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Abstract - A multisensor fusion system that is used for 
estimating the location of a robot and the state of the 
objects around ispresented. The wholefusion system has 
been implemented as a Dynamic Bayesian Networks 
(DBN) with the pwpare of having a homogenous and 
formalized way of capturing the dependencies that exist 
between the robot location, the state of the environment. 
and all the sensorial data. At this stage of the research it 
consists of two independent DBNs, one for estimating the 
robot location and another for building an occupancy 
probabilistic map of the environment, which are the 
bas& of a unijiedfusion system. The dependencies of the 
variables and information in the two DBN will be 
captured by a unique DBN constructed by adding arcs 
(and nodes ifnecmary) between the hvo DBN. The DBN 
implemented sa f i r  can be used in robots with direrent 
sets of sensors. 

Keywords: multisensor fusion system, bayesian 
networks, autonomous mobile robots. 

1 Introduction 
Autonomous mobile robots working in a changing andor 
unknown environment need a perception system to know 
their position and what is happening around. The 
perception system is in charge of obtaining the 
information provided by all the s m r s  and process it to 
estimate the robot location and the state of its 
environment. The estimations are used in the robot 
conml system to act according to its original purpose and 
the observed changes. Therefore the perception system 
needs to obtain results as quick as possible to let the robot 
take real time decisions. 

Mobile robot designers use multiple and different 
types of sensors due to the advantages and l i t a t ion  of 
eacb type. Cost, precision, range, scan rate and type of 
information are factors that influence on the decisions of 
the designers. The limitations of each type are usually 
solved using d u d a n t  andor complementary sensors. 
Redundant information reduces the uncertainly of the 
sensorial information and makes the system robust to the 
failure and malfunction of some sensors. Complementary 
information allows to observe a bigger set of 

c h a "  ' tics. The use of multiple information sources is 
advantageous [ 1 J because: it increments the reliability of 
the perception system, it favors the observation of 
multiple characteristics, and it increments the speed of the 
system while decrementiag its cost 

The information fiom the different sources is 
processed and merged in the multisensor fusion 
subsystem of the perception system. The final goal of the 
fusion subsystem is to obtain the robot location and some 
information (for instance a map) about the state and 
position of the objects around i t  Many multisensor fusion 
algorithms for solving the perception problem of mobile 
robots can be found in the literam [1,2]. Lots of them 
are especially implemented for a robot and so they can 
not be easily reused in other robots. 

The robotic fusion system is usually implemented 
with two separated subsystems, one in charge of 
estimating the robot position (location subsystem) and the 
other the state of its m u n d i n g s  (map building 
subsystem). In some specific cases a unique system is 
used, although the estimation is usually performed in two 
stages 13, 41. Moreover, the location and map building 
fusion subsystems are usually implemented using 
differmt fusion techniques. This division is not ~hual 
because, for instance, when building the surrounding map 
the robot location is usually needed (especially when 
there is an initial map) and information about the 
environment can be useful for improving the location 
estimation. The dependency between the two types of 
information can be captured easier if a unified fusion 
system is used than when the system is divided in two 
parts that are allowed to exchange infomation. In a 
unified system the information about the robot and 
objects locations can be fused at the same level and the 
influence of the uncertainty of the robot and surroundings 
merged easier. In a divided system the information of 
each subsystem is used, not fused, in the other subsystem 
and so it is more difficult to capture the underlying 
dependencies between all the sensor data. The difficulties 
are bigger when eacb fusion subsystem uses a different 
fusion technique and so the information returned by each 
has d i f f m t  characteristics. 
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This paper presents a uniiied multisensor fusion 
system for autonomous mobile robots based on Dynamic 
Bayesian Networks (DBN) [5,6] whicb estimates the 
robot location and conshum a dynamic map of the 
environment (using if provided a initial map). The 
designed system is versatile and can be reconfigured for 
Werent robots and/or different types of sensors, afler 
providing same informaton about the sensors. 

At this stage of the research the fusion system 
consists on two independent DBN, one for the robot 
location and another for the map. Although the fusion 
system is still divided, it is already unified by the use of 
the same technique. The dependencies of the variables in 
the two DBN will be captured by a unique DBN, built by 
adding arcs and nodes between the two DBN. 

The paper is organized in the following way. In 
section 2 there is a description of Dynamic Bayesian 
Networks which highlights the propeaies that make them 
useful in multisensor fusion systems. In section 3 the 
DBN of our fusion system are presented and explained in 
detail. Section 4 presents experimental results obtained 
when the fusion system is used in a real time control 
application for autonomous mobile mbots. Finally, in the 
last section some conclusions are presented. 

2 Dynamic Bayesian Networks and 
Fusion Systems 

Bayesian Networks (BN) are graphical models that 
provide a probabilistic and graphical huework for 
dealig with the complexity and un&ty inherent to 
many probabilistic problems. Tbeu graphical si& is itself 
an appealing interface for modeling complex relations 
between sets of random variables. The probability theory 
behind ensures that the system is consistent and it 
provides inference mechanisms for obtaining the 
probabilities of subsets of random variables and 
propagating tbmugh the model the evidence of the data. 

BNs are directed acyclic graphs whose nodes are 
random variables (discrete or continuous), whose 
structure (arcs) contains independence assumptions 
between nodes, and which are parameterized by the 
conditional probabilities needed for specifying the 
underlying distribution (the probability of a node given its 
parents). The evidence (knowledge about the state of a 
node) can be entered in any node and propagated to 
update the probabilities tbmugh all the network using an 
infmnce mechanism. There are many inference engines 
specially designed for different types of BNs, either for 
exact inference and for approximate inference. When 
exact propagation is perfmed, the final probability 
distribution given all the evidence does not depend on the 
order in wbicb the evidence is entered in the BN. 
Approximate inference is usually used in complex BNs 

wbere exact inference is not efficient and it is necessary 
in BNs for which exact methods have not been 
developed. Additionally more tasks than inference can be 
performed. finding the most probable contignration, 
detecting conflicts in the evidence, learning . . . 

w c  Bayesian Networks (DBN) are a series of 
BN whicb is expanded over time. The different BNs 
(called network slices) are l i e d  by arcs that are in 
charge of capturing the evolution of the probabilities of 
the variables with time. The arcs between slices are 
similar to the arcs between the nodes inside a slice, so the 
DBN is itself a BN. Thmfore the same properties and 
inference engines can be used. The expansion of the DBN 
can be due to different causes such as the end of a waiting 
period or the observation of an extemal event The 
different networks slices don't need to bave the same 
structure and to reduce the memory and inference costs, 
the network is p m e d  cyclically and only the slices that 
fit in a window around the current time are maintained. 

The use of BN and DBN in data fusion and related 
tasks is not new and several examples can be found in the 
literature: BNs for validating the sensorial information in 
order to detect maffictioning sensors [7]; BNs for 
detecting speakers and which integrates different types of 
information extracted from a vision system [B]; BNs for 
tracking discontinuous motion which fuses high-level 
contextual information with sensor-level information [9]; 
BNs for building an occupancy map of the environment 
[lo], discrete DBNs for es t imaw the position of a 
mobile in environments divided in few cells [l I ,  121; 
continuous DBN whicb are equivalent to Kalman and 
smoothing filters [13]; ... In the examples BN and DBN 
are used for dealing with different parts of the data fusion 
problem. A whole fusion system, with different 
functionality levels uu1 be implemented using several 
ideas present in the cited references. 

The design of a fusion system is especially favored 
for the structure of DBNs and its graphical interface. The 
world can be modeled initially with a simple DBN, which 
can be easily modified for including more sensorial 
information and more complex relations between the 
characteristic of the world (by adding nodes and arcs and 
specifying new conditional probabilities). In this way the 
functionality of the system can be easily incremented. 
Additionally, the layered structure of the BNs lead us 
naturally to a fusion system with different levels where 
the flux of information is controlled by the propagating 
scheme used in the BN. The intbrmation in the low levels 
will influence the state of the higber and vice versa. 

The use of DBNs for the whole fusion system in the 
autonomous mobile robot problem, will let us build, in a 
next stage, a unified fusion system where the uncertainty 
about the position and map influences each other. 
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3 Towards a Unified Fusion System 
In this section a general multisensor fusion system based 
on DBNs and designed for autonomous mobile robots 
with several sensors, which is in charge of estimating the 
robot location and the state of the envimnment, is 
presented. Here, we use general in the sense that the 
system can be configured by the user for different robots 
and different sets of sensors. The fusion system needs to 
have the sensorial information provided in the c o m t  
fonnat and a set of parameters need to be specified 

The fusion system is considered unified because it 
has been implemented using a unique technique @BN) 
with the purpose of having a homogenous and formalized 
way of capturing better the dependencies between the 
estimation of the robot location and the estimation of a 
map (which stores the state of the environment). In the 
current stage of the research, OUT attention is mare 
focused in exploiting the sensorial information about the 
robot location and map subsystems (which are next 
explained) than in analyzing the dependencies among 
them. So the designed DBN is not connected The two 
fusion systems are probabilistic independent because 
there are not arcs between the nodes in charge of 
modeling the sensorial and fusion information of the 
robot location and those of the map. In a second stage we 
will joint the two subsystems, adding arcs (and nodes if 
necessary), so the dependencies will be captured by the 
DBN. Figure 1 schematizes both cases, at the top the 
unified subsystem when the two fusion subsystems are 
independent because there are not ws between thew and 
at the bottom the unified system with dependent fusion 
subsystems. 

a) Wed Fusion SyaSn ~4th hdepcndmr F-n S u b s p ”  

DEN Robt DBN 
Losation o = F Y y M r p  

Figure 1. Unified fusion systems with independent and 
dependent fusion subsystems. 

3.1 Location Subsystem 
The location subsystem of the unifed fusion system is in 
charge of estimating the current position of the robot 
given the measures of the position sensors of the robot In 
a previous step of the research we implemented an 
asyncbronous distributed Kalman filter for this purpose 
[14]. The DBN in figure 2, whose nodes are gaussian 
continwus variables, can be used for modeling the 
temporal behavior of dynamic l ima  systems [13]. The 
robot location is estimnted in the x(ti) nodes while the 
sensor information is estimated and provided through the 
z(tJ nodes. 

Figure 2. DBN for modeling a dynamic linear system. 

The exact inference mechanism over the junction 
tree for continuous gaussian BN shows that when the root 
is considered the last location state. the collect evidence 
step of the inference implements the classical Kalman 
fdter while the distribute evidence step implements a 
smoothing filter, both filters in the infonuation form. So, 
the inference engine propagates the evidence in the two 
directions and each location node has an estimation of the 
position given all the evidence. In order to reduce the 
overload of the subsystem due to smootbing calculations, 
the distribute evidence step can be disabled. 

In a mobile robot there are usually several position 
sensors which provide data at different speeds. when the 
noises of the different sensors are mcorrelated, the 
observation model can be paaitioned and the distributed 
version of the Informatiw/Kalman filter [ 151 can be used 
The distributed filter is advantageous in case of having 
sensors providing measures at different rates. 

The location fusion subsystem for asynchronous 
measurements can also be implemented with DBNs. 
Figure 3 shows two equivalent solutions. Both of them 
implement the distributed information filter when only 
the collect evidence step is performed. 
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Figure 3. DBN for modeling dynamic linear systems with 
several asynchronous sensors. 

In both examples the location of the robot (x(ti)) is 
estimated with the help of three sensors, which provide 
data asynchronously. When necessary, more sensors 
nodes cm be used. In figure 3, the sensor nodes are 
shaded if the corresponding sensor has provided a 
measure at that time and they are not white if not measure 
has been provided. In the first case (figure 38). the 
shuclure of the DBN is the same in every time slice, in 
spite of the fact that not all the sensors arc not providing 
data for all the time slices. If there is not data for a node 
in a time slice, no evidence is entered in that node. So, the 
existence of nodes without sensing information does not 
change the estimation of the state position. However the 
existence of the sensing nodes without information can 
cause a lose of efficiency in the inference engine. In the 
second case (figure 3b), the shucture of the DBN changes 
in time according with the data that will be provided at 
each time slice. With the second DBN the overload in the 
inference engine due to useless nodes is avoided. 
However expanding the network according with the 
sensorial data that will exist in the next time slice is more 
difficult 

Another aspect to take into acwunt is the possible 
existence of wmmunication delays in the fusion system. 

The approach implemented in our system to deal with 
small delays is waiting a small time (activation period) 
before performing each slice expansion to favor the 
arrival of the sensorial information for that instant in time. 
If the delay is bigger the data can also be used if the 
measure falls inside the window around the current time 
slice.. When data is delayed more than the acti~ation 
period the structure of the first DBN is advantageous. The 
node for the sensor at that time already exist and so it is 
enough when incorporating the data in the corresponding 
node and propagate the evidence. As the final estimation 
does not depend in the order in which the evidence is 
introduced in the network, the current state will be equal 
to the state obtained if the data had arrived on time to the 
network. The size of the window should be selected so 
the delayed data usually falls inside it. 

When working with wmmuuication delays the DBN 
is better than the distributed Kalman/Ioformation fiter 
because only the delayed evidence need to be iutraduced 
in the network and propagated The other evidence has 
been already stored in the network and propagated. 

Another advantageous aspect of the usage of DBN 
for the location fusion system is that the variables don't 
need to be gaussian with linear dependencies. other 
probabilities distribution can be used and propagated, 
using an appropriated inference engine. 

The final implemented location fusion system 
implemented so far let users decide the kind of DBN (a or 
b) to use, and in the first case the sue of the window. 
Additionally, users should provide the linear state and 
sensor models, the covariance of those models and the 
speed rate of each sensor. Other probabilities distribution 
and dyoamic models could also be used selecting an 
appropriated inference engine. 

3.2 Map Building Subsystem 
The map fusion subsystem is in charge of estimating the 
state of the objects mund the robot. The information of 
the state of the environment can be stared in different 
formats, being a multidimensional gria where each cell 
corresponds to a region of the environment a well-known 
approach. A BN can be used for building a map [4, IO], 
where the dependency relations between the variables that 
describe the state of the environment and those that are 
used for entering the sensorial evidence are caught by the 
stlucture of the BN. When many variables are used to 
describe the environment in detail, the complexity of the 
problem is increased and so the BN more difficult to 
obtain. A basic occupancy bidimensional (map) can be 
obtained using the discrete DBN in figure 4. The state of 
cell (x) can be occupied or empty, and for each of the 
sensors (zj) the possible states are detected and not 
detected. The BN of the figure is for 3 sensor capable of 
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detecting objects. More sensors can be added or more 
complex BN implemented. Sensor models store the 
dekction probability P(detected\occupied) and the false 
alarm probability P(detected\empty) of each sensor, 
which in this case depend on the distance between the 
mobile robot and the cell. 

Discrete DBN (new nodes for inc”sting sol7 evidence m 
addad *thm IS 116v dat.) 

Figure 4. Discrete DBN for modeling the fusion of 
environment measures in a cell of the map. 

The BN is dynamic because its structure changes 
over time. The sensorial information is inserted in the 
network as soft evidence. For each new data about a cell, 
a new vi node is connected to the sensor node of the 
sensor that provides the data and the belief probability 
obtained by the sensor for each of the states of the sensor 
node (detected, not detected) used as the model between 
the sensor node and vi. Then the inference engine is used 
for propagating new evidence through the network 

The fusion algorithm implemented with this DBN 
does not work properly if the sensors provide information 
only about the presence of objects (and not about the 
absence of objects). The problem arises if in an empty 
cell an object was detected (either because an erroneous 
measure was taken or the cell was occupied before for an 
object that is moving) because as there are not measures 
against the past measures the probability of occupancy of 
the cell will not be decrementd If the sensors provide 
also information about the no detection of objects the 
system will work properly. However, these types of 
measures overload the inference, especially in open 
environments where there are more empty cells than 
occupied cells around the robot. 

The use of forgetting factors, that will make the state 
of a cell be &own, is an o p t i d  solution to avoid the 
computational overload. ‘Ibe forgetting factor can be 
implemented with the DBN presented in figure 5. In this 

case only 2 sensors are used and the nodes necessary for 
m+mducmg the soft evidence are not drawn to make the 
scbemamoresimple. In the proposed DBN the 
forgetting factor model will make the fusion system 
forget both the sensorial and a priori information. 

Discrete DEN with a fmgemnS fmmmdel 

Figure 5.  Discrete DBN for the fusion of environment 
measures in a cell of a map including forgetting factors 

The fmal map building fusion system implemented 
so far can be used with several sensors and users should 
provide the sensor model of each sensor. The forgetting 
model it is only necessary if the sensors don’t provide 
information about the absence of objects in a cell. When 
forgetting factors are usedlied the user should select the 
forgetting factor model and the hquency to apply it. 

Although the DBN is quite basic and the sensorial 
information is not fully exploited when sensors provide 
more information than the one related with the detection 
of objects, the occupancy grid which is built with it has 
been used successfully for finding paths in a changing 
environment The DBN can be modified to implement a 
map building fusion system for using other type of 
sensorial information and building a map which stores 
more cbaracteristics than each cell occupancy state. 

4 Experimental Results 
The unified fusion system is embedded in a real time 
complex program developed for controlling autonomous 
mobile robots [16]. The application has been tested m 
different robots with different sets of sensors. The results 
of two different tests are presented in this paper. 

The robot of the examples has three sensors for 
estimating its location and two sensors for building the 
map. The location sensors are a magnetic compass 
(measuring every 1 sec.), encoders (0.5 sec.) and beacon 
receivers (1.5 sec.). The map sensors are a ultrasonic belt 
(8 fixed sensors, 3 sec.) and a ultrasonic scanner (2 
rotating sensors, 5 sec.). 
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In the first example the robot is asked to go from (a) 
to (b), in the laboratory shown in figure 6. The initial 
position and a priori map (without the two shaded round 
objects) are provided as a priori information to the fusion 
system. The back green region is occupied by people 
moving. The circles in the figure sbow the estimated 
robot trajectory, that avoids the two unknown obstacles. 

f : The measures from the position sensors are shown 
in figure 7: position data at the top and orientation data at 
the bo". The position graphic shows the robot 

graphic shows the robot orientation at different instants of 

s~ 

trajectory measured by each sensor. The orientation . 

The encoders and beacon receivers provide the two 
h d s  of data while the magnetic compass only provides 
orientation. The data provided by each sensor differs 
from the data provided by the others. 

The unified location subsystem fuses the data from 
the three sensors in order to estimate the robot location. 
The inference engine of the DBN propagates the evidence 
provided by each sensor through the network. The mean 
value of the robot location at each time slice can be 
obtained from the DBN and retumed by the location 
subsystem as the estimation of the robot location. The 
accuracy of each sensor, specified by the covariance of 
each sensor model, weights the influence of each sensor 
in the linal location estimation. The estimation of the 
robot position and orientation are presented in figure 8. 

I.U.-d& 

J' 
,,' 
-. i/ 
-< 

Figure 6. Laboratory and trajectory of the robot ,/' 1 

time. 

Figure 7. Data ii" the location sensors 

Figure 8. Estimation of the robot location 

All the measures from the environment sensors are 
shown in figure 9. Data from the nltmsonic belt is 
represented with red circles while data ffom the ultrasonic 
scanner is represented with blue *. In this example only 
evidence ahout the presence of objects is used. As the 
ul!"nic belt consists of 8 sensors and measms more 
frequently that the ultrasonic scanner with 2 sensors, there 
is more information about the fmt sensor than about the 
second The black line describes the estimated hajectory, 
which is used with the range data provided by the sonar, 
in the map building system for deciding in which cells is 
an object detected. 
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8 10 12 

Figure 9. Data from the environment senson 
The final map obtained by the map building 

subsystem &r fusing the a priori information (initial 
probabilistic map where the a priori probability of being 
occupied of the cells comsponding to a wall in figure 6 
is equal to 0.8 and for the remaining cells is equal to 0.2) 
with the sensing data during all the robot trajectory is 
presented in figure 10. Cells with a probability of being 
occupied lower than .6 are drawn in white. The estimated 
trajectory is drawn with blue circles. The forgetting 
model is used with a low forgetting speed and frequency. 
The forgetting model is applied only in the cells that fall 
inside a circular area centered in the robot to avoid 
forgetting information.about areas that the robot can not 
measure. In the 6nal map the areas corresponding to the 
walls keep on having a probability of being occupied 
bigger than 0.6 and the same happens with the cells where 
the columns are situated and the cells of the area with 
moving people behind the initial robot position. There are 
other areas where the occupancy probability is bigger 
than 0.6, some with erroneous measures. The forgetting 
model has not deleted that information yet because it has 
not been applied enough times. 

c - 

Figure 10. Occupancy probability map 

Si 

The second example is presented for illushating 
how the map DBN with the forgetting model behaves in 
case of having a moving object around the robot In this 
example the robot is also asked to go fimn its initial 
position to a final position in h t  of it. Before the robot 
starts moving the fusion system detects a new object (the 
probability of a cell to be occupied is suddedy over the 
occupancy threshold) and so the robot is stopped to 
recalculate a new path to avoid the obstacle. The object 
will passed in h u t  of the robot and all the cells it goes 
through will increment its occupancy probability due to 
the information provided by the sensors. As there is not 
information about the not detection of objects the 
probability of occupancy of those cells will be over the 
threshold when not fmgetting is applied. The use of the 
DBN with the forgetting model will make the probability 
of those cells he decremented and so after some time 
nothing will exist in front of the robot which will start 
moving. The results of the experiment can be seen in 
figure 11. At the top the final map obtaiied from the map 
building h i o n  system is presented. The robot (yellow) 
remains all the time in the same place and the object 
(white circle) moves f?om the right of the robot to its left. 
Cells in red are considered occupied (because its 
occupancy probability is higher than the threshold) and 
cells in light blue considered free. At the bottom the states 
of the map around the robot (built with information of the 
map obtained with the DBN) in three different moments 
can be seen. In this submap, implemented over a 
quadtree, red and green squares are occupied areas while 
light blue squares represent empty areas. In the fmt 
submap (at the left) the object is still at the right of the 
robot, in the second in eout of it, and in the last as its left. 
The occupancy probabilities of the cells around the robot 
have been changed initially due to the sensor infonuation 
and later due to the forgetting model. 

Figure 11. Occupancy map with a moving object 
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5 Conclusions 
A unified fusion system for estimating the robot location 
and the state of its envimnment has been presented The 
system is considered unified because all of it has been 
implemented with DBN with the purpose of having a 
formalized way of capturing the dependencies between 
the two subsystems. In the current stage of the research, 
our attention is more focused in exploiting the sensorial 
information about the robot location and map subsystems 
with DBN than in analyzing the dependencies among 
them So, the subsystems present in the paper are 
independent DBN. In a second stage we will joint the two 
subsystems, adding arcs (and nodes if necessary), so the 
dependencies will be captured by the connected DBN. 
The struclwe of each DBN can be incremented for 
modeling more complex scenarios. 

The DBN implemented for the location fusion 
subsystem is equivalent to the distributed information 
filter and c8n he used in a system with asynchnous 
sensors. The arrival of delayed information is considered 
in the implementation of the DBN. Evidence that arrives 
late to the DBN can be introduced and propagated if the 
delay is small enough to make the data arrive inside the 
window around the cment time slice. 

The DBN implemented for the subsystem in charge 
of estimating the state of the robot envimnment builds a 
map that stores the probability of each cell to be occupied 
or empty. The network can be used for sensors that detect 
presence and absence of objects. In case of not providing 
information about the absence of objects, the DBN also 
models the existence of forgetting factors. 

Both DBN are generic and can be used in robots 
with different sets of sensors after configuring several 
parameters. For the DBN for robot location it is necessary 
to specify the state and sensor model and for the DBN for 
building the map the sensor and forgetting models need to 
be provided 
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