
A deep learning approach for
automatically generating descriptions of

images containing people

Trabajo de Fin de Grado
Curso 2017–2018

Autor
Marta Aracil Muñoz

Directores
Gonzalo Méndez Pozo

Raquel Hervás Ballesteros

Grado en Ingenieŕıa Informática

Facultad de Informática

Universidad Complutense de Madrid

A deep learning approach for
automatically generating descriptions of

images containing people

Trabajo de Fin de Grado en Ingenieŕıa Informática

Departamento de Ingenieŕıa del Software e Inteligencia Artificial

Autor
Marta Aracil Muñoz

Directores
Gonzalo Méndez Pozo

Raquel Hervás Ballesteros

Convocatoria: Septiembre 2018

Grado en Ingenieŕıa Informática

Facultad de Informática

Universidad Complutense de Madrid

Abstract

Generating image descriptions is a challenging Artificial Intelligence problem with many
interesting applications such as robots’ communication or helping visually impaired people.
However, it is a complex task for computers: it requires Computer Vision algorithms, to
understand what the image depicts, and Natural Language Processing algorithms, to
generate a well-formed sentence. Nowadays, deep neural networks are the state-of-the-art
in these two Artificial Intelligence fields.

Furthermore, we believe that images that contain people are described in a slightly
different manner and that restricting an image description generator model to these images
may produce better descriptions. Therefore, the main objective of this project is to develop
a Deep Learning model that automatically produces descriptions of images containing
people and to conclude if it is a good practice the restriction to this kind of images. For
this purpose, we have reviewed and studied the literature in the field and we have built,
trained and compared four different models using Deep Learning techniques and a GPU
to speed-up the computation, as well as a big and complete dataset.

Keywords

Deep Learning, Computer Vision, Natural Language Processing, image description gener-
ation, Keras, GPU, dataset.

v

Resumen

Generar descripciones de imágenes es un problema de Inteligencia Artificial con muchas
aplicaciones interesantes como la comunicación de robots o ayudar a personas con dis-
capacidad visual. Sin embargo, es una tarea compleja para un ordenador: requiere algo-
ritmos de visión por computador para entender lo que la imagen representa y algoritmos
de procesamiento de lenguaje natural para generar una frase bien formada. Hoy en d́ıa,
las redes neuronales profundas son el estado del arte en estos dos campos de la Inteligencia
Artificial.

Por otra parte, creemos que las imágenes que contienen personas se describen de man-
era ligeramente diferente y que restringir un modelo de generación de descripciones de
imágenes a imágenes de este tipo puede producir mejores descripciones. Por lo tanto, el
principal objetivo de este proyecto es desarrollar un modelo de aprendizaje profundo que
produce automáticamente descripciones de imágenes que contienen personas y concluir si
es una buena práctica la restricción a esta clase de imágenes. Para ello, hemos revisado y
estudiado la literatura y hemos construido, entrenado y comparado cuatro modelos difer-
entes usando técnicas de aprendizaje profundo y una GPU para acelerar los cálculos, aśı
como un dataset grande y completo.

Palabras clave

Aprendizaje profundo, visión por computador, procesamiento de lenguaje natural, gen-
eración de descripciones de imágenes, Keras, GPU, dataset.

vii

Contents

1 Introduction and objectives 1

1.1 Objectives . 2

1.2 Document structure . 3

2 Introducción y objetivos 5

2.1 Objetivos . 6

2.2 Estructura del documento . 7

3 State of the art 9

3.1 Traditional algorithms for image analysis 10

3.2 Traditional approach to NLG . 11

3.3 Machine Learning . 11

3.4 Deep Learning . 13

3.4.1 Feedforward Neural Networks . 14

3.4.2 Convolutional Neural Networks . 15

3.4.3 Recurrent Neural Networks . 17

3.5 Image description generators . 18

4 Framework 21

4.1 GPU . 21

4.2 Deep Learning framework . 22

4.3 Visualization: TensorBoard . 24

4.4 Image datasets . 25

4.4.1 Dataset election . 28

ix

5 Deep Learning approach for generating image descriptions 31

5.1 Model architecture . 31

5.1.1 Pre-trained convolutional network 33

5.1.2 Word embedding . 34

5.2 Fine-tuning VGG16 . 35

5.3 Data preparation . 36

5.3.1 Image preprocessing . 37

5.3.2 Text preprocessing . 38

5.4 Dataset split . 39

5.5 Training process . 41

5.5.1 Optimizers . 43

6 Evaluation and results 45

6.1 TensorBoard visualization . 45

6.2 Quantitative analysis . 47

6.2.1 Metrics . 48

6.3 Qualitative analysis . 50

7 Conclusions and future work 57

7.1 Conclusions . 57

7.2 Future work . 58

7.2.1 CNN limitations . 59

7.2.2 Capsule neural networks . 59

8 Conclusiones y trabajo a futuro 63

8.1 Conclusiones . 63

8.2 Trabajo a futuro . 63

8.2.1 Limitaciones de las CNN . 64

8.2.2 Redes neuronales cápsula . 65

List of Figures

3.1 Feedforward Neural Network . 15

3.2 Regular activation functions . 16

3.3 Convolutional Neural Network . 17

3.4 Recurrent Neural Network . 18

3.5 Captionbot . 20

4.1 Deep Learning frameworks popularity . 22

4.2 A simple Keras example code . 23

4.3 TensorBoard web server . 25

4.4 COCO caption dataset . 28

5.1 The different options of combining the image and language models. 32

5.2 Network structure followed by our four models. 32

5.3 VGG16 Convolutional Neural Network architecture. 34

5.4 Python code of VGG16 fine-tuned model definition. 36

5.5 Image preprocessing: features extraction of COCO images. 38

5.6 Text preprocessing: cleaning COCO descriptions. 39

5.7 Test split of COCO dataset. 40

5.8 Image description generation model definition with Keras. 42

5.9 Optimization algorithms steps reaching local optimum. 43

6.1 Model 1 TensorBoard charts. 46

6.2 Model 2 TensorBoard charts. 46

6.3 Model 3 TensorBoard charts. 47

xi

6.4 Model 4 TensorBoard charts. 47

6.5 Evaluating the performance of a given model. 48

6.6 Generation of the predicted description for a given image. 49

6.7 Good descriptions. 51

6.8 Good descriptions. 52

6.9 Good descriptions. 52

6.10 Good descriptions. 53

6.11 Different perspectives. 53

6.12 Different perspectives. 54

6.13 Different perspectives. 54

6.14 Bad descriptions. 55

6.15 Bad descriptions. 55

7.1 Capsule neural network structure (CapsNet). 60

8.1 Estructura de una red neuronal cápsula (CapsNet). 66

Chapter 1

Introduction and objectives

As humans, we are constantly and unconsciously making descriptions of the world around
us in order to communicate with others. We describe what we see in many different
situations, such as when we give directions to someone (e.g., go straight until you see the
red building then turn right to the street with big trees and a fountain), when we narrate
a story to a friend (e.g., I was shopping when I found Sara holding hands with a tall old
man) or when we post a picture on the Internet (e.g., Having fun at the beach with my
new blue dress!). While we produce these descriptions easily and naturally without having
to think too much about it, it is a very complex and challenging task for computers to
automatically generate descriptions about the elements depicted in an image.

Producing a good description of an image involves first analyzing and understanding
what appears in it and then generating a natural language sentence that must explain
those aspects, a sentence that must be well-formed and concise. Therefore, generating
image descriptions is more difficult than regular, well-known computer vision tasks such
as image classification or object detection, as it entails not only Computer Vision (CV)
techniques, but also Natural Language Processing (NLP), two Artificial Intelligence fields
that have usually followed separate paths and are not typically studied and applied in
combination.

Image description generation can be seen as a particular case of machine translation
where, instead of translating a given sentence into another language, we need to translate
an input image into its description. The input image must be encoded into a vector repre-
sentation and then this representation must be decoded into a natural language sentence.
To achieve this task, we can combine state-of-the-art results of both fields: Computer Vi-
sion results to obtain the vector representation of the image and NLP results (in particular,
Natural Language Generation (NLG)) to generate the description.

This challenging Artificial Intelligence problem has been in the spotlight of big compa-
nies such as Facebook or Google. Automatically describing images is not only appealing
because of its academic and scientific interest, but because of its many applications. The
main and most important application is generating descriptions for the visually impaired,

1

2 CHAPTER 1. INTRODUCTION AND OBJECTIVES

either to help them in their daily life (for example, to move around the city or to buy in
the supermarket), to bring culture closer to them by describing paintings in a museum or,
as we live in a world clearly dominated and guided by images, to make social media, and
web pages in general, more accessible to them. But it has other applications as well, such
as robots’ communication (transforming what they see into sentences and understanding
who are they talking to) or medical image understanding.

On the other hand, in the last few years we have witnessed an impressive growing
interest in obtaining data insights, and we can say that we are nowadays in what they call
the data-driven era. Everyday, millions of powerful data are generated, many enterprises
have great amounts of collected data and want to take advantage of it, uncovering hidden
patterns and insights to produce meaningful business decisions. Due to this potent data
availability and to the growing computational capacity to perform complex calculations,
Machine Learning and Deep Learning techniques have been developed and widely studied
and have become the state-of-the-art in many fields, what has lead to being on everyone’s
lips.

Therefore, the aim of this project is to cover these two attractive and popular topics
by using Deep Learning techniques to develop an image description generator.

1.1 Objectives

Regarding image description generation, Bernardi et al. [Bernardi et al., 2016] distin-
guishes two main approaches: models that generate novel descriptions for a given image
and models that build the description filling templates or retrieving descriptions associated
to similar images; we will focus our work on the former.

We will restrict the scope of this thesis to generating descriptions of images containing
people, as it is an interesting topic and we can focus all our efforts on it. Related works in
automatic image description generation are not often focused on a particular image topic,
trying to cover all possible descriptions and images, and they have not given too much
attention to images that include people. We believe that we do not describe the same
way people than we do with other entities, and so that restricting ourselves to images
containing people could lead to better descriptions and results.

With all this in mind, the main objectives of this project are:

• Review and analyze the bibliography and the state-of-the-art techniques of generat-
ing image descriptions.

• Study and understand Deep Learning models and their applications.

• Study different Deep Learning frameworks and tools.

• Develop different models to automatically generate descriptions of images containing
people and try to reproduce state-of-the-art results.

1.2. DOCUMENT STRUCTURE 3

• Evaluate and compare all the developed models and determine which one is the best
and if it is successful, to focus our efforts on and restrict our models to people’s
characteristics.

1.2 Document structure

The structure of this document will go as follows: Chapter 3 gives a thorough expla-
nation of the state-of-the-art in both NLG and Computer Vision fields, and will also
illustrate some general-purpose image description generators. In Chapter 4 we introduce
the framework where we will develop our project; in particular, we explain GPUs, the
cloud computing environment, the dataset election and which specific libraries for Deep
Learning and visualization we will use.

Chapter 5 is the main chapter of this project; it goes step-by-step through all the
models’ definition and training processes. We explain in it all the characteristics and
components of the models and all the decisions taken while defining and training them.
Chapter 6 is dedicated to show the results obtained, the testing process and the most
widely used metrics. Finally, in Chapter 7 we present our conclusions about this project
and we give some possible future work directions.

4 CHAPTER 1. INTRODUCTION AND OBJECTIVES

Chapter 2

Introducción y objetivos

En nuestra condición de humanos, constante e inconscientemente hacemos descripciones
del mundo que nos rodea para comunicarnos con la gente. Describimos lo que vemos
en muchas situaciones diferentes, como por ejemplo cuando damos indicaciones a alguien
sobre cómo ir a algún sitio (sigue recto hasta que veas el edificio rojo y después gira a
la derecha a la calle que tiene los árboles grandes y una fuente), cuando le contamos una
historia a un amigo (estaba de compras cuando me encontré a Sara de la mano de un señor
mayor alto) o cuando subimos una foto a Internet (¡Pasándomelo genial en la playa con
mi vestido azul nuevo!). Mientras que estas descripciones las hacemos de manera sencilla
y natural, sin tener que pensarlo demasiado, generar automáticamente descripciones de lo
que hay en una imagen es una tarea muy compleja y exigente para un ordenador.

Generar una buena descripción de una imagen requiere primero analizar y entender
lo que aparece en ella y después generar una frase en lenguaje natural que explique esos
elementos, esté bien formada y sea concisa. Por lo tanto, generar descripciones de imágenes
es más dif́ıcil que las t́ıpicas tareas del campo de visión por computador, como son la
clasificación de imágenes o la detección de objetos, ya que conlleva no solo técnicas de
Visión por Computador (CV), sino también Procesamiento del Lenguaje Natural (NLP);
dos campos de la Inteligencia Artificial que por lo general han llevado caminos separados
y no se suelen estudiar ni aplicar en conjunto.

La generación de descripciones de imágenes se puede considerar como un caso particu-
lar de la traducción automática donde, en lugar de traducir una frase dada a otro idioma,
hay que traducir una imagen de entrada a su descripción. La imagen de entrada debe ser
codificada a un vector de representación y, después, esta representación debe ser decodifi-
cada a una frase en lenguaje natural. Para lograr esto, podemos combinar resultados del
estado del arte de ambos campos: los resultados de Visión por Computador para obtener
el vector de representación y los de NLP (en particular, el estado del arte de la Generación
de Lenguaje Natural (NLG)) para construir la descripción.

Este problema tan interesante de Inteligencia Artificial ha despertado el interés de
grandes empresas como Facebook o Google. El problema de describir imágenes au-

5

6 CHAPTER 2. INTRODUCCIÓN Y OBJETIVOS

tomáticamente no solo es atractivo por su interés académico y cient́ıfico, sino también
por sus muchas aplicaciones. La principal y más importante aplicación es generar des-
cripciones para las personas con alguna discapacidad visual, bien sea para ayudarles en
su d́ıa a d́ıa (por ejemplo, para moverse por la ciudad o comprar en un supermercado),
para acercarles a la cultura generando descripciones de los cuadros de un museo o, como
vivimos en un mundo claramente dominado por fotos, para hacer más accesibles las redes
sociales, y las páginas de Internet en general. Pero también tiene otras aplicaciones como
por ejemplo en robótica para la comunicación de los robots (transformando en frases lo
que ven e identificando con quién están hablando) o en medicina para describir imágenes
médicas.

Por otro lado, en los últimos años hemos podido presenciar un incréıble aumento del
interés en obtener información de los datos y estamos actualmente en lo que llaman la
era data-driven (dirigida por los datos). Cada d́ıa, se crean millones de nuevos datos,
muchas empresas tienen recogida una gran cantidad de datos y quieren sacarles provecho,
descubriendo patrones ocultos y perspectivas para obtener buenas decisiones de nego-
cio. Debido a esta gran cantidad de datos disponibles y al crecimiento de la capacidad
computacional para realizar cálculos complejos, las técnicas de aprendizaje automático y
aprendizaje profundo se han podido desarrollar y estudiar convirtiéndose en el estado del
arte en muchos campos, lo que ha hecho que estén en boca de todos.

Por lo tanto, este trabajo busca aunar estos dos conceptos tan populares y atractivos,
desarrollando un generador de descripciones de imágenes utilizando técnicas de aprendizaje
profundo.

2.1 Objetivos

Respecto a las descripciones de imágenes, Bernardi et al. [Bernardi et al., 2016] distinguen
dos enfoques principales para su generación: modelos que generan descripciones nuevas
para una imagen de entrada y modelos que construyen la descripción rellenando plantillas o
usando descripciones asociadas a imágenes similares; nosotros centraremos nuestro trabajo
en los primeros.

Vamos a limitar el alcance de este trabajo a generar descripciones de imágenes de
personas, ya que consideramos que es un enfoque interesante y podremos centrar todos
los esfuerzos en ello. El trabajo relacionado en el campo de la generación automática
de descripciones de imágenes no se suele centrar en un tema en concreto, tratando de
abarcar todas las posibles descripciones e imágenes y no le han dado demasiada atención
a las imágenes de personas. Consideramos que no describimos de la misma manera a una
persona que a otros elementos de una imagen, y por tanto, al restringirnos a imágenes de
personas podemos obtener mejores descripciones y resultados.

Con todo esto, los objetivos principales de este trabajo son:

• Revisar y analizar la bibliograf́ıa y el estado del arte de las técnicas de generación

2.2. ESTRUCTURA DEL DOCUMENTO 7

de descripciones de imágenes.

• Estudiar y entender los modelos de aprendizaje profundo y sus aplicaciones.

• Estudiar los diferentes entornos de trabajo y herramientas enfocadas al aprendizaje
profundo.

• Desarrollar diferentes modelos que generen automáticamente descripciones de imá-
genes de personas y tratar de reproducir los resultados del estado del arte.

• Evaluar y comparar los distintos modelos creados y determinar cuál es el mejor y si
es satisfactorio centrar los esfuerzos y limitar nuestros modelos a caracteŕısticas de
personas.

2.2 Estructura del documento

La estructura de este documento será la siguiente: el Caṕıtulo 3 da una explicación muy
detallada del estado del arte tanto en el campo de la Generación de Lenguaje Natural como
en el de Visión por Computador, en este caṕıtulo también se detallan algunos generadores
de descripciones de imágenes. En el Caṕıtulo 4 introducimos el entorno de trabajo en el
que desarrollaremos este trabajo; en particular, explicamos las GPUs, el entorno cloud
computing, qué libreŕıas para aprendizaje profundo y visualización usaremos y la elección
del dataset.

El Caṕıtulo 5 es el principal de este trabajo; va paso a paso por el proceso de definición
y entrenamiento de los modelos. Explicamos en este caṕıtulo todas las caracteŕısticas y
componentes de los modelos y todas las decisiones tomadas al definirlos y entrenarlos. El
Caṕıtulo 6 está dedicado a mostrar los resultados obtenidos, el proceso de testing y las
métricas más conocidas. Por último, en el Caṕıtulo 8 presentamos las conclusiones del
trabajo y damos posibles ĺıneas de trabajo futuro.

8 CHAPTER 2. INTRODUCCIÓN Y OBJETIVOS

Chapter 3

State of the art

Image analysis has been a challenging problem in researchers’ minds for a long time now.
At first, this problem was tackled by a traditional computer vision approach, with explicit
processing algorithms. Then, Machine Learning models appeared and they were the state-
of-the-art in this field until 2010, when training complex deep neural networks started to
become a possibility thanks to the use of GPUs computational power and the availability
of more data. As of today, these neural networks, in particular Convolutional Neural
Networks, are the state-of-the-art in all image analysis challenges.

Similarly, the task of Natural Language Generation (NLG), has been faced by classical
step-by-step algorithms, as well as Machine Learning and Deep Learning models. In
particular, Recurrent Neural Networks are, as of today, the state-of-the-art in generating
natural language sentences and texts.

Image description combines both computer vision and natural language processing
fields, and, nowadays, the state-of-the-art results are a combination of Convolutional Neu-
ral Networks, that focus on extracting image features, and Recurrent Neural Networks, to
generate the sentence.

In this chapter we will present previous work in the field of image analysis and Natural
Language Generation, and how these fields have been addressed across time, from the point
of view of traditional and explicit algorithms to the one of Deep Learning models. We
start with a brief introduction to traditional algorithms for computer vision and language
generation, we then explain the main characteristics of Machine Learning and we continue
with Deep Learning. In the last section of this chapter, we discuss some well-known image
caption generators.

9

10 CHAPTER 3. STATE OF THE ART

3.1 Traditional algorithms for image analysis

Image analysis consists of the extraction of important characteristics and features of images
by digital image processing techniques, and it has many different fields of application, such
as robotics, security, medicine or biology.

Traditional computer vision algorithms, in general, work by extracting feature vectors
from images and using them to classify images. There are algorithms responsible for a
particular task (noise reduction, image segmentation, corner detection, edge detection...),
that then work together with other specific algorithms to carry out the whole image
processing task. The use of these techniques to extract useful structural information
from images, such as edges, corners or colors, reduces significantly the amount of data to
be processed, as it filters out non-relevant data to focus only in the useful information
extracted.

The main feature detection algorithms in computer vision are:

• Canny edge detector [Canny, 1986]. An edge is a sudden change in image brightness,
that is, a point where the image brightness has discontinuities. These discontinuities
usually correspond to changes in surface orientation, depth, material properties or
scene illumination. Therefore, an edge detector may help to identify the boundaries
of objects and surface markings, as well as variations in surface orientation. The
Canny edge detector is one of the best edge detector algorithms, and can detect a
wide variety of edges in an image. It first smooths the image by applying a Gaussian
filter, then finds intensity gradients and selects the potential edges.

• Harris corner detector [Harris and Stephens, 1988]. A corner is interpreted as the
intersection of two edges. It is a very important image feature as it is a point invariant
to translation, rotation and illumination. The Harris corner detector algorithm
focuses on the detection of corners in an image, reducing the dimensionality of data
to be processed and it is used in many computer vision applications such as motion
tracking or stereo vision (extracting 3D characteristics from images). It has been
proved to be one of the most accurate algorithms in distinguishing between edges
and corners.

• SIFT (Scale-Invariant Feature Transform) [Lowe, 1999]. It is a feature description
algorithm used to detect and describe features in images. SIFT features are invariant
to image location, scale and rotation. A descriptor vector is computed for each one
of the points of interest in the image, so that they are also robust to changes in noise
and illumination. This algorithm is useful for many computer vision applications,
such as object recognition, motion tracking, navigation or 3D modeling.

• SURF (Speeded-Up Robust Features) [Bay et al., 2006]. It is also a feature extractor
and descriptor. This algorithm is a speeded-up version of SIFT.

These object detection algorithms usually come after a process of image segmentation,

3.2. TRADITIONAL APPROACH TO NLG 11

that is, dividing the image into its constituents parts, and are then combined with tradi-
tional Machine Learning algorithms (SVM or K-Nearest neighbor) for image classification.

3.2 Traditional approach to NLG

Natural Language Generation (NLG), involves producing understandable natural language
texts from some input data. It has many different interesting applications, besides gen-
erating image descriptions, such as machine translation, robotics or textual summaries of
advanced databases (e.g., financial or weather forecasts datasets) [Goldberg et al., 1994,
Iordanskaja et al., 1992, Wu et al., 2016].

Traditional NLG algorithms are based on the field of formal language theory and logic
rules on which we can build the language. As Reiter and Dale [Reiter and Dale, 1997]
state, traditional algorithms in NLG usually follow these steps:

1. Content determination: deciding which information should be included in the out-
put. This process creates a set of messages from the input data, and it is typically
done by filtering and summarizing the data and defining the messages in some formal
language, usually application-dependent.

2. Document structuring: organizing and structuring the set of messages so that the
final text makes sense. The output of this step is usually represented as a tree
structure.

3. Aggregation: merging related messages into sentences to compact the information.
This step is not mandatory but enables fluency and readability.

4. Referring Expressing Generation: producing expressions identifying objects that the
text refers to, as well as deciding about pronouns. It is related to lexicalization.

5. Lexicalization: selecting the specific words and phrases to be used to represent
concepts and relations that appear in the messages.

6. Realization: applying rules of syntax, morphology and spelling to produce the final
output, such as adding prepositions, making plurals or adding punctuation marks.

3.3 Machine Learning

Machine Learning is the sub-field of Artificial Intelligence that studies computer algorithms
that improve automatically through experience. In contrast to traditional algorithms, that
have specific rules for doing the tasks they are required for, Machine Learning algorithms
learn concepts without being explicitly programmed for doing so, identifying patterns from
given examples to perform accurately on new, unseen data by inferring these uncovered

12 CHAPTER 3. STATE OF THE ART

patterns. These algorithms can learn from and make predictions on large volumes of data,
not exclusively images.

The field started to be studied in the mid 1980s and early 1990s, and became more
popular around 2010 as more and more data were available for learning and training the
Machine Learning models.

This discipline has many applications in a wide variety of fields where designing and
programming explicit algorithms with good performance is difficult or infeasible. These
applications include voice recognition, natural language processing, translation, search
engines, computer vision, robotics, medical diagnosis, financial market analysis, advertis-
ing or recommender systems [Pang et al., 2002, Wernick et al., 2010, Bridge et al., 2014,
Sarikaya et al., 2014, Baik and Bala, 2004].

We can classify Machine Learning techniques into two categories: supervised learning
and unsupervised learning. In supervised learning, the Machine Learning algorithm is
given a set of sample inputs together with their desired outputs, so that it can train
with those examples to infer a generalized function that maps inputs into outputs and
predicts well when given a new example. Therefore, already labeled-data are required in
this approach.

There are also some special cases of supervised learning such as semi-supervised learn-
ing, that consist of a set of examples where not all of them go with their corresponding
desired output, that is, there are labeled and unlabeled data on the set; active learning,
where the algorithm has only a small initial set of labeled data and it is able to interac-
tively make queries to the user to find the desired outputs for some unlabeled data; and
reinforcement learning, where there is some sort of feedback obtained from the outside in
a dynamic environment as an answer for its actions.

Some of the main supervised learning algorithms and approaches are the following:

• Decision trees and random forests: they are used as a predictive model. In a decision
tree, the branches represent the observations about an item, its features and the
leaves represent class labels. Random forests [Ho, 1995] construct many decision
trees to make more accurate predictions by outputting a combination of the outputs
of all those decision trees, typically the mode or mean. Random forests are very
popular as it is easy and clear to see and understand the decisions taken by them,
while other Machine Learning algorithms are more obscure.

• Logistic regression: it is a statistical method to model a binary dependent variable
(classes 0 and 1) in terms of one or more explanatory variables, using the logistic
function σ(z) = 1

1+e−z . This function returns the probability of belonging to class
1. The algorithm’s output is then selected by comparing the probability to a given
threshold (usually 0.5).

• Support Vector Machines (SVM) [Cortes and Vapnik, 1995]: it is a binary classifi-
cation algorithm that given a set of points of two different classes in a n-dimensional

3.4. DEEP LEARNING 13

space, separates them with the hyperplane that is situated the furthest from all the
points. This algorithm is only useful if the points are linearly separable, if not, the
algorithm was improved by including kernels, that project the set of points in a
bigger dimension space, to obtain a hypersurface that separates the points in the
initial space.

• Neural networks: it is a learning algorithm where computations are structured in
connected neurons that transmit signals from one to another. Therefore, each neu-
ron’s input is the output of another neuron (or the input of the algorithm for the first
layer of neurons), and each neuron’s output is computed as a non-linear function of
the input.

• Nearest neighbor algorithm [Altman, 1992]: it is used both for classification (there
are a discrete number of classes) and regression (the target variable is continuous),
and it is based on the information of the k closest points. In classification, the output
is the most common class among its k neighbors, and in regression the output is the
mean of the values of these neighbors.

Unsupervised learning algorithms learn from a set of unlabeled data, input examples
without their desired output, inferring a function that can describe the structure in the
data. Therefore, the system must be capable of finding patterns in the data in order to
be able to label the new inputs; but, as the data used to train the algorithm is unlabeled,
there is no way of evaluating the accuracy of the patterns found in it.

The following are the most common unsupervised learning algorithms:

• Clustering: these methods divide the data set into different subsets, or clusters, so
that the points in the same cluster are more similar between them than between
those of other groups. The goal is to maximize the similarity between points in the
same subset and to maximize the difference between points of different subsets.

• Principal Component Analysis (PCA) [Hotelling, 1933]: this algorithm is used to
reduce the dimensionality of the data set, without losing any important information
and filtering redundancy, by making linear combinations of the original data variables
and selecting the ones that have the largest possible variance and are uncorrelated.

3.4 Deep Learning

Deep learning is a Machine Learning technique, based on neural networks with many layers
between the input and the output ones [LeCun et al., 2015].

Although the theory behind Deep Learning has been developed for many years now,
deep neural networks need much computer capacity and labeled data to perform rapidly
and correctly the complex tasks it is useful for. Therefore, Deep Learning has only recently

14 CHAPTER 3. STATE OF THE ART

become more popular because of the development of GPUs for general purposes and the
increase in the size of datasets.

While the performance of Machine Learning algorithms usually converge at some point,
not increasing if more training data is supplied, Deep Learning networks are scalable with
data. This allows Deep Learning to formulate more complex models than Machine Learn-
ing. These models can be used in many complex applications of image recognition and
natural language processing, where they usually are the state-of-the-art, even with better
performance than humans [Krizhevsky et al., 2012, Graves et al., 2013, Wu et al., 2016].

Artificial neural networks, motivated by biological neural networks, constitute a col-
lection of connected neurons, structured in layers, where the information travels from the
input layer to the output layer, going through the hidden layers. Each neuron computes a
non-linear function of its inputs and transmits the output to the neurons it is connected
to, where the received information is the input of that neuron. Deep neural networks are
artificial neural networks with a great number of hidden layers.

In particular, the simplest networks are feedforward neural networks, explained in Sec-
tion 3.4.1. Moreover, within all neural networks models that have been studied during
these years, there are two particular networks, Convolutional Neural Networks and Re-
current Neural Networks, that are the state-of-the-art for computer vision and for natural
language processing, respectively.

However, Deep Learning networks are usually slow to train, especially with image
datasets. There are two well-known techniques frequently used to speed-up the training
process: using already pre-trained Deep Learning networks and fine-tuning. Pre-training
takes advantage of already computed neural network weights to use them as part of a
bigger neural network for a similar problem; fine-tuning re-trains, starting with its pre-
computed weights, an already trained neural network with a more specific dataset of
similar characteristics.

3.4.1 Feedforward Neural Networks

The simplest neural network is the feedforward neural network, where the connections
between neurons do not form any cycle, and so the information goes forward from the
input layer to the output layer. Every neuron is connected to all of the neurons in the
next layer and every connection is labeled with a certain weight ω. Figure 3.1 shows this
neural network general representation.

Each neuron computes its output o as a non-linear function f , called activation func-
tion, of the sum of the weighted inputs and a bias b:

o = f(ωTx+ b)

The most commonly used activation functions are the sigmoid function, the hyperbolic
tangent and the ReLU (Rectified Linear Unit) function. These functions are shown in
Figure 3.2.

3.4. DEEP LEARNING 15

Figure 3.1: Feedforward Neural Network

However, these weights and biases are the model parameters; thus, the model must be
trained in order to compute the weights and biases values that make the neural network
more accurate when given new data. The optimal values for these parameters are the ones
that minimize the cost function that compares the output of the model to the expected
output.

The gradient descent method is an optimization algorithm for approximating a local
minimum of a differentiable function f (the global minimum if it is a convex function). It
is used in Deep Learning while training, in order to obtain a good estimation of the model
parameters x. As the goal is to minimize the function, this method moves iteratively
across the parameters’ space in the direction that decreases the function the most; this
direction happens to be the negative of the gradient of the function. The parameters are
then updated in each iteration by a factor α, called learning rate, of this direction until it
converges to a local minimum:

x = x− α∇f(x)

The backpropagation algorithm is an efficient way of computing these gradients in neural
networks, as they can be represented by a computation graph as we have shown in Fig-
ure 3.1. This algorithm starts in the output layer and goes backwards in the graph using
the chain rule to compute the gradients of each layer’s parameters.

3.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are one kind of artificial neural networks where
neurons of each layer do not necessarily have to be connected to every neuron of the next
layer and weights are shared across the layer. This architecture provides local processing,
learning local features of the input, and it is space-invariant, recognizing features no
matter where they are located in the input. Thus, these neural networks are basically
and efficiently used for image processing [Donahue et al., 2015, Karpathy and Li, 2015,
Krizhevsky et al., 2012, Tran et al., 2016, Vinyals et al., 2015].

Moreover, they reduce considerably the computational cost, since they need to learn
less number of parameters, making convolutional neural networks scale to high resolution

16 CHAPTER 3. STATE OF THE ART

(a) Sigmoid function σ(z) = 1
1+e−z . (b) Hyperbolic tangent tanh(z) = ez−e−z

ez+e−z .

(c) ReLU function f(z) = max(0, z).

Figure 3.2: Regular activation functions

images. They also increase their performance, as they consider the spatial structure of
the input in contrast to feedforward neural networks. CNNs are biologically inspired by
the visual cortex, where visual neurons are structured such that each of them only focuses
on a particular region of the visual field, called the receptive field, and the union of all
receptive fields covers the whole visual field.

There are three different types of layers used in convolutional neural networks: convo-
lutional layers, pooling layers and fully-connected layers. A typical CNN architecture is
shown in Figure 3.3. Convolutional layers are the core of these networks, neurons inside
these layers are connected only to some neurons of the previous layer. The output in these
layers, called feature map, is computed by applying a non-linear function (typically ReLU
function) to the convolution of the input and the shared weights, that is, it slides a local
filter across the whole input. Filters are local in width and height but cross all the color
channels of the image (three channels if it is a RGB image or only one if it is a greyscale
image). Each convolutional layer usually applies more than one filter, obtaining more than
one feature map, allowing more modeling capacity.

Pooling layers apply a non-linear function across their input, summarizing the infor-
mation to reduce its dimensionality and resolution, by combining a region of pixels in an
image (or a spatially local information in another type of input data) into a single one.
The typical pooling layer is called max-pooling, which takes the maximum of all values
in the region. This is done by sliding a small filter across the input, with overlapping or
non-overlapping stride, but only for a single color channel of the image. A pooling layer
comes usually after a few convolutional layers.

3.4. DEEP LEARNING 17

Figure 3.3: Convolutional Neural Network

Finally, after a collection of convolutional and pooling layers, there are some fully-
connected layers at the end of the network. In these layers, neurons are connected to all
neurons in the next layer, like in feedforward neural networks, and classify the input based
on the features extracted in the previous layers.

3.4.3 Recurrent Neural Networks

Neural networks where connections between neurons can form cycles are called Recurrent
Neural Networks (RNN). Because of these cycles, the output’s computation can rely on
previous computations: while for Feedforward Neural Networks every input and output are
independent, not being able to distinguish relationships between them, cycles in Recurrent
Neural Networks allow them to have memory of what they have previously seen or said.
Therefore, they are essentially useful for models where the input or output has some sort
of temporal dependencies, that is sequential information, such as speech recognition or
natural language processing. RNNs can be used to model sequential input into sequential
output, sequential input into temporal-independent output or temporal-independent input
into sequential output, the latter is the case of image description generation.

By unfolding or unrolling the loop in the Recurrent Neural Network, it is easier to
observe the sequential capability it has. Figure 3.4 shows RNNs’ architecture and its
unfolded version. The Recurrent Neural Network can be seen when it is unfolded, as a
deeper traditional feedforward network with same weights for each layer, that is, weights
are shared across time steps, reproducing the same calculations for all elements in the
sequence. In Figure 3.4 U , V and W are the weights that are shared between steps; xt
and ot are the input and output, respectively, in time step t and ht, called hidden state, is
the memory of the network, computed as a non-linear activation function f of the previous
hidden state and the current input. The hidden state and the output are calculated as
follows:

ht = f(Uxt + V ht−1)

18 CHAPTER 3. STATE OF THE ART

Figure 3.4: Recurrent Neural Network

ot = g(Wht)

The unrolled network in Figure 3.4 is the general sequence-to-sequence approach. If the
input is a sequence but the ouput is static instead, we may only need the final output, the
output of the last layer in the unfolded version. Similarly, if the output is a sequence but
the input is static (as it is our case generating image descriptions), we may only need to
pass the input to the network once, at the beginning of the recursion.

Recurrent Neural Networks are also trained using backpropagation, but a general-
ized version of it, called Backpropagation Through Time (BPTT) [Mozer, 1989]. BPTT
algorithm calculates the gradients using the unfolded version of the network, as it also
depends on the calculations of previous time steps. However, training with BPTT has
some problems as, at each time step, gradients tend to grow or decrease which derives
in vanishing or exploding gradients after some time steps, making it impossible to learn
long-term dependencies [Bengio et al., 1994].

More complex variants of Recurrent Neural Networks architectures have been devel-
oped to try to solve these and other problems. As of today, there are many different
RNNs options: vainilla RNNs (traditional RNNs), Hopfield networks, Long Short-Term
Memories (LSTM), Gated Recurrent Units (GRU), bidirectional RNNs, echo state net-
works, Neural Turing Machines... The most popular Recurrent Neural Networks for NLP
tasks are GRU [Cho et al., 2014] and LSTM [Hochreiter and Schmidhuber, 1997] which
are equivalent ([Chung et al., 2014]) and introduce a memory unit to learn long-term de-
pendencies.

3.5 Image description generators

In the last years, image description generators and, in general, Deep Learning applied to
classify and describe images, have arisen. In this section we describe some of them.

As we have introduced in Chapter 1, the first approach in generating image de-

3.5. IMAGE DESCRIPTION GENERATORS 19

scriptions did not try to achieve novel descriptions, instead it was done with tradi-
tional algorithms by filling natural language templates based on what was observed in
the image [Li et al., 2011, Yang et al., 2011, Mitchell et al., 2012, Kulkarni et al., 2013]
or by retrieving and combining descriptions of similar images [Kuznetsova et al., 2012,
Ordonez et al., 2011, Mason and Charniak, 2014].

Kiros et al. [Kiros et al., 2014a, Kiros et al., 2014b] were the first ones to tackle this
problem using deep neural networks; their solution uses a feedforward neural network for
generating novel descriptions. Another image description generator, that also uses deep
neural networks, is Show and Tell [Vinyals et al., 2015], developed by Google Brain team in
2015. Show and Tell generates image descriptions by first extracting features with a Con-
volutional Neural Network and then generating understandable sentences with a LSTM
Recurrent Neural Network. As Vinyals et al., many others have also developed their mod-
els combining CNN for image understanding and LSTM for natural language generation
[Mao et al., 2014, Donahue et al., 2015, Karpathy and Li, 2015, Chen and Zitnick, 2015,
Hendricks et al., 2016].

CaptionBot1 is an image caption generator developed by Microsoft Cognitive Services
in 2016 that uses Deep Learning techniques for computer vision and natural language
generation to describe image content automatically. This caption generator uses Convolu-
tional Neural Networks for extracting the image features and recurrent neural networks for
generating the description [Tran et al., 2016]. CaptionBot is available online, for everyone
to upload any image and it returns a description of what the algorithm sees in it. It can
also detect emotions if there is a person in the image. This description can be then rated
so that the algorithm can improve its learning. Figure 3.5 shows an usage example of
CaptionBot with a picture of a kid extracted from Google Images.

Google has also developed Google AIY Vision Kit2, a do-it-yourself hardware kit to
build an image recognition system that can identify objects. A Raspberry Pi and a Rasp-
berry Pi Camera are needed to build this vision system.

Automatic Alternative Text [Wu et al., 2017b] is a new Facebook tool developed in
2016 for making images more accessible to people with visual deficiencies. It generates
an automatic description of a Facebook photograph. This tool is based on Deep Learning
Convolutional Neural Networks to extract photograph features. To generate the text de-
scription the model just lists the people, objects and scenes detected by the Convolutional
Neural Network in that order.

Finally, a sophisticated wearable device for those blind or visually impaired, called
Horus3, will be released in the near future. Horus is equipped with a camera and a
processor, that is able to read text, recognize objects and identify faces, and describe
them to the user, by communicating him what or who it sees, using bone conduction4.

1https://www.captionbot.ai/
2https://aiyprojects.withgoogle.com/vision/
3http://horus.tech
4Sound sent directly to the inner ear through the bones.

https://www.captionbot.ai/
https://aiyprojects.withgoogle.com/vision/
http://horus.tech

20 CHAPTER 3. STATE OF THE ART

Figure 3.5: Captionbot

This device is even able to learn new faces and objects if the user shows them to Horus in
different angles and speaking out loud the name of the object or the person.

As we have seen, more and more sophisticated image caption generators, for different
purposes and contexts, are being developed, showing the interest and impact of this brand-
new field and resulting in a rich literature.

Chapter 4

Framework

Training and developing Deep Learning models requires great computational capacity and
a good election of the dataset. In this chapter, we explain what are GPUs and why are
they useful for developing Deep Learning projects, which Deep Learning framework and
visualization tools we have selected and which dataset we use. We developed the project
using Python as programming language.

4.1 GPU

GPUs (Graphics Processing Unit) were traditionally created for computer graphics and
image processing to accelerate the complex calculations of real-time 2D and 3D graphics
that resulted in long processing time in CPUs.

GPUs are build to optimized tasks based on the SIMD parallel concept (Single In-
struction Multiple Data), that is, the same instruction applied repeatedly over a bunch of
data. Those repeated applications of the same instruction are all independent and can,
therefore, be run simultaneously. Linear algebra operations are inherently parallel and are
the basis of polygon transformations for scene rendering in computer graphics.

There are other power and time consuming applications of parallel nature that could
be optimized by using a GPU, but they involve reformulating the problem into graphics
primitives to be able to use them, which is a very complex task. For that reason, NVIDIA
developed CUDA (Compute Unified Device Architecture), a parallel computing toolkit
similar to C programming language, to exploit GPUs capabilities for general purposes,
which is commonly called GPGPU (General Purpose Graphics Processing Unit).

Linear algebra is the basis of Deep Learning algorithms, and also many Machine Learn-
ing algorithms. Neurons within a layer apply all the same function to different input data,
so they could be also parallelized and hence GPUs are always used for training these
models.

21

22 CHAPTER 4. FRAMEWORK

Figure 4.1: Deep Learning frameworks popularity

Acquiring a GPU is not cheap, there exists cloud computing platforms, such as Amazon
Web Services1, Google Cloud Platform2 or Microsoft Azure3 that contain different servers
with several GPUs to allow users to run their models more economically. GAIA research
group has built a server with an NVIDIA Titan X GPU in order to maintain Deep Learning
projects for students and professors and gave us access to it, so we will use it for training
this project.

4.2 Deep Learning framework

CUDA has a very low level API and makes implementing Deep Learning computational
graphs considerably tedious. For this reason, many higher level frameworks were created
for easily describing and developing the complex tasks that Deep Learning involves.

There is a wide number of frameworks available for Deep Learning training, the ma-
jority of them open-source and developed by big companies or university teams such as
Microsoft, Google, Intel or Berkeley University. The most well-known and frequently
used frameworks are Torch [Collobert et al., 2011], Tensorflow [Abadi et al., 2016], Caffe
[Jia et al., 2014] and Theano [Theano Development Team, 2016].

Among all these frameworks, Tensorflow is probably the most popular one (as Fig-
ure 4.1, extracted from Google images, shows), used in distinguished companies such as
Airbnb, Uber, Dropbox or Twitter. It is an open-source framework for advanced numeri-
cal computation, developed by the Google Brain team in 2015, replacing their propietary

1https://aws.amazon.com
2https://cloud.google.com/
3https://azure.microsoft.com

https://aws.amazon.com
https://cloud.google.com/
https://azure.microsoft.com

4.2. DEEP LEARNING FRAMEWORK 23

from keras.models import Sequential

from keras.layers import Dense

Building the model and learning configuration

model = Sequential()

model.add(Dense(units=64, activation=’relu’, input_dim=100))

model.add(Dense(units=10, activation=’softmax’))

model.compile(loss=’categorical_crossentropy’, optimizer=’sgd’,

metrics=[’accuracy’])

Training, evaluation and prediction

x_train, y_train, x_test, y_test and new_data are numpy arrays

model.fit(x_train, y_train, epochs=5, batch_size=32)

loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)

prediction = model.predict(new_data, batch_size=128)

Figure 4.2: A simple Keras example code

Machine Learning system DistBelief [Dean et al., 2012], created in 2011. Tensorflow is
widely used for Deep Learning and Machine Learning and it is optimize to run models
both on CPUs or GPUs. It provides an API for Python as well as for other programming
languages (C++, Haskell, Java...), but the most developed one is the Python library.

Tensorflow works well for modeling Convolutional Neural Networks and Recurrent
Neural Networks. The basic object in Tensorflow library is the tensor, an abstraction of
multidimensional arrays, being a 1-dimensional tensor a vector and a 2-dimensional tensor
a matrix. Deep Learning computational graphs are build by describing tensors’ operations
and gradients are calculated automatically using a specific function.

However, programming in Tensorflow can be difficult and there exists a higher level
API that allows flexible Tensorflow implementations in a more user-friendly manner. This
API is Keras4, a high-level open-source Python library for developing Deep Learning
projects more easily and readable, created in 2015 by a Google engineer and released
under the MIT license. Keras works with Tensorflow, as well as Theano or CNTK
[Seide and Agarwal, 2016], as backend. In 2017 Tensorflow included it as part of its library
and selected it as the preferred high-level API.

The basic structure in Keras is the model, a set of connected layers. Computational
graphs are built by stacking layers with the add() function, where the user only needs to
specify the layers and the inputs’ dimensions. Keras library provides the well-known layers
but allows users to also create new ones. Configuring the training process is as simple as
applying to the model the compile() function with the specific conditions (loss function,
optimizer, metrics...). Training, evaluating the model and making predictions on unseen
examples is done with just other high level functions: fit(), evaluate() and predict()

4https://keras.io/

https://keras.io/

24 CHAPTER 4. FRAMEWORK

respectively. Figure 4.2 shows a simple example, extracted from Keras documentation,
of how to use these functions to build a neural network with two fully-connected layers.

Therefore, as our needs are covered in Keras’ library, it is widely recommended for
Deep Learning starters and it is more user-friendly, we decided to develop our model in
Keras on top of Tensorflow. Keras and Tensorflow installation is done easily in Linux via
the pip install command, creating previously a Python virtual environment.

4.3 Visualization: TensorBoard

Deep Learning models are composed of millions of complex calculations that often com-
plicate, or even make it impossible, to debug and understand the parameters and metrics,
what happens during training and what is the neural network learning. For this purpose,
Tensorflow developed Tensorboard5, a suite of visualization tools inside Tensorflow library
that allows users to visualize computation graphs, metrics results and other useful charts.

TensorBoard works by saving log files, containing execution information about the
training process and the computation graph, into a specific log directory, and opening
TensorBoard web server to access the graphic interface.

The desired data is obtained with summary operations, tensor’s operations that pro-
duce serialized information about a model that needs to be read with TensorBoard.
These summary operations receive the tensor we want to visualize and a meaningful
name to distinguish all of them. Then, all the summaries created are combined using
tf.summary.merge all into a single operation that generates all of them. Finally, the seri-
alized summary is written to the specified directory in disk with tf.summary.FileWriter.

To access the graphic interface of TensorBoard to visualize the summaries, we just need
to go to http://localhost:6006 after typing the following command in the command
line:

$ tensorboard --logdir path/to/log-directory

It is also possible to compare visualizations of different executions by specifying the
paths to the log directories in the previous command. The appearance of TensorBoard
graphic interface is shown in Figure 4.3

TensorBoard contains a wide variety of helpful visualizations: tf.summary.scalar,
tf.summary.histogram, tf.summary.audio or tf.summary.image, among others. The
first one is the most used, it displays the variation of a scalar metric over time, usually the
loss or the learning rate. All these visualizations admit some dynamic interactions within
the TensorBoard interface.

Using TensorBoard within Keras high-level API it is even easier. It is just necessary to
include the callback tensorboard function while training, specifying the log directory.

5https://github.com/tensorflow/tensorboard

http://localhost:6006
https://github.com/tensorflow/tensorboard

4.4. IMAGE DATASETS 25

Figure 4.3: TensorBoard web server

This function will record data for loss and accuracy metrics, as well as other metrics
specified in the compile function.

4.4 Image datasets

For correctly training and accurately evaluating a good Machine Learning model, a suitable
selection or elaboration of the dataset is crucial. Once we have the dataset, it is divided
into three disjoint subsets: training, test and validation sets. Training set is used for
training the model, fitting the model’s parameters; test set is used once the model is
trained, to provide an unbiased evaluation of this final model; validation set, also called
development set or dev set, is used while training the model, to tune the hyperparameters
and to prevent overfitting.

As Deep Learning researchers have a strong interest in the image analysis field, dur-
ing these years a lot of large and medium scale datasets have been created for training
these models and we can find many of them available online. The most popular ones are
explained below.

26 CHAPTER 4. FRAMEWORK

ImageNet

ImageNet6 is probably the most well-known image dataset in the Deep Learning and
machine learning industry. This image dataset is used mainly for classification purposes
and the classes are organized based on the nouns in the WordNet [Miller, 1995] hierarchy.

This image database was created in 2009 [Deng et al., 2009] by querying image search
engines with WordNet’s synsets. They extracted a great number of candidate images
for each synset and then filtered them by crowd-sourcing in Amazon Mechanical Turk
(AMT)7. Since 2010, ImageNet also runs the ILSVRC (ImageNet Large Scale Visual
Recognition Challenge) annual visual challenge [Russakovsky et al., 2015]. Nowadays, this
challenge is hosted in Kaggle8 and it has three categories: image classification for 1000
classes, object detection (detect the bounding box where the object lays) for 200 classes
and object detection from video for 30 classes.

As of today, ImageNet is one of the largest image database available. It has a total of
14,197,122 annotated images of a wide variety of categories, with an average of over five
hundred images per synset. For the person’s high-level category (the one we have interest
in), it holds around 952,000 images and it is divided in 2,035 synsets with an average of
468 images per synset. Images are annotated with their classification and 1,034,908 of
them also with their bounding boxes.

MS COCO

MS COCO9 (MicroSoft Common Objects in COntext) dataset [Lin et al., 2014] is one of
the most widely used large-scale datasets for image description generation and also for
object detection, object segmentation and person keypoints detection.

Currently, the MS COCO dataset consists of over 328,000 images of 91 basic object
types in naturally occurring contexts. Each image is labeled with at least five captions
describing it, which leads to a total of 2.5 million captions, and bounding boxes for each
object category that appears in the picture. They also contain 250,000 people annotated
with their keypoints.

This dataset has also given rise to image challenges for object detection, keypoints de-
tection and image captioning. The latter is already closed, but there is an open evaluation
server and API [Chen et al., 2015] to compare to state-of-the-art methods using several
performance metrics such as BLEU, ROUGE, METEOR and CIDEr.

6http://www.image-net.org/
7A well-known crowd-sourcing online platform. https://www.mturk.com/
8https://www.kaggle.com/
9http://cocodataset.org/#home

http://www.image-net.org/
https://www.mturk.com/
https://www.kaggle.com/
http://cocodataset.org/#home

4.4. IMAGE DATASETS 27

PASCAL

PASCAL10 (Pattern Analysis Statistical Modeling and Computational Learning) Visual
Object Classes project comprised challenges [Everingham et al., 2010] of image classifica-
tion, detection and segmentation for eight consecutive years (2005-2012). Nowadays, the
challenges are closed but it provides an image database and tools for obtaining these im-
ages and their annotations, as well as an evaluation server. The latest dataset (PASCAL
2012 challenge) contained 20 distinct classes and more than 11,000 annotated images.
These images were collected from Flickr.

These datasets have annotations for object classification, detection and segmentation,
but a subset of the Pascal 2008 challenge dataset was used to create an image description
database, called Pascal1K. It contains 1,000 images with objects of different classes and
is annotated with five descriptions, generated by humans on Amazon Mechanical Turk
crowd-sourcing platform. As it is a medium-scale database, it is generally used as a
benchmark for evaluating image description models.

Flickr8K and Flickr30K

Flickr8K11 [Hodosh et al., 2013] dataset and its extension Flickr30K12 [Young et al., 2014],
contain images from Flickr, each one annotated with five descriptions collected from the
crowd-source platform Amazon Mechanical Turk (AMT). Flickr8K consists of approxi-
mately 8,000 images and Flickr30K of around 30,000 images. These pictures were collected
by the University of Illinois by querying Flickr for specific objects and actions.

SBU

SBU Captioned Photo Dataset was specifically created for the Im2Text image caption
generator [Ordonez et al., 2011]. It contains 1 million Flickr images labeled with their
original captions generated by their users, collected by querying Flickr for specific objects
and actions. It is a large-scale dataset but not very popular for training image description
models as the labeled captions may contain subjective information or information not
contained in the picture because they were generated by the Flickr user.

CIFAR

CIFAR-10 and CIFAR-100 (Canadian Institute for Advanced Research) [Krizhevsky, 2012]
are image classification datasets that differ only in the number of classes they have (CIFAR-
10 has ten classes and CIFAR-100 one hundred classes, grouped into twenty superclasses).

10Download page: http://host.robots.ox.ac.uk/pascal/VOC/
11Form for downloading the Filckr8K dataset:https://forms.illinois.edu/sec/1713398
12Form for downloading the Filckr30K dataset: https://forms.illinois.edu/sec/229675

http://host.robots.ox.ac.uk/pascal/VOC/
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/229675

28 CHAPTER 4. FRAMEWORK

Figure 4.4: COCO caption dataset

Both datasets consist of 60,000 32x32 RGB images, CIFAR-10 holds 6,000 in each class
and CIFAR-100 holds 600. Keras provides built-in functions to load these datasets.

LabelMe

LabelMe13 is an image database and an online annotation tool [Russell et al., 2008] created
in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).

The dataset is dynamic, free to use and open to public contribution, and it consists
of almost 200,000 images but not all of them are fully annotated. It has more than
62,000 annotated images and more than 658,000 labeled objects. The online annotation
tool allows the user to draw polygons, query images, browse the database or download a
subset.

4.4.1 Dataset election

Having studied the characteristics of all these datasets, we decided to use the MS COCO
dataset for training and testing our model, as it contains a wide number of images, it is one
of the most commonly used for image description and it provides tools for downloading
the dataset. They already provide a train/val/test split of the dataset, however, as this
dataset was released for their annual challenges, the test set does not come labeled and
we will not be able to use it for testing our model, so we will create our own split based
on the training and validation sets.

13Download page: http://labelme.csail.mit.edu

http://labelme.csail.mit.edu

4.4. IMAGE DATASETS 29

Figure 4.4 shows some examples of what can be found in COCO caption dataset.
In particular, we use the Python COCO API to download the MS COCO dataset and
to select a subset of it containing only images of people, to restrict to our objectives
the images we provide to the model. In addition, we also use the people’s subset (baby,
boy, girl, man and woman categories) of the CIFAR-100 dataset to fine-tune the image
feature-extraction model we use, as explained in the next chapter.

30 CHAPTER 4. FRAMEWORK

Chapter 5

Deep Learning approach for
generating image descriptions

As we have mentioned throughout this project, we have tried to approach the image
description generation task using Deep Learning techniques, as they have been proven to
be the state-of-the-art in this problem. In this chapter, we describe the model definition
and model training processes, as well as all the decisions taken while implementing them.

5.1 Model architecture

In Chapter 1 we explained that we have restricted ourselves to describing images containing
people and that our objective during this project was to determine if this restriction leads
to better results when making descriptions about people. For this purpose, we have
developed and implemented four different models, all based on the same architecture but
each of them focusing more on people’s characteristics or, instead, being more general.

Our models’ architecture follows a Deep Learning approach based on a Convolutional
Neural Network for extracting image features and a LSTM Recurrent Neural Network for
the language model generating the descriptions. As we have explained in Chapter 3, they
are the state-of-the-art networks in the Computer Vision and Natural Language Genera-
tion fields respectively, and it is the structure followed lately in the image description task
[Vinyals et al., 2015, Karpathy and Li, 2015, Hendricks et al., 2016].

There are different ways that have been explored for combining image and language
models. Following Tanti et al. nomenclature [Tanti et al., 2017b], this combination can
be done by injecting image features directly into the RNN that processes the descriptions,
so that the language learning process is conditioned by the image features, or it can be
done by merging the image model with the output of the RNN language model in a later
step, so that the learned linguistic characteristics are pure and independent. Moreover,
they divide the inject architecture in three different types depending on how the image

31

32 CHAPTER 5. DEEP LEARNING APPROACH

(a) Init-inject architecture. (b) Pre-inject architecture.

(c) Par-inject architecture.
(d) Merge architecture.

Figure 5.1: The different options of combining the image and language models.

[Tanti et al., 2017b]

WORD

EMBEDDING
LSTM

CNN

FEEDFORWARD

NN

WORD

IMAGE

PREDICTION

Figure 5.2: Network structure followed by our four models.

features are used: the init-inject architecture, that uses them as the initial hidden state of
the RNN, the pre-inject architecture, that uses them as the first word in the description,
and the par-inject, that uses them as a second input for each step of the RNN. Figure 5.1
shows these four different architectures.

Tanti et al. show that, while inject architectures are more commonly used, they are
only slightly better at some metrics and the four architectures have similar performance,
but merging the image features is less memory-consuming, needs less regularization and
generates less generic sentences and with richer vocabulary. Therefore, in this project we
have followed the merge architecture for combining our image and linguistic characteristics.

The structure of our models is shown in Figure 5.2. On the one hand, we have the
language generation model, consisting of a word embedding layer that, as we explain later
in Section 5.1.2, maps each word into a fixed-length dense vector, and a LSTM layer
that learns the linguistic characteristics. We have chosen to use a LSTM layer over a

5.1. MODEL ARCHITECTURE 33

GRU layer because, as we have mentioned in Section 3.5, it is the one used in almost
all image description generators. On the other hand, in the image model, images are
fed into a Convolutional Neural Network to extract their features. These two parts are
then inputted to a Feedforward Neural Network (following the merge architecture) that
predicts the next word in the description. Our models follow the same approach as the
well-known image description generators and predict at each step the next word in the
description based on the description generated so far.

The description of our four models are the following:

• Model 1 is the most general one, it uses a CNN pre-trained on the ImageNet dataset
and it is trained and tested on the whole COCO dataset; this model does not make
any distinction between images that contain people and images that do not.

• Model 2 fine-tunes (re-trains) the pre-trained CNN with a CIFAR-100 subset of only
images containing people, to try to focus more on people’s characteristics, but it is
trained and tested on the whole COCO dataset.

• Model 3 does not fine-tune the pre-trained CNN but it is trained and tested in a
subset of the COCO dataset that has only images containing people; this way, image
features are general but the language model is focused on people’s descriptions.

• Model 4 fine-tunes the pre-trained CNN with the CIFAR-100 subset of only images
containing people and its training and testing is restricted to the COCO people
subset so that the image and the language models are both focused on people’s
characteristics and descriptions.

After evaluating the results of these four models we will be able to explain if it is a good
approach to restrict to images that contain people in order to obtain better descriptions.

5.1.1 Pre-trained convolutional network

As we have mentioned in Section 4.4, ImageNet is a huge image dataset that also launches
annual competitions for image classification and object detection. Every year, the winner
teams usually make publicly available their networks and trained weights which are very
useful for other image problems, as they provide great results and are trained on a big and
general dataset. These weights could be freeze and directly used for prediction or feature
extraction as part of a bigger architecture or they could be used as the initial weights of the
network and then fine-tuned with another dataset; in both cases, using previously trained
networks leads to better results in less computational time than building the Convolutional
Neural Network from scratch, making it feasible to train more complex architectures.

Keras provides namesake functions for all the most popular and publicly available
models that have been in the top-five leaders of an ImageNet competition, such as Incep-
tion, Xception, ResNet or VGG. By calling these functions, Keras downloads into memory
their pre-trained weights and returns a Keras Model instance of the model.

34 CHAPTER 5. DEEP LEARNING APPROACH

Figure 5.3: VGG16 Convolutional Neural Network architecture.

Following Vinyals et al. approach [Vinyals et al., 2015], we have decided to use VGG16
CNN, but we could have used another one obtaining similar results. VGG16 was devel-
oped by the Oxford Visual Geometry Group1 and was the winner of the 2014 ImageNet
challenge. It is a very deep convolutional network with small 3x3 filters in all convolutional
layers to reduce the number of parameters and max-pooling layers after every two or three
convolutional layers. The network’s architecture is shown in Figure 5.3.

5.1.2 Word embedding

Typically, natural language algorithms map words into a 1-of-K coding representation,
being K the vocabulary size, that is, each word is encoded into a vector of length K with
all the elements being 0 except for a 1 in the position corresponding to the one of that
word in the vocabulary. However, this representation builds big sparse vectors if we have a
rich vocabulary and similar words lack of any relationship, being completely independent.
Word embeddings go beyond this 1-of-K coding representation building dense vectors
where related words have similar representations, reducing the vector length in some orders
of magnitude. They are trained in order to learn word relationships and find the mapping
from the 1-of-K vectors into a dense vector space. Therefore, word embeddings are very
useful and popular for Deep Learning approaches of Natural Language Processing tasks,
raising their performance.

Word embeddings can be learned jointly with the training process of the Deep Learning
model using the vocabulary of the dataset of our model, or using already pre-trained
weights in a bigger dataset, such as GloVe [Pennington et al., 2014], a word embedding
algorithm that has publicly available pre-trained weights in a vocabulary of 400,000 words

1http://www.robots.ox.ac.uk/ vgg/

http://www.robots.ox.ac.uk/~vgg/

5.2. FINE-TUNING VGG16 35

of Wikipedia 2014 and Gigaworld datasets. We use the 100-dimensional GloVe word
embedding pre-trained weights for training our models. These weights where downloaded
from their webpage2.

5.2 Fine-tuning VGG16

As we have explained in the previous section, two of the four developed models fine-tune
the VGG16 Convolutional Neural Network provided by Keras by retraining it in a subset
of images that only contain people of the CIFAR-100 dataset.

Keras provides a function (keras.datasets.cifar100.load data()) for easily down-
loading CIFAR-100 data. This function downloads the whole dataset. Therefore, to obtain
the subset we need, we have selected the indexes where the labels belong to the following
set: {baby, boy, girl,man,woman} (as it contains all the categories of images with people
in them) and we have extracted the subset of these indexes.

Each category in CIFAR-100 contains 600 images, so we have performed data aug-
mentation on the images, with the ImageDataGenerator Keras class, to have a bigger
dataset to fine-tune VGG16. This class performs data augmentation on the images while
progressively generating batches of image data, so that, when used in conjunction with
the model.fit generator() function, the whole dataset is not entirely downloaded into
memory from the beginning but only when needed, easing memory usage. It allows to
perform multiple data augmentation operations, such as random rotations, random zoom
or horizontal and vertical flips.

Figure 5.4 shows the piece of the code with the definition of the model that we have
implemented for fine-tuning VGG16. We call VGG16() Keras function without the top-
layer and replace it with Dense layers (fully-connected layers) to flatten the output of
the last convolution and a softmax layer to make the predictions. We also make the first
layers non-trainable as they have learned common features of every image such as corners
or edges, so the already learned parameters work for our task. For re-training this model
we use a Stochastic Gradient Descent optimizer (see Section 5.5.1) with a low learning rate
(0.001), as we are fine-tuning the model so errors are smaller, and the categorical cross
entropy loss, as we are predicting a categorical variable with 5 classes. The categorical cross
entropy is an useful loss function to measure how well a model is doing when predicting
the output probabilities of a classification problem. Its mathematical expression is:

CrossEntropy = − 1

n

∑
x

∑
j

[yj ln aj + (1− yj) ln(1− aj)]

Where x are the inputs, j the categories, yj the desired ouput for category j and aj the
actual output for category j. We have trained this model using model.fit generator()

2https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/

36 CHAPTER 5. DEEP LEARNING APPROACH

"""-----Definition of VGG16 fine-tuned model-----"""

def model_definition():

vgg16_model = VGG16(weights="imagenet",

include_top=False,

input_shape=(224,224,3))

Replace top layer

vgg16_output = vgg16_model.output

x1 = Flatten()(vgg16_output)

x2 = Dense(4096, activation=’relu’, name="fc1")(x1)

x3 = Dense(4096, activation=’relu’, name="fc2")(x2)

prediction = Dense(100, activation=’softmax’, name="predictions")(x3)

Create model

model = Model(input=vgg16_model.input, output=prediction)

Set first layers non-trainable

for layer in model.layers[:12]:

layer.trainable = False

model.compile(optimizer=SGD(lr=1e-3, decay=1e-6, momentum=0.9),

loss=’categorical_crossentropy’,

metrics=[’accuracy’])

return model

Figure 5.4: Python code of VGG16 fine-tuned model definition.

function with a batch size of 32 images and 30 epochs3, and save it in a hdf54 file into
memory using model.save().

5.3 Data preparation

Once we have our fine-tuned VGG16 model, we can start defining the models for generating
image descriptions. As we explained in the first section of this chapter, we will use COCO
dataset, partly or entirely depending on the model, for training and testing our models.
Fortunately, COCO provides a Python API for loading into memory and parsing the
dataset in an easier way. To use this API, the dataset files must be downloaded from their
webpage in an specific directory structure. We have downloaded the 2014 dataset because
it is the one that contains image descriptions as labels. After cloning the github project
and running the Makefile, the API can be used by importing the pycocotools.coco

3An epoch is an entire iteration over the whole training dataset. The batch size is the number of training
samples trained between parameters updates.

4File format to store large amounts of data.

5.3. DATA PREPARATION 37

module. More information on how to use this API can be found on their webpage5 and
their github project6.

All COCO images and descriptions must be preprocessed in order to correctly use
them as the inputs of our models. Even though two of our models work only with a
subset of COCO, the other two work with the whole dataset, so both image preprocessing
and descriptions preprocessing have been done in the whole dataset, leaving the subset
extraction to a later step where we also perform the train/val/test split of the dataset as
we explained in Section 4.4. In the following subsections we explain how we have carried
out these two tasks.

5.3.1 Image preprocessing

COCO images do not need too much preprocessing. However, the Convolutional Neural
Network of our models, either the VGG16 network or the fine-tuned model, has already
precomputed its weights and these weights will remain frozen when training our image
descriptions generation models. Therefore, images features could be precomputed before
training the models and saved to be used later as an input instead of the images themselves.
This way we only calculate these features once instead of every time the training process
passes through one of these images, saving computational time and memory space.

This image preprocessing must be repeated for the VGG16 model and for our fine-
tuned model, to extract the features obtained by both models and use one or another
depending on which of the four models we are training. Figure 5.5 shows the features
extraction function we have defined, where model refers to either VGG16() or to our fine-
tuned model, features is the dictionary that will store the extracted image features and
images ids are all COCO training image ids obtained with COCO API as follows:

dataDir = ".."

dataType = "train2014"

annFile = ’{}/annotations/instances_{}.json’.format(dataDir,dataType)
coco = pycocotools.coco.COCO(annFile)

imgs_ids = coco.getImgIds()

This process is also done with the validation COCO dataset, changing dataType to
"val2014". To extract image features, last layer of the model must be removed using
layers.pop() because this layer is the one that predicts which class the image belongs to
and we only care about image features. We then load every image in the COCO dataset
using COCO API and Keras load img() function. Image target size is 224x224 as this
is the input size of VGG16 (and therefore also of our fine-tuned model). Once we have
loaded the image into memory, it is converted to a numpy array and reshaped, using Keras
functions from the keras.preprocessing.image module. Finally, features are extracted

5http://cocodataset.org/download
6https://github.com/cocodataset/cocoapi

http://cocodataset.org/download
https://github.com/cocodataset/cocoapi

38 CHAPTER 5. DEEP LEARNING APPROACH

def features_extraction(model, features, directory, dataType, images_ids):

remove prediction layer from model

model.layers.pop()

model = Model(inputs=model.inputs, outputs=model.layers[-1].output)

for id in images_ids:

file = "0:0>12".format(id)

path = "/images//COCO__.jpg".format(directory, dataType, dataType, file)

img = load_img(path, target_size=(224, 224))

img to 3D numpy array (height, weight, color channel) and reshape it

img = img_to_array(img)

img = img.reshape((1, img.shape[0], img.shape[1], img.shape[2]))

get features and store them in dict

img = preprocess_input(img)

feature = model.predict(img, verbose=1)

features[id] = feature

return features

Figure 5.5: Image preprocessing: features extraction of COCO images.

using the predict() function and then stored into the dictionary. After having extracted
all training and validation images features, we save the dictionary containing them in a
file, using Python pickle library7, for later use.

5.3.2 Text preprocessing

The image descriptions preprocessing task that we have implemented performs various
operations on the words to clean those descriptions and obtain a suitable vocabulary
for learning, that should be representative and expressive enough. These operations are:
changing uppercase letters to lowercase, removing punctuation marks, removing numbers,
removing words of length one (as they are not expressive), removing words used less
than five times in the whole dataset and transforming English contractions such as don’t
to do not. We also add initial and final tokens (START and END) for delimiting the
descriptions.

Figure 5.6 shows the preprocessing function we have defined for cleaning COCO
descriptions, where: word freq is a Python Counter8 with the words’ frequencies and
descriptions is a list containing all the descriptions of COCO training dataset and it is
obtained using COCO API as follows:

7https://docs.python.org/3/library/pickle.html
8https://docs.python.org/3/library/collections.html#collections.Counter

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/collections.html#collections.Counter

5.4. DATASET SPLIT 39

def preprocess_desc(descriptions, word_freq):

translation table for removing punctuation

table = str.maketrans(’’, ’’, string.punctuation)

for desc_info in descriptions:

desc = desc_info[’caption’]

words = desc.split()

convert to lower case

words = [w.lower() for w in words]

remove numbers

words = [w for w in words if not w.isnumeric()]

transform contractions

words = [contractions(w) for w in words]

remove punctuation from each word

words = [w.translate(table) for w in words]

remove words length < 2

words = [w for w in words if len(w)>1]

remove words used < 5 times

words = [w for w in word_freq.keys() if word_freq[w]>=5]

store in dictionary with START and END tokens

desc_info[’caption’] = ’START ’ + ’ ’.join(words) + ’ END’

Figure 5.6: Text preprocessing: cleaning COCO descriptions.

dataDir = ".."

dataType = "train2014"

annFile = ’/annotations/captions_.json’.format(dataDir,dataType)

coco = COCO(annFile)

anns_ids = coco.getAnnIds()

descriptions = coco.loadAnns(anns_ids)

This process is also repeated with the validation descriptions, as we have done with im-
age preprocessing, changing dataType to "val2014". Each element of the descriptions

list is a dictionary containing the image id the description belongs to, an id for the de-
scription and the description itself. For transforming contractions, we have defined a
dictionary containing the transformations and contractions() returns this transforma-
tion if the word is in that dictionary. Once we have preprocessed all training and validation
descriptions, we merge both lists into a single one and save it in a file using pickle library.

5.4 Dataset split

After having preprocessed the entire COCO dataset, we now split it into train, validation
and test sets (with a 70%-20%-10% division) and divide consequently the features dictio-
naries (VGG16 features and fine-tuned model features) obtained while preprocessing the

40 CHAPTER 5. DEEP LEARNING APPROACH

get ids of 35000 training imgs general and with people

dataDir = ".."

dataType = "train2014"

annFile = ’/annotations/instances_.json’.format(dataDir,dataType)

coco = COCO(annFile)

cats_ids = coco.getCatIds(catNms=[’person’])

train_people_ids = coco.getImgIds(catIds=cats_ids)

train_people_ids = random.sample(train_people_ids, 35000)

train_ids = coco.getImgIds()

train_imgs_ids = random.sample(train_ids, 35000)

get ids of 35000 validation imgs general and with people

dataDir = ".."

dataType = "val2014"

annFile = ’/annotations/instances_.json’.format(dataDir,dataType)

coco = COCO(annFile)

cats_ids = coco.getCatIds(catNms=[’person’])

val_people_ids = coco.getImgIds(catIds=cats_ids)

val_people_ids = random.sample(val_people_ids, 15000)

val_ids = coco.getImgIds()

val_imgs_ids = random.sample(val_ids, 10000)

split val people in val and test

val_people_ids, test_ids = train_test_split(val_people_ids, test_size=5000)

Figure 5.7: Test split of COCO dataset.

images and the descriptions list obtained while preprocessing the descriptions.

As our goal is to evaluate how well our models describe images containing people, the
test set must only include this kind of images. On the other hand, the train and validation
sets, may or may not include other kind of images, depending on the model that we are
training. Therefore, we will have two different splits for these two sets, one of them of the
subset of images containing people (excluding the ones in the test set) and the other one
of the whole dataset without the test set.

Training our models with the whole COCO dataset (more than 300,000 images) was
impossible due to the characteristics of the server we have used and to our time limitation.
In order to reduce time and memory consumption, we decided to restrict our training
process to only a subset of the COCO dataset: 35,000 images for the training set, 10,000
images for validation and 5,000 images for the test set (70%-20%-10%).

To obtain the training set we have randomly selected, using random.sample() Python
function, 35,000 images of the whole COCO training set and 35,000 images of all the COCO
training images that contain people. Validation and test sets have been extracted both

5.5. TRAINING PROCESS 41

from COCO validation set, randomly selecting 15,000 COCO validation images containing
people (5,000 for the test set and the remaining 10,000 for the validation set) and 10,000
COCO validation images of any kind. This process is shown in Figure 5.7. We have
also ensure that the general training and validation splits are representative enough by
verifying that the random subsets have enough images that contain people (30%-60%).

Once we have performed the dataset splits, we divide the features dictionaries and the
descriptions list accordingly to the different splits and we save these divisions in memory
using pickle library.

5.5 Training process

The first step in the training process of the four models is to load the files obtained with
the image and text preprocessing and divided when making the dataset split. Following
the enumeration we have defined in Section 5.1, Model 1 and Model 3 load image features
obtained with VGG16 and Model 2 and Model 4 load the ones obtained with the fine-
tuned VGG16 model. Subsequently, Model 1 and Model 2 load the train and validation
split of the whole dataset and Model 3 and Model 4 the one of the subset of images that
contain people.

The remaining steps in the training process are the same for the four models, with
the only differences being the inputs. After loading the images features and descriptions,
we create and fit a Tokenizer over all training and validation descriptions, using Keras
Tokenizer() class. A Tokenizer learns from a list of texts how to map the bag of words
contained in that texts to integer values and allowing to see each description as an integer
sequence.

The next step is to define the model that we are going to train. The model definition
in Python using Keras follows the architecture that we have defined in Figure 5.2 and it
is shown in Figure 5.8. The hyperparameters are extracted from Tanti et al. observations
[Tanti et al., 2017b]. vocab size, max length and emb matrix arguments are the size of
the whole bag of words contained in the descriptions, the length of the largest description
and the GloVe word embedding weight matrix respectively.

The function starts with the definition of the Keras input tensor for the image features
using Input() and the input shape is 4096 as it is the shape of the features vector extracted
for each image. This input is passed to a Dense layer with a ReLu activation function
and L2 regularization to obtain a 128 element representation. Regularization techniques
are introduced in Deep Learning training processes to prevent or reduce overfitting (good
learning of the traning set but too specific, leading to no generalization power). In partic-
ular, L2 regularization adds an extra term to the cost function proportional to the sum of
squares of all the weights. We then define the language model with a Keras Input() ten-
sor of length max length and this input is passed to a word embedding layer with GloVe
pre-trained weights to map the sparse word vectors to dense ones, as we explained in Sec-
tion 5.1.2. After the Embedding layer we perform a 0.5 dropout [Srivastava et al., 2014],

42 CHAPTER 5. DEEP LEARNING APPROACH

def model_definition(vocab_size, max_length, emb_matrix):

feature extractor model

img_inputs = Input(shape=(4096,))

fe1 = Dense(128, kernel_regularizer=l2(1e-8), activation=’relu’,

name="features")(img_inputs)

description model

desc_inputs = Input(shape=(max_length,))

de1 = Embedding(vocab_size, 100, weights=[emb_matrix],

trainable=False)(desc_inputs)

de2 = Dropout(0.5, name="text_dropout")(de1)

de3 = LSTM(128, name="LSTM_layer")(de2)

merge model

merge_inputs = [fe1,de3]

me1 = add(merge_inputs)

me2 = Dense(128, activation=’relu’, name="decoder")(me1)

outputs = Dense(vocab_size, kernel_regularizer=l2(1e-8),

activation=’softmax’, name="predictions")(me2)

model = Model(inputs=[img_inputs, desc_inputs], outputs=outputs)

model.compile(loss=’categorical_crossentropy’, optimizer=’adam’,

metrics=[’accuracy’])

model.summary()

return model

Figure 5.8: Image description generation model definition with Keras.

a regularization technique used to prevent overfitting that consists in ignoring while train-
ing some neurons selected randomly. This is followed by a Keras LSTM layer with 128
memory units. Next we merge both the output of the LSTM layer and the output of the
Dense layer and apply a Dense layer with ReLU activation function and a softmax Dense
layer, with L2 regularization, over the vocabulary size to make the prediction of the next
word. This model is trained with a categorical cross entropy loss (as the output of the
network are the probabilities of the words in the vocabulary to be the next word in the
description) and Adam optimizer (see Section 5.5.1) with the default values, as Tanti et
al. suggest [Tanti et al., 2017b].

Finally, the last step is to fit the model with the training and validation data that we
have loaded. As COCO is a very big dataset and to ease memory usage, we use a gener-
ator to produce training and validation data and fit the model with the fit generator

function. To control the training process, we use the fit generator function with a
ModelCheckpoint callback, to save the model after each epoch monitoring the loss on the
validation set, and a TensorBoard callback, to save tensorboard logs for visualization (as
we explained in Section 4.3).

5.5. TRAINING PROCESS 43

Figure 5.9: Optimization algorithms steps reaching local optimum.

We have trained the four models 35 epochs in the server with the GPU. The whole
process (VGG16 fine-tune, data preparation and training of the four models) lasted around
eight days.

5.5.1 Optimizers

As we explained in Section 3.4, Deep Learning models learn by trying to find the opti-
mal parameters that minimize the cost function and the gradient descent method is an
optimization algorithm to approximate a local optimum by computing the gradient of the
function. However, the cost function depends on all training samples, and therefore so
does the gradient, which makes it too expensive to compute for Deep Learning models
that are typically trained on a big dataset. For this reason, as the cost function is usually
a sum over the training set, an incremental approach for calculating the gradient called
Stochastic Gradient Descent (SGD) was developed. It calculates the gradient based only
on a small subset of the training examples to speed up this calculation. This usually
involves taking more iterations to approximate the minimum, but faster.

In SGD, weights are updated using the same learning rate for all weights and all
iterations, making it difficult or slow to converge to the minimum if the learning rate is
too big or to small. Many variants have been proposed and developed in order to update
this SGD algorithm to try to reach faster the local minimum.

Some of this variants are AdaGrad [Duchi et al., 2011], Adam [Kingma and Ba, 2014]
and RMSProp. AdaGrad maintains a per-parameter learning rate instead of having the

44 CHAPTER 5. DEEP LEARNING APPROACH

same learning rate for all the parameters, updating it based on the sum of previous gradient
values. So does RMSProp, that also has a learning rate for each parameter but these
learning rates are updated based on the average of recent gradient calculations, that is,
based on how quickly the gradient is changing. Adam is an improvement of RMSProp
that updates the learning rates based on the average but also on the gradients variance,
this is the one we use for training our model. Figure 5.9, obtained from Google Images,
shows how quickly these algorithms reduce the cost function.

As mentioned before, our models have been trained using the Adam optimizer.

Chapter 6

Evaluation and results

Once we have our four models defined and trained, we can evaluate them on the test set
and we can use them to generate descriptions of new unseen images. In this chapter,
we explain how we have tested the models, we define the metrics that we have used and
we show the results obtained, including some examples of images and their generated
descriptions.

In Section 5.4 we explained that, as our objective is to determine how well our models
perform on describing images that contain people, the division of the dataset was made
so that the test set has only this kind of images. Therefore, the results of the evaluation
process and the examples that we show in this chapter refer all to images containing
people.

6.1 TensorBoard visualization

As described in Section 5.1, the four models that we have developed follow the same
architecture but differ on the techniques and datasets used. The characteristics of these
four models are the following:

• Model 1: the most general one. Uses a pre-trained VGG-16 CNN and it is trained
on MS COCO dataset.

• Model 2: uses a fine-tuned version of VGG-16 and it is trained on MS COCO dataset.

• Model 3: uses a pre-trained VGG-16 CNN and it is trained on a subset of MS COCO
dataset of images containing people.

• Model 4: uses a fine-tuned version of VGG-16 and it is trained on a subset of MS
COCO dataset of images containing people.

45

46 CHAPTER 6. EVALUATION AND RESULTS

(a) Accuracy (b) Loss

Figure 6.1: Model 1 TensorBoard charts.

(a) Accuracy (b) Loss

Figure 6.2: Model 2 TensorBoard charts.

In Section 4.3 we explained that TensorBoard is a suite of visualization tools developed
by Tensorflow that plots metrics’ evolution over the training process. Figures 6.1, 6.2,
6.3 and 6.4 show accuracy and loss charts of Model 1, Model 2, Model 3 and Model 4
respectively. These charts are obtained from TensorBoard log files generated during the
training process.

Analyzing these charts we see that Model 1 and Model 3 both have an increase in
their accuracies and a decrease in their losses, which is a good thing that shows that the
models are learning correctly. However, the evolution of Model 2 and Model 4 accuracies
is maintained almost constant and their losses decrease less and slower.

We can then affirm that accordingly to these charts, Model 1 and Model 3 are better
models than Model 2 and Model 4 and that they may perform better generating images
descriptions. In the next section we will remark if the evaluation process on the test set
confirms this assumption.

6.2. QUANTITATIVE ANALYSIS 47

(a) Accuracy (b) Loss

Figure 6.3: Model 3 TensorBoard charts.

(a) Accuracy (b) Loss

Figure 6.4: Model 4 TensorBoard charts.

6.2 Quantitative analysis

The image and text preprocessing tasks, as we illustrated in Section 5.3, were done on
the complete dataset and the train/val/test division was made afterwards. Therefore, we
already have the precomputed test images features and their preprocessed descriptions, so
for testing the models that we have developed, first of all, we need to load those images
features and preprocessed descriptions with pickle library, as well as the hdf5 models’
files using Keras load model function.

Once we have all loaded, for each model we need to generate the descriptions it predicts
for every image in the test set and we need to save them all together in a list. We repeat
this process for the four models in order to obtain the different descriptions that each one
predicts.

As Figure 6.5 shows, with all the generated descriptions and their corresponding true
descriptions (the ones provided with the dataset) for every image in the test set, we
compare the results using the most well-known metrics for Natural Language Generation.
metrics.score() function is used to obtain the output of each metric. These metrics and

48 CHAPTER 6. EVALUATION AND RESULTS

def evaluate_model(model, model_name, features, tokenizer, max_length, descs):

true_descs = {}
predicted_descs = {}

generate all descriptions

for key, desc_list in descs.items():

pred_desc = generate_description(model, features[int(key)],

tokenizer, max_length)

true_descs[key] = [" ".join(desc) for desc in desc_list]

predicted_descs[key] = [pred_desc]

compute metrics values

scores = metrics.score(true_descs, predicted_descs)

Figure 6.5: Evaluating the performance of a given model.

the results obtained are later explained in Section 6.2.1.

To generate a description for a given image, we use a greedy approach that builds
the sentence by selecting at each step the word predicted with the highest probability.
Figure 6.6 shows the function that we have defined for generating descriptions using this
approach. The arguments of this function are: model, it is the model we are going to use
to generate the description, features, the image features extracted with VGG16 or its
fine-tuned version, tokenizer, it is the tokenizer defined while training the model, and
max length, the maximum length permitted for a description.

To start the image description generation process we must input the START token by
converting it to an integer using the tokenizer texts to sequences() method and padding
it to the maximum length that each model has defined for a sentence. Once we have the
first input of the model, we iteratively predict the next word in the sentence using Keras
model.predict() function and selecting the one with highest probability, until we predict
the END token or until we reach the maximum length.

6.2.1 Metrics

There are several metrics that have been defined to evaluate how well NLP models perform.
Our goal is to use these metrics to compare our four models with each other and also to
compare them with state-of-the-art results. For this reason, we have selected the most
well-known and widely used ones for machine translation and image description generation
so that we can make those comparisons. These metrics are: BLEU metrics (BLEU-1,
BLEU-2, BLEU-3 and BLEU-4), ROUGE-L, METEOR and CIDEr.

BLEU (Bilingual Evaluation Understudy) metrics [Papineni et al., 2002] were devel-
oped to evaluate machine translation models and they are now the most popular metrics
for many NLG problems (text summarization, image description generation, speech recog-

6.2. QUANTITATIVE ANALYSIS 49

def generate_description(model, features, tokenizer, max_length):

input_desc = "START"

for i in range(max_length):

tokenize and pad input

tok_desc = tokenizer.texts_to_sequences([input_desc])[0]

pad_desc = pad_sequences([tok_desc], maxlen = max_length)

next word prediction

pred = model.predict([features,pad_desc], verbose=0)

max_prob = np.argmax(pred)

word = get_word(max_prob, tokenizer)

finish if no possible mapping

if word is None:

break

finish if END token

if word == "end":

input_desc = input_desc + " END"

break

append word to input_desc

input_desc = input_desc + " " + word

return input_desc

Figure 6.6: Generation of the predicted description for a given image.

nition...). BLEU-1, BLEU-2, BLEU-3 and BLEU-4 metrics compute individually for m
from 1 to n, with n ∈ {1, 2, 3, 4} respectively, the number of m-grams in the predicted text
that are present in any of the reference texts and then its weighted geometric mean.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [Lin, 2004] is a set of
metrics commonly used for text summarization evaluation, but it is also used to evaluate
other NLG systems. ROUGE-L is based on the Longest Common Subsequence, that is,
the longest subsentence that is present in the predicted and the reference sentence.

METEOR [Denkowski and Lavie, 2014] (Metric for Evaluation for Translation with
Explicit Ordering) metric for NLG problems is more recent and it is computed by trying to
generate a 1:1 correspondence between the words in the predicted and reference sentences.

CIDEr (Consensus-based Image Description Evaluation) [Vedantam et al., 2014] is also
a rather new metric and it is specific for evaluating image description generators. CIDEr
is calculated based on the TF-IDF1 weighting of each n-gram.

1Term Frequency Inverse Document Frequency.

50 CHAPTER 6. EVALUATION AND RESULTS

Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE-L METEOR CIDEr

Model 1 0.574 0.355 0.257 0.104 0.392 0.158 0.341
Model 2 0.014 8.7e-12 1.1e-10 4.1e-10 0.039 0.006 0.0
Model 3 0.602 0.389 0.272 0.124 0.407 0.172 0.364
Model 4 0.031 9.2e-12 7.1e-15 2e-16 0.105 0.008 2.9e-13
State-of-the-art 0.617 0.419 0.285 0.191 0.422 0.175 0.378

Table 6.1: Metrics results.

To compute the score of each metric for the four models developed, we have used
metrics.score() function from the metrics library obtained from Github2. This library
uses COCO evaluation server code3 for the score calculation of each metric.

The results obtained for each model from the testing process are shown in Table 6.1.
This table also shows the state-of-the-art scores [Tanti et al., 2017a] for the computed
metrics. However, whereas our results are obtained from evaluating only on images con-
taining people, state-of-the-art results come from any kind of images. With these results
we can confirm what we predicted in Section 6.1: Model 1 and Model 3 perform better
than Model 2 and Model 4; what is more, Model 2 and Model 4 have very bad results.

As we defined in Section 5.1, Model 2 and Model 4 were trained on a fine-tuned version
of the CNN used. Therefore, the fact that they have such bad results leads us to conclude
that it was not a good idea to fine-tune it. This could be produced because the CNN may
have overfitted when fine-tuned, or because it was fine-tuned on CIFAR-100, the models
were trained on COCO dataset and these two datasets might have some differences.

Nevertheless, it can be seen in Table 6.1 that, in general, Model 3 performs slightly
better than Model 1, being Model 3 the best one. Therefore, we can state that it was a good
practice to train our models on a subset of COCO dataset with only images containing
people, restricting ourselves and focusing our efforts on those kind of images. That is,
we were right, at the beginning of the project, believing that people are described in a
different manner.

Finally, comparing in Table 6.1 the scores obtained for Model 1 and Model 3 to state-
of-the-art results, we can see that they perform similarly even though we made some
restrictions during our training, so we are satisfied with the models we have developed.

6.3 Qualitative analysis

In this section we show some examples of images containing people and the descriptions
generated by our models. To generate descriptions of unseen images, first of all, we must
use the Convolutional Neural Network, either VGG-16 of its fine-tuned version, to extract

2https://github.com/kelvinxu/arctic-captions
3https://github.com/tylin/coco-caption

https://github.com/kelvinxu/arctic-captions
https://github.com/tylin/coco-caption

6.3. QUALITATIVE ANALYSIS 51

the image features. Then we have to load the different models and their corresponding
tokenizers and use the function described in Figure 6.6 to obtain the descriptions.

We have generated Model 2 and Model 4 descriptions for some examples and for every
image, the output is always the same: Model 2 always outputs ’start start start start...’
and Model 4 ’start end’. This explains the results obtained in Table 6.1 and, as we
imagined in the previous section, the reason might be the differences between the dataset
used for finetuning the CNN (CIFAR-100) and the one used for training the network
(COCO dataset). Therefore, we show in this section the descriptions that Model 1 and
Model 3 generate.

Figures 6.7, 6.8, 6.9 and 6.10 show examples of good descriptions generated by Model
1 and Model 3. Figures 6.11, 6.12 and 6.13 show examples where these two models have
different perspectives of the image: Model 3 has been trained to focus more on people
while Model 1 is more general. Bad image descriptions generated by these models are
shown in Figure 6.14 and Figure 6.15.

Analyzing these examples we can conclude that Model 1 and Model 3 can produce good
descriptions of the input images and that, even though they can sometimes fail describing
what there is in an image, they generate well-formed sentences. We can also confirm with
these examples the results obtained in Table 6.1.

Model 1: tennis player is holding racket
Model 3: tennis player is swinging tennis racket

Figure 6.7: Good descriptions.

52 CHAPTER 6. EVALUATION AND RESULTS

Model 1: person in the snow holding snowboard down snow
Model 3: man on skis in the snow

Figure 6.8: Good descriptions.

Model 1: woman on beach with surfboard
Model 3: two woman riding surfboard on the beach

Figure 6.9: Good descriptions.

6.3. QUALITATIVE ANALYSIS 53

Model 1: man in baseball uniform is holding bat
Model 3: baseball player is swinging bat at baseball game

Figure 6.10: Good descriptions.

Model 1: bird flying on beach
Model 3: man is riding surfboard on the beach

Figure 6.11: Different perspectives.

54 CHAPTER 6. EVALUATION AND RESULTS

Model 1: pizza with cheese and cheese on it
Model 3: person is sitting at table with pizza

Figure 6.12: Different perspectives.

Model 1: plate of food with meat and vegetables on it
Model 3: person is sitting on table with some food

Figure 6.13: Different perspectives.

6.3. QUALITATIVE ANALYSIS 55

Model 1: person in the snow on skis on the snow
Model 3: man riding snowboard down snow covered slope

Figure 6.14: Bad descriptions.

Model 1: man holding hot dog in front of pizza
Model 3: man is sitting at table with pizza

Figure 6.15: Bad descriptions.

56 CHAPTER 6. EVALUATION AND RESULTS

Chapter 7

Conclusions and future work

7.1 Conclusions

We conclude this project having accomplished the main objectives established at the
beginning. We have studied and learned different Deep Learning techniques and tools,
that are nowadays very important in the Artificial Intelligence field. We have also reviewed
all the bibliography regarding the image description generation problem.

We have carried out this project in a server with a GPU provided by GAIA research
group, as training Deep Learning models needs a lot of computing capacity. We have
used Keras on top of Tensorflow as the Deep Learning framework and TensorBoard for
generating plots of the training process. We have also analyzed the different available
and well-known image datasets in order to select the ones that were more suitable for our
project.

Finally, we have achieved to develop four different Deep Learning models to automat-
ically generate descriptions of images containing people. Our four models were all built
using state-of-the-art Deep Learning techniques for Computer Vision and for Natural Lan-
guage Generation: Convolutional Neural Networks for extracting the image features and
Recurrent Neural Networks for generating the sentence, as well as Feedforward Neural
Networks for building the models’ outputs. These models were successfully trained and
tested on a big and popular image dataset.

To evaluate our models we have analyzed the TensorBoard plots generated from the
training data, we have performed a quantitative analysis using the most popular metrics
and a qualitative analysis generating descriptions for unseen images in order to visualize
and confirm the results obtained from the quantitative analysis.

These evaluation analyses lead all to the same conclusions: we obtained desirable
results from the evaluation process, similar to state-of-the-art results, for two of the four
models developed (Model 1 and Model 3). However, fine-tuning was not a good practice,
as Model 2 and Model 4 (the ones that fine-tuned the CNN) have poor evaluation results,

57

58 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

maybe because of the differences between the datasets used for fine-tuning and training.
Nevertheless, Model 3 have slightly better results than Model 1 so we can confirm that
our thoughts were in the right path at the beginning of the project: images containing
people are described differently and so it is a good practice to restrict the training process
to this kind of images.

7.2 Future work

Considering concluded the main objectives of this project, there are many directions in
which future work could go in order to broaden it. First of all, data quantity and quality
are essential for a good training, and hence the model could be more accurate and have
better evaluation results with more, and more representative, examples in the dataset and
labeled more precisely.

Another option is to improve our hardware capacity by using more GPUs, a better
one or by another way of obtaining more computational power in order to being able to
train the models more rapidly.

In addition to all of these changes to accomplish better results with our models, another
direction we could take in the future is to broaden the scope of the model’s objective. We
could include more complete image descriptions depicting more complex characteristics of
the person in the image, such as the person’s feelings (e.g. if it is smiling or sad), or other
characteristics that are not explicitly shown in the picture but that can be derived from it,
not limiting ourselves to describing what it is strictly in the picture. Moreover, the model
could be extended to the description of, not only people, but other objects appearing in
the picture, as well as the spatial relationship between those objects and the people (e.g.
the man behind the window, the woman next to the blue chair).

There are also some emerging tasks that combine both computer vision and natural
language fields, trying to go beyond what it is strictly depicted in the image, that could be
interesting to study in a future work of this project; for example, the task of VQA (Visual
Question Answering) [Wu et al., 2017a], that tries to find an answer to a given question
about a given image, or visual storytelling [Huang et al., 2016, Mostafazadeh et al., 2017],
that generates a narrative description from the input image by making subjective assump-
tions of what it is happening.

Another interesting possibility is to implement a machine learning model, using state-
of-the-art machine learning algorithms such as xgboost, in order to analyse the differences
between both deep learning and machine learning models (computing time, dataset needs,
accuracy, etc).

Finally, although Convolutional Neural Networks are the state-of-the-art, they have
some limitations that decrease the level of accuracy of the model. In the last months,
a new kind of neural networks trying to solve these limitations, called Capsule Neural
Networks, have arisen. It would be a good future direction of this project to implement

7.2. FUTURE WORK 59

the solution using this kind of network and to compare it to the convolutional one to see
if it yields better results.

7.2.1 CNN limitations

Convolutional Neural Networks are until now the state-of-the-art approach in the image
analysis field, but they have some limitations when it comes to spatial relationships.

Convolutional Neural Networks became a major advantage compared to traditional
feedforward networks in the image field, as they allowed a 2-D matrix as the input of
the model in contrast with the need of flattening the pixel matrix into a vector, which,
along with the convolution and pooling operations, permitted the model to be invariance
to translations.

As we have already discussed during this project, the job of the convolutional layers
in a CNN is to detect important features in the image, with layers closer to the input
detecting simple features and deeper layers close to the output combining them to detect
more complex features. On the other hand, pooling layers, being max pooling the most
widely used, help reducing the image dimensionality, and therefore computational time,
and summarizing the important information present in the image, as well as creating
spatial invariance.

However, this invariance created by the max pooling layers loses the existing spatial
relationships between all these features. It does not take into account how the different
features are related to each other, since max pooling loses their precise locations. This
makes the model output a false positive when the image has the components of an object
but not in the correct order. For example, considering it is a face when it has two eyes, a
nose and a mouth, but the mouth is where an eye should be and vice versa.

Furthermore, CNNs do not take into account the spatial characteristics of each feature.
That is, they do not recognise an object they have already seen, shown now in a different
orientation. Continuing with the example above, an image with a face turned upside down
is not detected as a face by the CNN. To combat this, convolutional models are trained
by giving images of different possible angles explicitly to the network.

Nevertheless, the solution is not to remove the max pooling layers from the model,
as we really need to introduce some kind of invariance; otherwise, the model will only
recognise images very similar to the ones in the training set. What a better model needs is
to adjust this invariance with equivariance, that is, understanding rotation and proportion
changes and adapting accordingly.

7.2.2 Capsule neural networks

Geoffrey E. Hinton, known as the father of Deep Learning, has been discussing about
convolutional networks’ limitations and the need to suggest new models to cover them, for

60 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Figure 7.1: Capsule neural network structure (CapsNet).

a long time now. In 2011 he published a paper [Hinton et al., 2011] regarding a proposal of
including more complex spatial characteristics to neural networks, but it has not been until
recently that he has finally published two papers [Hinton et al., 2018, Sabour et al., 2017]
explaining his new sophisticated neural network model, Capsule Networks.

In the paper they have published [Sabour et al., 2017], they propose CapsNet, a capsule
neural network model for the MNIST1 dataset, reporting better results than CNNs and
without the need of data augmentation. This model is represented in Figure 7.1.

Hinton believes that it is necessary to preserve pose’s (translation and rotation) hierar-
chy between features. This way it is easier for a model to recognise another perspective of
something it has already seen. These neural networks try to overcome those Convolutional
Networks’ limitations by explicitly taking into account those spatial relationships between
features, whereas CNNs do not have this 3-D space understanding.

This is achieved by replacing the scalar outputs of traditional neurons with vector
outputs encoding the features’ locations and changing max-pooling with a dynamic routing
algorithm. Thus, an object presence is derived from not only the presence of its constituent
parts, but also from them being at the right locations.

According to Hinton, A capsule is a group of neurons whose outputs represent different
properties of the same entity. They are nested layers within a layer, each one focusing
on detecting a particular feature in the image and outputting a vector representing the
feature’s existence and its pose properties.

The length of the vector represents the probability of the existence of the feature and
the spatial properties are encoded in the vector’s direction. This way, when the detected
feature moves or changes its spatial state, the length of the vector does not change (the
probability remains the same) but it changes its orientation.

In these neural networks, capsules in a lower layer decide dynamically how to send
its output vector to the next layer’s capsules. Each capsule in the lower layer computes,
for each possible parent, a prediction vector of the pose of a higher-level capsule feature

1Dataset of handwritten digits.

7.2. FUTURE WORK 61

(what the higher capsule would see), by multiplying its output by a weight matrix. When
several capsules in one layer agree on what they may have detected, they activate the
corresponding capsule at the next layer.

Hinton calls this method the routing-by-agreement algorithm, and it substitutes the
max-pooling algorithm.

62 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Chapter 8

Conclusiones y trabajo a futuro

8.1 Conclusiones

El trabajo concluye habiendo cumplido los principales objetivos establecidos al comienzo
de este. Hemos estudiado y aprendido diferentes técnicas y herramientas de aprendizaje
profundo, que son hoy tan importantes en el campo de la Inteligencia Artificial. También
hemos revisado toda la bibliograf́ıa relativa a la generación de descripciones de imágenes.

Hemos llevado a cabo este proyecto en un servidor con una GPU proporcionado por el
grupo de investigación GAIA, ya que entrenar modelos de aprendizaje profundo necesita
mucha capacidad computacional. Hemos usado Keras sobre Tensorflow como entorno de
trabajo de aprendizaje profundo y TensorBoard para generar gráficas del proceso de en-
trenamiento. También hemos analizado los distintos datasets disponibles para seleccionar
los que eran más adecuados para este proyecto.

Por último, hemos conseguido desarrollar diferentes modelos de aprendizaje profundo
para generar automáticamente descripciones de imágenes que contienen personas. Nue-
stros cuatro modelos se han construido todos usando técnicas del estado del arte de apren-
dizaje profundo para visión por computador y para generación del lenguaje natural: redes
neuronales convolucionales para extraer las caracteŕısticas de la imagen y redes neuronales
recurrentes para generar la frase, aśı como redes neuronales feedforward para construir el
output de los modelos. Estos modelos se han entrenado y evaluado satisfactoriamente en
un dataset de imágenes grande y conocido.

Para evaluar nuestros modelos hemos analizado las gráficas de TensorBoard gener-
adas de los datos del entrenamiento, hemos realizado un análisis cuantitativo usando las
métricas más conocidas y hemos realizado un análisis cualitativo generando descripciones
de nuevas imágenes para visualizar y confirmar los resultados obtenidos del análisis cuan-
titativo.

Estos análisis de evaluación llevan todos a las mismas conclusiones: hemos obtenido del
proceso de evaluación resultados deseables, similares a los resultados del estado del arte,

63

64 CHAPTER 8. CONCLUSIONES Y TRABAJO A FUTURO

para dos de los cuatro modelos desarrollados (Modelo 1 y Modelo 3). Sin embargo, no ha
sido una buena práctica hacer fine-tuning, ya que el Modelo 2 y el Modelo 4 (los que haćıan
fine-tuning) tienen malos resultados, posiblemente por las diferencias entre los datasets
usados para el fine-tuning y el entrenamiento. Aun aśı, el Modelo 3 tiene resultados
ligeramente mejores que el Modelo 1 por lo que podemos confirmar que estábamos en la
dirección correcta al principio del proyecto pensando que las imágenes con personas se
describen de manera diferente y que es una buena práctica restringir el entrenamiento a
esta clase de imágenes.

8.2 Trabajo a futuro

Considerando cumplidos los objetivos principales de este proyecto, hay varias direcciones
en las que se puede enfocar el trabajo a futuro para ampliarlo. Primero de todo, la cantidad
y calidad del dato es esencial para un buen entrenamiento, y por tanto el modelo puede
ser más exacto y tener mejores resultados de evaluación si tenemos más ejemplos y más
representativos en el dataset y etiquetados de manera más precisa.

Otra opción es mejorar nuestra capacidad hardware con más GPUs, una GPU mejor
o de alguna otra forma en la que podamos obtener más capacidad computacional, para
poder entrenar el modelo más rápidamente.

Además de todos estos cambios para mejorar los resultados de nuestros modelos, otra
dirección que podemos tomar en el futuro es ampliar el alcance de los objetivos del modelo.
Podemos incluir descripciones más completas que reflejen caracteŕısticas más complejas
de la persona en la imagen, como los sentimientos de la persona (si está sonriendo o
está triste), o alguna otra caracteŕıstica que no esté explićıta en la imagen pero que se
pueda derivar de ella, sin limitarnos a describir solamente lo que está estrictamente en la
imagen. Además, el modelo puede extenderse a la descripción de no solo personas, sino
otros objetos que aparezcan en la imagen y la relación espacial entre esos objetos y las
personas (por ejemplo: el hombre detrás de la ventana, la señora al lado de la silla azul).

También hay otros problemas emergentes que combinan visión por computador y proce-
samiento del lenguaje natural, intentando ir más allá de lo que está en la imagen, que
podŕıa ser interesante estudiar como trabajo a futuro de este proyecto; por ejemplo, la
tarea de VQA [Wu et al., 2017a], que trata de buscar respuestas a preguntas sobre una
imagen, o cuentacuentos visual [Huang et al., 2016, Mostafazadeh et al., 2017], que gen-
era una descripción narrativa de la imagen de entrada, haciendo hipótesis subjetivas de lo
que está pasando.

Otra posibilidad interesante es implementar un modelo de machine learning, usando
algoritmos del estado del arte (como xgboost), para analizar las diferencias entre los mod-
elos de aprendizaje profundo y machine learning (tiempo computacional, necesidades del
dataset, precisión, etc).

Por último, aunque las redes neuronales convolucionales son actualmente el estado del

8.2. TRABAJO A FUTURO 65

arte, tienen algunas limitaciones que reducen el nivel de precisión del modelo. En los
últimos meses, ha aparecido un nuevo tipo de redes neuronales que tratan de resolver
estas limitaciones, se llaman redes neuronales cápsula. Podŕıa ser una buena dirección a
futuro implementar el problema usando estas redes neuronales y comparar sus resultados
con los obtenidos con las convolucionales para ver si obtiene mejores resultados.

8.2.1 Limitaciones de las CNN

Las redes neuronales convolucionales son hasta ahora el estado del arte en el campo del
análisis de imágenes, pero tienen algunas limitaciones cuando se trata de relaciones espa-
ciales.

Estas redes se convirtieron en un gran avance comparadas a las redes neuronales tradi-
cionales, ya que permit́ıan que la entrada del modelo fuese una matriz de dos dimensiones
a diferencia de la necesidad de aplanar en un vector la matriz de ṕıxeles, lo que, junto
con las operaciones de convolución y pooling, permitió que los modelos fuesen invariantes
respecto a traslaciones.

Como ya hemos comentado a lo largo de este proyecto, el trabajo de las capas convolu-
cionales en una CNN es detectar las caracteŕısticas importantes de la imagen, donde las
capas más cercanas a la entrada detectan caracteŕısticas simples y las capas más profun-
das combinan estas caracteŕısticas para detectar otras más complejas. Por otro lado, las
capas de pooling ayudan a reducir la dimensionalidad de la imagen, y, por tanto, a reducir
en tiempo computacional, y a resumir la información importante de la imagen, aśı como
crear invarianza espacial.

Sin embargo, esta invarianza pierde la relación espacial existente entre todas estas
caracteŕısticas detectadas. No tiene en cuenta como las diferentes caracteŕısticas están
relacionadas entre śı ya que se pierde su posición exacta. Esto hace que el modelo pueda
dar un falso positivo cuando la imagen tiene todos los componentes de un objeto pero no
en el correcto orden. Por ejemplo, puede considerar que es una cara cuando tiene dos ojos,
una nariz y una boca pero la boca está donde debe estar un ojo y viceversa.

Además, las redes neuronales convolucionales no tienen en cuenta las caracteŕısticas
espaciales de cada caracteŕıstica. Esto es, no reconocen un objeto que ya han visto si está
en otra orientación. Siguiendo con el ejemplo anterior, una imagen con la cara boca abajo
no se reconoceŕıa como una cara. Para solucionar esto, los modelos convolucionales se
entrenan enseñando imágenes expĺıcitamente a la red desde todos los ángulos posibles.

Sin embargo, la solución no es quitar las capas de pooling de los modelos, porque es
necesaria la invarianza que introducen; si no, el modelo solo reconoceŕıa imágenes muy
similares a las del conjunto de entrenamiento. Lo que un buen modelo necesita es ajustar
esta invarianza con equivarianza, esto es, entender los cambios de rotación y proporción y
adaptarse a ellos.

66 CHAPTER 8. CONCLUSIONES Y TRABAJO A FUTURO

Figure 8.1: Estructura de una red neuronal cápsula (CapsNet).

8.2.2 Redes neuronales cápsula

Geoffrey E. Hinton, conocido como el padre del aprendizaje profundo, ha estado comen-
tando desde hace un tiempo las limitaciones de las redes neuronales convolucionales y
la necesidad de sugerir nuevos modelos que las solucionen. En 2011 publicó un art́ıculo
[Hinton et al., 2011] con una propuesta de incluir caracteŕısticas espaciales más complejas
a las redes neuronales, pero no ha sido hasta hace poco que finalmente ha publicado dos
art́ıculos [Hinton et al., 2018, Sabour et al., 2017] explicando su nuevo modelo de redes
neuronales, las redes cápsula.

En el art́ıculo que han publicado [Sabour et al., 2017], proponen CapsNet, una red
neuronal cápsula para el dataset MNIST1, que obtiene mejores resultados que las redes
convolucionales y sin la necesidad de hacer data augmentation. La Figura 8.1 representa
este modelo.

De acuerdo con Hinton, una cápsula es un conjunto de neuronas cuyas salidas repre-
sentan diferentes propiedades de una misma entidad. Son capas anidadas dentro de una
capa, cada una de ellas centrada en detectar una caracteŕıstica particular en la imagen y
devolviendo como salida un vector que representa la existencia de esa caracteŕıstica y las
propiedades de su pose.

La longitud del vector representa la probabilidad de la existencia de la caracteŕıstica
y las propiedades espaciales están codificadas en la dirección del vector. De esta forma,
cuando la caracteŕıstica detectada se mueve o cambia su estado espacial, la longitud del
vector no cambia (la probabilidad se mantiene igual) pero cambia su orientación.

En estas redes neuronales, las cápsulas de capas inferiores deciden dinámicamente
cómo enviar su vector de salida a las cápsulas de la siguiente capa. Cada cápsula en
la capa inferior calcula, para cada posible padre, un vector de predicción de la pose de
la caracteŕıstica de una cápsula de la capa superior (lo que la cápsula superior veŕıa),
multiplicando su vector de salida por una matriz de pesos. Cuando varias cápsulas de una
capa coinciden en lo que pueden haber detectado, activan la cápsula correspondiente de

1Un dataset de d́ıgitos escritos a mano.

8.2. TRABAJO A FUTURO 67

la siguiente capa.

Hinton llama a este método el algoritmo de enrutación por acuerdo, y sustituye al
algoritmo de pooling de las redes convolucionales.

68 CHAPTER 8. CONCLUSIONES Y TRABAJO A FUTURO

Bibliography

[DBL, 2015] (2015). IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society.

[Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D. G., Steiner, B., Tucker, P. A., Vasudevan, V., Warden, P., Wicke, M.,
Yu, Y., and Zhang, X. (2016). Tensorflow: A system for large-scale machine learning.
CoRR, abs/1605.08695.

[Altman, 1992] Altman, N. S. (1992). An introduction to kernel and nearest-neighbor
nonparametric regression. The American Statistician, 46(3):175–185.

[Baik and Bala, 2004] Baik, S. and Bala, J. W. (2004). A decision tree algorithm for
distributed data mining: Towards network intrusion detection. In Laganà, A., Gavrilova,
M. L., Kumar, V., Mun, Y., Tan, C. J. K., and Gervasi, O., editors, Computational
Science and Its Applications - ICCSA 2004, International Conference, Assisi, Italy,
May 14-17, 2004, Proceedings, Part IV, volume 3046 of Lecture Notes in Computer
Science, pages 206–212. Springer.

[Bay et al., 2006] Bay, H., Tuytelaars, T., and Gool, L. J. V. (2006). SURF: speeded up
robust features. In Leonardis, A., Bischof, H., and Pinz, A., editors, Computer Vision -
ECCV 2006, 9th European Conference on Computer Vision, Graz, Austria, May 7-13,
2006, Proceedings, Part I, volume 3951 of Lecture Notes in Computer Science, pages
404–417. Springer.

[Bengio et al., 1994] Bengio, Y., Simard, P. Y., and Frasconi, P. (1994). Learning long-
term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks,
5(2):157–166.

[Bernardi et al., 2016] Bernardi, R., Çakici, R., Elliott, D., Erdem, A., Erdem, E., Ikizler-
Cinbis, N., Keller, F., Muscat, A., and Plank, B. (2016). Automatic description gen-
eration from images: A survey of models, datasets, and evaluation measures. J. Artif.
Intell. Res., 55:409–442.

69

70 BIBLIOGRAPHY

[Bridge et al., 2014] Bridge, J. P., Holden, S. B., and Paulson, L. C. (2014). Machine
learning for first-order theorem proving - learning to select a good heuristic. J. Autom.
Reasoning, 53(2):141–172.

[Canny, 1986] Canny, J. F. (1986). A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell., 8(6):679–698.

[Chen et al., 2015] Chen, X., Fang, H., Lin, T., Vedantam, R., Gupta, S., Dollár, P., and
Zitnick, C. L. (2015). Microsoft COCO captions: Data collection and evaluation server.
CoRR, abs/1504.00325.

[Chen and Zitnick, 2015] Chen, X. and Zitnick, C. L. (2015). Mind’s eye: A recurrent
visual representation for image caption generation. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015,
pages 2422–2431.

[Cho et al., 2014] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares,
F., Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In [Moschitti et al., 2014], pages
1724–1734.

[Chung et al., 2014] Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). Em-
pirical evaluation of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555.

[Collobert et al., 2011] Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7:
A matlab-like environment for machine learning.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3):273–297.

[Dean et al., 2012] Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V.,
Mao, M. Z., Ranzato, M., Senior, A., Tucker, P., Yang, K., and Ng, A. Y. (2012). Large
scale distributed deep networks. In NIPS.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F. (2009).
Imagenet: A large-scale hierarchical image database. In 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June
2009, Miami, Florida, USA, pages 248–255. IEEE Computer Society.

[Denkowski and Lavie, 2014] Denkowski, M. J. and Lavie, A. (2014). Meteor universal:
Language specific translation evaluation for any target language. In Proceedings of
the Ninth Workshop on Statistical Machine Translation, WMT@ACL 2014, June 26-
27, 2014, Baltimore, Maryland, USA, pages 376–380. The Association for Computer
Linguistics.

[Donahue et al., 2015] Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach, M.,
Venugopalan, S., Darrell, T., and Saenko, K. (2015). Long-term recurrent convolutional
networks for visual recognition and description. In [DBL, 2015], pages 2625–2634.

BIBLIOGRAPHY 71

[Duchi et al., 2011] Duchi, J. C., Hazan, E., and Singer, Y. (2011). Adaptive subgradient
methods for online learning and stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159.

[Everingham et al., 2010] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and
Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International
Journal of Computer Vision, 88(2):303–338.

[Goldberg et al., 1994] Goldberg, E., Driedger, N., and Kittredge, R. I. (1994). Using
natural-language processing to produce weather forecasts. IEEE Expert, 9(2):45–53.

[Graves et al., 2013] Graves, A., Mohamed, A., and Hinton, G. E. (2013). Speech recogni-
tion with deep recurrent neural networks. In IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31,
2013, pages 6645–6649. IEEE.

[Harris and Stephens, 1988] Harris, C. G. and Stephens, M. (1988). A combined corner
and edge detector. In Taylor, C. J., editor, Proceedings of the Alvey Vision Conference,
AVC 1988, Manchester, UK, September, 1988, pages 1–6. Alvey Vision Club.

[Hendricks et al., 2016] Hendricks, L. A., Venugopalan, S., Rohrbach, M., Mooney, R. J.,
Saenko, K., and Darrell, T. (2016). Deep compositional captioning: Describing novel
object categories without paired training data. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 1–10.

[Hinton et al., 2011] Hinton, G. E., Krizhevsky, A., and Wang, S. D. (2011). Transform-
ing auto-encoders. In Honkela, T., Duch, W., Girolami, M. A., and Kaski, S., editors,
Artificial Neural Networks and Machine Learning - ICANN 2011 - 21st International
Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceed-
ings, Part I, volume 6791 of Lecture Notes in Computer Science, pages 44–51. Springer.

[Hinton et al., 2018] Hinton, G. E., Sabour, S., and Frosst, N. (2018). Matrix capsules
with EM routing. In International Conference on Learning Representations.

[Ho, 1995] Ho, T. K. (1995). Random decision forests. In Third International Conference
on Document Analysis and Recognition, ICDAR 1995, August 14 - 15, 1995, Montreal,
Canada. Volume I, pages 278–282. IEEE Computer Society.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural Computation, 9(8):1735–1780.

[Hodosh et al., 2013] Hodosh, M., Young, P., and Hockenmaier, J. (2013). Framing image
description as a ranking task: Data, models and evaluation metrics. J. Artif. Intell.
Res., 47:853–899.

[Hotelling, 1933] Hotelling, H. (1933). Analysis of a complex of statistical variables with
principal components. Journal of Educational Psychology, 24:417–441.

72 BIBLIOGRAPHY

[Huang et al., 2016] Huang, T. K., Ferraro, F., Mostafazadeh, N., Misra, I., Agrawal, A.,
Devlin, J., Girshick, R. B., He, X., Kohli, P., Batra, D., Zitnick, C. L., Parikh, D.,
Vanderwende, L., Galley, M., and Mitchell, M. (2016). Visual storytelling. In Knight,
K., Nenkova, A., and Rambow, O., editors, NAACL HLT 2016, The 2016 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, San Diego California, USA, June 12-17, 2016, pages 1233–1239.
The Association for Computational Linguistics.

[Iordanskaja et al., 1992] Iordanskaja, L., Kim, M., Kittredge, R. I., Lavoie, B., and
Polguère, A. (1992). Generation of extended bilingual statistical reports. In 14th In-
ternational Conference on Computational Linguistics, COLING 1992, Nantes, France,
August 23-28, 1992, pages 1019–1023.

[Jia et al., 2014] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick,
R., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093.

[Karpathy and Li, 2015] Karpathy, A. and Li, F. (2015). Deep visual-semantic alignments
for generating image descriptions. In [DBL, 2015], pages 3128–3137.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic
optimization. CoRR, abs/1412.6980.

[Kiros et al., 2014a] Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014a). Multimodal
neural language models. In Proceedings of the 31th International Conference on Machine
Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 595–603.

[Kiros et al., 2014b] Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014b). Unify-
ing visual-semantic embeddings with multimodal neural language models. CoRR,
abs/1411.2539.

[Krizhevsky, 2012] Krizhevsky, A. (2012). Learning multiple layers of features from tiny
images.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Ima-
genet classification with deep convolutional neural networks. In Bartlett, P. L., Pereira,
F. C. N., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems 25: 26th Annual Conference on Neural Infor-
mation Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012,
Lake Tahoe, Nevada, United States., pages 1106–1114.

[Kulkarni et al., 2013] Kulkarni, G., Premraj, V., Ordonez, V., Dhar, S., Li, S., Choi, Y.,
Berg, A. C., and Berg, T. L. (2013). Babytalk: Understanding and generating simple
image descriptions. IEEE Trans. Pattern Anal. Mach. Intell., 35(12):2891–2903.

[Kuznetsova et al., 2012] Kuznetsova, P., Ordonez, V., Berg, A. C., Berg, T. L., and
Choi, Y. (2012). Collective generation of natural image descriptions. In The 50th

BIBLIOGRAPHY 73

Annual Meeting of the Association for Computational Linguistics, Proceedings of the
Conference, July 8-14, 2012, Jeju Island, Korea - Volume 1: Long Papers, pages 359–
368. The Association for Computer Linguistics.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep learning.
Nature, 521(7553):436–444.

[Li et al., 2011] Li, S., Kulkarni, G., Berg, T. L., Berg, A. C., and Choi, Y. (2011). Com-
posing simple image descriptions using web-scale n-grams. In Goldwater, S. and Man-
ning, C. D., editors, Proceedings of the Fifteenth Conference on Computational Natural
Language Learning, CoNLL 2011, Portland, Oregon, USA, June 23-24, 2011, pages
220–228. ACL.

[Lin, 2004] Lin, C.-Y. (2004). Rouge: a package for automatic evaluation of summaries.

[Lin et al., 2014] Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B.,
Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft
COCO: common objects in context. CoRR, abs/1405.0312.

[Lowe, 1999] Lowe, D. G. (1999). Object recognition from local scale-invariant features.
In ICCV, pages 1150–1157.

[Mao et al., 2014] Mao, J., Xu, W., Yang, Y., Wang, J., and Yuille, A. L. (2014). Deep
captioning with multimodal recurrent neural networks (m-rnn). CoRR, abs/1412.6632.

[Mason and Charniak, 2014] Mason, R. and Charniak, E. (2014). Nonparametric method
for data-driven image captioning. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, Volume 2: Short Papers, pages 592–598. The Association for Computer
Linguistics.

[Miller, 1995] Miller, G. A. (1995). Wordnet: A lexical database for english. Commun.
ACM, 38(11):39–41.

[Mitchell et al., 2012] Mitchell, M., Dodge, J., Goyal, A., Yamaguchi, K., Stratos, K.,
Han, X., Mensch, A., Berg, A. C., Berg, T. L., and III, H. D. (2012). Midge: Generating
image descriptions from computer vision detections. In Daelemans, W., Lapata, M.,
and Màrquez, L., editors, EACL 2012, 13th Conference of the European Chapter of the
Association for Computational Linguistics, Avignon, France, April 23-27, 2012, pages
747–756. The Association for Computer Linguistics.

[Moschitti et al., 2014] Moschitti, A., Pang, B., and Daelemans, W., editors (2014). Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL. ACL.

[Mostafazadeh et al., 2017] Mostafazadeh, N., Brockett, C., Dolan, B., Galley, M., Gao,
J., Spithourakis, G. P., and Vanderwende, L. (2017). Image-grounded conversations:

74 BIBLIOGRAPHY

Multimodal context for natural question and response generation. In Kondrak, G. and
Watanabe, T., editors, Proceedings of the Eighth International Joint Conference on
Natural Language Processing, IJCNLP 2017, Taipei, Taiwan, November 27 - December
1, 2017 - Volume 1: Long Papers, pages 462–472. Asian Federation of Natural Language
Processing.

[Mozer, 1989] Mozer, M. C. (1989). A focused backpropagation algorithm for temporal
pattern recognition. Complex Systems, 3(4).

[Ordonez et al., 2011] Ordonez, V., Kulkarni, G., and Berg, T. L. (2011). Im2text: De-
scribing images using 1 million captioned photographs. In Shawe-Taylor, J., Zemel,
R. S., Bartlett, P. L., Pereira, F. C. N., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems 24: 25th Annual Conference on Neural Infor-
mation Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011,
Granada, Spain., pages 1143–1151.

[Pang et al., 2002] Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up?: Sen-
timent classification using machine learning techniques. In Proceedings of the ACL-02
Conference on Empirical Methods in Natural Language Processing - Volume 10, EMNLP
’02, pages 79–86, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., and Zhu, W. (2002). Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, July 6-12, 2002,
Philadelphia, PA, USA., pages 311–318. ACL.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014). Glove:
Global vectors for word representation. In [Moschitti et al., 2014], pages 1532–1543.

[Reiter and Dale, 1997] Reiter, E. and Dale, R. (1997). Building applied natural language
generation systems. Natural Language Engineering, 3(1):57–87.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M. S., Berg, A. C., and Li,
F. (2015). Imagenet large scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252.

[Russell et al., 2008] Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T.
(2008). Labelme: A database and web-based tool for image annotation. International
Journal of Computer Vision, 77(1-3):157–173.

[Sabour et al., 2017] Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic routing
between capsules. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus,
R., Vishwanathan, S. V. N., and Garnett, R., editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pages 3859–3869.

BIBLIOGRAPHY 75

[Sarikaya et al., 2014] Sarikaya, R., Hinton, G. E., and Deoras, A. (2014). Application of
deep belief networks for natural language understanding. IEEE/ACM Trans. Audio,
Speech & Language Processing, 22(4):778–784.

[Seide and Agarwal, 2016] Seide, F. and Agarwal, A. (2016). Cntk: Microsoft’s open-
source deep-learning toolkit. In Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 2135–2135, New
York, NY, USA. ACM.

[Srivastava et al., 2014] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929–1958.

[Tanti et al., 2017a] Tanti, M., Gatt, A., and Camilleri, K. P. (2017a). What is the role of
recurrent neural networks (rnns) in an image caption generator? In Proceedings of the
10th International Conference on Natural Language Generation, INLG 2017, Santiago
de Compostela, Spain, September 4-7, 2017, pages 51–60.

[Tanti et al., 2017b] Tanti, M., Gatt, A., and Camilleri, K. P. (2017b). Where to put the
image in an image caption generator. CoRR, abs/1703.09137.

[Theano Development Team, 2016] Theano Development Team (2016). Theano: A
Python framework for fast computation of mathematical expressions. arXiv e-prints,
abs/1605.02688.

[Tran et al., 2016] Tran, K., He, X., Zhang, L., and Sun, J. (2016). Rich image captioning
in the wild. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
Workshops, CVPR Workshops 2016, Las Vegas, NV, USA, June 26 - July 1, 2016,
pages 434–441. IEEE Computer Society.

[Vedantam et al., 2014] Vedantam, R., Zitnick, C. L., and Parikh, D. (2014). Cider:
Consensus-based image description evaluation. CoRR, abs/1411.5726.

[Vinyals et al., 2015] Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show
and tell: A neural image caption generator. In [DBL, 2015], pages 3156–3164.

[Wernick et al., 2010] Wernick, M. N., Yang, Y., Brankov, J. G., Yourganov, G., and
Strother, S. C. (2010). Machine learning in medical imaging. IEEE Signal Processing
Magazine, 27(4):25–38.

[Wu et al., 2017a] Wu, Q., Teney, D., Wang, P., Shen, C., Dick, A. R., and van den
Hengel, A. (2017a). Visual question answering: A survey of methods and datasets.
Computer Vision and Image Understanding, 163:21–40.

[Wu et al., 2017b] Wu, S., Wieland, J., Farivar, O., and Schiller, J. (2017b). Automatic
alt-text: Computer-generated image descriptions for blind users on a social network
service. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative
Work and Social Computing, CSCW ’17, pages 1180–1192, New York, NY, USA. ACM.

76 BIBLIOGRAPHY

[Wu et al., 2016] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W.,
Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu,
X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G.,
Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado,
G., Hughes, M., and Dean, J. (2016). Google’s neural machine translation system:
Bridging the gap between human and machine translation. CoRR, abs/1609.08144.

[Yang et al., 2011] Yang, Y., Teo, C. L., III, H. D., and Aloimonos, Y. (2011). Corpus-
guided sentence generation of natural images. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011,
John McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 444–454. ACL.

[Young et al., 2014] Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. (2014). From
image descriptions to visual denotations: New similarity metrics for semantic inference
over event descriptions. TACL, 2:67–78.

	Introduction and objectives
	Objectives
	Document structure

	Introducción y objetivos
	Objetivos
	Estructura del documento

	State of the art
	Traditional algorithms for image analysis
	Traditional approach to NLG
	Machine Learning
	Deep Learning
	Feedforward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Image description generators

	Framework
	GPU
	Deep Learning framework
	Visualization: TensorBoard
	Image datasets
	Dataset election

	Deep Learning approach for generating image descriptions
	Model architecture
	Pre-trained convolutional network
	Word embedding

	Fine-tuning VGG16
	Data preparation
	Image preprocessing
	Text preprocessing

	Dataset split
	Training process
	Optimizers

	Evaluation and results
	TensorBoard visualization
	Quantitative analysis
	Metrics

	Qualitative analysis

	Conclusions and future work
	Conclusions
	Future work
	CNN limitations
	Capsule neural networks

	Conclusiones y trabajo a futuro
	Conclusiones
	Trabajo a futuro
	Limitaciones de las CNN
	Redes neuronales cápsula

