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Abstract. Our aim in this paper is to study the global invertibility of a locally Lipschitz
map f : X → Y between (possibly infinite-dimensional) Finsler manifolds, stressing the con-
nections with covering properties and metric regularity of f . To this end, we introduce a
natural notion of pseudo-Jacobian Jf in this setting, as is a kind of set-valued differential ob-
ject associated to f . By means of a suitable index, we study the relations between properties
of pseudo-Jacobian Jf and local metric properties of the map f , which lead to conditions
for f to be a covering map, and for f to be globally invertible. In particular, we obtain a
version of Hadamard integral condition in this context.

1. Introduction

Global invertibility of mappings is an important issue in nonlinear functional analysis. In a
smooth setting, if f : X → Y is a C1-map between Banach spaces satisfying that its derivative
f ′(x) is a linear isomorphism for every x ∈ X, from the classical Inverse Function Theorem
we have that f is locally invertible around each point. If f satisfies in addition the so-called
Hadamard integral condition, that is, if

∫ ∞

0
inf

‖x‖≤t
‖f ′(x)−1‖−1 dt = ∞,

then f : X → Y is globally invertible, and thus a global diffeomorphism from X onto Y . We
refer to Plastock [25] for a proof of this result. Analogous conditions for global invertibility
have been also obtained in the more general setting where f : X → Y is a C1-map between
Finsler manifolds, mainly in connection with covering maps, the path-lifting property, and
other related topological properties. We refer to the survey of Gutú [6] for an extensive and
detailed information about global invertibility of smooth maps between Finsler manifolds.

In this paper we will be interested on global invertibility in a nonsmooth setting, more
precisely in the case where f : X → Y is a locally Lipschitz map between Finsler manifolds
modeled on Banach spaces (in the sense of Palais [22]). When X and Y are finite-dimensional
Finsler manifolds, this kind of problems have been considered in [14], where in particular
a version of Hadamard integral condition for global invertibility is obtained, in terms of a
suitable analog of the Clarke generalized Jacobian ∂f . For continuous maps f : Rn → R

n,
Jeyakumar and Luc introduced in [17] the more general concept of approximate Jacobian
matrix, which later on was named pseudo-Jacobian matrix (see [18]). Furthermore, a global
inversion theorem in terms of such matrices is given in [15], with a version of the Hadamard
integral condition in this context. These results have been extended in [5] to the case where
f : X → Y is a continuous map between finite-dimensional Riemannian manifolds, which
admits an analog of pseudo-Jacobian in this setting.

If f : X → Y is a nonsmooth map between infinite-dimensional Banach spaces, the problem
of local invertibility of f is more delicate. Assuming that f is a local homeomorphism, F.
John obtained in [19] a global inversion theorem using a suitable version of the Hadamard
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integral condition in terms of the lower scalar Dini derivative of f , which is defined for each
x ∈ X as

D−
x f = lim inf

z→x

‖f(z)− f(x)‖

‖z − x‖
.

Namely, he proved that f is globally invertible if
∫ ∞

0
inf

‖x‖≤t
D−
x f dt = ∞.

Further results along this line have been obtained in [9] and [4] in the more general setting of
mappings between metric spaces. In a different direction, for global inversion results in terms
of Palais-Smale conditions, we refer to [21], [7] and [10], and references therein.

The notion of pseudo-Jacobian has been recently extended in [16] to the case of a continuous
map f : X → Y between infinite-dimensional Banach spaces, in order to obtain local and
global invertibility results, in terms of the metric properties of the corresponding pseudo-
Jacobian. Our aim in this paper is to study the global invertibility of locally Lipschitz maps
between (possibly infinite-dimensional) Finsler manifolds, stressing the connections with their
covering properties and with metric regularity. To this end, we will further extend the notion
of pseudo-Jacobian to this setting. In particular, our results here extend and encompass the
previous results of [14] and [15] (extending them to an infinite-dimensional setting) and those
of [16] and [8] (extending them to a Finsler manifold setting). The contents of the paper are as
follows. In Section 2, we briefly review the definition and basic properties of pseudo-Jacobians
in Banach spaces. This notion is extended to the setting of Finsler manifolds in Section 3,
where several examples are also presented. The connection of metric regularity with metric
properties of pseudo-Jacobians is studied in Section 4. Here we introduce the fundamental
notion of Finsler regularity index and we obtain in Theorem 16 its connection with the metric
rate of surjection. In Section 5 we introduce the Finsler local-injectivity index and, combining
its properties with the results of the previous section, we obtain in Theorem 21 a local inversion
theorem in this context. Section 6 is devoted to global invertibility. This is achieved by first
obtaining conditions under which our map is a covering. The main results here are Theorem
23 and Theorem 25. We also obtain in Corollary 27 a version of Hadamard integral condition
in this context. Finally, In Section 7 we study the stability of global invertibility under a kind
of perturbation with small Lipschitz constant, as seen in Theorem 31.

2. Brief review of pseudo-Jacobians in Banach spaces

In this introductory section, we will briefly recall some basic facts about pseudo-Jacobians
associated to nonsmooth mappings between Banach spaces. This notion was studied in [16],
and it is the extension to the setting of arbitrary Banach spaces of the pseudo-Jacobian
matrices of Jeyakumar and Luc (see [18]). In what follows, E and F will denote Banach
spaces and U a (nonempty) open subset of E. As usual, E∗ will stand for the topological dual
of E, and the space of bounded linear operators from E into F will be denoted as L(E,F ).
As we will see, is natural to consider on this space the weak operator topology (WOT for short),
that is, the topology of the pointwise convergence on E with respect to the weak topology on
F ; this means that a net (Ti)α is WOT-convergent to T in L(E,F ) if, and only if, for each
y∗ ∈ F and each v ∈ E the net (〈y∗, (Tα − T )(v)〉)α converges to zero.

Finally recall that, if ϕ : U → R is a real-valued function and x is a point in U , then the
upper and lower right-hand Dini derivatives of ϕ at x with respect to a vector v ∈ E are
defined as

ϕ′
+(x; v) = lim sup

t→0+

ϕ(x+ tv)− ϕ(x)

t
and ϕ′

−(x; v) = lim inf
t→0+

ϕ(x+ tv)− ϕ(x)

t
.

We refer to [1], [3], [24] or [28] for the definition and basic properties of different kinds of
differentiability of maps between Banach spaces and other unexplained notions.
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Now we are ready to introduce the notion of pseudo-Jacobian in the setting of Banach
spaces.

Definition 1. [Pseudo-Jacobians on Banach spaces Let E and F be Banach spaces, U
be an open subset of E and f : U → F a continuous map. We say that a nonempty subset
Jf(x) ⊂ L(E,F ) is a pseudo-Jacobian of f at a point x ∈ U if

(1) (y∗ ◦ f)′+(x; v) ≤ sup{〈y∗, T (v)〉 : T ∈ Jf(x)} whenever y∗ ∈ F ∗ and v ∈ E.

A set-valued mapping Jf : U → 2L(E,F ) is said to be a pseudo-Jacobian mapping for f on U
if for every x ∈ U , the set Jf(x) is a pseudo-Jacobian of f at x.

Let us summarize some basic facts about pseudo-Jacobians. It is clear that, if Jf(x) is a
pseudo-Jacobian of f at the point x, then any subset of L(E,F ) containing Jf(x) is also a
pseudo-Jacobian of f at x. Moreover, for any set F ⊂ L(E,F ) we have

sup {〈y∗, T (v)〉 : T ∈ F} = sup
{

〈y∗, T (v)〉 : T ∈ coWOT (F)
}

,

where coWOT (F) denotes the WOT-closed convex hull of F. Thus, a subset Jf(x) ⊂ L(E,F )
is a pseudo-Jacobian of f at x if, and only if, so is its WOT-closed convex hull.

The same argument as in the finite-dimensional case (see [18, Theorem 2.1.1]) yields that
if Jf(x) and Jg(x) are pseudo-Jacobians of functions f, g : U ⊂ X → Y at a point x ∈ U and
α ∈ R, then the set αJf(x)+Jg(x) = {αT +S : T ∈ Jf(x), S ∈ Jg(x)} is a pseudo-Jacobian
of αf + g at this point.

There are many examples pseudo-Jacobians for different kinds of functions. For instance, if
the function f is Gâteaux differentiable at x then the singleton {f ′(x)} is a pseudo-Jacobian
of f at x (see [16, Example 2.2]). More generally, according to the definition given by Ioffe
in [13], the Gâteaux prederivative of f at the point x is also a pseudo-Jacobian of f at x (see
[16, Example 2.3]).

On the other hand, if the function f : E → R is locally Lipschitz at a point x, the Clarke
subdifferential ∂f(x) is a pseudo-Jacobian of f at x. More generally, in the vector-valued case,
the so-called Clarke-like generalized Jacobians (as considered in [29]) are pseudo-Jacobians
of f at x (see [16, Examples 2.4 and 2.5]). Regarding to Clarke-like generalized Jacobians,
for a locally Lipschitz map f : E → F , where F is reflexive, the Páles-Zeidan generalized
Jacobian ∂PZf(x) as defined in [23], is a pseudo-Jacobian of f at every point x ∈ E (see
[16, Examples 2.6]). Note that, in the case that E and F are finite-dimensional, the Páles-
Zeidan generalized Jacobian coincides with the Clarke generalized Jacobian. Let us briefly
recall the definition of ∂PZf(x). Note that, in our case, since the space F is reflexive it has
the Radon-Nikodým property, and furthermore the topology β(E,V ) = β(E,F ∗) considered
in [23] coincides with the WOT-topology on L(E,F ). Now given a finite-dimensional linear
subspace L ⊂ E, we say that f is L-Gâteaux-differentiable at z ∈ E if there exists a continuous
linear map DL(z) : L→ F such that

lim
t→0

f(z + tv)− f(z)

t
= DLf(z)(v), for every v ∈ L.

Denote by ΩL(f) the set of all points z ∈ E such that f is L-Gâteaux-differentiable at z, and
let the generalized L-Jacobian of f at x be the subset of L(L, F ) defined as

∂Lf(x) :=
⋂

δ>0

coWOT{DLf(z) : z ∈ ΩL(f), |z − x|E < δ},

where | · |E denotes the norm of E. Then the Páles-Zeidan generalized Jacobian of f at the
point x is defined as

∂PZf(x) =
{

T ∈ L(E, F ) : T|L ∈ ∂Lf(x), for each finite dimensional subspaceL ⊂ X
}

.
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The following property of pseudo-Jacobians will be useful in the sequel.

Definition 2. [Locally bounded pseudo-Jacobian] Let E,F be Banach spaces, U an open

subset of E and f : U → F a continuous map. A pseudo-Jacobian mapping Jf : U → 2L(E,F )

for f is said to be locally bounded at a point x ∈ U , if there exists R > 0 such that the ball
B(x,R) ⊂ U and the set of operators

Jf (B(x,R)) = {T : T ∈ Jf(z), z ∈ B(x,R)}

is bounded in the space L(E,F ). We say that Jf is locally bounded on U if this holds for
every x ∈ U .

As shown in [16, Corollary 2.8], a continuous map f : U → F admits a locally bounded
pseudo-Jacobian mapping if, and only if, f is locally Lipschitz.

3. Pseudo-Jacobians on Finsler manifolds

Along the paper we will consider C1-smooth manifolds modeled on (possibly infinite-
dimensional) Banach spaces. We will follow the terminology of Palais in [22]. For the definition
of pseudo-Jacobians in this context, we will restrict ourselves to the case of locally Lipschitz
mappings, which can be defined by means of composition with charts.

Locally Lipschitz continuous maps: 1st definition [22, Definitions 1.1 and 1.3]. Let X
and Y be two C1 manifolds modeled on Banach spaces (E, | · |E) and (F, | · |F ), respectively,
and let f : X → Y be a map. We say that f is locally Lipschitz at x ∈ X if there are charts
(W,ϕ) at x and (V, ψ) at f(x), such that f(W ) ⊂ V and the map

f = ψ ◦ f ◦ ϕ−1 : ϕ(W ) → ψ(V )

is Lipschitz continuous on ϕ(W ). Namely for all u,u′ ∈ ϕ(W ) and some κ > 0:

(2) |f(u)− f(u′)|F ≤ κ|u− u′|E .

Obviously, the above definition does not depend on the choice of charts.
Our definition of pseudo-Jacobian for functions between manifolds will be also given by

composition with charts. In order to have a good behavior with respect to this composition,
in the definition we require the corresponding pseudo-Jacobian mapping between Banach
spaces to be locally bounded. If X is a C1 manifold modeled on Banach space an each x ∈ X,
the tangent space of X at the point x will be denoted by TxX.

Definition 3. [Pseudo-Jacobians mappings on manifolds] Let X and Y be two C1

manifolds modeled on Banach spaces E and F , respectively, and let f : X → Y be a locally
Lipschitz map. Suppose that, for each x ∈ X we have a subset Jf(x) of linear operators from
TxX to Tf(x)Y . We say that Jf is a pseudo-Jacobian mapping for f if for each x ∈ X there
exists a chart (W,ϕ) at x and a chart (V, ψ) at f(x) such that f(W ) ⊂ V and:

(PJ1) The function

(3) f = ψ ◦ f ◦ ϕ−1 : ϕ(W ) → ψ(V )

has a pseudo-Jacobian Jf(u) ⊂ L(E,F ) at every point u ∈ ϕ(W ).

(PJ2) The pseudo-Jacobian mapping Jf : ϕ(W ) → 2L(E,F ) is locally bounded on ϕ(W ).
(PJ3) If y = ψ(f(x)) ∈ ψ(V ), then

Jf(x) = dψ−1(y)Jf(x)[dϕ−1(x)]−1

This means that every T ∈ Jf(x) ⊂ L(TxX,Tf(x)Y ) is of the form dψ−1(y)T[dϕ−1(x)]−1

where T ∈ Jf(x) ⊂ L(E,F ) and vice-versa:
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E

TxX

F

Tf(x)Y

Isomorphism
[dϕ−1(x)]−1

T

T

Isomorphism
dψ−1(y)

The stability properties of pseudo-Jacobians under composition with smooth functions, as
obtained in [16], yield the following result.

Proposition 4. The definition of pseudo-Jacobian on Banach manifolds does not depend on
charts in the following sense: let (W1, ϕ1) be a chart at x and (V1, ψ1) be a chart at f(x) such
that f(W1) ⊂ V1 and (PJ1), (PJ2) and (PJ3) holds for f1 = ψ1 ◦ f ◦ ϕ−1

1 : ϕ1(W1) → ψ1(V1),
x1 = ϕ1(x) and y1 = ψ1(f(x)). If (W2, ϕ2) and (V2, ψ2) are another charts around x and f(x)
respectively, such that f(W2) ⊂ V2, then there is a locally bounded pseudo-Jacobian mapping
Jf2 : ϕ2(W2) → 2L(E,F ) such that:

dψ−1
1 (y1)Jf1(x1)[dϕ

−1
1 (x1)]

−1 = dψ−1
2 (y2)Jf2(x2)[dϕ

−1
2 (x2)]

−1,

where f2 = ψ2 ◦ f ◦ ϕ−1
2 : ϕ2(W2) → ψ2(V2), x2 = ϕ2(x) and y2 = ψ2(f(x)).

Proof. Indeed, consider the following C1-diffeomorphisms:

Ψ = ψ2 ◦ ψ
−1
1 : ψ1(V1 ∩ V2) → F

Φ = ϕ1 ◦ ϕ
−1
2 : ϕ2(W1 ∩W2) → E

By [16, Proposition 2.12] Jg(x) := Jf1(Φ(x)) ◦ dΦ(x) is a pseudo-Jacobian for g := f1 ◦ Φ :
ϕ2(W2) → ψ1(V1) at every x ∈ ϕ2(W2). Furthermore the set-valued function x 7→ Jg(x)
is a locally bounded pseudo-Jacobian mapping since Φ is a diffeomorphism. Now, by [16,
Theorem 2.15], the set dΨ(g(x)) ◦ Jg(x) is a pseudo-Jacobian of Ψ ◦ g at x, and therefore

J(Ψ ◦ f1 ◦ Φ)(x) = dΨ(g(x)) ◦ Jf1(Φ(x)) ◦ dΦ(x)

is a pseudo-Jacobian of Ψ◦f1 ◦Φ at x ∈ ϕ2(W2). Simple calculations show that Ψ◦f1 ◦Φ = f2,
Jf1(Φ(x2)) = Jf1(x1), dΨ(g(x2)) = [dψ−1

2 (y2)]
−1 ◦ dψ−1

1 (y1) and dΦ(x2) = [dϕ−1
1 (x1)]

−1 ◦

dϕ−1
2 (x2). Therefore:

Jf2(x2) = dΨ(g(x2)) ◦ Jf1(Φ(x2)) ◦ dΦ(x2)

= [dψ−1
2 (y2)]

−1 ◦ dψ−1
1 (y1) ◦ Jf1(x1) ◦ [dϕ

−1
1 (x1)]

−1 ◦ dϕ−1
2 (x2).

The set-valued function x 7→ Jf2(x) = J(Ψ ◦ f1 ◦ Φ)(x) is a locally bounded pseudo-Jacobian
mapping since Ψ and Φ are C1-diffeomorphisms. �

Examples. We give here several natural examples of pseudo-Jacobians for a locally Lipschitz
map in the setting of Banach manifolds.

(1) [Gâteaux derivative] Let X and Y be two C1 Banach manifolds, modeled on Banach
spaces E and F , respectively. We say that a locally Lipshitz map f : X → Y is Gâteaux
differentiable at a point x ∈ X if there exist charts (W,ϕ) at x and (V, ψ) at f(x) such
that f(W ) ⊂ V and the map f := ψ◦f ◦ϕ−1 : ϕ(W ) → ψ(V ) is Gâteaux differentiable
at x = ϕ(x). In this case the Gâteaux derivative of f at x, denoted by df(x) is defined
as the linear map T : TxX → Tf(x)Y given by

T = d(ψ−1)(ψ(f(x)) ◦ df(x) ◦ dϕ(x),

where df(x) denotes the usual Gâteaux derivative of f at x in the setting of Banach
spaces. In order to see that the above definition does not depend on charts note
that, for locally Lipschitz maps between Banach spaces, Gâteaux differentiability is
equivalent to Hadamard differentiability (see e.g. Proposition 3.5 in [28]) and note also
that the usual chain rule holds for Hadamard differentiability (see e.g. Proposition
3.6 in [28]). In this way, and using [16, Example 2.2], we obtain that if f is Gâteaux
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differentiable at every point of X and we define Jf(x) := {df(x)} for each x ∈ X,
then Jf is a pseudo-Jacobian mapping for f .

(2) [Clarke generalized Jacobian] In the case that X and Y are finite-dimensional C1

manifolds, and f : X → Y is locally Lipschitz, the Clarke generalized Jacobian of f at
a point x ∈ X has been considered in [14] and it is defined as:

∂f(x) := d(ψ−1)(ψ(f(x)) ◦ ∂f(x) ◦ dϕ(x),

where (W,ϕ) is a chart of X at x and (V, ψ) is a chart of Y at f(x) with f(W ) ⊂ V ,
we denote as before f := ψ ◦ f ◦ ϕ−1 and ∂f(x) denotes the usual Clarke generalized
Jacobian of f at x = ϕ(x). It is proved in Proposition 2.3 of [14] that the definition
does not depend on charts. Therefore, if we define Jf(x) := ∂f(x) for each x ∈ X,
using [16, Example 2.5] we obtain that Jf is a pseudo-Jacobian mapping for f .

(3) [Páles-Zeidan generalized Jacobian] Let X and Y be two C1 Banach manifolds,
modeled on Banach spaces E and F respectively, where F is reflexive, and let f :
X → Y a locally Lipschitz map. The Páles-Zeidan generalized Jacobian of f at a
point x ∈ X is defined as:

∂PZf(x) := d(ψ−1)(ψ(f(x)) ◦ ∂PZf(x) ◦ dϕ(x),

where (W,ϕ) is a chart of X at x and (V, ψ) is a chart of Y at f(x) with f(W ) ⊂ V ,
we denote as before f := ψ ◦ f ◦ ϕ−1 and ∂PZf(x) denotes the usual Páles-Zeidan
generalized Jacobian of f at x = ϕ(x) in the Banach space setting. We are going to
see in Proposition 6 that the above definition does not depend on charts. Then using
again [16, Example 2.5], if we define JPZf(x) := ∂PZf(x) for each x ∈ X we obtain
that Jf is a pseudo-Jacobian mapping for f .

For completeness, we include the following elementary Lemma.

Lemma 5. Let U and V be open subsets of the Banach spaces E and F , respectively. Suppose
that ϕ : U → E and ψ : V → F are C1-smooth and f :W → V is a Lipschitz map defined on
a open set W containing ϕ(U). Fix a point a ∈ U and a finite-dimensional linear subspace
L ⊂ E, and denote K := dϕ(a)(L). If f is Gâteaux-K-differentiable at ϕ(a), then ψ ◦ f ◦ϕ is
Gâteaux-L-differentiable at a, and the chain rule holds:

DL(ψ ◦ f ◦ ϕ)(a) = dψ(f(ϕ(a)) ◦DKf(ϕ(a)) ◦ dϕ(a).

Proof. Consider first the composition f ◦ϕ : U → F . Suppose that f is M -Lipschitz. Choose
a vector v ∈ L and denote w = dϕ(a). Then, for t 6= 0:

∥

∥

∥

∥

f ◦ ϕ(a+ tv)− f ◦ ϕ(a)

t
−DKf(ϕ(a)) ◦ dϕ(v)

∥

∥

∥

∥

≤

∥

∥

∥

∥

f(ϕ(a+ tv))− f(ϕ(a) + tw)

t

∥

∥

∥

∥

+

∥

∥

∥

∥

f(ϕ(a) + tw)−DKf(ϕ(a))(w)

t

∥

∥

∥

∥

≤M

∥

∥

∥

∥

ϕ(a+ tv)− ϕ(a) + tdϕ(a)(v))

t

∥

∥

∥

∥

+

∥

∥

∥

∥

f(ϕ(a) + tw)−DKf(ϕ(a))(w)

t

∥

∥

∥

∥

,

and this tends to 0 as t→ 0. This shows that f ◦ ϕ is Gâteaux-L-differentiable at a.
Consider now the map g : L ∩ (−a + U) → E defined by g(x) := f ◦ ϕ(a + x). Since

g is Gâteaux differentiable at 0, and furthermore g is locally Lipschitz, we have that g is
Hadamard differentiable at 0. In fact, since g is defined on a finite-dimensional space, g is
Fréchet differentiable at 0 (see e.g. Propositions 3.5 and 3.6 of [28]). As a consequence, ψ ◦ g
is Fréchet differentiable at 0 and the usual chain rule holds. This gives the desired result. �

Now we are ready to show that the Páles-Zeidan generalized Jacobian on manifolds is
well-defined.

Proposition 6. The definition of Páles-Zeidan generalized Jacobian on Banach manifolds
does not depend on charts.
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Proof. We keep the preceding notation. Let X and Y be manifolds modeled on Banach
spaces E and F , respectively. Consider a locally Lipschitz map f : X → Y and let x ∈ X.
Let (W1, ϕ1) be a chart at x and (V1, ψ1) be a chart at f(x) with f(W1) ⊂ V1. Denote
f1 = ψ1 ◦ f ◦ ϕ−1

1 : ϕ1(W1) → ψ1(V1), x1 = ϕ1(x) and y1 = ψ1(f(x)).
Now let (W2, ϕ2) and (V2, ψ2) also be charts around x and f(x) respectively, such that

f(W2) ⊂ V2, and denote f2 = ψ2 ◦ f ◦ϕ
−1
2 : ϕ2(W2) → ψ2(V2), x2 = ϕ2(x) and y2 = ψ2(f(x)).

As before, we will also consider the following C1-diffeomorphisms:

Ψ = ψ2 ◦ ψ
−1
1 : ψ1(V1 ∩ V2) → F

Φ = ϕ1 ◦ ϕ
−1
2 : ϕ2(W1 ∩W2) → E

In this way we have that
f2 = Ψ ◦ f1 ◦ Φ

Now, if we denote

∂1f(x) := d(ψ−1
1 )(ψ1(f(x)) ◦ ∂PZf1(x1) ◦ dϕ1(x), and

∂2f(x) := d(ψ−1
2 )(ψ2(f(x)) ◦ ∂PZf2(x2) ◦ dϕ2(x),

we have to prove that ∂1f(x) = ∂2f(x). By symmetry, it will be sufficient to prove that

∂1f(x) ⊂ ∂2f(x).

This is equivalent to prove that

B ◦ ∂PZf1(x1) ◦ A ⊂ ∂PZf2(x2),

where A := dΦ(x2) and B := dΨ(y1). By the definition of Páles-Zeidan generalized gradient,
this will be a direct consequence of the following claim:

Claim: For each finite-dimensional linear subspace L ⊂ E, if we denote K = A(L), we have
that

B ◦ ∂Kf1(x1) ◦ A ⊂ ∂Lf2(x2).

In order to prove the Claim, we are going to use that characterization of generalized L-
Jacobians given in Lemma 3.2 of [23]. According to it, the generalized K-Jacobian of f1 at x1

is given by
∂Kf1(x1) = coWOT (∆Kf1(x1)),

where
∆Kf1(x1) = {T ∈ WOT-clusterDKf1(zn) : (zn) ∈ ΩK(f1), (zn) → x1}.

This means that an operator T ∈ L(K,F ) belongs to ∆Kf1(x1) if, and only if, T is the
limit in the WOT-topology of a subnet of the form {DKf1(znα)} where (zn) is a sequence in
ΩK(f1) converging to x1.

Suppose this is the case. Then, if we denote wn := Φ−1(zn), we have that (wn) converges
to x2 and the net Anα := dΦ(wnα) converges to A in norm. In the same way, if we denote
un := f1(zn), we have that (un) converges to y1 and the net Bnα := dΦ(unα) converges to
B in norm. Furthermore, using Lemma 5, for each index α we have that f2 is Gâteaux-L-
differentiable at wnα and

Bnα ◦DKf1(znα) ◦ Anα = DLf1(wnα).

Since f1 is locally Lipschitz, we can also assume that the net DKf1(znα) is norm-bounded
in L(K,F ). On the other hand, from Proposition 2.2 in [23] we know that the mapping
R 7→ R ◦ A is a linear isomorphism for the respective WOT-topologies. In this way we obtain
that the net {DKf1(znα)◦Anα} converges to T ◦A in the WOT-topology. By the same reasoning,
we see that the net

{Bnα ◦DKf1(znα) ◦Anα}

converges to B ◦ T ◦ A in the WOT-topology. This gives that ∆Kf1(x1) ⊂ ∂Lf2(x2). By the
very definition, the latter is a WOT-closed and convex set, so this establishes the Claim.

�
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Finsler metrics [22, p. 116]. Let X be a C1 manifold modeled in a Banach space (E, | · |E).
As usual, TX = {(x, v) : x ∈ X and v ∈ TxX} will denote the tangent bundle of X. If (W,ϕ)
is a chart of X, then there is a local trivialization of the natural projection π : TX → X over
W , namely a bijection TW = π−1(W ) →W ×E which commutes with the projection on W .
For every v ∈ E and x ∈W , dϕ−1(ϕ(x))v ∈ TxX is the tangent vector at x represented by v
in the chart (W,ϕ). A Finsler structure on TX is a continuous map ‖ · ‖ : TX → [0,∞) such
that:

(1) For every x ∈ X, the map ‖ · ‖x := ‖ · ‖|TxX : TxX → [0,∞) is a norm on TxX such

that, for every chart (W,ϕ) at x, the map ‖dϕ−1(ϕ(u))(·)‖x is a norm on E equivalent
to | · |E.

(2) Given x0 ∈ X, a chart (W,ϕ) of X at x0 and ε > 0 there exists an open neighborhood
Ux0 ⊂W such that for every x ∈ Ux0 and every v ∈ E:

1

(1 + ε)
‖dϕ−1(ϕ(x0))(v)‖x0 ≤ ‖dϕ−1(ϕ(x))(v)‖x ≤ (1 + ε)‖dϕ−1(ϕ(x0))(v)‖x0 .

A Finsler manifold is a C1-smooth Banach manifold endowed with a Finsler structure on its
tangent bundle.

Let X be a C1 Finsler manifold. Recall that the length of a C1-smooth path σ : [a, b] → X

is defined as

ℓ(σ) =

∫ b

a

‖σ̇(t)‖σ(t)dt.

If X is connected, then it is connected by C1-smooth paths and we can define the associated
Finsler metric:

dX(u, u
′) = inf{ℓ(σ) : σ is a C1-smooth path connecting u to u′}.

The Finsler metric is consistent with the topology given in X and the manifold is said to be
complete if it is a complete metric space with respect to the distance dX . From now on we
will assume that all Finsler manifolds are connected.

The next lemma shows that the Finsler distance can be locally approximated by the norm-
distance associated to a given chart on the model space.

Lemma 7. Let X be a C1 Finsler manifold modeled on a Banach space E. Given x ∈ X, a
chart (W,ϕ) of X at x and ε > 0 there is an open neighborhood Ux ⊂W such that:

(4)
1

(1 + ε)
‖u− u′‖x,ϕ ≤ dX(u, u

′) ≤ (1 + ε)‖u− u′‖x,ϕ

where u = ϕ(u), u′ = ϕ(u′) for u, u′ ∈ Ux and ‖ · ‖x,ϕ := ‖dϕ−1(ϕ(x))(·)‖x.

Proof. Let x ∈ X and ε > 0, and a chart (W,ϕ) of X at x. Then there is an open and
connected neighborhood Ux such that for every u ∈ Ux and every v ∈ E:

1

(1 + ε)
‖v‖x,ϕ ≤ ‖v‖u,ϕ ≤ (1 + ε)‖v‖x,ϕ.

Without loss of generality, we can also assume that ϕ(Ux) is a convex open set in E. Let u
and u′ arbitrary points in Ux, and let σ : [0, 1] → Ux be a C1-smoth path joining u and u′. If
s = ϕ ◦ σ, for each t ∈ (0, 1) we have that σ̇(t) = dϕ−1(ϕ(σ(t)))ṡ(t). Then

ℓ(σ) =

∫ 1

0
‖σ̇(t)‖σ(t)dt =

∫ 1

0
‖ṡ(t)‖σ(t),ϕdt ≥

1

(1 + ε)

∫ 1

0
‖ṡ(t)‖x,ϕdt

≥
1

(1 + ε)

∥

∥

∥

∥

∥

∫ 1

0
ṡ(t)dt

∥

∥

∥

∥

∥

x,ϕ

≥
1

(1 + ε)
‖s(1) − s(0)‖x,ϕ
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Therefore dX(u, u
′) ≥ 1

(1+ε)‖u−u′‖x,ϕ. Now, consider the path s(t) = tϕ(u) + (1− t)ϕ(u′) in

ϕ(Ux) and σ(t) = ϕ−1(s(t)). Then:

ℓ(σ) =

∫ 1

0
‖σ̇(t)‖σ(t)dt =

∫ 1

0
‖ṡ(t)‖σ(t),ϕdt ≤ (1 + ε)

∫ 1

0
‖ṡ(t)‖x,ϕdt

= (1 + ε)

∫ 1

0
‖ϕ(u) − ϕ(u′)‖x,ϕdt.

Then dX(u, u
′) ≤ ℓ(σ) ≤ (1 + ε)‖u− u′‖x,ϕ. �

As a consequence, we see that the Finsler distance is locally comparable with the distance
in the model space given by the original norm.

Lemma 8. Let X be a C1 Finsler manifold modeled in a Banach space (E, | · |E). Given
x ∈ X, a chart (W,ϕ) of X at x and ε > 0 there is an open neighborhood Ux ⊂W and m > 0
such that such that for every u, u′ ∈ Ux:

(5)
1

m(1 + ε)
|ϕ(u) − ϕ(u′)|E ≤ dX(u, u

′) ≤ m(1 + ε)|ϕ(u) − ϕ(u′)|E .

Proof. By Lemma 7, for every x ∈ X, a chart (W,ϕ) of X at x, and ε > 0 there is an open
neighborhood Ux ⊂ W such that (4) holds or every u, u′ ∈ Ux. Since ‖dϕ−1(ϕ(x))(·)‖x is a
norm on E equivalent to |·|E , there exists m > 0 such that 1

m
|v|E ≤ ‖dϕ−1(ϕ(x))v‖x ≤ m|v|E

for every v ∈ E. Then the result follows. �

This gives that, for Finsler manifolds, the notion of local Lipschitz continuity previously
given in the 1st definition coincides with the usual notion of local Lipschitz continuity for the
Finsler metric.

Locally Lipschitz continuous maps: 2nd definition. Let X and Y be two C1 Finsler
manifolds. We say that a map f : X → Y is locally Lipschitz at x ∈ X if there exists an open
set W at x and κ > 0 such that for all u, u′ ∈W :

(6) dY (f(u), f(u
′)) ≤ κdX(u, u

′).

Remark 9. Both definitions of locally Lipschitz continuous map are equivalent for mappings
between Finsler manifolds. Indeed, let X and Y be two C1 Finsler manifolds modeled on E
and F , respectively, and let f : X → Y be locally Lipschitz at x ∈ X according to the 1st
definition. Then there are charts (W,ϕ) at x, (V, ψ) at f(x) such that f(W ) ⊂ V and the
map f = ψ ◦ f ◦ ϕ−1 : ϕ(W ) → ψ(V ) is Lipschitz on ϕ(W ), namely for all u,u′ ∈ ϕ(W ) and
some κ > 0 (2) holds. By Lemma 8, there is an open neighborhood Ux ⊂ W such that, if
u, u′ ∈ Ux, u = ϕ(u) and u′ = ϕ(u′), without loss generality we can deduce that for some
m > 0 and n > 0:

dY (f(u), f(u
′)) ≤ κmn(1 + ε)2dX(u, u

′)

Therefore f is locally Lipschitz at x according to 2nd definition. The converse implication is
analogous.

4. Metric regularity on Finsler manifolds

Let X and Y be two C1-smooth Finsler manifolds modeled on Banach spaces. A map
f : X → Y is said to be metrically regular around x with modulus µ > 0 if there exist
neighborhoods Wx and Vf(x) such that

(7) dX(u, f
−1(y)) ≤ µ dY (y, f(u))

for all u ∈Wx and y ∈ Vf(x). The infimum of such moduli µ is called rate of metric regularity
and, as usual, will be denoted by regf(x). If no such neighborhoods and modulus exist we set
regf(x) = ∞. As Ioffe points out in [12]: “the very fact that f is regular near certain point
is independent of the choice of specific metrics. Thus, although the definitions explicitly use
metrics the regularity is a topological property”.
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It is well known (see [12]) that f is metrically regular at x if and only if f is open with
linear rate around x, namely if there exist a neighborhoodWx and a constant α > 0 such that
for every u ∈Wx and r > 0 with BX(u; r) ⊂Wx:

(8) BY (f(u);αr) ⊂ f(BX(u; r))

The supremum of all α > 0 such that for some neighborhood Wx (8) holds for all u ∈
Wx and all r > 0 with BX(u; r) ⊂Wx is the rate of surjection of f near x denoted by cov f(x).

A mapping f is open with linear rate around x if and only if the set valued mapping
f−1 : Y → 2X , defined by f−1(y) = {x ∈ X : y = f(x)} for y ∈ Y , has the so-called
pseudo-Lipschitz property near (f(x), x). Recall, a set-valued mapping g : Y → 2X has the
pseudo-Lipchitz property around (y, x) if there exist neighborhoods Vy and Wx and a number
µ > 0 such that dX(u, g(z)) ≤ µdY (w, z) provided w, z ∈ Vy, u ∈ Wx and u ∈ g(w). The
infimum of such µ —denoted by lip g(y|x)— is called the Lipschitz rate of g near (y, x). If no
such neighborhoods and modulus exist we set lipg(y|x) = ∞.

In summary, as can be seen in [12], we have that f is metrically regular around x if and
only if it is open with linear rate around x if and only if f−1 has the pseudo-Lipschitz property
near (f(x), x). Moreover, under the convention 0 · ∞ = 1,

(9) covf(x) · regf(x) = 1 regf(x) = lipf−1(f(x)|x).

Remark 10. [Linear case] Let T ∈ L(E,F ) be a continuous linear operator between
Banach spaces. Then the following statements are equivalent:

(a) T is onto
(b) The Banach constant of T is positive i.e.

C(T) := inf
|y∗|=1

|T∗y∗| > 0

(c) The index I(T) := sup|y|=1 {infTx=y |x|} <∞.

Of course, for all x ∈ E, covT(x) = C(T) and regT(x) = I(T). Furthermore, it is easily
seen that T is one to one and T(E) is closed, if and only if, the dual Banach constant of T
is positive i.e.

C∗(T) := inf
|u|=1

|Tu| > 0.

Furthermore if T is a linear isomorphism then:

(10) C∗(T) = C(T) = ‖T−1‖−1

Corollary 11. Let X be a C1 Finsler manifold modeled on a Banach space E. Let x ∈
X and (W,ϕ) be a chart at x. Then ϕ : W → E is metrically regular at x and ϕ−1 :
ϕ(W ) → X is metrically regular at x = ϕ(x). Moreover, with the equivalent norm ‖ · ‖x,ϕ :=
‖dϕ−1(ϕ(x)(·))‖x on E, we have:

covϕ(x) = 1 = covϕ−1(x).

Proof. Let ε > 0. By Lemma 7, there is an open neighborhood Ux ⊂ W such that such that
for every u, u′ ∈ Ux:

(11)
1

1 + ε
‖ϕ(u) − ϕ(u′)‖x,ϕ ≤ dX(u, u

′) ≤ (1 + ε)‖ϕ(u) − ϕ(u′)‖x,ϕ,

where ‖·‖x,ϕ is the equivalent norm on E given in Lemma 7. This means that ϕ : Ux → ϕ(Ux)
is (1 + ε)-bi-Lipschitz. Therefore, if we consider the local Lipschitz constant of ϕ at x:

lip ϕ(x) := inf
R>0

sup

{

‖ϕ(u) − ϕ(u′)‖x,ϕ
dX(u, u′)

: u, u′ ∈ BX(x;R) and u 6= u′
}

,
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we obtain that
1

1 + ε
≤ lip ϕ(x) ≤ 1 + ε.

As a consequence, we have that lip ϕ(x) = 1. In the same way, if we denote x = ϕ(x), we
also have that lip ϕ−1(x) = 1.

Since ϕ :W → ϕ(W ) is a single-valued mapping, then it has the pseudo-Lipschitz property
near the point (x, ϕ(x)) if and only if it is locally Lipschitz continuous at x, and furthermore

(12) lipϕ(x) = lipϕ(x|ϕ(x)).

The same holds for ϕ−1 : ϕ(W ) →W , and in this case we have that

(13) lipϕ−1(x) = lipϕ−1(x|ϕ−1(x)).

Therefore, an application of (9) gives that covϕ(x) = 1 = covϕ−1(x). �

Definition 12. [Finsler regularity index] Let X and Y be two C1-smooth Finsler man-
ifolds modeled on Banach spaces E and F . For every x ∈ X and every linear operator
T ∈ L(TxX,Tf(x)Y ), consider its Banach constant with respect to the dual norms | · |x on
(TxX)∗ and | · |f(x) on (Tf(x)Y )∗, respectively given by the Finsler norms on TxX and Tf(x)Y :

CFinsler(T ) = inf
|y∗|f(x)=1

|T ∗y∗|x

Now let f : X → Y be a locally Lipschitz map, and let Jf be a pseudo-Jacobian mapping for
f . We define the Finsler regularity index of Jf at x by:

C(Jf(x)) := sup
R>0

inf{CFinsler(T ) : T ∈ coJf(BX(x;R))}

where Jf(BX(x;R)) = {T ∈ Jf(u) : u ∈ BX(x;R)}.

Proposition 13. The Finsler regularity index for a pseudo-Jacobian mapping is well defined
in the following sense: for every chart (W,ϕ) at x and every chart (V, ψ) at f(x) such that
f(W ) ⊂ V we have that if f = ψ ◦ f ◦ ϕ−1, T = dψ−1(y)T[dϕ−1(x)]−1, y = ψ(f(x)), and
x = ϕ(x) then:

(14) CFinsler(T ) = Cψ,ϕ(T) := inf
|y∗|f(x),ψ=1

|T∗y∗|x,ϕ

where | · |x,ϕ and | · |f(x),ψ are the dual norms of ‖ · ‖x,ϕ and ‖ · ‖f(x),ψ , respectively. Moreover:

(15) C(Jf(x)) = C(Jf(x)) := sup
R>0

inf{Cψ,ϕ(T) : T ∈ coJf(BE(x;R))}

Proof. We have that

IFinsler(T ) = sup
‖y‖f(x)=1

{

inf
Tu=y

‖u‖x

}

.

Let us consider the changes of variables w := [dϕ−1(x)]−1(u) and v := [dψ−1(y)]−1(y). Then
(14) holds since:

IFinsler(T ) = sup
‖v‖f(x),ψ=1

{

inf
Tw=v

‖w‖x,ϕ

}

= Iψ,φ(T).

Now for R > 0 set

AR := {CFinsler(T ) : T ∈ coJf(BX(x;R))}

BR := {Cψ,ϕ(T) : T ∈ coJf(BE(x;R))}

Claim 1: There is R0 > 0 such that for all 0 < R < R0, inf BR ≤ C(Jf(x))
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Set R0 > 0 such that BE(x;R0) ⊂ ϕ(W ). Given 0 < R < R0, there is R′ > 0,
depending on R, such that

BX(x;R
′) ⊂ ϕ−1 (BE(x;R)) ⊂W.

Let c ∈ AR′ ; then c = CFinsler(T ) for T ∈ coJf(BX(x;R
′)). Note that, since s =

Σni=1λidψ
−1(y)Ti[dϕ

−1(x)]−1 = dψ−1(y)(Σni=1Ti)[dϕ
−1(x)]−1, we have that

coJf(BX(x;R
′)) = dψ−1(y) coJf(ϕ(BX (x;R′))) [dϕ−1(x)]−1,

and thus coJf(ϕ(BX(x;R
′))) is contained in coJf(BE(x;R)). Therefore we have that

T = dψ−1(y)T[dϕ−1(x)]−1 with T ∈ coJf(BE(x;R)) and by equality (14) we deduce
that c = Cψ,ϕ(T). Then AR′ ⊂ BR, so:

inf BR ≤ inf AR′ ≤ C(Jf(x)).

Analogously, we have:

Claim 2: There is R0 > 0 such that for all 0 < R < R0, inf AR ≤ C(Jf(x)).

By Claim 1, letting R → 0 we get C(Jf(x)) ≤ C(Jf(x)), and by Claim 2, letting R → 0 we
get C(Jf(x)) ≤ C(Jf(x)). So we get (15).

�

In order to obtain a connection between metric regularity of a function f and the Finsler
regularity index of a given pseudo-Jacobian for f , the idea is to take advantage of the known
results in the case of Banach spaces, and carefully transfer them to the context of Finsler
manifolds. More precisely, we will use Theorem 3.1 and Corollary 2.18 of [16]. The bottom
line is that the function x 7→ ‖f(x)‖ must satisfy a sort of a chain rule condition. This
condition applies in the most relevant cases as we will detail later. So, we need some more
extra assumptions.

Definition 14. [Strong pseudo-Jacobians] Let X and Y be two C1 manifolds modeled on
Banach spaces E and F , respectively. Let f : X → Y be a locally Lipschitz map, and let Jf
be a pseudo-Jacobian mapping for f . We say that Jf is a strong pseudo-Jacobian mapping
for f if, for each x ∈ X, there exists a chart (W,ϕ) at x and a chart (V, ψ) at f(x) satisfying
the conditions of Definition 3 and, in addition, if we denote f = ψ ◦ f ◦ ϕ−1,

(PJ4) For every u in the domain of the assignment u 7→ Jf(u) given in condition (PJ2),
Jf(u) ⊂ L(E,F ) is convex and compact in the weak operator topology (WOT).

For example, Jf is a strong pseudo-Jacobian mapping if, for every point, Jf(u) is a Clarke-
like generalized Jacobian of f at u in the domain of Jf . Examples of Clarke-like generalized
Jacobians are the Clarke generalized gradient in the infinite-dimensional case, and the Palés-
Zeidan generalized Jacobians in the case where the target space is reflexive, see Example 2.5
in [16] and references therein.

Definition 15. [Finsler manifold with smooth norm] We shall say that a Finsler man-
ifold X has smooth norm if, for every x ∈ X, the norm ‖ · ‖x is Fréchet differentiable (away
from 0.)

Of course, a Riemannian manifold has smooth norm. Finite dimensional Finsler manifolds
can always be given an equivalent smooth norm. In general, if X is a paracompact smooth
manifold modeled on a Banach space E endowed with a Fréchet differentiable norm, by Lemma
2.8 in [22], X admits a Finsler structure with smooth norm.

Theorem 16. Let X and Y be two C1 Finsler manifolds modeled on Banach spaces, where
Y has smooth norm. Let f : X → Y be a locally Lipschitz map, and suppose that Jf(x) is a
strong pseudo-Jacobian mapping for f . Then, for each x ∈ X:

(16) covf(x) ≥ C(Jf(x)).
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Proof. Suppose that X and Y are modeled, respectively, on Banach spaces E and F , respec-
tively. Let x ∈ X and assume that C(Jf(x)) > 0, since otherwise the inequality is obvious.
Let (W,ϕ) be a chart at x and let (V, ψ) be a chart at f(x) such that f(W ) ⊂ V . Set
f := ψ ◦ f ◦ϕ−1 : ϕ(W ) → ψ(V ). Let us endow E and F with the norms ‖ · ‖x,φ and ‖ · ‖f(x),ψ
respectively. Let R > 0 such that

β := βR = inf{Cψ,ϕ(T) : T ∈ coJf(BE(x;R))} > 0.

Since coJf(BE(x;R)) := co{T ∈ Jf(u) : u ∈ BE(x;R)} we have:

⋃

u∈BR

coJf(u) ⊂ co





⋃

u∈BR

coJf(u)



 = co





⋃

u∈BR

Jf(u)



 = coJf(BR)

where BR := BE(x;R). Therefore,

inf{Cψ,ϕ(T) : T ∈ coJf(u);u ∈ BE(x;R)} ≥ β > 0.

Since Y has smooth norm then ‖ · ‖f(x) is Fréchet differentiable. Furthermore, since Jf is
a strong pseudo-Jacobian mapping, then Jf(u) is convex and compact in the weak operator
topology for some u in a ball BE(x;R) small enough. By Theorem 3.1 and Corollary 2.18 in
[16], for each open ball BE(u; δ) ⊂ BE(x;R) we have:

(17) BF (f(u); δβ) ⊂ f(BE(u; δ))

Now let ε > 0 be fixed. By Theorem 11, there is an open neighborhood Uε at u such that for
each open ball BX(u; δ

′) ⊂ Uε:

(18) BE(ϕ(u); (1 + ε)−1δ′) ⊂ ϕ(BX (u; δ′)),

and there is an open neighborhood Vε of f(x) such that for each open ball BF (f(u); δ
′′) ⊂ Vε:

(19) BY (ψ
−1(f(u)); (1 + ε)−1δ′′) ⊂ ψ−1(BF (f(u); δ

′′)).

Let Wx ⊂ Uε small enough such that for all r > 0 and u ∈ Wx with BX(u; r) ⊂ Wx,
BE(ϕ(u); (1 + ε)−1r) ⊂ BE(x;R), and BF (ψ(f(u)); (1 + ε)−1βr) ⊂ Vε. Let u ∈Wx and r > 0

with BX(u; r) ⊂Wx. Set ρ := β
(1+ε)2

. By the metric regularity property of ψ−1 at f(u) (18),

we have:

BY (ψ
−1(f(u)); ρr) ⊂ ψ−1(BF (f(u); ρ(1 + ε)r)).

Therefore:

ψ(BY (ψ
−1f(u); ρr)) ⊂ BF (f(u); ρ(1 + ε)r).

Since ρ(1 + ε) = β(1 + ε)−1, by (17) with δ := (1 + ε)−1r we get:

ψ(BY (ψ
−1(f(u)); ρr)) ⊂ f (BE (u; δ)) .

So,

BY ((ψ
−1 ◦ f)(u); ρr) ⊂ (ψ−1 ◦ f) (BE (ϕ(u); δ)) .

Now, by the metric regularity property of ϕ at x (19) and since u = ϕ(u) we conclude:

BY ((ψ
−1 ◦ f ◦ ϕ)(u); ρr) ⊂ (ψ−1 ◦ f ◦ ϕ)(BX (u; r)).

Finally, BY (f(u); ρr) ⊂ f(BX(u; r)), and then covf(x) ≥ β
(1+ε)2

. Taking the supremum over

R > 0 we get:

covf(x) ≥
C(Jf(x))

(1 + ε)2
.

Since ε > 0 was chosen arbitrary, we get the desired inequality. �
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5. Inverse Mapping Theorem

Definition 17. [Finsler local-inyectivity index] Let X and Y be two C1 Finsler manifolds
modeled on Banach spaces. Let f : X → Y be a locally Lipschitz map, and suppose that
Jf(x) is a pseudo-Jacobian mapping for f . Let x ∈ X and, for every linear operator T ∈
L(TxX,Tf(x)Y ), consider the dual Banach constant given by the Finsler norms on TxX and
Tf(x)Y , respectively:

C∗
Finsler(T ) = inf

|u|x=1
|Tu|f(x).

We define the Finsler local-inyectivity index for a Jf at x by:

C∗(Jf(x)) := sup
R>0

inf{C∗
Finsler(T ) : T ∈ coJf(BX(x;R))}

In a similar way to Proposition 13 we can prove that:

Proposition 18. The Finsler local-inyectivity index for pseudo-Jacobian mapping is well
defined in the following sense: for every chart (W,ϕ) at x and every chart (V, ψ) at f(x) such
that f(W ) ⊂ V we have that if f = ψ ◦ f ◦ ϕ−1, T = dψ−1(y)T[dϕ−1(x)]−1, and x = ϕ(x)
then:

(20) C∗
Finsler(T ) = C∗

ψ,ϕ(T) := inf
‖u‖x,ϕ=1

‖Tu‖f(x),ψ .

As expected:

(21) C∗(Jf(x)) = C∗(Jf(x)) := sup
R>0

inf{C∗
ψ,ϕ(T) : T ∈ coJf(BE(x;R))}

Theorem 19. [Local injectivity] Let X and Y be two C1 Finsler manifolds modeled on
Banach spaces. Let f : X → Y be a locally Lipschitz map, and suppose that Jf(x) is a
pseudo-Jacobian mapping for f . Let x ∈ X and suppose that C∗(Jf(x)) > α > 0. Then f is
locally injective at x, an more precisely there is an open neighborhood U of x such that for all
u, u′ ∈ U :

dY (f(u), f(u
′)) ≥ αdX(u, u

′).

Proof. Denote by E and F , respectively, the model spaces of X and Y , respectively. Let
(W,ϕ) be a chart at x and let (V, ψ) be a chart at f(x) such that f(W ) ⊂ V . Given ε > 0,
let Ux be an open neighborhood with Ux ⊂W and such that for all u, u′ ∈ Ux:

1

(1 + ε)
‖ϕ(u) − ϕ(u′)‖x,ϕ ≤ dX(u, u

′) ≤ (1 + ε)‖ϕ(u) − ϕ(u′)‖x,ϕ.

We may also assume that f(Ux) ⊂ Of(x) ⊂ f(W ) for some Of(x) such that for all y, y′ ∈ Of(x):

1

(1 + ε)
‖ψ(y) − ψ(y′)‖f(x),ψ ≤ dY (y, y

′) ≤ (1 + ε)‖ψ(y) − ψ(y′)‖f(x),ψ .

Let f = ψ ◦ f ◦ ϕ−1 : ϕ(Ux) → ψ(Of(x)). We have that there exists R > 0 such that
BE(x;R) ⊂ ϕ(Ux) and, for all T ∈ coJf(BE(x;R)) we have that

C∗
ψ,ϕ(T) ≥ β > α > 0

for some β. Take u,u′ ∈ BE(x;R) and pick a 0 < r < 1. Let us endow E and F with the
norms ‖ · ‖x,φ and ‖ · ‖f(x),ψ respectively. By Theorem 2.7 of [16] there exists an operator
T0 ∈ co(Jf [u,u′]) such that

‖f(u)− f(u′)−T0(u− u′)‖f(x),ψ ≤ rβ‖u− u′‖x,ϕ.

Since [u,u′] ⊂ BE(x;R) ⊂ ϕ(W ) we have that C∗
ψ,ϕ(T0) > α > 0. Then as in proof of Lemma

3.8 in [16] we get
‖f(u)− f(u′)‖f(x),ψ ≤ (1− r)β‖u− u′‖x,ϕ.

Since r was chosen arbitrarily, we get that for all u,u′ ∈ BE(x;R):

‖f(u)− f(u′)‖f(x),ψ ≥ β‖u− u′‖x,ϕ.
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Therefore, for all u, u′ ∈ Uε := ϕ−1(BE(x;R))

‖ψ ◦ f ◦ ϕ−1(ϕ(u)) − ψ ◦ f ◦ ϕ−1(ϕ(u′))‖f(x),ψ ≥ β‖ϕ(u) − ϕ(u′)‖x,ϕ.

Then:

‖ψ(f(u)) − ψ(f(u′))‖f(x),ψ ≥ β‖ϕ(u) − ϕ(u′)‖x,ϕ.

By above inequalities we get:

dY (f(u), f(u
′)) ≥

β

(1 + ε)2
dX(u, u

′).

It is enough to choose ε > 0 such that α < β
(1+ε)2

< β. �

Definition 20. Let f : X → Y be a locally Lipschitz map between C1 Finsler manifolds,
and let Jf be a pseudo-Jacobian mapping for f . We shall say that f is Jf -regular at a point
x ∈ X if:

(1) C(Jf(x)) > 0, and
(2) there exists is R > 0 such that every T in coJf(BX(x;R)) is a linear isomorphism.

Note that if condition (2) holds, we have that

(22) C(Jf(x)) = C∗(Jf(x)).

Combining Lemma 16 and Theorem 19 we obtain at once the following local inversion
result.

Theorem 21. [Inverse Mapping Theorem] Let f : X → Y be locally Lipschitz map
between C1 Finsler manifolds, where Y has smooth norm, and let Jf be a strong pseudo-
Jacobian mapping for f . Suppose that f is Jf -regular at a point x ∈ X, with C(Jf(x)) >
α > 0. Then there is an open neighborhood U at x such that:

(1) fx := f |U : U → f(U) is a homeomorphism with

dY (fx(u), fx(u
′)) ≥ αdX(u, u

′) for all u, u′ ∈ U.

(2) fx is an open map with linear rate at every point of U and also:

C∗(Jf(u)) = C(Jf(u)) ≥ α for all u ∈ U.

(3) f−1
x is Lipschitz continuous and lipf−1

x (f(u)) ≤ α−1 for all u ∈ U .

6. Global inverse theorems

The Ehresmann Theorem asserts that a proper submersion f : X → Y between finite
dimensional manifolds, whereX paracompact and Y connected, is a locally trivial fiber bundle.
Recall that a map f : X → Y between manifolds is a submersion is f is differentiable and
such that df(x) is surjective for all x ∈ X. On the other hand, f is said to be a proper map
provided f−1(K) is compact in X whenever K is compact in Y . In a remarkable work [26],
Rabier extends Ehresmann theorem to the framework of infinite-dimensional Finsler manifolds
via the notion of “strong submersions”, which is a generalization of proper submersions (see
Theorem 4.1 in [26]). The notion of strong submersion is closely related to the Palais-Smale
condition for a non-linear functional f , setting down that there should be no sequence {xn}
in X such that {f(xn)} converges and ‖df(xn)‖ tends to 0. In this form, it can be generalized
to mappings between Finsler manifolds via the Banach constant. So, acording to Definition
3.2 in [26], and using the our notation as in Remark 10, a C1 mapping f : X → Y between C1

Finsler manifolds is a strong submersion is there is no sequence {xn} in X with f(xn) → y ∈ Y

and C(df(xn)) → 0. In our context it is natural to set up the following definition:

Definition 22. [Strong submersion] Let f : X → Y be a locally Lipschitz map between
C1 Finsler manifolds, and let Jf be a pseudo-Jacobian mapping for f . We shall say that f is a
strong submersion if there is no sequence {xn} in X with f(xn) → y ∈ Y and C(Jf(xn)) → 0.
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When f is a local diffeomorphism, the fibers of a fiber bundle are discrete, so Theorem
4.1 in [26] yields to Corollary 4.2 in the same reference: If f is both a local diffeomorphism
and a strong submersion between Finsler manifolds then it is a covering map. We present a
generalization of this result in a non-smooth setting:

Theorem 23. [Covering maps I] Let X and Y be two C1 Finsler manifolds, where X is
complete and Y has smooth norm, and let f : X → Y be a locally Lipschitz map. Suppose
that Jf is a strong pseudo-Jacobian for f , which is is Jf -regular at every point x ∈ X. If
f is a strong submersion then f is a covering map, the set-valued inverse map f−1 has the
pseudo-Lipchitz property around (y, x) for every y ∈ Y and x ∈ f−1(y), and lipf−1(y|x) ≤

C(Jf(x))−1.

Proof. In order to apply Theorem 5.2 of [9] we need to verify the following check list:

(i) Y is locally R-contractible [9, p. 78]: this is a fairly general class of metric spaces
with nice local structure. In particular, Example 2.4 in [9] states that every Finsler
manifold is a locally R-contractible space.

(ii) f is a local quasi-isometric map: this means that for every x ∈ X there is an open
neighborhood U of x, and constants 0 < m ≤M such that:

m ≤ inf
u∈U

D−
u f ≤ sup

u∈U
D+
u f ≤M

where

D−
u f = lim inf

w→u

dY (f(w), f(u))

dX(w, u)
and D+

u f = lim sup
w→u

dY (f(w), f(u))

dX(w, u)
.

This follows from our Inverse Mapping Theorem 21 and the fact that f is locally
Lipschitz.

(iii) f has the continuation property for rectifiable paths: this means that for every recti-
fiable path p : [0, 1] → Y in Y , every b ∈ (0, 1] and every q : [0, b) → X such that
f ◦ q = p over [0, b), there exists β > 0 such that inf{D−

x f : x in the image of q} ≥ β.

Indeed, since f is a strong submersion, then for all y ∈ Y there is some βy > 0
and a neighborhood V of y such that C(Jf(x)) ≥ βy for all x ∈ f−1(V ). Since the
image of p is a compact set in Y , by a standard compacteness argument there is
β > 0 such that inf{C(Jf(x)) : x in the image of q} ≥ β. Now, for each x ∈ X and
each 0 < α < C(Jf(x)), by our Inverse Mapping Theorem (Theorem 21) D−

x f ≥ α.
Therefore, D−

x f ≥ C(Jf(x)), and so f has the continuation property for rectifiable
paths.

On the other hand note that, in fact, the requirement “Y complete” is not necessary in the
proof of Theorem 5.2 of [9]. Thus, from Theorem 5.2 of [9] we obtain that f is a covering
map. Let y ∈ Y and x ∈ f−1(y). By (9) cov f(x)−1 = regf(x) = lipf−1(y|x). By (16) we

have that lipf−1(y|x) ≤ C(Jf(x))−1. �

Motivated by the “weighted” Palais-Smale condition —such as Cerami condition [27]— and
the Hadamard theorem for local diffeomorphism between Banach spaces [11, 25, 19, 20, 6] via
the integral condition:

∫ ∞

0
inf
|x|≤ρ

C(df(x))dρ = ∞,

we define below the concept of weighted strong submersion.

Definition 24. [Weighted strong submersion] A weight is a nondecreasing map (not
necessarily continuous) ω : [0,∞) → (0,∞) such that

∫ ∞

0

1

ω(ρ)
dρ = ∞.

Let f : X → Y be a locally Lipschitz map between C1 Finsler manifolds, and let Jf be a
pseudo-Jacobian mapping for f . We shall say that f is a weighted strong submersion if there
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is no sequence {xn} in X with f(xn) → y ∈ Y and C(Jf(xn))ω(dX(x
∗, x)) → 0 for some

x∗ ∈ X and some weight.

Theorem 25. [Covering maps II] Let X and Y be two C1 Finsler manifolds, where X is
complete and Y has smooth norm, and let f : X → Y be a locally Lipschitz map. Suppose that
Jf is a strong pseudo-Jacobian mapping for f which is is Jf -regular at every point x ∈ X.
If f is a weighted strong submersion then f is a covering map, the set-valued inverse map
f−1 has the pseudo-Lipschitz property around (y, x) for every y ∈ Y and x ∈ f−1(y) with

lipf−1(y|x) ≤ C(Jf(x))−1.

Proof. Suppose that f is a weighted strong submersion for the weight ω. We argue as in the
proof of Theorem 23, but instead of (iii), we can show with the same arguments that:f has
the bounded path lifting property for rectifiable paths with respect to the weight ω. Namely,
for every rectifiable path p : [0, 1] → Y in Y , every b ∈ (0, 1] and every q : [0, b) → X such
that f ◦ q = p over [0, b), there exists x∗ ∈ X and β > 0 such that inf{D−

x f · ω(dX(x, x
∗)) :

x in the image of q} ≥ β. Therefore, again using Theorem 5.2 of [9] f is a covering map. As

before, by (16) we have that lipf−1(y|x) ≤ C(Jf(x))−1. �

Remark 26. Let x∗ some point fixed in X. Reasoning as in the proof of Lemma 4.5 in [9],
we can verify that there exists a weight ω such that C(Jf(x))ω(dX(x

∗, x)) ≥ 1 if and only if
the following integral condition holds

(23)

∫ ∞

0
inf

dX(x,x∗)≤ρ
C(Jf(x))dρ = ∞.

In particular, if a metrically regular local homeomorphism satisfies the Hadamard integral
condition then it is a (weighted) strong submersion. Actually if f : X → Y is a local diffeo-
morphism between Banach spaces, f is a global diffeomorphism if and only if it is a strong
submersion [26, 7]. Furthermore, in this context, the Hadamard’s integral condition implies
coercivity, namely lim|x|→∞ |f(x)| → ∞. But in infinite-dimensional setting there are non-
coercive global diffeormophisms between Banach spaces.

The following result is a direct consequence of Remark 26, Theorem 25 and the fact that
if f : X → Y is a covering map with X path-connected and Y simply-connected then it is a
homeomorphism.

Corollary 27. [Hadamard Theorem] Let X and Y be two C1 Finsler manifolds, where
X is complete and Y is simply-connected and has smooth norm. Let f : X → Y be a locally
Lipschitz map, and suppose that Jf is a strong pseudo-Jacobian for f , which is Jf -regular at
every point in X. Consider some fixed point x∗ ∈ X and some weight ω, and assume that the
following integral condition holds

∫ ∞

0
inf

dX(x,x∗)≤ρ
C(Jf(x))dρ = ∞.

Then f is a global homeomorphism, the inverse map f−1 is locally Lipschitz and lipf−1(f(x)) ≤
ω(dX(x, x

∗)).

Remark 28. [Estimate of the domain of invertibility] Let X and Y be two C1 Finsler
manifolds, where X is complete and Y has smooth norm, and let f : X → Y be a locally
Lipschitz map. Suppose that Jf is a strong pseudo-Jacobian for f , which is Jf -regular at
every point in X, and consider some point fixed in x∗ ∈ X. For every r > 0 set:

(24) ̺(r) =

∫ r

0
inf

dX(x,x∗)≤ρ
C(Jf(x))dρ.

Then:

BY (f(x
∗); ̺(r)) ⊂ f(BX(x

∗; r)).
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Indeed, If ̺(r) = 0 the above inclusion holds trivially. Now if ̺(r) > 0, by Theorem 21 (our
Inverse Mapping Theorem) f is a metrically regular local homeomorphism. Set

µ(ρ) = inf
dX (x,x∗)≤ρ

D−
x f.

As in proof of Theorem 23 we have that D−
x f ≥ C(Jf(x)). Therefore for x in the ball B(x∗; ρ):

D−
x f ≥ C(Jf(x)) ≥ inf

dX (x,x∗)≤ρ
C(Jf(x)).

Then µ(ρ) ≥ 1
ω(ρ) so ξ(r) :=

∫ r

0 µ(ρ)dρ ≥ ̺(r). By Theorem 6 in [4] we have:

BY (f(x
∗); ̺(r)) ⊂ BY (f(x

∗); ξ(r)) ⊂ f(BX(x
∗; r)).

Corollary 29. [Global metric regularity] Let X and Y be two C1 Finsler manifolds,
where X is complete and Y has smooth norm, and let f : X → Y be a locally Lipschitz map.
suppose that Jf is a strong pseudo-Jacobian for f , which is Jf -regular at every point in X.
Suppose that there exists α > 0 such that:

C(Jf(x)) ≥ α > 0 for all x ∈ X.

Then, for every r > 0:

(25) BY (f(x);αr) ⊂ f(BX(x; r)).

Furthermore, f is a covering map, and the set-valued inverse map f−1 has the pseudo-Lipchitz
property around (y, x) for every y ∈ Y and x ∈ f−1(y) with

lipf−1(y|x) ≤ α−1.

Theorem 30. [Characterizing metrically regular homeomorphisms] Let X and Y be
two C1 Finsler manifolds, where X is complete and Y is simply connected and has smooth
norm. Let f : X → Y be a locally Lipschitz map, and suppose that Jf is a strong pseudo-
Jacobian for f , which is Jf -regular at every point in X. Then, the following statements are
equivalent:

(1) f is a global homeomorphism from X onto Y .
(2) for each compact set K ⊂ Y there exists αK > 0 such that C(Jf(x)) ≥ αK , for all

x ∈ f−1(K).
(3) f is a strong submersion.
(4) f is a weighted strong submersion.
(5) f is a global homeomorphism from X onto Y with locally Lipschitz continuous inverse.
(6) f is a proper map.

Furthermore, if any of these criteria are satisfied then for every y ∈ Y :

(26) lipf−1(y) ≤ C(df(f−1(y)))−1.

Proof. Suppose first that (1) holds and K ⊂ Y is compact. Since f−1 is a continuous map,
then f−1(K) is compact in X. Since the map x 7→ C(J(x)) is lower semi-continuous on X,
it attains its minimum on f−1(K). But, by regularity, C(Jf(x)) > 0 for all x ∈ X, so there
is αK > 0 such that C(Jf(x)) ≥ αK , for all x ∈ f−1(K). Therefore (2) is fulfilled. To
prove that (2) implies (3) consider a sequence {xn} in X with f(xn) → y ∈ Y and such that
C(Jf(xn)) → 0. Now set K = {f(xn)}n∪{y}, and then condition (2)providesa contradiction.
On the other hand, (3) implies (4) is obvious, one just needs to consider ω ≡ 1. By Theorem
25 f is a covering map and since Y is simply connected, in fact it is a global homeomorphism
and the inverse mapping f−1 is a locally Lipschitz continuous mono-valued mapping such that
inequality (26) holds. (5) implies (6) is trivial.To conclude the proof, it is enough to observe
that f is a local quasi-isometric map, if f is proper map then by Theorem 5.2 of [9], f is a
global homeomorphism. �
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7. Lipschitz perturbations

In this Section we will study the global invertibility of “perturbed” maps of the form
F (x) = σ(f(x), g(x)), where f : X → Y is globally invertible, g : X → Y has small local
Lipschitz constant and σ : Y × Y → Y is a map with suitable properties, which mimics the
sum of functions in the context of manifolds.

Theorem 31. [Global inversion under Lipschitz perturbation] Let X and Y be two
C1 complete Finsler manifolds, where Y is simply connected and has smooth norm, and let
f, g : X → Y be locally Lipschitz maps. Suppose that Jf is a strong pseudo-Jacobian for f ,
which is Jf -regular at every point in X, and there exist a point x∗ ∈ X and a weight ω such
that:

(27) C(Jf(x))− lipg(x) ≥
1

ω(dX(x, x∗))

Let σ : Y × Y → Y be a map such that:

· σ(y, z) = σ(z, y) for all y, z ∈ Y (symmetry);
· for every y, z ∈ Y there is a neighborhood W of y, depending on y and z, such that
dY (σ(y1, z), σ(y2, z)) = dY (y1, y2) for all y1, y2 ∈W (local isometry).

For every r > 0 set

(28) ̺(r) =

∫ r

0

1

ω(ρ)
dρ.

Then the map F : X → Y defined by F (x) = σ(f(x), g(x)) satisfies:

(1) F is a global homeomorphism from X onto Y with locally Lipschitz inverse F−1 such
that for each y ∈ Y ,

(29) lipF−1(y) ≤ ω(dX(x
∗, F−1(y))).

(2) For every r > 0, BY (F (x
∗); ̺(r)) ⊂ F (BX(x

∗; r)).

Proof.
Local inversion. First we are going to prove that F is a local homeomorphism metrically
regular at every point x ∈ X. Let x ∈ X be fixed. Combinig inequality (27) with Lemma 16
and the fact that regf(x) = (cov f(x))−1, we have that:

covf(x) ≥ C(Jf(x)) > lipg(x).

So we are under conditions of Theorem 3.8 in [2]. Then we have:

(30) 0 < regF (x) = regσ(f, g)(x) ≤
regf(x)

1− regf(x)lipg(x)
.

Therefore F is metrically regular around x. Since σ is a local isometry, for u, u′ near x:

dY (f(u), f(u
′)) = dY (σ(f(u), g(u)), σ(f(u

′), g(u)))

≤ dY (σ(f(u), g(u)), F (u
′)) + dY (F (u

′), σ(f(u′), g(u)))

= dY (F (u), F (u
′)) + dY (g(u

′), g(u))

Set κ := regf(x) and µ := lipg(x). By Theorem 21 applied to f (our Inverse Mapping
Theorem) there is a neighborhood U of x such that for every u, u′ ∈ U :

dY (F (u), F (u
′)) ≥ dY (f(u), f(u

′))− dY (g(u), g(u
′))

≥
1

κ
dX(u, u

′)− dY (g(u), g(u
′))

Now let δ > 0 such that 0 < µ < µ + δ < 1
κ
. Then there is R > 0 such that for all

u, u′ ∈ BX(x;R), u 6= u′:
dY (g(u), g(u

′))

dX(u, u′)
≤ µ+ δ.
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Therefore, for every u, u′ ∈ BX(x;R) ∩ Uwe have:

dY (F (u), F (u
′)) ≥

1

κ
dX(u, u

′)− (µ + δ)dX (u, u′)

=

(

1

κ
− (µ+ δ)

)

dX(u, u
′)

with 1
κ
− (µ + δ) > 0. As a consequence, we obtain that F is locally injective. Then F is a

local homeomorphism, metrically regular at every x ∈ X.

Global properties. For every fixed x ∈ X, by the previous inequality we have that for every
δ > 0, D−

x F ≥ 1
κ
− µ− δ. Therefore, from (27) we get the global condition:

D−
x F ≥

1

κ
− µ = C(Jf(x))− lipg(x) ≥

1

ω(dX(x, x∗))
.

As before, by Theorem 5.2 of [9] f is a covering map, and since Y is simply connected,
F is actually a global homeomorphism, metrically regular at every point with with locally
Lipscthitz continuous inverse F−1 such that for all y ∈ Y :

(31) lipF−1(y) ≤ ω(dX(x
∗, F−1(y))).

On the other hand, set µ(ρ) := infdX(x,x∗)≤ρD
−
x F . Therefore for x such that dX(x, x

∗) ≤ ρ:

D−
x F ≥ C(Jf(x))− lipg(x) ≥

1

ω(dX(x, x∗))
≥

1

ω(ρ)
.

Then µ(ρ) ≥ 1
ω(ρ) so ξ(r) :=

∫ r

0 µ(ρ)dρ ≥ ̺(r). Finally, by Theorem 6 in [4]:

BY (F (x
∗); ̺(r)) ⊂ BY (F (x

∗); ξ(r)) ⊂ F (BX(x
∗; r)).

�

Remark 32. Theorem 31 can be made more general, by considering a map σ : Y × Y → Y

with the symmetric property, but instead of being a local isometry, with the property that
for every y, z ∈ Y and every ε > 0 there is a neighborhood W of y, depending on y and z,
such that for all y1, y2 ∈W :

1

1 + ε
dY (y1, y2) ≤ dY (σ(y1, z), σ(y2, z)) ≤ (1 + ε)dY (y1, y2).

Under this assumption, Theorem 3.8 in [2] also guarantees the metric regularity of F = σ(f, g)
at every point x ∈ X. Note that for every x ∈ X and ε > 0 there is a neighborhood of x such
that for every u, u′ therein

dY (f(u), f(u
′)) ≤ (1 + ε)dY (F (u), F (u

′)) + (1 + ε)2dY (g(u
′), g(u)).

Therefore, reasoning as in the proof of Theorem 31, for u, u′ near x, we get the inequality:

dY (F (u), F (u
′)) ≥

(

1

κ(1 + ε)
− (µ+ δ)(1 + ε)

)

dX(u, u
′).

So, F is locally injective. The rest of the proof is similar.

Corollary 33. Let X be a C1 complete Finsler manifold, let E be a Banach space with smooth
norm, and let f, g : X → E be locally Lipschitz maps. Suppose that Jf is a strong pseudo-
Jacobian for f , which is Jf -regular at every point of X, and there exist a point x∗ ∈ X and
a weight ωsuch that inequality (27) holds. For every r > 0 set ̺(r) as in (28). Then the map

F = f + g

is a global homeomorphism from X onto E. Furthermore, and for every r > 0, we have
that BE(F (x

∗); ̺(r)) ⊂ F (BX(x
∗; r)) and the inverse map F−1 is globally ω(r)-Lipschitz on

BE(F (x
∗); ̺(r)).
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Proof. Set σ(y, z) := y + z on E × E, and apply Theorem 31. Given r > 0, by inclusion
given in item (2) in Theorem 31 we see that BE(F (x

∗); ̺(r)) ⊂ F (BX(x
∗; r)). Then for every

y ∈ BE(F (x
∗); ̺(r)) we have that dX(x

∗, F−1(y) < r and from inequality (1) in Theorem 31
we obtain that

lipF−1(y) ≤ ω(dX(F
−1(y), x∗)) ≤ ω(r).

That is, F−1 is locally ω(r)-Lipschitz on BE(F (x
∗); ̺(r)). From the convexity of the ball, we

deduce that, in fact, F−1 is globally ω(r)-Lipschitz on BE(F (x
∗); ̺(r)).

�

Corollary 34. [Perturbation of the identity] Let E be a Banach space with smooth norm
| · |, and let g : E → E be a locally Lipschitz map. Suppose that there exists a weight ω such
that, for every x ∈ E:

lipg(x) ≤ 1− ω(|x|)−1 < 1.

Then the map I + g is a global homeomorphism of E onto itself, and for every r > 0, the
inverse map (I + g)−1 is globally ω(r)-Lipschitz continuous on BE(g(0); ̺(r)).

Note that if ω in the Corollary 34 is constant then we have the classical theorem of pertur-
bation of the identity.
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