
Preserving Contexts for Soft Conformance
Relation

David de Frutos Escrig� and Carlos Gregorio Rodŕıguez��

Department of Sistemas Informáticos y Programación,
Universidad Complutense de Madrid

{defrutos, cgr}@sip.ucm.es

Abstract. This paper addresses the study of bisimulation based confor-
mance relations in which input and output actions not presented in the
specification are added to the implementation. A new definition, that we
called soft conformance, is given. Then, we concentrate on the study of
the conditions under which a context preserves the soft conformance rela-
tion of two agents. These conditions depend both on the specification and
the implementation in the conformance relation and also on the context.
Since the addition of extraneous actions to the implementation allows to
define malicious contexts that would not preserve the conformance re-
lation, such a characterisation of the family of contexts preserving each
individual pair (implementation and specification) in the conformance
relation is the best result that can be expected in this direction.

1 Introduction

Conformance relations have been introduced and studied since late eighties, pro-
viding a testing methodology for communicating systems. Conformance relations
look for the adequate way to check when a concrete system should be considered
a correct implementation of a given specification. The most popular conformance
relations are based on traces and refusals [Hoa85], and probably that called conf
[BSS86, Bri88] is the most widely spread and accepted.

First definitions on the subject were quite informal and tried to capture by
means of some simple, but sometimes vague, conditions those reasonable require-
ments to get a correct implementation of a given specification. Fortunately, it was
not too difficult to obtain formal definitions which captured the intuitive ideas
supporting the original proposals, as the relation conf cited above.

The bad news were that although these formal definitions where rather simple
and elegant they did not satisfy some also simple and clearly desirable properties,
such as transitivity and substitutivity, and therefore they were far from being
precongruencies.

In [Led91, Led92] an extensive and careful study of the subject can be found.
There the relation conf-eq is introduced and proved to be the biggest equivalence
relation contained in the nucleus conf∩conf−1 of the conformance relation, while
conf∗ = conf ◦ conf is proved to be its transitive closure.

� Partially supported by the MCyT project TERMAS TIC2003-07848-C02-01, JCCM
project PAC-03-001 and MRTN-CT-2003-505121/TAROT.

�� Partially supported by the MCyT project TERMAS TIC2003-07848-C02-01.

J. Grabowski and B. Nielsen (Eds.): FATES 2004, LNCS 3395, pp. 33–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 D. de Frutos Escrig and C. Gregorio Rodŕıguez

Since traces and failures are strongly related with the semantic information
given by testing formalisms [Hen88], several works have studied this relation. For
instance, in [dFLN97] it was proved that conf∗ can be characterised by means
of an special kind of testing mechanisms, the so called friendly testing, which is
thoroughly studied in [dFLN98].

Together with the testing school, there are other approaches to define the
equivalence between concurrent processes in process algebras. Equivalences based
on bisimulation [Mil80, Mil89] are also widely used. It is well known that bisim-
ulation equivalences are stronger than testing equivalences, but also much easier
to decide, which seem to be two important reasons to prefer them to the others.
Clearly, if it is possible to prove bisimilarity of two processes, then they would be
also testing equivalent. But this strong power of bisimulation can also became a
weakness, since there are not clear reasons to consider that two processes which
are testing equivalent, but not bisimilar, should not be considered to be equiva-
lent. Besides, weak bisimulation is not a congruence for languages such as CSP
[Hoa85], where there exists an external choice operator (see [dFLN99]).

In [Ste94] a bisimulation based conformance, called logical conformance, is pre-
sented where classical bisimulation rules are relaxed and asymmetrical conditions
related to the specification and the implementation are introduced. In [BS02] a
new version of this conformance relation is given. In this relation it is allowed for
the process describing the implementation system to execute both input and out-
put new actions. Similar ideas have also been followed, in conformance relations
defined by testing semantics, for instance [Bri88, dFLN97].

As it happens in the conformance relation based on testing semantics, the
addition in [BS02] of new input and output actions to the implementation yields
to a conformance relation that it is neither transitive nor preserved by most
of the algebraic operators in CCS. To overcome these problems was the main
goal of [BS02], and their authors concluded the paper by asserting that they
have defined the congruent weak conformance induced by their weak conformance
relation. Unfortunately, even if in that paper there are several interesting ideas,
and some useful partial results, we have to present here some criticisms because
there are several technical mistakes in that work, as we will show by means of
some counterexamples later.

However, our main intended goal in this paper it is mainly to continue the
research in conformance relations in which input and output actions not presented
in the specification are added to the implementation, looking for the adequate
way to get preservation results in order to make the conformance relation useful.

To be more concrete, what indeed is done in [BS02] is to find a collection of
properties which have to be satisfied in order to preserve the presented confor-
mance relation. Most of these conditions would restrict the containing context
and not the relationship between the given implementation and the correspond-
ing specification. Therefore, it is not possible to use those conditions to try to
define a precongruence which would preserve the conformation relation.

Instead, what we propose is to characterise which are the contexts that would
preserve each particular pair in the conformation relation. In fact, these con-
texts would be different for each pair in the relation, and therefore, out of some
trivial cases, we cannot look for a family of contexts totally preserving the con-
formance relation. As a consequence, the weaker precongruence relation stronger
than the conformance relation would be just the weak bisimulation equivalence,

Preserving Contexts for Soft Conformance Relation 35

where we have no possibility to add any new action when implementing a given
specification.

We address this goal in the next sections organised as follows: in Section 2
classic definition of agents and previously bisimulation based conformance rela-
tions are introduced, besides, definition of weak conformance [BS02] is discussed
and some flaws of that relation are shown; in Section 3 we present our own def-
inition of bisimulation like conformance relation, that we call soft conformance;
Section 4 presents the results of the paper: we prove that the soft conformance
relation can be preserved by contexts under some conditions related to a given
pair of specification and implementation agents; finally, in Section 5 we present
our conclusions.

2 Basic Definitions and Bisimulation Based Conformances

In this paper we will mainly use the operators from CCS [Mil80, Mil89], whose
syntax and semantics we will briefly recall below.

We have a set of action names, called A, from which we obtain the set of
barred actions, A = {a | a ∈ A}. Following [BS02], we will assume that plain
names represent input actions, while barred names would correspond to output
actions. Finally, we have an internal action τ �∈ A∪A, and we define the alphabet
Act = A ∪ A ∪ {τ}.

Definition 1 ([Mil89]). Given a set of actions Act, as described above, the set
of CCS agents is defined by the following BNF-expression:

E ::= 0 | α.E | E + E | E|E | E[f] | E\L

where α ∈ Act, L denotes a finite subset of A and f : A −→ A denotes a
relabelling function.

The inactive agent, represented by 0, is not capable of executing any action;
prefix operator defines the execution of sequential actions; choice operator in-
troduces into the language a choice between two alternative behaviours; parallel
operator represents the parallel execution of two independent agents, but allow-
ing the synchronisation between them by the execution of a pair of conjugated
actions, a and a, thus producing the internal action denoted by τ ; relabelling
operator, by means of a function f : A −→ A, produces a change in the name of
the executed actions, by executing f(a) instead of a and f(a) instead of a; and
finally the restriction of the actions in a set L would disallow the execution of
actions in L ∪ L.

The operational semantics of CCS formalise the ideas above and can be found
in [Mil80, Mil89]. From the operational semantics of processes we can construct
the bisimulations and the definition of bisimulation equivalences. Semantic equiv-
alences, and in particular weak bisimulation equivalence [Mil89], have been pro-
posed as a way to formalise the implementation relations, but it seems too strong
to use an equivalence relation to accomplish such a task, even if we can abstract
away from internal details of the implementation, as allowed by the weak char-
acter of that equivalence relation. Instead, conformance relations allow the intro-
duction of new actions in the implementation, when they do not interfere with
the rest of the behaviour of the system. This idea has been developed in [Ste94],
where the author proposed his logic conformance (see definition 2 below).

36 D. de Frutos Escrig and C. Gregorio Rodŕıguez

The classical notation on computation of agents is used: The ability of an agent
P to perform some action α ∈ Act and to evolve into an agent Q is denoted by
P

α−→ Q. Similarly, P
α=⇒ Q is used to denote the ability of P to evolve into Q

through the execution of α and any number of additional τ actions. Considering
sequences of actions, s ∈ Act∗, the transition relations are naturally extended
to get s−→ and s=⇒, which describe the evolution of an agent when executing
a sequence of actions. For the empty sequence we have only the second of this
transitions which in this case it is just denoted by =⇒. The hat operator over
a sequence of actions, ŝ, denotes its projection over the set of visible (input and
output) actions, so that we have ŝ ∈ (A ∪ A)∗.

Definition 2 ([Ste94]: Definition 30). Implementation I logically conforms
to specification S, written I �l S, iff ∀α ∈ Act,∀β ∈ A ∪ {τ} and ∀γ ∈ A:

(1) Whenever S
α−→ S′ then ∃I ′ : I

α̂=⇒ I ′ and I ′ �l S′.

(2) Whenever I
β−→ I ′ then ∃S′ : S

β̂
=⇒ S′ and I ′ �l S′.

(3) Whenever I
γ−→ I ′ and S

γ
=⇒ then ∃S′ such that S

γ
=⇒ S′ and I ′ �l S′.

If we compare this definition with that of plain weak bisimulation we find that
the difference comes only from the third clause that allow the implementation to
accept additional input actions which are not imposed by the specification.

In [BS02] this definition is considered too strong, and two reasons are argued:
(1) an implementation must implement every specified output action, even when
there is output concurrency, that is, when multiple output events are produced
without interleaving with any input action, and the order of output events is
unimportant; (2) it is not possible for the implementation to generate output
signals not in the specification.

Then, in order to allow even more flexible implementations a new relation
called weak conformance is introduced. To define it, they first introduce the weak
conformation relations defined as follows:

Definition 3 ([BS02]: Definition 7). A binary process relation W is a weak
conformation if ∀α ∈ A(S) ∪ {τ}, ∀β ∈ A(I) ∪ {τ}, ∀γ ∈ A(S) : I W S implies
the following four laws:

Law of Specified Input or Tau (LSIT). If S
α−→ S′ then ∃t ∈ (A(S) ∪

Extr(I, S))∗ such that
(1) I

t=⇒ I ′ (2) t ⇁A(S) = α̂ (3) I ′ W S′
Law of Specified Output (LSO). Let X be a maxoctset of S. ∃s ∈ X and

∃t ∈ A(I)+ such that
(1) S

s=⇒ S′ (2) I
t=⇒ I ′ (3) t ⇁A(S) = s (4) I ′ W S′

Law of Implemented Input (LII). Whenever I
γ−→ I ′ and S

γ
=⇒ then

(1) S
γ

=⇒ S′ (2) I ′ W S′

Law of Implemented Output or Tau (LIOT). If I
β−→ I ′ and δ ≡ β ⇁A(S)

then
(1) S

δ=⇒ S′ (2) I ′ W S′

Where A(P) and A(P) define the input and output sorts of an agent P , re-
spectively; the binary operator ⇁ applies to a sequence s of actions and a set of

Preserving Contexts for Soft Conformance Relation 37

actions A, s ⇁A, projecting the actions in s over the set A. Besides, Extr(I, S) =
A(I) − A(S) is called the extraneous input sort and Extr(I, S) = A(I) − A(S) is
called the extraneous output sort.

Definition 4 ([BS02]: Definition 9). The weak conformance relation, written
�w, is the union of all the weak conformations.

To formally define the condition capturing their intention of getting a more
flexible implementation of output concurrency, a rather complex concept of max-
octset (maximal output confluent transition set) is defined in [BS02] and used in
LSO rule. The concept of maxoctset tried to capture those maximal partial be-
haviours of a system which correspond to the parallel execution of several output
actions.

But to reduce the output concurrency in the implementation is not compati-
ble with the goal of getting a precongruence from the conformance relation. Let
us consider the specification S = a.(b|c). To Reduce the output concurrency im-
plies not to force any implementation of S to implement all the specified output
sequences, but just some of them. So, I = a.b.c would be an adequate imple-
mentation of S. But then, we cannot expect this conformance relation to be a
precongruence: if we take the agent C = c.b and put it in parallel with the specifi-
cation S and the implementation I, then we have that the agent S|C can execute
the trace t = abb, because after executing a action in S, C and S can synchronise
and arrive to a state in which they can interleave the actions b and b. On the
contrary, I|C cannot execute such a trace. All this is illustrated in figure 1.

I

a

b

c

S

a

b c

c b

C

c

b

I �w S but surprisingly C|I ��w C|S

Fig. 1. Not implementation of output concurrency do not allow �w to be a congruence

But even if we would not mind this lack of substitutivity, using the definition of
maxoctset in [BS02] in order to allow the reduction of output concurrency yields
to undesirable implementations. Maxoctsets are maximal traces which correspond
to a locally confluent behaviour. A trace t corresponds to a locally confluent
behaviour if P

t=⇒ and for each s that is a permutation of t with P
s=⇒, if we

have P
t=⇒ P ′ and P

s=⇒ P ′′, P ′ and P ′′ are weak bisimulation equivalent. The
authors of [BS02] where too generous allowing that not any permutation of s
would be a trace of P . Let us consider the agents in figure 2. If we take S = a.b.c,
we have that the trace abc would be a maxoctset of S. But this would be also the
case for a specification such as S′ = a.b.c+a.b.d+b.a.e that has added behaviour.
It is clear that the trace ab is not a locally confluent behaviour of S′, but under

38 D. de Frutos Escrig and C. Gregorio Rodŕıguez

S

a

b

c

S′

a

b

c

a

b

d

b

a

e

I

a

b

c

I �w S but surprisingly also I �w S′

Fig. 2. Maxoctset definition yields to improper implementations

the definition in [BS02] the trace abc would still be a locally confluent behaviour
of S′ and then a maxoctset of it. As a consequence the behaviours of S′ after
the execution of the traces ab and ba would not be considered when checking the
weak conformance of any implementation. Then, I = a.b.c, where neither d nor
e can be executed, would be considered to be an admissible implementation of
S′, which does not seem reasonable at all.

Finally, to conclude with the comments on [BS02], we show one more flaw
on the definition of the weak conformance relation arising from the way rule LII
is asserted (definition 3). Transitivity of �w is not guaranteed just by imposing
that an implementation would not execute any extraneous output action in the
beginning.

Let us consider the agents in figure 3: Q = a.v.b.c is an implementation of
R = a.b.c, because rule LSIT allows the introduction of output actions, provided
that they do not appear in the specification. Rule LII also allows to introduce
new input actions into the implementation, but it is too generous since it is
just imposed that these actions could not be executed by the initial state of the
specification. So, agent P = a.(v.b.c + b) is an implementation of Q. But the
added choice executing the action b makes P not to be an implementation of R,
thus spoiling transitivity of the conformance relation.

P

a

v b

b

c

Q

a

v

b

c

R

a

b

c

P �w Q and Q �w R but surprisingly P ��w R

Fig. 3. �w relation is not transitive

3 Soft Conformance Relation

In this section we present a new variant of conformation relations, that we call
soft conformations. The union of all soft conformation relations define the soft

Preserving Contexts for Soft Conformance Relation 39

conformance, denoted by �s. This new notion gathers the desired conditions
discussed above, namely the capability of the implementation to introduce new
input and output actions in its behaviour.

In order to give the definition of soft conformations some new notation has to
be introduced. As usual −→ and =⇒ relations denote the capability of an agent to
evolve through a single action or an action preceded and followed by any number
of τ actions, respectively. Besides, we introduce the new transition relation �=⇒
that gathers the idea that once a specification is fixed, the extraneous output
actions in the implementations play the same role as τ actions. That is, given the
specification S and the implementation I, I

α
�=⇒ SI

′ indicates that I evolves to I ′
after executing the action α preceded and followed by any number of transitions
executing either τ actions or output actions b ∈ Extr(I, S). For the sake of
simplicity, if S is clear from the context where the �=⇒ relation is used, we will
avoid the subscript S, writing just I

α
�=⇒ I ′.

In order to define soft conformations relations, the sort of an agent, that is,
the set of actions that it could possibly execute, has to be introduced:
Definition 5. The set of executable actions of an agent E, denoted by Exec(E),
is inductively defined as follows:
– Exec(0) = ∅
– Exec(α.E) = {α} ∪ Exec(E)
– Exec(E1 + E2) = Exec(E1|E2) = Exec(E1) ∪ Exec(E2)
– Exec(E[f]) = f(Exec(E))
– Exec(E\L) = Exec(E) − L

Definition 6. Binary process relation V is a soft conformation if ∀α ∈ Act, ∀a ∈
A(S), ∀β ∈ A(I) ∪ {τ} : I V S implies that Exec(S) ⊆ Exec(I) and the following
laws are satisfied:
Law of Specified Behaviour (LSB)

If S
α−→ S′ then ∃I ′ : I

α̂
�=⇒ I ′ and I ′ V S′.

Law of Implemented Input (LII)
If I

a−→ I ′ and a ∈ Exec(S) then ∃S′ : S
a=⇒ S′ and I ′ V S′.

Law of Implemented Output or Tau (LIOT)

If I
β−→ I ′ and β ∈ Exec(S) then ∃S′ : S

β
=⇒ S′ and I ′ V S′.

If I
β−→ I ′ and β �∈ Exec(S) then ∃S′ : S =⇒ S′ and I ′ V S′.

Therefore the differences between our soft conformations and the weak con-
formations in definition 3 are that we have drop out the considerations about
output concurrency and then the two laws of specified input and output have
became a single law; besides in LII rule we only allow the additional execution
by the implementation of extraneous input actions.

Proposition 1. Let V and V ′ be soft conformation relations, then
(1) The identity relation is a soft conformation relation.
(2) The composition V V ′ is a soft conformation relation.
(3) The union V ∪ V ′ is a soft conformation relation.

Definition 7. The implementation I is said to softly conform to the specification
S, denoted by I �s S, if there exists some soft conformation relation V with
I V S. That is, the soft conformance relation, denoted by �s, is the union of all
the soft conformation relations.

40 D. de Frutos Escrig and C. Gregorio Rodŕıguez

4 Contexts That Preserve Soft Conformance

In this section we address the main goal of our paper: given a specification S and
an a soft conformance implementation of it, I �s S, to determine the properties
that a context C(X) should verify in order to get C(I) �s C(S). We will start
by formalising the concept of context. In order to get a simpler presentation, we
will first just consider contexts with a single hole.

Definition 8. Given a set of actions Act, the set of contexts is defined by the
following BNF-expression:

C ::= 0 | X | α.C | E + C | C + E | E|C | C|E | C[f] | C\L

where X represents a single (hole) variable, E represents CCS agents (defini-
tion 1), α ∈ Act, L denotes a finite subset of A and f : A −→ A denotes a
relabelling function.

The operational semantics of contexts is defined in the same way as agents,
since there is no rule for the hole X.

To define the conditions that contexts have to satisfy in order to preserve
the soft conformance relation we need to use a collection of auxiliary functions
and predicates that we will define below. All of them are defined by structural
induction.

Definition 9. The following functions are defined over both contexts and agents:

Exec() computes the set of executable actions of a context.

Exec(X) = Exec(0) = ∅
Exec(α.C) = {α} ∪ Exec(C)

Exec(E + C) = Exec(C + E)=Exec(E|C)=Exec(C|E)=Exec(C) ∪ Exec(E)
Exec(C[f]) = f(Exec(C))
Exec(C\L) = Exec(C) − L

Init() computes the set of initials actions that a context can execute.

Init(X) = Init(0) = ∅
Init(α.C) = {α}

Init(E + C) = Init(C + E) = Init(C) ∪ Init(E)
Init(E|C) = Init(C|E) = Init(C)∪Init(E)∪{τ | if ∃α∈Init(E),α∈Init(C)}
Init(C[f]) = f(Init(C))
Init(C\L) = Init(C) − L

Guar() defines a boolean function that indicates whether a context has its hole
guarded by an action.

Guar(X) = false
Guar(0) = true

Guar(α.C) = true
Guar(E + C) = Guar(C + E) = Guar(E|C) = Guar(C|E) =

Guar(C[f]) = Guar(C\L) = Guar(C)

Preserving Contexts for Soft Conformance Relation 41

Choice-app() defines a boolean function that indicates if a choice operator ap-
plies directly on the hole of a context.

Choice-app(X) = Choice-app(0) = false
Choice-app(α.C) = Choice-app(C)

Choice-app(E + C) = Choice-app(C + E) = Choice-app(C) ∨ ¬Guar(C)
Choice-app(E|C) = Choice-app(C|E) = Choice-app(C[f]) =

Choice-app(C\L) = Choice-app(C)

Exec-par() defines the set of actions that can be executed in parallel with the
hole and the context.

Exec-par(X) = Exec-par(0) = ∅
Exec-par(α.C) = Exec-par(C)

Exec-par(E + C) = Exec-par(C + E) = Exec-par(C) ∪ Exec-par(E)
Exec-par(E|C) = Exec-par(C|E) = Init(C|E)
Exec-par(C[f]) = f(Exec-par(C))
Exec-par(C\L) = Exec-par(C) − L

Rest() defines the set of restricted actions over the hole in the context.

Rest(X) = Rest(0) = ∅
Rest(α.C) = Rest(C)

Rest(E + C) = Rest(C + E) = Rest(E|C) = Rest(C|E) = Rest(C)
Rest(C[f]) = f(Rest(C))
Rest(C\L) = Rest(C) ∪ L

Renamed() defines the set of actions that are either renamed or renamed to
over the hole in the context.

Renamed(X) = Renamed(0) = ∅
Renamed(α.C) = Renamed(C)

Renamed(E + C) = Renamed(C + E) = Renamed(E|C) =
Renamed(C|E) = Renamed(C)

Renamed(C[f]) = Renamed(C) ∪ {a | f(a) �= a ∨ ∃b �= a : f(b) = a}
Renamed(C\L) = Renamed(C) − L

From the previous functions, we define the following ones:

Init() defines the initial output or τ actions that a context can execute.

Init(C) = Init(C) ∩ (A ∪ {τ})

Init-extr() defines the initial output extraneous actions of I with respect to S.

Init-extr(I, S) = Init(I) ∩ (Extr(I, S) ∪ {τ})

.
IOExtr(,) defines the union of extraneous input and output actions.

IOExtr(I, S) = Extr(I, S) ∪ Extr(I, S)

42 D. de Frutos Escrig and C. Gregorio Rodŕıguez

Exec-par() defines the complementary set of actions with respect to the set
Exec-par().

Exec-par(C) = {α | α ∈ Exec-par(C)}
where α = α and τ = τ .

The following proposition explains which is the relation between the syntacti-
cally defined functions and predicates introduced in definition 9 and the semantic
behaviour of the involved elements.

Proposition 2. The functions declared in definition 9 verify the following char-
acteristic properties:

1. For any action α in any trace s such that C
s=⇒ it holds that α ∈ Exec(C).

2. For any action β ∈ Extr(I, S)∪{τ} such that C
β−→ then β ∈ Init-extr(I, S).

3. If there exists some computation C(X) s=⇒ C ′(X) such that C ′(ω.ω′) ω−→
C ′′(ω′) with C ′ �= C ′′ then Choice-app(C) is true.

4. If there exists some computation C(X) s=⇒ C ′(X) such that C ′(X) α−→
C ′′(X) and C ′(α.ω) τ−→ C ′′(ω), by the synchronisation of the first transition
with the execution of action α in the hole, then α ∈ Exec-par(C).

5. If there exists some computation C(X) s=⇒ C ′(X) such that C ′(ω.ω′) ω−→
C ′′(ω′) but C ′(α.ω′) α−→/ , then α ∈ Rest(C).

6. If a �∈ Renamed(C(X)) ∧ a �∈ Renamed(C(X)) and there exists some compu-
tation C(X) s=⇒ C ′(X) such that C ′(a.ω′) α−→ C ′′(ω′) then a = α.

Where ω and ω′ denote fresh actions that are not in Exec(C) ∪ Exec(I).

We can now give the conditions that determine when a context preserve the
soft conformance relation that holds between two agents.

Definition 10. Given two agents I and S, I �s S, and a context C, it is said
that C is a preserving context with respect to the pair (I, S) if the following five
conditions are fulfilled:

i. IOExtr(I, S) ∩ Exec(C) = ∅
ii. ¬Choice-app(C) ∨ (Init-extr(I, S) = ∅)
iii. IOExtr(I, S) ∩ Exec-par(C) = ∅
iv. Extr(I, S) ∩ Rest(C) = ∅
v. Renamed(C) ∩ IOExtr(I, S) = ∅

Next proposition tie together some properties that will be useful when proving
the main result of our paper: the preservation theorem.

Proposition 3. If C is a preserving context with respect to the pair (I, S), where
the X appears, then the following properties are satisfied:

1. IOExtr(C(I), C(S)) = IOExtr(I, S)
2. If C(X) α=⇒ C ′(X), then C ′ is also a preserving context with respect to the

pair (I, S).
3. If C(ω.ω′) ω−→ C ′(ω′) then for any P

s=⇒ P ′ with s = α1 . . . αn, and ∀i αi �∈
Renamed(C) and αi �∈ Rest(C) we have also C(P) s=⇒ C ′(P ′).

Preserving Contexts for Soft Conformance Relation 43

4. If I
α̂

�=⇒ I ′ and C(ω.ω′) ω−→ C ′(ω′) and C(S) α−→ C ′(S′) then C(I) α̂
�=⇒ C ′(I ′)

and C ′ is a preserving context with respect to (I ′, S′).

5. If S
β−→ S′ and C(X)

β−→ C ′(X) and it is possible to get a synchronisation
step C(S) τ−→ C ′(S′), then C(I) τ−→ C ′(I ′) and C ′ is a preserving context
with respect to (I ′, S′).

Proof. Let us prove the previous statements:

1. By a simple structural induction over the form of the contexts.
2. If C ′ is such a derived context from C then:

Exec(C ′) ⊆ Exec(C)
Choice-app(C ′) ⇒ Choice-app(C)

Exec-par(C ′) ⊆ Exec-par(C)
Rest(C ′) = Rest(C)

Renamed(C ′) = Renamed(C)

and therefore C ′ verify the conditions (i). . . (v) with respect to (I, S).
3. By structured induction over the form of C:

– C = a.C ′′. This cannot be the case, since then C(ω.ω′) ω−→/.
– C = Q + C ′′. If C(ω.ω′) ω−→ C ′(ω′) then we should have C ′′(ω.ω′) ω−→

C ′(ω′), and by induction hypothesis C ′′(P) s=⇒ C ′(P ′) and therefore
C(P) s=⇒ C ′(P ′).

– C = Q|C ′′. If C(ω.ω′) ω−→ C ′(ω′) we have C ′ = Q|C ′′′ with C ′′(ω.ω′) ω−→
C ′′′(ω′). Then we have C ′′(P) s=⇒ C ′′′(P ′) and C(P) s=⇒ Q|C ′′′(P ′) =
C ′(P ′).

– C = C ′′[f]. If C(ω.ω′) ω−→ C ′(ω′) we have also C ′′(ω.ω′) ω−→ C ′′′(ω′)
with C ′ = C ′′′[f]. Then we have C ′′(P) s=⇒ C ′′′(P ′) and since f does not
rename any action in s we have also C(P) s=⇒ C ′(P ′).

– C = C ′′\L. If C(ω.ω′) ω−→ C ′(ω′) we have also C ′′(ω.ω′) ω−→ C ′′′(ω′)
with C ′ = C ′′′\L. Then we have C ′′(P) s=⇒ C ′′′(P ′) and since the actions
in s are not in Rest(C) in particular the are not in L, and therefore
C(P) s=⇒ C ′(P ′).

4. Let us consider the sequence of visible actions s which corresponds to the

computation I
α̂

�=⇒
′
I, then since C(S) α−→ C ′(S′) and the rest of the actions

in s are also in IOExtr(I, S), by proposition 3(1), C(I) α̂
�=⇒ C ′(I ′).

The proof that C ′ is a preserving context with respect to (I ′, S′) is similar to
that of proposition 3(2) considering that Choice-app(C ′) is always false. This
statement can be proved by structural induction as before.

5. Similar to the previous one.
��

Theorem 1 (Preservation theorem). If I �s S and C is a preserving context
of the pair (I, S) then C(I) �s C(S).

44 D. de Frutos Escrig and C. Gregorio Rodŕıguez

Proof. We have to prove that there exists a soft conformation relation V con-
taining the pair 〈C(I), C(S)〉. We define

V = {〈C(I), C(S)〉 | I �s S and C is a preserving context w.r.t. (I, S)}

and we will check that V verifies the laws in definition 6.

LSB. Let us suppose that C(S) α−→ T . There are three different possibilities:
1. T = C ′(S) and C(X) α−→ C ′(X), then C(I) α−→ C ′(I) and, by propo-

sition 3, C ′ is a preserving context with respect to (I, S) and therefore
C ′(I) and C ′(S) are in the conformation relation V .

2. S
α−→ S′ and C(S) α−→ C ′(S′), where the context C ′ is derived from C by

means of the execution of an action of its hole. From I �s S we know that
I

α̂
�=⇒ SI

′ and I ′ �s S′ and then, by proposition 3(4) C(I) α̂
�=⇒ C(I ′) and

C ′ is a preserving context with respect to (I ′, S′) and therefore
C ′(I ′) V C ′(S′).

3. Finally, if α = τ and there exists some β such that S
β−→ S′, and

C(X)
β−→ C ′(X) and there is a synchronisation step of these two com-

plementary actions which produces C(S) τ−→ C ′(S′). Then, I
β

=⇒ I ′ and
I ′ �s S′, considering proposition 3(5), we have C(I) τ−→ C ′(I ′), and
combining the arguments in the two previous cases we get that C ′ is a
preserving context with respect to (I ′, S′), and therefore C ′(I ′) V C ′(S′).

LII. Let us suppose that C(I) a−→ T and a ∈ Exec(C(S)), then two cases should
be considered:
1. C(X) a−→ C ′(X) and T = C ′(I) then, by proposition 3(2), C ′ is a pre-

serving context with respect to (I, S) and therefore C ′(I) V C ′(S).

2. I
a′

−→ I ′ and C(I) a−→ C ′(I ′) where the context C ′ is derived from C by
means of the execution of an action of its hole, and a ∈ Renamed(C).
By definition 10(i), a′ ∈ Exec(S), by proposition 2(1), a′ ∈ Exec(I) and
if it were the case that a′ �∈ Exec(S) then a′ ∈ Extr(I, S) and by using
conditions (i), (iv) and (v) of definition 10, we would conclude that a ∈
Extr(C(I), C(S)) and then a �∈ Exec(C(S)) against the hypothesis.

Then, since I �s S we have that S
a′

=⇒ S′ with I ′ �s S′ and, reasoning
as in LSB rule, we get that C(S) a=⇒ C ′(S′) with C ′ a preserving context
with respect to (I ′, S′), so that C ′(I ′) V C ′(S′).

LIOT. We consider two cases:
1. C(I) a−→ T with a ∈ Exec(C(S)). Once again we consider two cases:

(a) C(X) a−→ C ′(X) and T = C ′(I), then by proposition 3(2), C ′ is a
preserving context with respect to (I, S) and therefore C ′(I) V C ′(S).

(b) I
a′

−→ I ′ and C(I) a−→ C ′(I ′) for C ′ derived from C by means of the
execution of an action in its hole, and a ∈ Renamed(C). Then, we

have that S
a′

=⇒ S′ with I ′ �s S′ and therefore, as in the previous
case, we conclude that C ′(I ′) V C ′(S′).

2. C(I)
β−→ T were β = τ or β = a �∈ Exec(C(I)). Now there are three

possible cases:

Preserving Contexts for Soft Conformance Relation 45

(a) C(X)
β−→ C ′(X) and T = C ′(I), as in the corresponding case above,

C ′ is a preserving context with respect to (I, S) and as a consequence
C ′(I) V C ′(S).

(b) I
β′

−→ I ′ and C(I)
β−→ C ′(I ′) with β ∈ Renamed(C). Due to condition

(ii) in definition 10 this case is only possible if C ′ = C. Then, by
proposition 2(2), the hole X in C cannot be under a choice operator

and so S
β′

=⇒ S′ and C(S)
β

=⇒ C(S′), with C preserving (I ′, S′), and
therefore C(I ′) V C(S′).

(c) β = τ and there exists some γ′ such that I
γ−→ I ′, and C(X)

γ−→
C ′(X) after a renaming of γ′ into γ and there is a synchronisation
step of these two actions which produces C(I) τ−→ C ′(I). Then γ′ ∈
Exec(S) because C verifies condition (iii) in definition 10, and we
can proceed either as in the previous case (1) of the LIOT rule, or

as for the law LII to conclude that S
γ′

=⇒ S′ and C(S)
γ

=⇒ C ′(S′)
where C ′ is a preserving context with respect to the pair (I ′, S′), thus
concluding that C ′(I ′) V C ′(S′).

��

In definition 8, contexts with a single hole were defined and the preservation
theorem proves that preserving contexts (definition 10) allow the substitutivity
of agents that are in soft conformation getting a new pair of agents in soft confor-
mation. We next generalised the results to contexts with a finite set of variable
names.

Definition 11. Let us consider a (finite) set of hole variables X = {X1, . . . ,Xk}.
We define generalised contexts exactly as simple contexts (definition 8) but chang-
ing the unique symbol X by a representative element of the set X , and replacing
all the metavariables C in that definition by that corresponding to a generalised
context C.

We do not want to have contexts with repeated appearances of the same
hole, therefore, we forbid such possibility and concentrate on what we call valid
generalised contexts.

Definition 12. The following function and predicate are defined over generalised
contexts:

Holes() computes the set of hole variables of a generalised context.

Holes(Xi) = {Xi}
Holes(α.C) = Holes(C[f]) = Holes(C\L) = Holes(C)

Holes(C1 + C2) = Holes(C1|C2) = Holes(C1) ∪ Holes(C2)

Valid() indicates if a generalised context has no hole names repeated.

Valid(Xi) = true
Valid(α.C) = Valid(C[f]) = Valid(C\L) = Valid(C)

Valid(C1 + C2) = Valid(C1|C2) =
Valid(C1) ∧ Valid(C2) ∧ (Holes(C1) ∩ Holes(C2) = ∅)

46 D. de Frutos Escrig and C. Gregorio Rodŕıguez

Par-holes() a binary function that applies on valid generalised contexts, that is
Valid(C) = true and Xi ∈ X , and computes the set of hole names that are in
the context C in parallel with the given hole name Xi.

Par-holes(Xj ,Xi) = ∅
Par-holes(α.C,Xi) = Par-holes(C[f],Xi) = Par-holes(C\L,Xi) =

Par-holes(C,Xi)
Par-holes(C1 + C2,Xi) = Par-holes(C1,Xi) ∪ Par-holes(C2,Xi)

Par-holes(C1|C2,Xi) =

{Par-holes(C1,Xi) ∪ Holes(C2) if Xi ∈ Holes(C1)
Par-holes(C2,Xi) ∪ Holes(C1) if Xi ∈ Holes(C2)
∅ if Xj �∈ Holes(C1) ∪ Holes(C2)

Definition 13. Given a set of hole variables X = {X1, . . . ,Xk} and a family
of pairs of agents F = {(Ii, Si)}i∈1..k and a valid generalised context C, we say
that it is a preserving generalised context with respect to the family F if, besides
the conditions in definition 10, for each pair (Ii, Si) with Xi ∈ Holes(C) we have
also

vi. For each i, j with Xi ∈ Holes(C)

IOExtr(Ii, Si) ∩ Exec(Sj) = ∅

vii. For each Xi ∈ Holes(C) and Xj ∈ Par-holes(C,Xi)

IOExtr(Ii, Si) ∩ Exec(Ij) = ∅

Theorem 2. If C is a preserving generalised context with respect to a family
F = {(Ii, Si)}i∈1..k and for each i ∈ 1..k we have that Ii �s Si then C(I) �s C(S)
where, as usual, C(E) denotes the substitution of the hole variables Xi in C by
the corresponding agent Ei.

5 Conclusions and Future Work

Conformance relations define when a communicating system should be consid-
ered a correct implementation of a given specification. In this paper we have
studied the conditions under which a context preserves a bisimulation based con-
formance. It is clear that as soon as we allow extraneous actions in an admissible
implementation then there exists a malicious context that would not preserve
that conformance relation, and then the only preorder stronger than it being a
precongruence would be weak bisimulation, that does not allow the introduction
of any extraneous actions with respect to the given specification.

Therefore such a characterisation of the family of contexts preserving each
individual pair in the conformance relation is the best result that we can expect
in this direction.

In order to get a clearer exposition, and simpler proofs, we have not considered
either recursive agents or contexts containing recursive components (without hole
variables involved), but it would not be difficult to extend our results to cover
also these recursive sceneries. Instead, we think it would be more complicated
to extend the results to cover the case in which it is the recursive construction

Preserving Contexts for Soft Conformance Relation 47

itself that we want to preserve the conformance relation. In such a case, it is
necessary to decide how the conformance relation should be extended to the case
in which we have higher order agents where the free variables are introduced to
be instantiated by first order agents. This question is far from being simple, as
studied in detail in [Ren00].

In [BdFMM00] it is shown that tile bisimulation, where weak bisimulation
is extended to contextualized processes in a very algebraic way, is not always a
congruence, and it is also discussed under which conditions it is possible to get
the preservation of that relation. We are interested on a more thorough study of
the relations between our paper and this mentioned work.

Besides, [dFLN99] studied several notions of global bisimulation, where weak
bisimulation is relaxed by allowing more flexible moves when playing the bisim-
ulation game. Again, there were problems when trying to get a congruence, and
therefore it would be also interesting to compare that work with the results and
ideas in the current paper.

Also into the testing based conformances, the problem of getting precongru-
ences should be more intensively studied, as appointed in [Led91, dFLN97]. The
relations between testing based and bisimulation based conformances deserves,
in our opinion, a deeper study, not only in the [Abr87] style, where the testing
semantics is presented as a bisimulation semantics, but also on the opposite way,
as in [dFLN99], where bisimulation semantics are presented as testing semantics.

References

[Abr87] Samson Abramsky. Observational equivalence as a testing equivalence.
Theoretical Computer Science, 53(3):225–241, 1987.

[BdFMM00] Roberto Bruni, David de Frutos-Escrig, Narciso Mart́ı-Oliet, and Ugo
Montanari. Bisimilarity congruences for open terms and term graphs
via tile logic. In CONCUR, volume 1877 of Lecture Notes in Computer
Science, pages 259–274. Springer, 2000.

[Bri88] E. Brinksma. A theory for the derivation of tests. In Protocol Specifica-
tion, Testing and Verification VIII, pages 63–74. North Holland, 1988.

[BS02] Ronald W. Brower and Kenneth S. Stevens. Congruent weak confor-
mance, a partial order among processes. In Formal Techniques for Net-
worked and Distributed Systems-FORTE 2002, volume 2529 of Lecture
Notes in Computer Science, pages 34–49. Springer, 2002.

[BSS86] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their
implementations and their tests. In Protocol Specification, Testing and
Verification VI, pages 349–360. North Holland, 1986.

[dFLN97] D. de Frutos-Escrig, L.F. Llana-Dı́az, and M. Núñez. Friendly testing as
a conformance relation. In Formal Description Techniques and Protocol
Specification, Testing, and Verification FORTE X/ PSTV XVII, pages
283–298. Chapman & Hall, 1997.

[dFLN98] D. de Frutos-Escrig, L.F. Llana-Dı́az, and M. Núñez. An invitation to
friendly testing. Journal of Computer Science and Technology, 13(6):531–
545, 1998.

[dFLN99] David de Frutos-Escrig, Natalia López, and Manuel Núñez. Global timed
bisimulation: An introduction. In Formal Methods for Protocol Engineer-
ing and Distributed Systems, FORTE XII / PSTV XIX, pages 401–416.
Kluwer Academic Publishers, 1999.

[Hen88] Matthew Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

48 D. de Frutos Escrig and C. Gregorio Rodŕıguez

[Led91] G. Leduc. Conformance relation, associated equivalence, and minimum
canonical tester in LOTOS. In Protocol Specification, Testing and Veri-
fication XI, pages 249–264. North Holland, 1991.

[Led92] G. Leduc. A framework based on implementation relations for imple-
menting LOTOS specifications. Computer Networks and ISDN Systems,
25(1):23–41, 1992.

[Mil80] Robin Milner. A Calculus of Communicating Systems. LNCS 92.
Springer, 1980.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
[Ren00] Arend Rensink. Bisimilarity of open terms. Information and Computa-

tion, 156(1–2):345–385, 2000.
[Ste94] Kenneth S. Stevens. Practical Verification and Synthesis of Low Latency

Asynchronous Systems. PhD thesis, University of Calgary, 1994.

	Introduction
	Basic Definitions and Bisimulation Based Conformances
	Soft Conformance Relation
	Contexts That Preserve Soft Conformance
	Conclusions and Future Work

