for pricing crack spread options. Altern-

atively and following Sitzia (2018), we present our own expressions so that the methodology

we follow to obtain the expressions for A(t;u, v), B(t;u, v) and C(t;u, v) in the characteristic

function for TS09 and posterior models is the same.

Deriving the JCFs for the panel of models considered conforms a significant contribution

of this work. This is inspired by the work by ST18 where the authors present the expressions

6Acronym for Stochastic cost of carry Y Stochastic Volatility and Jumps.
7Acronym for Stochastic cost of carry Y Seasonal Stochastic Volatility.
8In ST18 and ST21, the term correcting the square root of vt is a time-decaying functional form composed of one
single term. In TS09-SV1 and SYSSV, this term is comprised by two elements, one related to the spot price and
another to the cost of carry, the latter being the integral of a time-decaying functional form.
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followed by the terms in the JCF aimed for pricing European crack spread options. We take that

approach one step further and calculate the correspondent JCFs aimed for pricing two different

types of European spread options, in particular calendar and crack. Specifically, novel is the

expression for the JCF in the case of calendar spread options; and novel are the expressions

followed by the JCF’s terms for the newer models (that is, TS09 and posterior) for either crack

or calendar options.

In the remaining of this section we present the expression followed by the JCF with which

we can price European plain vanilla, calendar spread and crack spread options on futures con-

tracts. We differentiate between models presenting i.i.d. increments (BS73 and Mer76) and

non-Gaussian or stochastic volatility models (all others). For bivariate processes, we present

the general equations followed by the JCF, as can be seen in Propositions 3.1 and 3.2 (calendar

spread options), 3.3 and 3.4 (crack spread options).

3.4.1 Plain Vanilla Options

The transform in (3.4) has an exponential affine solution, its form depending on the type of

process followed by the risk factors.

Affine Processes with i.i.d. Increments

For an affine process with i.i.d. increments, the SCF at time t ≤ T for the futures price FT is

given by

ΦF (u) ≡ EQ
0

[
eiuf(t,T )

]
= eA(t−0;u)+B(t−0;u)f(0,T ). (3.23)

For BS73 and Mer76, the SCF can be computed replacing the expressions in Sub-table 3.4b

into equation (3.23).

Affine Processes with Stochastic Volatility

For an affine process with stochastic volatility, the SCF at time t ≤ T for the futures price and

its variance is given by

ΦF,V (u, v) ≡ EQ
0

[
eiuf(t,T )+ivVt

]
= eA(t−0;u,v)+B(t−0;u,v)f(0,T )+C(t−0;u,v)V0 . (3.24)

For the remaining models, the SCF can be computed replacing the expressions in Sub-table 3.4b

into equation (3.24).

For further details on the components, see Appendix 3A.
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3.4.2 Calendar Spread Options

To the best of our knowledge, this is the first work in the literature which explicitly defines the
general equations followed by the JCF, as can be seen in the following propositions.9

Affine Processes with i.i.d. Increments

The SCF of F (t, T ) at t = 0 has an exponential affine solution which is given by equation
(3.23). The following proposition provides the JCF for the two futures involved in the calendar
spread for an i.i.d. process:

Proposition 3.1 For an affine process with i.i.d. increments, the JCF at time t ≤ T1, T2 for the
futures prices FT1 , FT2 is given by

ΦF(u) ≡ EQ
0

[
eiu1fT1+iu2fT2

]
= eA(T2−T1;u2)ΦFt,T1

(
u1 − iB(T2 − T1;u2)

)
. (3.25)

The SCF of the first (second) maturity is given by setting u2 = 0 (u1 = 0) in the JCF.

Proof. See Appendix 3B.1 for proof.

For BS73 and Mer76, the JCF can be computed replacing the expressions in Sub-table 3.5b
into equation (3.25).

Affine Processes with Stochastic Volatility

The SCF of F (t, T ) and its variance Vt at t = 0 has an exponential affine solution given by
(3.24). The following proposition provides the JCF for the two futures involved in the calendar
spread for a stochastic volatility process:

Proposition 3.2 For an affine process with stochastic volatility, the JCF at time t ≤ T1, T2 for
the futures prices FT1 , FT2 is given by

ΦFT1 ,FT2
(u1, u2) ≡ EQ

0

[
eiu1fT1+iu2fT2

]
= eA(T2−T1;u2,0)ΦFt,T1

(
u1 − iB(T2 − T1;u2, 0);−iC(T2 − T1;u2, 0)

)
. (3.26)

The SCF of the first (second) maturity is given by setting u2 = 0 (u1 = 0) in the JCF.

Proof. See Appendix 3B.2 for proof.

For the remaining models, the JCF can be computed replacing the expressions in Sub-table
3.5b into equation (3.26).

9For this option type and for their model only, ST18 present the expression followed by the JCF.
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3.4.3 Crack Spread Options

We explicitly define the general equations followed by the JCF, as can be seen in the following
propositions.

Affine Processes with i.i.d. Increments

The SCF of F (t, T ) at time t = 0 has an exponential affine solution which is given by equation
(3.23). The following proposition provides the JCF for the two futures involved in the crack
spread for an i.i.d. process:

Proposition 3.3 For an affine process with i.i.d. increments, the JCF at time t ≤ T for the
futures prices F1,T , F2,T is given by

ΦF(u) ≡ EQ
0

[
eiu1f1,T+iu2f2,T

]
= eA(T ;u1,u2)+B1(T ;u1)f1(0,T )+B2(T ;u2)f2(0,T ). (3.27)

The SCF of the first (second) asset is given by setting u2 = 0 (u1 = 0) in the JCF.

For BS73 and Mer76, the JCF can be computed replacing the expressions in Sub-table 3.5b
into equaiton (3.27).

Affine Processes with Stochastic Volatility

The SCF of F (t, T ) and its variance Vt at t = 0 has an exponential affine solution given by
(3.24). The following proposition provides the JCF for the two futures involved in the crack
spread for a stochastic volatility process:

Proposition 3.4 For an affine process with stochastic volatility, the JCF at time t ≤ T for the
futures prices F1,T , F2,T is given by

ΦF(u) ≡ EQ
0

[
eiu1f1,T+iu2f2,T

]
= eA(T ;u1,u2)+B1(T ;u1)f1(0,T )+B2(T ;u2)f2(0,T )+C(T ;u1,u2)V0 . (3.28)

The SCF of the first (second) asset is given by setting u2 = 0 (u1 = 0) in the JCF.

For the remaining models, the JCF can be computed replacing the expressions in Sub-table
3.5b into equation (3.28).

Following the newer models (that is, TS09 and extensions, ST18 and ST21), the expressions
followed by the components of the variance term C(τ ;u1, u2) can be found in Appendix 3C.2;
those followed by the independent term A(τ ;u1, u2) can be found in Appendix 3C.3. Observe
that the expressions followed by all these terms in ST18 are as in TS09, and in ST21 are as in
SYSSV, respectively.
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3.5 Results

This section features a pricing exercise of different types of European options. Initial values for

the factors involved can be found in Table 3.6 and model parameters can be found in Table 3.7.

We calculate options’ values by means of two different techniques. Prices in columns

CM99 are obtained using the methodology described in Carr & Madan (1999) as in (3.8)

and (3.19); we use the FFT algorithm with 1,024 evaluation points and we set the value of

α = 0.75. Prices in columns CF13 are calculated using the technology described in Caldana &

Fusai (2013) as in (3.20) and (3.21); we use the Gauss-Kronrod quadrature with δ = 0.75.

For plain vanilla options, we use the SCF in (3.4), whereas for calendar and crack spread

options, we use the JCFs in (3.11) and (3.16) respectively.

Table 3.8 presents the values we obtain for European crack and calendar spread options,

as well as plain vanilla ones. Sub-table (a) refers to options on spot prices and Sub-table (b)

refers to options on futures prices. In terms of results, we differentiate two groups of models:

i) BS73, Mer76, Hes93 and Bat96; ii) TS09 and extensions (SYSVJ, SYSSV), ST18 and ST21.

For the earlier models, prices obtained under both methodologies quickly and clearly converge:

option values for the first group diverge in the fourth or fifth decimal place; prices for models

in the second group diverge in the first or second decimal place. For this second group we

follow the methodology described in Sitzia (2018), which requires the use of hypergeometric

functions. The complexity in this type of solutions requires higher computation precision to

obtain accurate results, and the number of integration points also affects the output. The identify

these elements as drivers of divergence between methods.10 In Sub-table (c) we display the

calculation time expressed in seconds. We find that CF13 is, on average, 26.5 times quicker

than CM99.

In Table 3.9 and for all the models in the panel, we extend the European call option prices

discussed in the previous table to a vector of 11 strikes: for (calendar and crack) spread options

we consider K = [0 : 0.4, . . . , 3.6 : 4], whereas for plain vanilla options they start from the

ATM level and increase in the same magnitude as indicated for spread options. In this table we

only consider options based on futures prices.

3.6 Conclusions and Further Research

Different types of spread options are quite common in commodity markets; in this work we

focus on calendar and crack spread options. For both types, we derive the corresponding JCF

10This issue is under current investigation.

108



3.7 Tables

for the two futures involved in the spread and price European spread options on it. This paper’s
main contribution are two: the explicit expressions followed by the JCFs which are required for
the pricing of calendar spread options, and the expressions followed by the JCF’s terms for the
newer models (TS09, extensions (SYSVJ, SYSSV), ST18 and ST21) which are required for the
pricing of either type of spread options.

We follow the option pricing methodology described in CM99 and the one described in
CF13, and then compare prices and computation times. The prices obtained withCM99 clearly
converge with those obtained using CF13, especially for the earlier models, but there is a
clear trade-off between accuracy and computational time. Moreover, CF13 provides prices on
average 26.5 times quicker than CM99.

We outlining areas for future research. In order to achieve better accuracy between pri-
cing methodologies we propose to implement the pricing exercise utilising higher precision
computation (e.g., the Multiprecision Toolbox in Matlab). Additionally, we consider the imple-
mentation of Monte Carlo simulations to benchmark option prices. We also believe it valuable
to use real market data for the pricing and calibrating each of the models to quoted options,
especially in energy markets such as the West Texas Intermediate light sweet crude oil and the
Henry Hub natural gas. This would enable comparing the goodness of fit for each of the models
presented in this work, and observe which perform best.

3.7 Tables
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Table 3.1: Dynamics under Q

Model Dynamics Volatility

BS73
[

dSt
St

= ytdt+ σSdW
S
t σS constant

dF (t,T )
F (t,T )

= σFdW
F
t σF constant

Mer76 dSt
St

=
(
yt − λEQ

[
eJS − 1

] )
dt+ σSdW

S
t +

(
eJS − 1

)
dNt σS constant

dF (t,T )
F (t,T )

= −λEQ
[
eJF − 1

]
dt+ σFdW

F
t +

(
eJF − 1

)
dNt σF constant

Hes93 dSt
St

= ytdt+ σS
√
vtdW

S
t σS constant

dvt = κ (θ − vt) dt+ σv
√
vtdW

v
t σv constant

dF (t,T )
F (t,T )

= σF
√
vtdW

F
t σF constant

Bat96 dSt
St

=
(
yt − λEQ

[
eJS − 1

] )
dt+ σS

√
vtdW

S
t +

(
eJS − 1

)
dNt σS constant

dvt = κ (θ − vt) dt+ σv
√
vtdW

v
t σv constant

dF (t,T )
F (t,T )

= −λEQ
[
eJF − 1

]
dt+ σF

√
vtdW

F
t +

(
eJF − 1

)
dNt σF constant

TS09 dSt
St

= ytdt+ σS
√
vtdW

S
t σS constant

dy(t, T ) = µy(t, T )dt+ σy(t, T )
√
vtdW

y
t σy(t, T ) = αe−γ(T−t)

dvt = κ (θ − vt) dt+ σv
√
vtdW

v
t α = 1, σv constant

dF (t,T )
F (t,T )

=
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
σY (t, T ) =

∫ T
t
σy(t, u)du

SYSVJ dSt
St

=
(
yt − λEQ

[
eJS − 1

] )
dt+ σS

√
vtdW

S
t +

(
eJS − 1

)
dNt σS constant

dy(t, T ) =
(
µy(t, T )− λEQ [Jy]

)
dt+ σy(t, T )

√
vtdW

y
t + JydNt xxx σy(t, T ) = αe−γ(T−t)

dvt = κ (θ − vt) dt+ σv
√
vtdW

v
t α, σv constant

dF (t,T )
F (t,T )

=
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
σY (t, T ) =

∫ T
t
σy(t, u)du

XXX − λEQ
t

[
eJS+JY (t,T ) − 1

]
dt+

(
eJS+JY (t,T ) − 1

)
dNt

SYSSV X dSt
St

= ytdt+ σS
√
vtdW

S
t σS constant

dy(t, T ) = µy(t, T )dt+ σy(t, T )
√
vtdW

y
t σy(t, T ) = αe−γ(T−t)

dvt = κ (θt − vt) dt+ σv
√
vtdW

v
t α = 1, σv constant

xxθt = aθ + bθ cos(2π(t+ t0))
dF (t,T )
F (t,T )

=
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
σY (t, T ) =

∫ T
t
σy(t, u)du

ST18 dF (t,T )
F (t,T )

=
∑n

i=1 σFi(t, T )
√
vi,tdW

Fi
t σFi(t, T ) = αie

−γi(T−t) XXX

dvi,t = κi (θi − vi,t) dt+ σvi
√
vi,tdW

vi
t αi = 1, σvi constant

ST21 dF (t,T )
F (t,T )

=
∑n

i=1 σFi(t, T )
√
vi,tdW

Fi
t σFi(t, T ) = αie

−γi(T−t)

dvi,t = κi (θt − vi,t) dt+ σvi
√
vi,tdW

vi
t αi = 1, σvi constant

xxθt = aθ + bθ cos(2π(t+ t0))

XXX
NOTES: This table presents the dynamics and the volatility expressions for the models we study in this work. St and F (t, T ) denote the spot
and futures prices; yt denotes the instantaneous cost of carry yt = rt− qt with rt, qt denoting the instantaneous interest rate and convenience
yield; vt denotes the instantaneous variance.
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3.7 Tables

Table 3.2: Log-price dynamics under Q

Model Dynamics Drift

BS73
[

d lnSt = µtdt+ σSdW
S
t µt = yt −

σ2
S

2

d lnF (t, T ) = (µt − yt)dt+ σSdW
S
t

Mer76 d lnSt = µtdt+ σSdW
S
t + (eJS − 1)dNt µt = yt −

σ2
S

2
− λEQ

[
eJS − 1

]
d lnF (t, T ) = (µt − yt)dt+ σSdW

S
t + (eJS − 1)dNt

Hes93 d lnSt = µtdt+ σS
√
vtdW

S
t µt = yt −

σ2
S

2
vt

d lnF (t, T ) = (µt − yt)dt+ σS
√
vtdW

S
t

Bat96 d lnSt = µtdt+ σS
√
vtdW

S
t + (eJS − 1)dNt µt = yt −

σ2
S

2
vt − λEQ

[
eJS − 1

]
d lnF (t, T ) = (µt − yt)dt+ σS

√
vtdW

S
t + (eJS − 1)dNt

TS09,SYSSV d lnSt = µtdt+
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
µt = yt +

∫ T
t
µy(t, u)du− σ2

S

2
vt

d lnF (t, T ) = (µt − yt)dt+
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
SYSVJ d lnSt = µtdt+

√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
µt = yt +

∫ T
t
µy(t, u)du− σ2

S

2
vt

d lnF (t, T ) = (µt − yt)dt+
√
vt
(
σSdW

S
t + σY (t, T )dW y

t

)
XX − λEQ

[
eJS+JY (t,T ) − 1

]
XXXXXX +

(
eJS+JY (t,T ) − 1

)
dNt

ST18,ST21 d lnF (t, T ) =
∑n

i=1

(
µitdt+ σFi(t, T )

√
vi,tdW

Fi
t

)
µi,t = −1

2
σ2
Fi

(t, T )vi,t

XXX
NOTES: In this table we present the equivalent log-price dynamics to the models displayed in Table 3.1.

Table 3.3: Factors and features per model

Model Dimension Stochastic Factors Seasonality Jumps Parameter
Single Multiple St y(t, T ) F (t, T ) vt Prices Vols. Prices Vols. Count

BS73 X X 1
Mer76 X X X 4
Hes93 X X X 5
Bat96 X X X X 8
TS09 X X X X 9
SYSVJ X X X X X 12
SYSSV X X X X X 10
ST18 X X X 6
ST21 X X X X 7

NOTES: In this table we present the main features presented by a panel of nine models. Seasonality refers to explicit seasonality in the model
dynamics. Parameter Count refers to the number of parameters according to the specification we deal with in this work. Since ST18 and ST21
originally set α = 1, we do not count it in. Alternatively, and although Hes93 and Bat96 originally set σ = 1, we let it differ, hence we count
it in.
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3. Spread Options on Commodity Prices

Table 3.4: Fourier transforms for univariate processes

(a) ODEs

Model XXxxxxxxxxX ∂A(τ ;u)/∂τ XXXxxxxxxx XXXxxXxxXx ∂C(τ ;u)/∂τ XXxxXxxXX
BS73 b0 −
Mer76 b0 + λ(nJ − iumJ) −
Bat96,SYSVJ C(τ ;u)κθ + λ(nJ − iumJ) b0 + b1C(τ ;u) + b2C

2(τ ;u)

Hes93,TS09,ST18 C(τ ;u)κθ b0 + b1C(τ ;u) + b2C
2(τ ;u)

SYSSV,ST21 C(τ ;u)κθt b0 + b1C(τ ;u) + b2C
2(τ ;u)

XXX
(b) Solutions to ODEs

Model A(τ ;u) C(τ ;u)

BS73 b0τ −
Mer76 b0τ + λ(nJ − iumJ)τ −
Hes93 −κθ

σ2
v

(
(b1 + d)τ + 2 ln 1−ge−dτ

1−g

)
− b1+d

σ2
v

(
1−e−dτ
1−ge−dτ

)
Bat96 −κθ

σ2
v

(
(b1 + d)τ + 2 ln 1−ge−dτ

1−g

)
+λ(nJ − iumJ)τ − b1+d

σ2
v

(
1−e−dτ
1−ge−dτ

)
TS09,ST18 m(A1(τ) + k3) 2γ

σ2
v

(
β + µz + z g

′(z)
g(z)

)
SYSVJ m(A1(τ) + k3) + λ(nJ − iumJ)τ 2γ

σ2
v

(
β + µz + z g

′(z)
g(z)

)
SYSSV,ST21 m(A1(τ) + A2(τ) + A3(τ) + A4(τ) + k3) xx 2γ

σ2
v

(
β + µz + z g

′(z)
g(z)

)
xx

A1(τ) = aθ
(
βτ − 1

γ

(
µz + ln g(z)

))[
A2(τ) = −bθ β

2π
ysτ[

A3(τ) = bθ µz
4π2+γ2

(
γycτ − 2πysτ

)
xxA4(τ) = bθ

ω

(
τyc0g

′(ω−1)− τ2

2

(
g′(ω−1) (yc0ζ1 − 2πys0) + yc0ζ2

))
xx

XXX
(c) Parameters in ODEs

Model b0 b1 b2

BS73,Mer76 −σ2
S

2
(u2 + iu) − −

Hes93,Bat96 −σ2
S

2
(u2 + iu) −κ+ iuσvρSvσS

σ2
v

2

TS09,SYSVJ,SYSSV −1
2
(u2 + iu)(σ2

S + σ2
Y (t, T ) + 2ρSyσSσY (t, T )) −κ+ iuσv(ρSvσS + ρyvσY (t, T )) σ2

v

2

ST18,ST21 −1
2
(u2 + iu)σ2

F (t, T ) −κ+ iuσvρFvσF (t, T ) σ2
v

2

XXX
NOTES: With τ ≡ TOpt − t, this table presents the expressions followed by the ODEs and their solution for our panel of models. Observe
that the expressions correspondent to BS73, Mer76, Hes93 and Bat96 are expressed in terms of futures prices (alternatively and for spot prices,
add iuy = iu(r − q) to A′(τ ;u) and iuyτ to A(τ ;u)). The expressions followed by g(z), g′(z) can be found in (3A.6); z, β, µ depend on
the model: for TS09 and extensions, they can be found in (3A.8), for ST18 and ST21, they can be found in (3A.12). Observe that for BS73,
Mer96, Hes93 and Bat96, we have that σY (t, T ) = 0 (equivalently, σF (t, T ) = σS ). The expressions followed by the jump terms in Mer76,
Bat96 and SYSVJ can be found in (3A.4); those followed by d, g in Hes93 and Bat96 write

d =
√
b21 + σ2

v(σ
2
Su

2 + iuσS), g =
b1 − d
b1 + d

. (3.29)

The expression followed by m is as in (3A.14); k3 is as in (3A.18) and depends on the model.
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3.7 Tables

Table 3.5: Fourier transforms for bivariate processes

(a) ODEs

Model ∂A(τ ;u1, u2)/∂τ ∂C(τ ;u1, u2)/∂τ

BS73 b0 −
Mer76 b0 +

(
λ1(nJ1 − iu1mJ1) + λ2(nJ2 − iu2mJ2)

)
−

Bat96,SYSVJ C(τ ;u1, u2)κθ +
(
λ1(nJ1 − iu1mJ1) + λ2(nJ2 − iu2mJ2)

)
b0 + b1C(τ ;u1, u2) + b2C

2(τ ;u1, u2)

Hes93,TS09,ST18 C(τ ;u1, u2)κθ b0 + b1C(τ ;u1, u2) + b2C
2(τ ;u1, u2)

SYSSV,ST21 C(τ ;u1, u2)κθt b0 + b1C(τ ;u1, u2) + b2C
2(τ ;u1, u2)

XXX
(b) Solutions to ODEs

Model A(τ ;u1, u2) C(τ ;u1, u2)

BS73 b0τ −
Mer76 b0τ +

(
λ1(nJ1 − iu1mJ1) + λ2(nJ2 − iu2mJ2)

)
τ −

Hes93 −κθ
σ2
v

(
(b1 + d)τ + 2 ln 1−ge−dτ

1−g

)
− b1+d

σ2
v

(
1−edτ

1−ge−dτ
)

Bat96 −κθ
σ2
v

(
(b1 + d)τ + 2 ln 1−ge−dτ

1−g

)
+
(
λ1(nJ1 − iu1mJ1) + λ2(nJ2 − iu2mJ2)

)
τ − b1+d

σ2
v

(
1−edτ

1−ge−dτ
)

TS09,ST18 m(A1(τ ;u1, u2) + k3) 2γ
σ2
v

(
β + µz + z g

′(z)
g(z)

)
SYSVJ m(A1(τ ;u1, u2) + k3) +

(
λ1(nJ1 − iu1mJ1) + λ2(nJ2 − iu2mJ2)

)
τ 2γ

σ2
v

(
β + µz + z g

′(z)
g(z)

)
SYSSV,ST21 m(A1(τ ;u1, u2) + A2(τ ;u1, u2) + A3(τ ;u1, u2) + A4(τ ;u1, u2) + k3) 2γ

σ2
v

(
β + µz + z g

′(z)
g(z)

)
A1(τ ;u1, u2) = aθ

(
βτ − 1

γ

(
µz + ln g(z)

))[
A2(τ ;u1, u2) = −bθ β

2π
ysτ[

A3(τ ;u1, u2) = bθ µz
4π2+γ2

(
γycτ − 2πysτ

)
A4(τ ;u1, u2) = τ b

θ

ω

(
yc0g
′(ω−1)− τ

2

(
g′(ω−1) (yc0ζ1 − 2πys0) + yc0ζ2

))
XXX

(c) Parameters in ODEs

Model b0 b1 b2

BS73,Mer76 −1
2

(
σ2
S1

(u2
1 + iu1) + σ2

S2
(u2

2 + iu2) + 2σS1u1σS2u2ρ12

)
− −

Hes93,Bat96 −1
2

(
σ2
S1

(u2
1 + iu1) + σ2

S2
(u2

2 + iu2) + 2σS1u1σS2u2ρ12

)
−κ+ iσv

(
u1σS1ρS1v + u2σS2ρS2v

) σ2
v

2

TS09,SYSVJ,SYSSV −1
2

(
σ2
S1

(u2
1 + iu1) + σ2

S2
(u2

2 + iu2) + 2σS1u1σS2u2ρ12

)
−κ+ iσv

(
u1σS1ρS1v + u2σS2ρS2v

) σ2
v

2

−1
2

(
u2

1 + u2
2 + i(u1 + u2)

)
σ2
Y +iσv(u1 + u2)σY ρyv

−
(
σS1(u

2
1 + iu1) + σS2(u

2
2 + iu2)

)
σY ρSy

ST18,ST21 −1
2

(
σ2
F1

(u2
1 + iu1) + σ2

F2
(u2

2 + iu2) + 2σF1u1σF2u2ρ12

)
−κ+ iσv

(
u1σF1ρF1v + u2σF2ρF2v

) σ2
v

2

XXX
NOTES: This table presents the expressions followed by each component of the JCF for the futures log-prices for our panel of models. Observe
that they are expressed in terms of futures prices (for spot prices, add iu1y1 + iu2y2 = iu1(r − q1) + iu2(r − q2) to A′(τ ;u1, u2), and
add (iu1y1 + iu2y2)τ to A(τ ;u1, u2)). For affine processes with i.i.d. increments, the JCF can be computed replacing these expressions
into (3.25) and (3.27) for calendar and crack spread options; for affine processes with stochastic volatility, it can be computed replacing these
expressions into (3.26) and (3.28) for calendar and crack spread options. The expressions followed by g(z), g′(z) can be found in (3A.6); m
can be found in (3A.14) and the jump-related paramters in (3C.3). z, β, µ depend on the model: for TS09, SYSVJ and SYSSV they can be
found in (3A.8); for ST18 and ST21, they can be found in (3A.12). d, g read

d =
√
b21 + σ2

v(σ
2
S1
u2

1 + σS2u
2
2 + 2σS1σS2ρ12 + i(σS1u1 + σS2u2)), g =

b1 − d
b1 + d

. (3.30)

For crack spread options, we define τ ≡ TOpt − t, with T1 > TOpt > t ≥ 0. For calendar spread options, the time argument can be
τ ≡ T1 − t or τ ≡ TOpt − T1, depending on the term in the JCF, with T2 > TOpt > T1 > t ≥ 0.
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3. Spread Options on Commodity Prices

Table 3.6: Initial values for bivariate processes

(a) Crack Spread Options xxx (b) Calendar Spread Options

Factor Asset 1 Asset 2
St S0 = 100 S0 = 96

rt,T r0,T = 0.10 r0,T = 0.10

qt,T q0,T = 0.05 q0,T = 0.05

yt,T y0,T = 0.05 y0,T = 0.05

F (t, T ) F (0, T ) = 105.1271 F (0, T ) = 100.9220

Vt V0 = 0.04 V0 = 0.04

Factor Asset 1 Asset 2
St S0 = 100 S0 = 96

rt,T r0,T1 = 0.10 r0,T1 = 0.10

r0,T2 = 0.10 r0,T2 = 0.10

qt,T q0,T1 = 0.05 q0,T1 = 0.05

q0,T2 = 0.05 q0,T2 = 0.05

yt,T y0,T1 = 0.05 y0,T1 = 0.05

y0,T2 = 0.05 y0,T2 = 0.05

F (t, T ) F (0, T1) = 105.1271 F (0, T1) = 100.9220

F (0, T2) = 110.5171 F (0, T2) = 106.0964

Vt V0 = 0.04 V0 = 0.04

XXX
NOTES: We define yt,T ≡ rt,T − qt,T . The values for all the futures prices are obtained using equation (3.5). For Crack Spread Options (a),
we assume T = 1. For Calendar Spread Options (b), we assume T1 = 1, T2 = 2.

Table 3.7: Model parameters for bivariate processes

Model SYSSV SYSVJ ST21 ST18 TS09 Bat96 Hes93 Mer76 BS73
σF 1.00 1.00 1.00 1.00 1.00 1.00, 0.50 1.00, 0.50 0.20, 0.10 0.20, 0.10

α 0.50 0.50 – – 0.50 – – – –
γ 0.75 0.75 1.25 1.25 0.75 – – – –
κ 1.00 1.00 0.20 0.20 1.00 1.00 1.00 – –
θ 0.04 0.04 0.03 0.03 0.04 0.04 0.04 – –
bθ 0.01 – 0.40 – – – – – –
σv 0.05 0.05 0.75 0.75 0.05 0.05 0.05 – –
ρFy −1.00 −1.00 – – −1.00 – – – –
ρFv −0.50 −0.50 −0.10 −0.10 −0.50 −0.50, 0.25 −0.50, 0.25 – –
ρyv −0.75 −0.75 – – −0.75 – – – –
λ – 0.20,+0.10 – – – 0.20,+0.10 – 0.20,+0.10 –
µJ – 0.02,−0.07 – – – 0.02,−0.07 – 0.02,−0.07 –
σJ – 0.06,+0.01 – – – 0.06,+0.01 – 0.06,+0.01 –

XXX
NOTES: In this table we present the model parameters we use for option pricing. For jump models, we assume that only idiosyncratic jumps
exist, with no correlation between them. For crack spread options, we set an asset correlation of ρ12 = 0.5. When there is a single value per
parameter, it means that we have used the same value for each underlying asset. The subscript F in σ and ρ refers to price, for either a spot or
a futures contract. The parameter θ converts to aθ for SYSSV and ST21.
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3.7 Tables

Table 3.8: Option prices and calculation time

(a) Options on Spot prices

OPTION CRACK CALENDAR PLAIN VANILLA
Assets 1 – 2 Asset 1 Asset 2 Asset 1 Asset 2

Model CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CM99
BS73 8.5131 8.5132 0.0001 7.8750 7.8751 0.0001 2.9539 2.9540 0.0001 9.9409 6.2142
Mer76 8.6410 8.6411 0.0001 7.9835 7.9835 0.0001 3.1547 3.1548 0.0001 10.011 6.3236
Hes93 8.5427 8.5428 0.0001 6.1454 6.1455 0.0001 2.1479 2.1480 0.0001 9.9563 6.2429
Bat96 8.6670 8.6671 0.0001 6.2774 6.2774 0.0001 2.3886 2.3887 0.0001 10.025 6.3492
TS09 6.2602 6.2596 0.0006 3.4123 3.4131 0.0008 3.2758 3.2766 0.0008 8.6312 8.2860
SYSVJ 6.4413 6.4405 0.0008 3.6085 3.6094 0.0009 3.4641 3.4650 0.0009 8.7109 8.3367
SYSSV 5.7505 5.8169 0.0664 2.5588 2.6632 0.1044 2.4564 2.5566 0.1002 8.8722 8.5173

XXX
(b) Options on futures prices

OPTION CRACK CALENDAR PLAIN VANILLA
Assets 1 – 2 Asset 1 Asset 2 Asset 1 Asset 2

Model CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CM99
BS73 8.5131 8.5132 0.0001 7.8750 7.8751 0.0001 2.9539 2.9540 0.0001 7.5771 3.6415
Mer76 8.6410 8.6411 0.0001 7.9835 7.9835 0.0001 3.1547 3.1548 0.0001 7.6526 3.7770
Hes93 8.5427 8.5428 0.0001 6.1454 6.1455 0.0001 2.1479 2.1480 0.0001 7.5497 3.6325
Bat96 8.6670 8.6671 0.0001 6.2774 6.2774 0.0001 2.3886 2.3887 0.0001 7.6251 5.5608
TS09 6.2602 6.2596 0.0006 3.4123 3.4131 0.0008 3.2758 3.2766 0.0008 6.1008 5.8568
SYSVJ 6.4413 6.4405 0.0008 3.6085 3.6094 0.0009 3.4641 3.4650 0.0009 6.1921 5.9109
SYSSV 5.7505 5.8169 0.0664 2.5588 2.6632 0.1044 2.4564 2.5566 0.1002 6.2574 6.0071

XXX
(c) Running Time

OPTION CRACK CALENDAR
Assets 1 – 2 Asset 1 Asset 2

Model CM99 CF13 Ratio CM99 CF13 Ratio CM99 CF13 Ratio
BS73 1.2487 0.0565 26.3236 1.3030 0.0439 29.8900 1.2886 0.0511 27.0971
Mer76 1.3882 0.0509 28.2857 1.4715 0.0518 28.9777 1.4452 0.0580 26.7167
Hes93 2.3197 0.0832 28.2138 2.7928 0.0982 28.7154 2.7212 0.1068 26.0316
Bat96 2.4315 0.0864 28.2044 2.9154 0.1053 28.0560 2.9080 0.1450 24.6031
TS09 185.6360 8.0146 23.7643 240.9856 9.7031 24.9120 238.4525 9.5027 25.1305
SYSVJ 183.8979 7.6811 24.1235 240.7162 9.6328 25.1317 237.5645 9.3911 25.3402
SYSSV 365.7018 14.8307 24.7392 585.1719 22.0355 26.6296 585.9564 22.2508 26.4149
Average 26.2364 27.4732 25.9049

XXX
NOTES: In this Table we present the values obtained for European call options using those values displayed in Tables 3.6 and 3.7. The model
SYSVJ considers jumps only in St, that is, sub-specification (a1). In Sub-tables (a) and (b) we present option values for spot and futures prices,
respectively. For spread options, values correspond to a strike level K = 0; for plain vanilla options, the options are ATM. Header CM99

indicates that we follow the methodology in Carr & Madan (1999) together with the FFT algorithm with 1,024 evaluation points. Header
CF13 indicates that we use the technology presented in Caldana & Fusai (2013) together with the Gauss-Kronrod quadrature. In Sub-table
(c) we present the calculation time, which is expressed in seconds. On average, CF13 is 26.5 times quicker than CM99. This calculation has
been performed using 10 repetitions of the pricing exercise.
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3. Spread Options on Commodity Prices

Table 3.9: Option prices per vector of strikes

(a) Black & Scholes (1973)

BS73 CRACK CALENDAR PLAIN VANILLA
Assets 1 – 2 Asset 1 Asset 2 Asset 1 Asset 2

Strike CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CM99
0.0000 8.5131 8.5132 0.0001 7.8750 7.8751 0.0001 2.9539 2.9540 0.0001 7.5771 3.6415
0.4000 8.3125 8.3125 0.0001 7.7261 7.7261 0.0000 2.8330 2.8329 0.0001 7.4119 3.4706
0.8000 8.1150 8.1150 0.0000 7.5789 7.5789 0.0000 2.7152 2.7152 0.0000 7.2494 3.3054
1.2000 7.9208 7.9208 0.0000 7.4335 7.4335 0.0000 2.6010 2.6010 0.0000 7.0897 3.1458
1.6000 7.7299 7.7299 0.0000 7.2899 7.2898 0.0000 2.4901 2.4901 0.0000 6.9326 2.9918
2.0000 7.5423 7.5423 0.0000 7.1480 7.1480 0.0000 2.3826 2.3826 0.0000 6.7781 2.8433
2.4000 7.3580 7.3580 0.0000 7.0080 7.0080 0.0000 2.2784 2.2784 0.0000 6.6264 2.7003
2.8000 7.1769 7.1769 0.0000 6.8698 6.8698 0.0000 2.1775 2.1775 0.0000 6.4772 2.5626
3.2000 6.9991 6.9991 0.0000 6.7334 6.7334 0.0001 2.0798 2.0798 0.0000 6.3307 2.4301
3.6000 6.8245 6.8245 0.0000 6.5988 6.5987 0.0001 1.9853 1.9853 0.0000 6.1867 2.3029
4.0000 6.6531 6.6531 0.0000 6.4660 6.4659 0.0001 1.8940 1.8940 0.0000 6.0453 2.1808

XXX
(b) Merton (1976)

Mer76 CRACK CALENDAR PLAIN VANILLA
Assets 1 – 2 Asset 1 Asset 2 Asset 1 Asset 2

Strike CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CM99
0.0000 8.6410 8.6411 0.0001 7.9835 7.9835 0.0001 3.1547 3.1548 0.0001 7.6526 3.7770
0.4000 8.4412 8.4412 0.0001 7.8345 7.8344 0.0000 3.0327 3.0326 0.0001 7.4877 3.6072
0.8000 8.2445 8.2445 0.0000 7.6871 7.6871 0.0000 2.9138 2.9138 0.0000 7.3255 3.4428
1.2000 8.0510 8.0510 0.0000 7.5416 7.5416 0.0000 2.7982 2.7982 0.0000 7.1659 3.2839
1.6000 7.8608 7.8608 0.0000 7.3978 7.3978 0.0000 2.6859 2.6859 0.0000 7.0090 3.1304
2.0000 7.6738 7.6738 0.0000 7.2559 7.2558 0.0000 2.5768 2.5768 0.0000 6.8548 2.9822
2.4000 7.4900 7.4900 0.0000 7.1157 7.1156 0.0000 2.4709 2.4709 0.0000 6.7031 2.8393
2.8000 7.3094 7.3094 0.0000 6.9773 6.9772 0.0000 2.3682 2.3682 0.0000 6.5541 2.7016
3.2000 7.1319 7.1319 0.0000 6.8406 6.8406 0.0001 2.2686 2.2686 0.0000 6.4076 2.5690
3.6000 6.9577 6.9577 0.0000 6.7058 6.7057 0.0001 2.1721 2.1721 0.0000 6.2637 2.4414
4.0000 6.7866 6.7865 0.0000 6.5727 6.5726 0.0001 2.0786 2.0786 0.0000 6.1223 2.3188

XXX
(c) Heston (1993)

Hes93 CRACK CALENDAR PLAIN VANILLA
Assets 1 – 2 Asset 1 Asset 2 Asset 1 Asset 2

Strike CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CM99
0.0000 8.5427 8.5428 0.0001 6.1454 6.1455 0.0001 2.1479 2.1480 0.0001 7.5497 3.6325
0.4000 8.3375 8.3374 0.0001 6.0036 6.0036 0.0000 2.0365 2.0364 0.0001 7.3811 3.4583
0.8000 8.1353 8.1353 0.0000 5.8639 5.8639 0.0000 1.9289 1.9289 0.0000 7.2153 3.2898
1.2000 7.9365 7.9365 0.0000 5.7264 5.7264 0.0000 1.8254 1.8254 0.0000 7.0522 3.1270
1.6000 7.7409 7.7409 0.0000 5.5910 5.5910 0.0000 1.7259 1.7259 0.0000 6.8919 2.9698
2.0000 7.5485 7.5485 0.0000 5.4577 5.4577 0.0000 1.6304 1.6304 0.0000 6.7342 2.8182
2.4000 7.3594 7.3594 0.0000 5.3266 5.3266 0.0000 1.5387 1.5387 0.0000 6.5792 2.6721
2.8000 7.1735 7.1735 0.0000 5.1976 5.1976 0.0000 1.4508 1.4508 0.0000 6.4268 2.5315
3.2000 6.9909 6.9909 0.0000 5.0708 5.0708 0.0000 1.3666 1.3666 0.0000 6.2771 2.3963
3.6000 6.8114 6.8114 0.0000 4.9461 4.9460 0.0001 1.2861 1.2861 0.0000 6.1300 2.2665
4.0000 6.6352 6.6352 0.0000 4.8235 4.8234 0.0001 1.2092 1.2092 0.0000 5.9855 2.1418
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3.7 Tables

Table 3.9: Option prices per vector of strikes – continued

(d) Bates (1996)

Bat96 CRACK CALENDAR PLAIN VANILLA
Assets 1 – 2 Asset 1 Asset 2 Asset 1 Asset 2

Strike CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CM99
0.0000 8.6670 8.6671 0.0001 6.2774 6.2774 0.0001 2.3886 2.3887 0.0001 7.6251 3.7671
0.4000 8.4628 8.4628 0.0000 6.1355 6.1355 0.0000 2.2757 2.2756 0.0001 7.4569 3.5942
0.8000 8.2617 8.2617 0.0000 5.9956 5.9956 0.0000 2.1664 2.1664 0.0000 7.2914 3.4269
1.2000 8.0638 8.0638 0.0000 5.8579 5.8579 0.0000 2.0609 2.0609 0.0000 7.1287 3.2650
1.6000 7.8691 7.8691 0.0000 5.7223 5.7223 0.0000 1.9592 1.9592 0.0000 6.9686 3.1086
2.0000 7.6775 7.6775 0.0000 5.5888 5.5888 0.0000 1.8613 1.8613 0.0000 6.8111 2.9576
2.4000 7.4892 7.4892 0.0000 5.4574 5.4574 0.0000 1.7670 1.7670 0.0000 6.6563 2.8120
2.8000 7.3040 7.3040 0.0000 5.3281 5.3281 0.0000 1.6762 1.6762 0.0000 6.5042 2.6717
3.2000 7.1220 7.1220 0.0000 5.2010 5.2009 0.0000 1.5890 1.5890 0.0000 6.3547 2.5365
3.6000 6.9432 6.9432 0.0000 5.0759 5.0758 0.0001 1.5053 1.5053 0.0000 6.2077 2.4066
4.0000 6.7676 6.7676 0.0000 4.9528 4.9528 0.0001 1.4249 1.4249 0.0000 6.0634 2.2816

XXX
(e) Trolle & Schwartz (2009)

TS09 CRACK CALENDAR PLAIN VANILLA
Assets 1 – 2 Asset 1 Asset 2 Asset 1 Asset 2

Strike CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CM99
0.0000 6.2602 6.2596 0.0006 3.4127 3.4131 0.0005 3.2761 3.2766 0.0005 6.1008 5.8568
0.4000 6.0299 6.0288 0.0011 3.2901 3.2906 0.0005 3.1536 3.1541 0.0005 5.9269 5.6830
0.8000 5.8042 5.8028 0.0013 3.1706 3.1711 0.0005 3.0344 3.0348 0.0004 5.7564 5.5127
1.2000 5.5834 5.5818 0.0016 3.0543 3.0547 0.0005 2.9183 2.9188 0.0004 5.5893 5.3459
1.6000 5.3676 5.3658 0.0019 2.9409 2.9414 0.0004 2.8054 2.8059 0.0004 5.4255 5.1826
2.0000 5.1569 5.1548 0.0021 2.8306 2.8310 0.0004 2.6957 2.6961 0.0004 5.2651 5.0228
2.4000 4.9512 4.9489 0.0023 2.7233 2.7237 0.0004 2.5890 2.5894 0.0004 5.1080 4.8664
2.8000 4.7506 4.7480 0.0025 2.6189 2.6193 0.0004 2.4855 2.4859 0.0004 4.9542 4.7135
3.2000 4.5551 4.5524 0.0027 2.5175 2.5179 0.0004 2.3850 2.3853 0.0004 4.8037 4.5640
3.6000 4.3647 4.3618 0.0028 2.4190 2.4193 0.0004 2.2875 2.2878 0.0003 4.6564 4.4180
4.0000 4.1794 4.1765 0.0029 2.3233 2.3237 0.0003 2.1929 2.1932 0.0003 4.5124 4.2752

XXX
(f) SYSVJ

SYSVJ CRACK CALENDAR PLAIN VANILLA
Assets 1 – 2 Asset 1 Asset 2 Asset 1 Asset 2

Strike CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CM99
0.0000 6.4413 6.4405 0.0008 3.6086 3.6094 0.0008 3.4643 3.4650 0.0007 6.1921 5.9109
0.4000 6.2141 6.2129 0.0012 3.4850 3.4858 0.0008 3.3407 3.3415 0.0007 6.0189 5.7371
0.8000 5.9914 5.9900 0.0014 3.3645 3.3652 0.0007 3.2204 3.2211 0.0007 5.8490 5.5669
1.2000 5.7735 5.7719 0.0015 3.2469 3.2476 0.0007 3.1031 3.1038 0.0007 5.6824 5.4001
1.6000 5.5604 5.5587 0.0017 3.1322 3.1329 0.0007 2.9888 2.9895 0.0007 5.5191 5.2368
2.0000 5.3521 5.3503 0.0018 3.0205 3.0212 0.0007 2.8777 2.8783 0.0007 5.3591 5.0769
2.4000 5.1487 5.1468 0.0019 2.9116 2.9123 0.0007 2.7695 2.7701 0.0006 5.2024 4.9205
2.8000 4.9502 4.9482 0.0020 2.8057 2.8063 0.0007 2.6643 2.6649 0.0006 5.0490 4.7674
3.2000 4.7566 4.7545 0.0021 2.7025 2.7032 0.0006 2.5620 2.5626 0.0006 4.8988 4.6178
3.6000 4.5680 4.5658 0.0022 2.6022 2.6028 0.0006 2.4627 2.4633 0.0006 4.7518 4.4715
4.0000 4.3842 4.3820 0.0022 2.5047 2.5052 0.0006 2.3662 2.3668 0.0006 4.6080 4.3285
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3. Spread Options on Commodity Prices

Table 3.9: Option prices per vector of strikes – continued

(g) SYSSV

SYSSV CRACK CALENDAR PLAIN VANILLA
Assets 1 – 2 Asset 1 Asset 2 Asset 1 Asset 2

Strike CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CF13 Abs. Diff. CM99 CM99
0.0000 5.7505 5.8169 0.0664 2.5588 2.6632 0.1044 2.4564 2.5566 0.1002 6.2574 6.0071
0.4000 5.5162 5.5805 0.0643 2.4442 2.5461 0.1020 2.3418 2.4397 0.0978 6.0773 5.8270
0.8000 5.2868 5.3492 0.0624 2.3321 2.4324 0.1003 2.2300 2.3261 0.0961 5.9006 5.6506
1.2000 5.0626 5.1232 0.0606 2.2233 2.3219 0.0986 2.1216 2.2160 0.0944 5.7274 5.4778
1.6000 4.8437 4.9025 0.0588 2.1177 2.2146 0.0969 2.0164 2.1092 0.0928 5.5576 5.3085
2.0000 4.6302 4.6873 0.0571 2.0153 2.1106 0.0953 1.9145 2.0057 0.0912 5.3913 5.1428
2.4000 4.4219 4.4774 0.0554 1.9159 2.0096 0.0937 1.8159 1.9055 0.0896 5.2283 4.9806
2.8000 4.2191 4.2730 0.0539 1.8196 1.9118 0.0922 1.7204 1.8085 0.0881 5.0688 4.8220
3.2000 4.0217 4.0740 0.0524 1.7264 1.8171 0.0907 1.6281 1.7147 0.0866 4.9126 4.6668
3.6000 3.8297 3.8806 0.0510 1.6361 1.7254 0.0892 1.5389 1.6241 0.0852 4.7598 4.5152
4.0000 3.6431 3.6927 0.0496 1.5488 1.6366 0.0878 1.4528 1.5365 0.0837 4.6102 4.3670

XXX
NOTES: In these Tables we present the values obtained for European call options using those values displayed in Tables 3.6 and 3.7. We
present option values where the underlying price is that of a futures contract. For spread options, values correspond to strike levels starting
fromK = 0 up toK = 4, increasing in 0.4; for plain vanilla options, the options start ATM and increase in 0.4. Header CM99 indicates that
we follow the methodology in Carr & Madan (1999) together with the FFT algorithm with 1,024 evaluation points. Header CF13 indicates
that we use the technology presented in Caldana & Fusai (2013) together with the Gauss-Kronrod quadrature. Each sub-table refers to a model
in the panel. The model SYSVJ considers jumps only in St, that is, sub-specification (a1).

118



Bibliography

Alfeus, M. & Schloegl, E. (2018), ‘On numerical methods for spread options’.

URL: https://ssrn.com/abstract=3099902 97

Bakshi, G. & Madan, D. (2000), ‘Spanning and derivative security valuation’, Journal of Fin-

ancial Economics 55(2), 205–238. 99

Bates, D. S. (1996), ‘Jumps and stochastic volatility: Exchange rate processes implicit in

deutsche mark options’, Review of Financial Studies 9(1), 69–107. 103

Bjerksund, P. & Stlensland, G. (2011), ‘Closed form spread option valuation’, Quantitative

Finance iFirst pp. 1–10. 96, 97, 99

Black, F. & Scholes, M. (1973), ‘The pricing of options and corporate liabilities’, Journal of

Political Economy 81(3), 637–654. 96, 97, 103

Caldana, R. & Fusai, G. (2013), ‘A general closed-form spread option pricing formula’, Journal

of Banking and Finance 37(12), 4893–4906. 96, 97, 99, 103, 108, 115, 118

Carr, P. & Madan, D. B. (1999), ‘Option valuation using the fast Fourier transform’, Journal of

Computational Finance 2(4), 61–73. 96, 97, 98, 99, 100, 103, 108, 115, 118

Crosby, J. & Frau, C. (2021), ‘Jumps in commodity prices: New approaches for pricing plain

vanilla options’.

URL: https://ssrn.com/abstract=3754835 103

Dempster, M. A. H. & Hong, S. S. G. (2002), Spread Option Valuation and the Fast Fourier

Transform, Springer Berlin Heidelberg, pp. 203–220. 96

Duffie, D., Pan, J. & Singleton, K. (2000), ‘Transform analysis and asset pricing for affine

jump-diffusions’, Econometrica 68, 1343–1376. 98, 99

119



BIBLIOGRAPHY

Frau, C. & Fanelli, V. (2021), ‘Seasonality in commodity prices: New approaches for pricing

plain vanilla options’.

URL: https://ssrn.com/abstract=3944647 104, 125

Heston, S. L. (1993), ‘A closed-form solution for options with stochastic volatility with applic-

ations to bond and currency options’, Review of Financial Studies 6(2), 327–343. 97, 98, 99,

103

Hurd, T. & Zhou, Z. (2010), ‘A Fourier transform method for spread option pricing’, SIAM

Journal of Financial Mathematics 1, 142–157. 96, 97, 99

Kirk, E. & Aron, J. (1995), ‘Correlation in the energy markets, managing energy price risk’,

Risk Books pp. 71–78. 96

Lewis, A. (2001), A simple option formula for general jump-diffusion and other exponential
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Appendix

3A Appendix for the Single Characteristic Function

For a time-t option price on a futures prices F (t, T ), we introduce the transform with its expo-
nential affine solution, which is given by

ΦF (u) ≡ EQ
t [eiuf(TOpt,T )] = eA(TOpt−t;u)+iuf(t,T )+C(TOpt−t;u)Vt . (3A.1)

3A.1 ODEs

In a more general form and with τ ≡ TOpt − t, A(τ ;u) and C(τ ;u) solve the following system
of ODEs

∂A(τ ;u)

∂τ
= κθtC(τ ;u) + λ

(
nJ − iumJ

)
, (3A.2)

∂C(τ ;u)

∂τ
= b0 + b1C(τ ;u) + b2C

2(τ ;u), (3A.3)

subject to the initial conditions A(0;u) = C(0;u) = 0, with

mJ = eµJ+ 1
2
σ2
J − 1, nJ = eiuµJ−

1
2
σ2
Ju

2 − 1. (3A.4)

If the model does not present jumps, this general model reduces to SYSSV; if the model does
not present seasonality in the variance either, it reduces to TS09. Observe that these elements
only affect A(τ ;u). This means that, for a given set of b0, b1, b2, the solution to C(τ ;u) remains
the same. and ST21. Equation (3A.3) has an analytical solution given by

C(τ ;u) =
2γ

σ2
v

(
β + µz + z

g′(z)

g(z)

)
, (3A.5)

where the function g(z) is a linear combination of Kummer’sM and Tricomi’s U hypergeomet-
ric functions, whist k1 and k2 are constants determined by the initial conditions of the differen-
tial equation

g(z) = k1M(a, b, z) + k2U(a, b, z),

g′(z) =
a

b
k1M(a+ 1, b+ 1, z)− ak2U(a+ 1, b+ 1, z).

(3A.6)
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Appendix

3A.2 Variance Term C(τ ;u)

Trolle-Schwartz (2009) and extensions (SYSVJ, SYSSV)

For the three models and with σY (t, T ) as in Table 3.1, we have that

b0 = −1

2
(u2 + iu)

(
σ2
S + σ2

Y (t, T ) + 2ρSyσSσY (t, T )
)
,

b1 = −κ+ iuσv
(
ρSvσS + ρyvσY (t, T )

)
, xxxb2 =

σ2
v

2
.

(3A.7)

The coefficients in g(z) and g′(z) are

a = −µb− βc1
ω

γ
− d1

ω

γ2
, b = 1 + 2β +

c0

γ
, z =

e−γτ

ω
,

µ = −1

2

(
1 +

c1ω

γ

)
, β =

−c0 +
√
c2

0 − 4d0

2γ
, ω = − γ√

c2
1 − 4d2

,

(3A.8)

with

c0 = −κ+ iuσv

(
ρSvσS + ρyv

α

γ

)
, d0 = −σ

2
v

4
(u2 + iu)

(
σ2
S +

α2

γ2
+ 2σSρSy

α

γ

)
,

c1 = −iuσvρyv
α

γ
e−γ(T−TOpt), d1 = +

σ2
v

2
(u2 + iu)

α

γ

(α
γ

+ ρSyσS

)
e−γ(T−TOpt),

c2= . d2 = −σ
2
v

4
(u2 + iu)

α2

γ2
e−2γ(T−TOpt).

(3A.9)

In particular, if the initial condition is C(0;u) = 0, then

k1 =
−βω − µ+ aU(a+1,b+1,ω−1)

U(a,b,ω−1)

a
bM(a+ 1, b+ 1, ω−1) + aM(a, b, ω−1)U(a+1,b+1,ω−1)

U(a,b,ω−1)

, k2 =
1− k1M(a, b, ω−1)

U(a, b, ω−1)
.

(3A.10)

The three models present the same expressions for C(τ ;u) and their components. The proof is
in Sitzia (2018).

Schneider-Tavin (2018, 2021)

For both models and with σF (t, T ) as in Table 3.1, we have that

b0 = −1

2
(u2 + iu)σ2

F (t, T ), xxxb1 = −κ+ iuσvρFvσF (t, T ), xxxb2 =
σ2
v

2
. (3A.11)

Following the methodology described in Sitzia (2018), the coefficients in g(z), g′(z) are

a = −
(
µb+ ω

κc1

2γ

)
, b = 1− β, z =

e−γτ

ω
,

µ = −1

2

(
1 +

c1ω

γ

)
, β =

κ

γ
, ω = − γ√

c2
1 − 4d2

,

c1 = −iuσvρFvσF (TOpt, T ), d2 = −σ
2
v(u

2 + iu)

4
σF (TOpt, T )2.

(3A.12)
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3A Appendix for the Single Characteristic Function

The expressions followed by k1, k2 are as those for TS09. The proof is in Frau & Fanelli (2021).

3A.3 Independent Term A(τ ;u)

Equation (3A.2) has an analytical solution given by

A(τ) = m
(
A1(τ ;u) +A2(τ ;u) +A3(τ ;u) +A4(τ ;u) + k3

)
+λ(nJ − iumJ)τ, (3A.13)

with

m = 2κγ/σ2
v , xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx (3A.14)

A1(τ ;u) = aθ
(
βτ − µz + ln g(z)

γ

)
,

A2(τ ;u) = −bθ βy
s
τ

2π
,

A3(τ ;u) = bθ
ycτ − 2πγysτ
4π2 + γ2

µz,

A4(τ ;u) = bθ
τ

ω

(
yc0g
′ (ω−1

)
− τ

2

(
g′
(
ω−1

)
(yc0ζ1 − 2πys0) + yc0ζ2

))
, xxxxxxxxxxxxxxx

(3A.15)

where

ycτ = cos (2π (T0 − τ − t0)) , yc0 = cos (2π (T0 − t0)) ,

ysτ = sin (2π (T0 − τ − t0)) , ys0 = sin (2π (T0 − t0)) ,

ζ1 = γ(1 + k1n1 + k2n2), ζ2 = γ(k1n3 + k2n4), xxxxxxxxxxxxxxxxxxxxxxxxxx

(3A.16)

and

n1 = (a− b)
(
M(a− 1, b, ω−1)−M(a, b, ω−1)

)
+M(a, b, ω−1)ω−1,

n2 = a
(
U(a, b, ω−1) + (b− a− 1)U(a+ 1, b, ω−1)

)
,

n3 =
a

b

(
(a− b)

(
M(a+ 1, b+ 1, ω−1)−M(a, b+ 1, ω−1)

)
+M(a+ 1, b+ 1, ω−1)ω−1

)
,

n4 = a
(
U(a, b, ω−1) +

(
b− ω−1

)
U(a+ 1, b+ 1, ω−1)

)
.

(3A.17)

In particular, if the initial condition is A(0;u) = 0, we have

k3 = x0 + xs0y
s
0 + xc0y

c
0,

x0 = aθ
µ

ω
, xxxxs0 = bθ

( β
2π
− 2πµ

ω(4π2 + γ2)

)
, xxxxc0 = −bθ µγ

ω(4π2 + γ2)
.

(3A.18)

Observe that k3 = x0 in TS09, SYSVJ and ST18. The proof is in Frau & Fanelli (2021).
With bθ = 0 (implying A2(τ ;u) = A3(τ ;u) = A4(τ ;u) = 0) and λ = 0, we have the

solution for TS09 and ST18. With bθ = 0, we have the solution for SYSVJ, mJ and nJ as in
(3A.4). With only λ = 0, we have the solution for SYSSV and ST21. The expressions followed
by a, b, β, µ, ω, z depend on the model; they are defined in Appendix 3A.2.
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3B Appendix for Proofs

3B.1 Proof of Proposition 3.1

For affine processes with i.i.d. increments, the SCF of the price F (t, T ) at time T0 = 0 is given

by

ΦFt,T (u) ≡ EQ
T0

[
eiuf(t,T )

]
= eA(t−T0;u)+B(t−T0;u)f(T0,T ). (3B.1)

Using the tower expectations, the JCF of F (t, T1) and F (t, T2) is given by

ΦF(u) ≡ EQ
T0

[
eiu1f(t,T1)+iu2f(t,T2)

]
= EQ

T0

[
eiu1f(t,T1)EQ

T1

[
eiu2f(t,T2)

]]
= EQ

T0

[
eiu1f(t,T1)eA(T2−T1;u2)+B(T2−T1;u2)f(t,T1)

]
= eA(T2−T1;u2)EQ

T0

[
ei(u1−iB(T2−T1;u2))f(t,T1)

]
= eA(T2−T1;u2)+A(T1−T0;u1−iB(T2−T1;u2))+B(T1−T0,u1−iB(T2−T1;u2))f(T0,T1)

= eA(T2−T1;u2)ΦFt,T1

(
u1 − iB(T2 − T1;u2)

)
, (3B.2)

where

B(T2 − T1;u2) = iu2,

u1 − iB(T2 − T1;u2) = u1 + u2,

A(T1 − T0;u1 − iB(T2 − T1;u2)) = A(T1 − T0;u1 + u2),

B(T1 − T0;u1 − iB(T2 − T1;u2)) = B(T1 − T0;u1 + u2) = i(u1 + u2).

(3B.3)

3B.2 Proof of Proposition 3.2

For affine processes with stochastic volatility, the SCF of the price F (t, T ) and its variance Vt

at time T0 = 0 is given by

ΦFt,T ,Vt(u, v)EQ
T0

[
eiuf(t,T )+ivVt

]
= eA(t−T0;u,v)+B(t−T0;u,v)f(T0,T )+C(t−T0;u,v)VT0 . (3B.4)
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3C Appendix for the Joint Characteristic Function

Using the tower expectations, the JCF of F (t, T1) and F (t, T2) is given by

ΦF(u) ≡ EQ
T0

[
eiu1f(t,T1)+iu2f(t,T2)

]
= EQ

T0

[
eiu1f(t,T1)EQ

T1

[
eiu2f(t,T2)

]]
= EQ

T0

[
eiu1f(t,T1)eA(T2−T1;u2,0)+i(−i)B(T2−T1;u2,0)f(t,T1)+i(−i)C(T2−T1;u2,0)VT1

]
= eA(T2−T1;u2,0)EQ

T0

[
ei(u1−iB(T2−T1;u2,0))f(t,T1)+i(−i)C(T2−T1;u2,0)VT1

]
= eA(T2−T1;u2,0)eA(T1−T0;u1−iB(T2−T1;u2,0),(−i)C(T2−T1;u2,0))

× eB(T1−T0;u1−iB(T2−T1;u2,0),(−i)C(T2−T1;u2,0))f(T0,T1)eC(T1−T0;u1−iB(T2−T1;u2,0),(−i)C(T2−T1;u2,0))VT0

= eA(T2−T1;u2,0)ΦFt,T1 ,Vt

(
u1 − iB(T2 − T1;u2, 0),−iC(T2 − T1;u2, 0)

)
, (3B.5)

where

B(T2 − T1;u2, 0) = iu2,

u1 − iB(T2 − T1;u2, 0) = u1 + u2,

−iC(T2 − T1;u2, 0) = 0,

A(T1 − T0;u1 − iB(T2 − T1;u2),−iC(T2 − T1;u2, 0)) = A(T1 − T0;u1 + u2, 0),

B(T1 − T0;u1 − iB(T2 − T1;u2),−iC(T2 − T1;u2, 0)) = B(T1 − T0;u1 + u2, 0) = i(u1 + u2),

C(T1 − T0;u1 − iB(T2 − T1;u2),−iC(T2 − T1;u2, 0)) = C(T1 − T0;u1 + u2, 0).
(3B.6)

3C Appendix for the Joint Characteristic Function

For a time-t option price on a futures price F (t, T ), the JCF is given by equation (3B.5).

3C.1 ODEs

For crack spread options, we define τ ≡ TOpt − t, with T1 > TOpt > t ≥ 0. For calendar
spread options, we need to be careful with the time argument τ , since it can be τ ≡ T1 − t or
τ ≡ TOpt − T1, depending on the term in the JCF, with T2 > TOpt > T1 > t ≥ 0.

In a more general form, A(τ ;u1, u2) and C(τ ;u1, u2) solve the system

∂A(τ ;u)

∂τ
= κθtC(τ ;u1, u2) + λ1

(
nJ1 − iu1mJ1

)
+λ2

(
nJ2 − iu2mJ2

)
, (3C.1)

∂C(τ ;u)

∂τ
= b0 + b1C(τ ;u1, u2) + b2C

2(τ ;u1, u2), (3C.2)

subject to the initial conditions A(0;u1, u2) = C(0;u1, u2) = 0 and with

mJ1 = e
µJ1+ 1

2
σ2
J1 − 1, nJ1 = e

iu1µJ1−
1
2
σ2
J1
u21 − 1,

mJ2 = e
µJ2+ 1

2
σ2
J2 − 1, nJ2 = e

iu2µJ2−
1
2
σ2
J2
u22 − 1,

(3C.3)
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If the model does not present jumps, this general model reduces to SYSSV; if the model does

not present seasonality in the variance either, it reduces to TS09. Observe that these elements

only affectA(τ ;u1, u2). This means that, for a given set of b0, b1, b2, the solution to C(τ ;u1, u2)

remains as in Appendix 3A.

3C.2 Variance Term C(τ ;u)

Trolle-Schwartz (2009) and extensions (SYSVJ, SYSSV)

With σY (t, T ) as in Table 3.1, we have that

b0 = −1

2

(
(u2

1 + iu1)
(
σ2
S1

+ σ2
Y (t, T ) + 2ρS1yσS1σY (t, T )

))
− 1

2

(
(u2

2 + iu2)
(
σ2
S2

+ σ2
Y (t, T ) + 2ρS2yσS2σY (t, T )

))
,

b1 = −κ+ iσv

(
u1

(
ρS1vσS1 + ρyvσY (t, T )

)
+u2

(
ρS2vσS2 + ρyvσY (t, T )

))
,

b2 =
σ2
v

2
.

(3C.4)

The coefficients in g(z), g′(z) are as in (3A.8), with

c0 = −κ+ iσv

(
u1

(
ρS1vσS1 + ρyv

α

γ

)
+u2

(
ρS2vσS2 + ρyv

α

γ

))
,

c1 = −σvρyv
α

γ
e−γ(T−TOpt)i(u1 + u2),

d0 = −σ
2
v

4

((
σ2
S1

+
α2

γ2
+ 2σS1ρS1y

α

γ

)
(u2

1 + iu1) +
(
σ2
S2

+
α2

γ2
+ 2σS2ρS2y

α

γ

)
(u2

2 + iu2)
)
,

d1 = +
σ2
v

2

α

γ
e−γ(T−TOpt)

((α
γ

+ ρS1yσS1

)
(u2

1 + iu1) +
(α
γ

+ ρS2yσS2

)
(u2

2 + iu2)
)
,

d2 = −σ
2
v

4

α2

γ2
e−2γ(T−TOpt)

(
u2

1 + u2
2 + i(u1 + u2)

)
.

(3C.5)

In particular, if the initial condition is C(0;u1, u2) = 0, then k1, k2 are as in (3A.10). The

extensions of TS09 present exactly the same expressions for this term and their components.

Schneider-Tavin (2018, 2021)

With σF (t, T ) as in Table 3.1, we have that

b0 = −1

2

(
(u2

1 + iu1)σ2
F1

(t, T ) + (u2
2 + iu2)σ2

F2
(t, T )

)
,

b1 = −κ+ iσv

(
u1ρF1vσF1(t, T ) + u2ρF2vσF2(t, T )

)
,

b2 =
σ2
v

2
.

(3C.6)
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3C Appendix for the Joint Characteristic Function

Following the methodology described in Sitzia (2018), the coefficients in g(z), g′(z) are as in
(3A.12), and

c1 = −iσv
(
u1ρF1vσF1(TOpt, T ) + u2ρF2vσF2(TOpt, T )

)
,

d2 = −σ
2
v

4

(
(u2

1 + iu1)σ2
F1

(TOpt, T ) + (u2
2 + iu2)σ2

F2
(TOpt, T )

)
.

(3C.7)

The expressions followed by k1, k2 are as those for TS09.

3C.3 Independent Term A(τ ;u)

Equation (3C.1) has an analytical solution given by

A(τ ;u1, u2) =
2κγ

σ2
v

(
A1(τ ;u1, u2) +A2(τ ;u1, u2) +A3(τ ;u1, u2) +A4(τ ;u1, u2) + k3

)
+ λ1(nJ1 − iu1mJ1)τ + λ2(nJ2 − iu2mJ2)τ, (3C.8)

with A1(τ ;u1, u2)–A4(τ ;u1, u2) as in (3A.15), k3 as in (3A.18).
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