INTRODUCTION One of the objects of mammalian paleoecology is the ecological and climatic reconstruction of the past environments based on mammal faunas recorded in fossil sites. Generally, prior to making paleoecologi- cal interpretations on the basis of extinct faunas, paleoecological studies are needed to make basic suppositions on the environmental preferences of each of the species present. Examples are the studies of VAN DE WEERD & DAAMS (1978), DAAMS & VAN DER MEULEN (1984, 1989) and VAN DER MEULEN & DAAMS (1992), based on Neogene rodent faunas from the Calatayud-Teruel basin. HERNÁNDEZ FERNÁNDEZ (2001a) proposed a new method (Bioclimatic Analysis) to infer the paleocli- matic conditions based on the mammal association recorded in fossil localities. This method needs for Coloquios de Paleontología, Vol. Ext. 1 (2003) 237-251 ISSN: 1132-1660 237 Ecomorphological characterization of Murinae and hypsodont “Cricetidae” (Rodentia) from the Iberian Plio-Pleistocene Caracterización ecomorfológica de los Murinae y “Cricetidae” hipsodontos (Rodentia) del Plio-Pleistoceno ibérico Manuel Hernández Fernández1,2 and Pablo Peláez-Campomanes2 Abstract: In order to make inferences on the climatic range of extinct rodent genera, cluster analysis using dental morphological varia- bles is performed. The goal of this study is to obtain rodent groupings which relate extinct an extant rodent genera on the basis of the ecomorphology of the dentition. The method is applied to two rodent groups, Murinae and hypsodont “Cricetidae” from the Iberian Plio- Pleistocene. The results show that dental morphology of the Plio-Pleistocene Murinae from the Iberian Peninsula shows similar patterns to those found in extant genera inhabiting tropical forested biomes. The hypsodont “Cricetidae” show a close relationship in dental pat- tern to that of Phillotini genera, which are inhabitants of herbaceous biomes mainly. The coexistence of both studied groups in the Spa- nish Plio-Pleistocene could imply an ecological segregation between them. The Murinae would preferably occupy the forested areas and the hypsodont “Cricetidae” the areas with open landscapes. Nevertheless, both groups contain genera that could occupy both types of ecosystems (Huerzelerimys and Ruscinomys). Key words: Paleoecology, Ecomorphology, Rodents, Muroidea, Pliocene, Pleistocene, Spain, Cluster analysis Resumen: Resumen: Con el objetivo de inferir el rango de climas ocupados por géneros de roedores extintos, se han realizado análisis de conglomerados jerárquicos en los que se han introducido variables morfológicas dentales. Con este análisis se pretenden obtener agru- paciones que relacionen géneros fósiles con actuales sobre la base de la ecomorfología de la dentición. Esta metodología es aplicada a dos grupos de roedores, Murinae y “Cricetidae” hipsodontos, del Plio-Pleistoceno ibérico. Los resultados muestran que la morfología dental de los Murinae Plio-Pleistocenos de la Península Ibérica presenta patrones similares a los encontrados en géneros actuales habi- tantes principalmente de biomas forestales tropicales. Por otro lado, los “Cricetidae” hipsodontos presentan patrones más parecidos a los de habitantes de biomas predominantemente herbáceos. La coexistencia de ambos grupos en los yacimientos españoles del Plio-Pleisto- ceno podría implicar, posiblemente, una segregación ecológica entre ellos. Los Murinae ocuparían preferentemente las áreas forestales y los “Cricetidae” hipsodontos las áreas con medios abiertos. No obstante, en ambos grupos aparecen géneros (Huerzelerimys y Rusci- nomys) que podrían ocupar ambos tipos de ecosistemas. Palabras clave: Paleoecología, Ecomorfología, Roedores, Muroidea, Plioceno, Pleistoceno, España, Análisis de conglomerados jerár- quicos 1 Departamento y UEI de Paleontología, Facultad de Ciencias Geológicas (UCM) e Instituto de Geología Económica (CSIC), Ciudad Universitaria, 28040 Madrid, Spain. E-mail: hdezfdez@geo.ucm.es 2 Museo Nacional de Ciencas Naturales, CSIC, c/ Jose Gutierrez Abascal 2, 28006 Madrid, Spain. E-mail: mcnp177@mncn.csic.es each of the taxa of the fauna the assignation to a range of climates. In some cases the assignation is relativel- ly easy since there are close living relatives on which the whole group shows the same climatic range. The problem arises with taxa without close relatives. The aim of this study is to infer the climatic range of extinct rodents using the morphological similari- ties in dentition with extant taxa and thus extrapolate the climatic range of the morphologically closer liv- ing taxa to the fossil ones. These dental analogies presumably have an ecomorphological meaning. Ecomorphological analyses of extinct taxa depend on studies based on extant species, through compara- tive analysis (BRYANT & RUSSELL, 1995). In the last decades, various methodologies have been proposed to infer environmental preferences of extinct taxa (EISEN- MANN & GUÉRIN, 1984; KAPPELMAN, 1991; PLUMMER & BISHOP, 1994; JANIS, 1995; GUERRERO-ALBA et al., 1997; KAPPELMAN et al., 1997; PALMQVIST et al., 1999; PALMQVIST et al., 2001). Classical ecomorphological studies on fossil rodents are those of HOOPER (1952, 1957). VAN DER MEULEN & DE BRUIJN (1982) and DAAMS & VAN DER MEULEN (1984) grouped the extinct and living species of the family Gliridae on the basis of the characteristic features of the first and second upper molars and then extrapolated the ecology of the extant representatives present in each morphological group to the extinct species of the same morphological group. Similarly, COLLINSON & HOOKER (1987, 1991) looked for modern dental analogues to interpret the diet and the habitats of Paleogene mammals. Recently, new statistical and morphometric tools have been used to analyse dental morphology of rodents (VIRIOT et al., 1993; VAN DAM, 1996, 1997; RENAUD et al., 1996, 1999a, 1999b; RENAUD, 1999; RENAUD & VAN DAM, 2002). In this work a new type of analysis on the denti- tion of extant and extinct rodents is presented. Clus- ter analysis using several dental features will be applied to the Murinae and hypsodont “Cricetidae” from the Iberian Plio-Pleistocene. The climatic ranges of the extant genera allow new paleoecologi- cal interpretation for these Plio-Pleistocene genera. For a clear exposition of the ecological prefer- ences of extant genera, a specific climatic typology is used (Table 1). We selected the climatic classification of WALTER (1970) because it has a simple nomencla- ture and coincides with the traditional biomes (ODUM, 1971; LACOSTE & SALANON, 1973; LIETH, 1975; STRAHLER & STRAHLER, 1987). MATERIAL AND METHODS MURINAE Although the study focuses on genera recorded in the Iberian Plio-Pleistocene, populations from other Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” Coloquios de Paleontología 238 Vol. Ext. 1 (2003) 237-251 CLIMATE ZONOBIOME (mainly vegetation type) I Equatorial I Evergreen tropical rain forest II Tropical with summer rains II Tropical deciduous forest II/III Transition tropical semiarid II/III Savanna III Subtropical arid III Subtropical desert IV Winter rain and summer drought IV Sclerophyllous woody plants V Warm-temperate V Temperate evergreen forest VI Typical temperate VI Nemoral broadleaf-deciduous forest VII Arid-temperate VII Steppe to cold desert VIII Cold-temperate (boreal) VIII Boreal coniferous forest (taiga) IX Artic IX Tundra Table 1.- Climatic typology used in this paper (modified from WALTER, 1970) and its relationships with world vegetation types. WALTER considers II/III as a zonoecotone between tropical forests and deserts but we apply it as a zonobiome because is traditionally used in Pale- oecology because its unique faunistic community. Tabla 1.- Clasificación climática usada en este trabajo (modificada de WALTER, 1970) y su relación con los tipos de vegetación mundial. WALTER considera II/III como un zonoecotono entre los bosques tropicales deciduos y los desiertos pero nosotros lo utilizamos como zonobioma porque es tradicionalmente usado en Paleoecología debido a su comunidad faunística única. Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” 239 Coloquios de Paleontología Vol. Ext. 1 (2003) 237-251 Plio-Pleistocene European localities have been also included in order to incorporate in the analysis all the possible morphologic variability attained by the stud- ied genera (Table 2). The morphological characteristics of the upper first molar (M1) of the studied fossil genera allow their inclusion into the “Parapodemus” group as defined by MISONNE (1969). This author considered the “Parapodemus” group and the “Lenothrix” one parallel groups, joining them in the “Lenothrix-Para- podemus” division. Representatives of this division have been included in the analysis (Table 3), based on the morphological similarities shown by the fossil taxa with extant members of this division. However, genera belonging to the “Mesembriomys” series of Australian origin, and to the “Lophuromys-Colomys- Zelotomys” series of African origin, have been excluded since they present advanced characters (MISONNE, 1969) not closely related with the studied fossil forms. Analysed variables The morphometric variables used in the analysis are all related to the upper first molar (M1). This ele- ment is chosen because it is the most diagnostic den- tal element (VAN DAM, 1997). The variables included in the study are the following (see Fig. 1): 1. Total length (LM1): the maximum length of the M1 measured in mm. 2. M1 vs. M2 length ratio (%M1): represents the relative length of M1 in relation to M2 (100*length of M1/length of M2; MISONNE, 1969). 3. Percentage of the M1 length vs. total row length (%M1tot): represents the relative length of the M1 with respect to the total row length (100*length of M1/length of total cheek teeth length). 4. Length/width ratio of the M1 (L/W). 5. Angle t1-t2-t3: this measure indicates the align- ment degree of these three molar cusps (Fig. 2). 6. Stephanodonty (Ste): It is a particular develop- ment, or hypertrophy, of some longitudinal crests at particular points, connecting the molar cusps length- ways (SCHAUB, 1938). Original definition by SCHAUB (1938) was extended by MISONNE (1969), to include species with a prolongation backwards of crests although there is no connection between cusps. The latter definition is the one used here. This structure increases the abrasion surface of the molar. This fea- ture is just distinguished by their presence or absence. Figure 1.- Terminology of the dental elements of the Murinae used in this work, shown in drawings of the right upper tooth row. Length (L) and width (W) are measured as indicated. Explanation in the text (analysed variables). Figura 1.- Terminología de los elementos dentales de los Murinae usada en este trabajo, sobre un dibujo de la serie molar superior derecha. Longitud (L) y anchura (W) son medidas como se indi- ca. Explicación en el texto (analysed variables). Figure 2.- Angle t1-t2-t3 (α) in Murinae M1. Image source: CHI- MIMBA et al. (1999). Figura 2-. Ángulo t1-t2-t3 (α) en el M1 de Murinae. Procedencia de la imagen: CHIMIMBA et al. (1999). Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” Coloquios de Paleontología 240 Vol. Ext. 1 (2003) 237-251 Genus Species Fossil site References Balaruc 6 MN 17 BACHELET, 1990 Huélago 5 MN 17 SESÉ, 1989 Lo Fournas 4 MN 17 BACHELET, 1990 Mas Rambault 2 MN 17 BACHELET, 1990 Trassanel MN 17 BACHELET, 1990 Balaruc 2 MN 16 BACHELET, 1990 Escorihuela MN 16 VAN DE WEERD, 1976; ADROVER, 1986 Moreda 1 MN 16 MARTÍN SUÁREZ & MEIN, 1991 Pla de la Ville MN 16 BACHELET, 1990 Sarrión MN 16 ADROVER, 1986 Seynes MN 16 BACHELET, 1990 Arquillo III MN 15 ADROVER, 1986 Layna MN 15 MARTÍN SUÁREZ & MEIN, 1991 Sete MN 15 BACHELET, 1990 Villalba Alta 1 MN 15 ADROVER, 1986 C. crusafonti MICHAUX, 1969 Mont Helene MN 14 BACHELET, 1990 Lo Fournas 13 MN 16 BACHELET, 1990 Aldehuela MN 15 ADROVER, 1986 Orrios 1 MN 15 ADROVER, 1986 Caravaca 1 MN 14 ADROVER, 1986 C. gracilis VAN DE WEERD, 1976 La Gloria 4 MN 14 ADROVER et al., 1993 Bagur 2 PL. MARTÍN SUÁREZ & MEIN, 1991 Huéscar 1 PL. SESÉ, 1989 Mas Rambault 1 PL. MARTÍN SUÁREZ & MEIN, 1991 Quibas PL. MONTOYA et al. 1999 Casablanca 1 MN 17 GIL & SESÉ, 1984 Castillomys C. rivas MARTÍN SUÁREZ & MEIN, 1991 Valdeganga III MN 17 MARTÍN SUÁREZ & MEIN, 1991 Huerzelerimys H. turolensis (MICHAUX), 1969 La Gloria 4 MN 14 ADROVER et al., 1993 La Gloria 4 MN 14 ADROVER et al. 1993 O. alcalai ADROVER et al., 1983 Peralejos E MN 14 ADROVER et al. 1988 Balaruc 6 MN 17 BACHELET, 1990 Balaruc 2 MN 16 BACHELET, 1990 Lo Fournas 13 MN 16 BACHELET, 1990 Pla de la Ville MN 16 BACHELET, 1990 Aldehuela MN 15 ADROVER, 1986 Arquillo III MN 15 ADROVER, 1986 Layna MN 15 MICHAUX, 1969 Orrios 1 MN 15 VAN DE WEERD, 1976 Sete MN 15 BACHELET, 1990 Villalba Alta 1 MN 15 ADROVER, 1986 Occitanomys O. brailloni MICHAUX, 1969 Kardia MN 14 VAN DE WEERD, 1979 P. abaigari ADROVER et al., 1988 La Gloria 4 MN 14 ADROVER et al., 1993 Maritsa MN 14 DE BRUIJN et al., 1970 P. anomalus (DE BRUIJN et al.), 1970 Peralejos E MN 14 ADROVER et al., 1988 Lo Fournas 13 MN 16 BACHELET, 1990 Perpignan MN 15 BACHELET, 1990P. jaegeri MONTENAT & DE BRUIJN, 1976 Mont Helene MN 14 BACHELET, 1990 Lo Fournas 13 MN 16 BACHELET, 1990 Aldehuela MN 15 ADROVER, 1986 Arquillo III MN 15 ADROVER, 1986 Layna MN 15 ADROVER, 1986 Orrios 1 MN 15 ADROVER, 1986 Perpignan MN 15 BACHELET, 1990 Villalba Alta 1 MN 15 ADROVER, 1986 La Gloria 4 MN 14 ADROVER et al., 1993 Paraethomys P. meini (MICHAUX), 1969 Mont Helene MN 14 BACHELET, 1990 Table 2.- Species and localities of extinct genera of Murinae recorded in the Iberian Plio-Pleistocene. Tabla 2.- Especies de Murinae extintos del Plio-Pleistoceno ibérico analizados y yacimientos en los que se han registrado. 7. Presence/absence of t7: when present, a more complete dental occlusion is produced (MISONNE, 1969). 8. Presence/absence of t1bis: this cusp is usually small although, when present, it changes the cusp pattern of the tooth, such that the t1 is located more distally (MISONNE, 1969). 9. Presence/absence of Z: it is not a true cone but only a short crest being projected labially. 10. Relative importance of the labial cusps com- pared to the lingual ones (lab): two stages are distin- guished; (1) labial cusps better developed than lin- gual cusps; (0) labial cusps less developed than lin- gual cusps. Each variable was calculated for every extant genus as the mean value of the included species. Those of the fossil genera were calculated as the mean value of the fossil populations recorded from the analysed sites (Table 2). For presence/absence of cusps we take as present when the frequency of the studied character is higher than 25% in any species of the genus. For characters varying with wear we used unworn material. Data on extant genera have been obtained from MISONNE (1969) and data on extinct ones have been obtained from the references in Table 2. The values for all variables and all genera are shown in Table 3. HYPSODONT “CRICETIDAE” The genera Blancomys, Celadensia, Ruscinomys and Trilophomys from the Iberian Pliocene, included in the particular group of “microtoid Cricetidae” (sensu FEJFAR, 1999) are ecomorphologically analysed. Similarly to the Murinae, populations from Pliocene European localities have been included to incorporate the total morphologic variability of the studied fossil genera, (Table 4). These “microtoid Cricetidae” resemble some repre- sentatives of the tribe Phyllotini (Sigmodontinae). Therefore, we have selected representatives of the lat- ter tribe to perform our comparative analysis. Data on Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” 241 Coloquios de Paleontología Vol. Ext. 1 (2003) 237-251 Lo Fournas 4 MN 17 BACHELET, 1990 Balaruc 2 MN 16 BACHELET, 1990 Pla de la Ville MN 16 BACHELET, 1990 Seynes MN 16 BACHELET, 1990 Tourkobounia 1 MN 16 DE BRUIJN & VAN DERMEULEN, 1975 R. frequens KRETZOI, 1959 Gundersheim 4 MN 15 FEJFAR & STORCH, 1990 Ptolemais 3 MN 15 VAN DE WEERD, 1979 Kardia MN 14 VAN DE WEERD, 1979 La Gloria 4 MN 14 ADROVER et al., 1988 Mont Helene MN 14 AGUILAR et al., 1986 Peralejos E MN 14 ADROVER et al., 1988 Rhagapodemus R. hautimagnensis MEIN & MICHAUX, 1970 Ptolemais 1 MN 14 VAN DE WEERD, 1979 Casablanca 1 MN 17 GIL & SESÉ, 1984S. balcellsi GMELING MEYLING & MICHAUX, 1973 Casablanca B MN 17 GIL & SESÉ, 1985 Lo Fournas 13 MN 16 BACHELET, 1990 Perpignan MN 15 BACHELET, 1990 Sete MN 15 BACHELET, 1990 Mont Helene MN 14 BACHELET, 1990 S. donnezani DÉPERET, 1890 Peralejos E MN 14 ADROVER et al. 1988 S. dubari AGUILAR et al., 1991 La Gloria 4 MN 14 ADROVER et al., 1993 Aldehuela MN 15 ADROVER, 1986 Arquillo III MN 15 ADROVER, 1986S. margaritae ADROVER, 1986 Villalba Alta 1 MN 15 ADROVER, 1986 Escorihuela MN 16 VAN DE WEERD, 1976 Escorihuela A MN 16 VAN DE WEERD, 1976S. minor GMELING MEYLING & MICHAUX, 1973 Sarrión MN 16 ADROVER, 1986 Balaruc 6 MN 17 BACHELET, 1990 Lo Fournas 4 MN 17 BACHELET, 1990 Mas Rambault 2 MN 17 BACHELET, 1990 Seynes MN 16 BACHELET, 1990 Stephanomys S. thaleri LÓPEZ MARTÍNEZ et al., 1998 Barranco Quebradas MN 15 SESÉ, 1989 Table 2.- (cont.). Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” Coloquios de Paleontología 242 Vol. Ext. 1 (2003) 237-251 the Phyllotini genera are from HERSHKOVITZ, (1962) and the Animal Diversity Web page from the Universi- ty of Michigan Museum of Zoology (http://www.nmhm.si.edu/tol/ muridae/phyllotini/den- tal.html). They are shown in the Table 5. Analysed variables As for the Murinae, the morphometric variables used in the analysis are all related to the upper first molar (M1), because it is the most diagnostic dental element. The variables included are the following (see Fig. 3): 1. Total length (LM1): the maximum length of the M1 measured in mm. 2. M1 vs. M2 length ratio (%M1): represents the relative length of the M1 respects to the M2 (100*length of M1/length of M2; MISONNE, 1969). 3. Percentage of M1 length vs. total row length (%M1tot): represents the relative length ratio of M1 respects to the total row length (100*length of M1/length of total cheek teeth length). 4. Length/width ratio of the M1 (L/W). 5. Quotient between the length of the M1 occlusal surface (LO) and the total length of the M1 (LO/LM1): this measure gives an indication of the overlapping between dental pieces (VAN DE WEERD, 1976). 6. Compression of the enamel folds (HER- SHKOVITZ, 1962) (com): proportion that represents the Genus LM1 (mm) %M1 %M1tot L/W t1-t2-t3 Ste t7 t1bis Z lab Anisomys 4,3 114 41 1,5 145 0 1 0 1 0 Apodemus 2,0 140 45 1,6 140 1 1 0 1 1 Batomys 2,8 138 43 1,8 140 0 1 0 0 0 Carpomys 4,7 130 42 1,3 130 0 1 0 1 0 Crateromys 5,7 110 37 1,6 150 1 1 0 0 0 Chiropodomys 2,0 130 44 1,6 125 1 1 0 1 0 Eropeplus 3,9 124 40 1,3 140 0 0 0 0 1 Grammomys 2,1 133 47 1,5 155 1 0 0 0 1 Hapalomys 3,6 138 44 1,4 145 1 1 0 0 0 Hyomys 7,4 137 41 1,5 135 1 1 0 0 0 Lenomys 4,6 133 41 1,5 140 1 1 0 1 0 Lenothrix 4,5 136 43 1,6 125 1 1 1 1 0 Mallomys 6,2 111 36 1,2 130 1 0 0 0 0 Micromys 2,1 155 46 1,3 140 1 1 0 0 0 Oenomys 2,6 150 43 1,4 130 1 0 0 1 1 Papagomys 7,0 152 44 1,5 135 0 0 0 0 1 Phloeomys 8,7 156 46 1,6 170 0 1 0 0 0 Pitecheir 4,8 138 44 1,6 125 1 1 0 0 0 Pogonomys 2,5 118 41 1,3 120 0 1 0 1 1 Stenocephalemys 2,5 148 46 1,7 150 1 0 0 0 1 Thallomys 3,1 133 42 1,3 140 1 0 0 0 1 Thamnomys 3,0 132 43 1,5 145 1 1 0 1 0 Tokudaia 2,8 142 46 1,5 140 1 0 1 1 1 Vandeleuria 1,5 146 47 1,7 105 1 1 0 1 1 Vernaya 3,5 134 45 1,3 140 1 1 0 1 0 Castillomys 1,7 146 46 1,4 105 1 0 1 1 0 Huerzelerimys 3,0 136 44 1,6 140 1 0 0 0 1 Occitanomys 2,1 137 44 1,5 120 1 0 1 1 1 Paraethomys 2,6 142 46 1,5 140 1 0 0 1 0 Rhagapodemus 2,3 149 45 1,6 130 1 1 0 1 0 Stephanomys 3,0 146 45 1,4 100 1 0 1 1 1 Table 3.- Values for morphological variables of extinct Iberian Plio-Pleistocene Murinae and extant Murinae genera. Taxonomy on extant taxa according to WILSON & REEDER (1993). For explanation of variables see the text. 1, presence; 0, absence. Tabla 3.- Valores de las diferentes variables morfológicas en Murinae extintos del Plio-Pleistoceno de la Península Ibérica y géneros actuales de Murinae. La taxonomía de los taxones actuales sigue a WILSON & REEDER (1993). Para la explicación de las variables ana- lizadas véase el texto. 1, presencia; 0, ausencia. Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” 243 Coloquios de Paleontología Vol. Ext. 1 (2003) 237-251 mean width of the “triangles” (Wt) regarding the M1 occlusal length (LO). This variable, as the two fol- lowing ones, is an index of the available active occlusal surface. 7. Presence/absence of triangulation (HER- SHKOVITZ, 1962) (trg): presence of circular or oval lophs (0) or more or less triangular shaped elements with apices at crown border (1). 8. Presence/absence of involution (HERSHKOVITZ, 1962) (inv): interpenetration of the enamel folds, over- lapping between internal and external folds (Fig. 4). 9. Presence/absence of lamination (HERSHKOVITZ, 1962) (lam): confluence of the folds of one side of the tooth with those of the opposite side (Fig. 4). Each variable was calculated for every extant genus as the mean value of the constituent species. Those of the fossil genera have been calculated as the mean value of the fossil populations from the studied sites (Table 4). Data on extinct taxa have been obtained from references in Table 4. The values for all variables and all genera are shown in Table 5. CLUSTER ANALYSIS We have used cluster analysis techniques in order to group rodent genera based on dental similarities. Two cluster analyses have been performed, one for the Murinae and another for the hypsodont “Criceti- dae”. In each case, the variables have been standard- ized in order to eliminate differences in magnitude among them. For the similarity analysis we have used the euclidean distance since it is not dependent of magnitude character and it is sensitive to proportion- al and absolute differences (SNEATH & SOKAL, 1973). Genus Species Fossil site References B. meini ADROVER, 1986 Sarrión MN 16 ADROVER, 1986 Moreda 1 MN 16 VAN DE WEERD et al., 1977 Arquillo III MN 15 ADROVER, 1986 Layna MN 15 VAN DE WEERD et al., 1977 Villalba Alta 1 MN 15 ADROVER, 1986 Blancomys B. neglectus VAN DE WEERD et al., 1977 Mont Helene MN 14 AGUILAR et al., 1986 Celadensia C. nicolae MEIN et al., 1983 Peralejos E MN 14 ADROVER et al. 1988 Lo Fournas 13 MN 16 BACHELET, 1990 Aldehuela MN 15 ADROVER, 1986 Arquillo III MN 15 ADROVER, 1986 Sete MN 15 BACHELET, 1990 Villalba Alta 1 MN 15 ADROVER, 1986 R. europaeus DEPÉRET, 1890 Peralejos E MN 14 ADROVER et al., 1988 R. gilvosi ADROVER et al., 1988 Peralejos E MN 14 ADROVER et al. 1988 Ruscinomys R. lasallei ADROVER, 1969 La Gloria 4 MN 14 ADROVER et al. 1993 Aldehuela MN 15 ADROVER, 1986 Arquillo III MN 15 ADROVER, 1986T. castroi ADROVER, 1986 Villalba Alta 1 MN 15 ADROVER, 1986 Lo Fournas 13 MN 16 BACHELET, 1990 Sarrión MN 16 ADROVER, 1986 Orrios 1 MN 15 ADROVER, 1986 Perpignan MN 15 ADROVER, 1986 Sete MN 15 ADROVER, 1986 T. pyrenaicus (DEPÉRET), 1890 Mont Helene MN 14 AGUILAR et al., 1986 Balaruc 6 MN 17 ADROVER, 1986 Balaruc 2 MN 16 ADROVER, 1986 Escorihuela MN 16 VAN DE WEERD, 1976 Escorihuela A MN 16 VAN DE WEERD, 1976 Pla de la Ville MN 16 BACHELET, 1990 Trilophomys T. vandeweerdi BRANDY, 1979 Layna MN 15 ADROVER, 1986 Table 4.- Species and localities of hypsodont “Cricetidae” genera recorded in the Iberian Plio-Pleistocene. Tabla 4.- Especies pertenecientes a los géneros de “Cricetidae” hipsodontos registrados en el Plio-Pleistoceno ibérico y yacimientos analizados en este trabajo. The method used to generate the similarity dendro- gram has been the unweighted pair-group method using arithmetic average (UPGMA). Data analysis has been carried out using the computer program NTSYS-pc version 1.80 (ROHLF, 1993). RESULTS MURINAE The similarity dendrogram obtained for studied Murinae is shown in Fig. 5. The tree shows a signifi- cant consistency regarding the distance matrix from which has been generated (Mantel test; t = 7,388; p = 1,000). The value of the Pearson’s cophenetic corre- lation coefficient (CCC) is 0,721. The studied genera of Murinae can be differenti- ated in seven main groups (Fig. 5). The first group (A) shows an angle with regard to the cusps t1-t2-t3 with values near to 100º, a marked stephanodonty and it has the cusps Z and t1bis, being the only group that presents the latter stucture. The genus Lenothrix (subgroup A1) shows a set of char- acters that differentiate it from the other members of the group (Tokudaia, Occitanomys, Stephanomys and Castillomys; subgroup A2), such as the presence of t7, high length/width ratio, a large M1, and a relative small length of the M1 with respect to the M2 and the total length of the molar row. Group B is characterised by the presence of stephanodonty and cusp t7. Nevertheless it exhibits a great variability, being subdivided in several smaller groups. Members of B1 (Lenomys, Thamnomys, Ver- Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” Coloquios de Paleontología 244 Vol. Ext. 1 (2003) 237-251 Figure 3.- Terminology of the dental elements of the hypsodont “Cricetidae” used in this work, demonstrated in drawings of the right upper tooth row. Length (L) and width (W) are measured as indicated. Explanation in the text (analysed variables). Figura 3.- Terminología de los elementos dentales de los “Criceti- dae” hipsodontos usada en este trabajo, sobre un dibujo de la serie molar superior derecha. Longitud (L) y anchura (W) son medidas como se indica. Explicación en el texto (analysed variables). Figure 4.- M1 occlusal morphology of some Phyllotini showing the morphological patterns associated to the involution and lami- nation processes. Images source: http://www.nmhm.si.edu /tol/muridae/phyllotini/dental.html. Figura 4.- Morfología oclusal del M1 de algunos Phyllotini mos- trando los patrones morfológicos asociados a los procesos de involución y de laminación. Procedencia de las imágenes: http://www.nmhm.si.edu/tol/muridae/phyllotini/dental.html. naya, Chiropodomys and Rhagapodemus) present a relatively small M1/M2 ratio, maintain Z and their labial cusps are less developed that the lingual ones. The genera included in B2 (Pitecheir, Hapalomys and Hyomys) have the longest M1 among the representa- tives of group B, Z is absent and the labial cusps are less developed than the lingual ones. Micromys (sub- group B3) has a large %M1 ratio compared to group B, Z is absent and the labial cusps are smaller than the lingual ones. The subgroup B4 (Vandeleuria and Apodemus) is the most differed subgroup inside B, presenting a very small M1, with a Z present and the labial cusps better developed than the lingual ones. Group C includes genera with stephanodont M1 (except Eropeplus), t7 absent, labial cusps better developed than lingual ones (except Paraethomys), and large angle t1-t2-t3. Three clearly differentiated subgroups are observed. Subgroup C1 (Eropeplus and Thallomys) shows M1 with a small length/width ratio and Z absent. In subgroup C2 (Grammomys, Stenocephalemys and Huerzelerimys) Z is absent as well, but their length/width ratio is high. The sub- group C3 (Oenomys and Paraethomys) has a Z. Batomys constitutes the group D. It has the highest length/width ratio among all the studied genera, it is not stephanodont, cusp t7 is present, while Z is absent. Its labial cusps are smaller than the lingual ones. Group E consists of genera Pogonomys, Car- pomys and Anisomys. Their M1 has about the same length of M2, they are not stephanodont and they have cusp Z. Papagomys and Phloeomys form group F. Their M1 are larger than in the other groups, and the %M1 is among the largest. They are not stephanodont and Z is absent. The group G (Crateromys and Mallomys) has M1 intermediate in size between group F and the rest of groups. The M1 size is similar to that of the M2 and is relatively small with respect to the total tooth row length (compared to other groups). It is stephanodont, and the labial cusps are larger than the lingual ones. “CRICETIDAE” The similarity dendrogram for Phyllotini and extinct hypsodont “Cricetidae” is shown in Fig. 6. Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” 245 Coloquios de Paleontología Vol. Ext. 1 (2003) 237-251 Genus LM1 (mm) %M1 %M1tot L/W LO/LM1 com trg inv lam Andinomys 3,0 124 40 1,4 0,9 9 1 1 0 Auliscomys 2,6 139 44 1,6 0,8 10 0 1 0 Calomys 1,8 147 46 2,3 0,7 4 0 0 0 Chinchillula 3,6 164 48 1,4 0,9 10 1 0 1 Eligmodontia 1,8 143 46 1,4 0,8 10 1 1 0 Euneomys 2,5 137 43 1,4 0,8 13 0 1 0 Galenomys 2,9 147 45 1,2 0,9 13 0 0 1 Graomys 2,6 160 48 1,7 0,6 10 0 1 0 Irenomys 2,9 153 44 1,7 0,8 11 1 0 1 Neotomys 3,0 147 42 1,2 0,8 8 1 1 0 Phyllotis 2,7 158 46 1,5 0,8 11 1 0 0 Reithrodon 2,5 157 45 1,7 0,7 14 1 1 0 Blancomys 4,4 149 46 1,4 0,9 12 0 0 1 Celadensia 2,6 147 46 1,7 0,6 9 1 1 0 Ruscinomys 4,4 150 49 1,6 0,8 11 1 1 0 Trilophomys 3,2 152 48 1,8 0,7 13 1 1 0 Table 5.- Values for morphological variables of extinct Iberian Plio-Pleistocene hypsodont “Cricetidae” and extant Phyllotini genera. Taxonomy on extant taxa according to WILSON & REEDER (1993). Explanation of variables in the text. 1, presence; 0, absence. Tabla 5.- Valores de las diferentes variables morfológicas en “Cricetidae” hipsodontos del Plioceno de la Península Ibérica y Phyllotini actuales. La taxonomía de los taxones actuales sigue a WILSON & REEDER (1993). Para la explicación de las varia- bles analizadas véase el texto. 1, presencia; 0, ausencia. The Mantel test indicate that the tree maintains a sig- nificant consistency regarding the distance matrix from which it has been generated (t = 5,520; p = 1,000). The value of the Pearson’s cophenetic coeffi- cient of correlation (CCC) is 0,768. Calomys shows a very primitive and different morphology from the rest of the studied genera. The other genera have been grouped in three large groups. The first of these groups (A) is characterised by the absence of involution in the M1 and by tooth lam- ination (except Phyllotis). This group combines gen- era with large M1, M1 relatively long compared to M2, and with high LO/LM1. Two subgroups can be distinguished: A1 (Blancomys and Galenomys) char- acterized by the absence of triangulation in the M1, and A2 (Phyllotis, Irenomys and Chinchillula) which has M1 with triangulation and a higher compression degree than A2. In this second subgroup, the %M1 ratio is higher than in A1. The other two groups show involution in the M1 and do not contain lamination. They differ from group A by size and proportions of the M1 (L/W). Group B gathers genera with M1 proportionally large compared both to M2 and to the total length of the molar series, a high length/width ratio and a very low occlusal length/total length ratio. Ruscinomys consti- tutes the subgroup B1 and it differs from the other gen- era by its large size and by its high occlusal length/total length ratio of the M1. The subgroup B2 includes Celadensia, Trilophomys, Reithrodon and Graomys. The group C combines genera with M1 of small size, proportionally small compared to M2 and the Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” Coloquios de Paleontología 246 Vol. Ext. 1 (2003) 237-251 Figure 5.- M1 morphological similarity dendrogram of studied extinct and extant Murinae genera (euclidean distance). Cophenetic corre- lation coefficient = 0,721. The climate types occupied by the extant genera have been included, see Table 1. Groupings of genera con- taining fossil genera are shaded. Taxonomy of extant genera according to WILSON & REEDER (1993). Figura 5.- Dendrograma de similitud morfológica en el M1 de los géneros de Murinae actuales y extintos estudiados (distancia eucli- dea). Coeficiente de correlación cofenética = 0,721. Se han incluido los tipos de clima ocupados por los géneros actuales, véase Tabla 1. Las zonas sombreadas representan las agrupaciones que contienen géneros fósiles. La taxonomía de los géneros actuales sigue a WIL- SON & REEDER (1993). tooth row length and having an occlusal length simi- lar to the maximal one. The subgroup C1 is consti- tuted by the genera Eligmodontia, Neotomys, Aulis- comys and Euneomys. Andinomys form the subgroup C2 that differs from the previous one by its smaller %M1 and %M1/tot ratio, and a higher LO/LM1 ratio. DISCUSSION Assignation of climatic ranges to fossil taxa has been conservative. The range of each of them includes all the climates where similar extant taxa are distributed. In Bioclimatic Analysis (HERNÁNDEZ FERNÁNDEZ, 2001a) stenoic species have a greater influence in climatic inference for a locality than euryoic species. If climatic range assignation is doubtful a more conservative assignation is better for a reliable application of the method. MURINAE Occitanomys, Stephanomys and Castillomys show great morphologic similarity, constituting a group very different from the rest of the Murinae. Diverse authors have verified the phylogenetic proximity of these genera that constitute a monophyletic group with Occitanomys being the root of the other two genera (VAN DE WEERD 1976; VAN DAM, 1996; FREUDENTHAL & MARTÍN SUAREZ, 1999). This line- age has been recorded in the Iberian Peninsula since the latest Vallesian (VAN DE WEERD 1976; VAN DAM, 1997; FREUDENTHAL & MARTÍN SUÁREZ, 1999). In our analyses based on morphometric characters, Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” 247 Coloquios de Paleontología Vol. Ext. 1 (2003) 237-251 Figure 6.- M1 morphological similarity dendrogram of studied extinct “Cricetidae” and the extant Phyllotini genera (euclidean distan- ce). Cophenetic correlation coefficient = 0,768. The climate types occupied by the extant genera have been included, see Table 1. Grou- pings of genera containing fossil genera are shaded. Taxonomy of extant genera according to WILSON & REEDER (1993). Figura 6.- Dendrograma de similitud morfológica en el M1 de los géneros extintos de “Cricetidae” estudiados y los Phyllotini actuales (distancia euclidea). Coeficiente de correlación cofenética = 0,768. Se han incluido los tipos de clima ocupados por los géneros actua- les, véase Tabla 1. Las zonas sombreadas representan las agrupaciones que contienen géneros fósiles. La taxonomía de los géneros actuales sigue a WILSON & REEDER (1993). these three genera are grouped with Tokudaia, an endemic taxon from the tropical deciduous forests of the archipelago of Ryukyu (South of Japan). They are also close to Lenothrix, inhabitant of the evergreen tropical rain forests of Malaysia and Western Indone- sia. Both extant genera inhabit forested biomes of tropical type. Then we could suppose for the three Iberian Plio-Pleistocene genera the occupation of similar ecosystems, probably with a higher affinity to the tropical deciduous forests, indicative of the exis- tence of a winter dry season, as we can deduce from their higher similarity to Tokudaia. Rhagapodemus clusters with Chiropodomys (Southeastern Asia), Vernaya (mountains of the South of China and North of Burma), Thamnomys (mountains of central Africa) and Lenomys (Sulawe- si). This group of extant genera shows preferences for humid tropical and subtropical biomes (evergreen tropical rainforests, tropical deciduous forests and higher altitude temperate evergreen forests). There- fore, in our opinion, Rhagapodemus could have occu- pied similar biomes in Western Europe during the Plio-Pleistocene. In the ecomorphological analysis Huerzelerimys clusters with Stenocephalemys, from the mountains of Ethiopia, and Grammomys, from the sub-Saharan Africa. These genera show a wide climatic distribu- tion including evergreen tropical rainforest, tropical deciduous forest, temperate evergreen forest and savannas. Therefore, Huerzelerimys could have shown a higher climatic tolerance (at least, regarding the pluviometric conditions) than the other Iberian Plio-Pleistocene Murinae. Paraethomys is close to Oenomys, with which it has already been compared by other authors (RENAUD et al., 1999). This latter extant genus inhabits the African evergreen tropical rainforests. Therefore, Paraethomys could have been an inhabitant of the most humid, warm or non-seasonally areas of the Iberian Peninsula during the Pliocene. “CRICETIDAE” Blancomys is clustered with Galenomys, which occupies exclusively the Puna areas in central Andes, which could be considered as a “mountain variety” of the steppe biome (sensu WALTER, 1970). Therefore, Blancomys shows a dental morphology characteristic of an inhabitant of open and probably fresh environ- ments. Celadensia and Trilophomys show the highest simi- larity to Reithrodon. This extant genus is distributed in the steppe and savanna biomes of the Southern South America. Therefore, Celadensia and Trilophomys could have occupied ecosystems whose vegetation con- sisted mainly of herbaceous plants, but probably they had a broader thermal niche than Blancomys. Ruscinomys forms a group with the previously mentioned genera (Reithrodon, Celadensia and Trilophomys) and Graomys. This last genus inhabits steppes and savannas of Patagonia and Pampa as well as the tropical deciduous forests of El Chaco. The similarity of Ruscinomys with this last genus could indicate a stronger preference for forested habitats in the former than in the other Iberian hypsodont “Cricetidae”. PALEOECOLOGY OF IBERIAN PLIO-PLEISTOCENE MURINAE AND HYPSODONT “CRICETIDAE” The extinct genera of hypsodont “Cricetidae” have shown a marked preference to cluster with extant genera inhabitants of biomes in which the open landscapes prevail (steppes and savannas) although Ruscinomys could also occupy tropical deciduous forests. The studied fossil Murinae have dentitions morphologically closer to extant genera inhabiting forested environments (evergreen tropical rainforests, tropical deciduous forests, and temperate evergreen forests) although in some case (Huerzeler- imys) they could also occupy savannas. However, species of both subfamilies appear joint- ly in the fossil sites of the Iberian Plio-Pleistocene. The results presented in this work could indicate a possible ecological segregation among these species (Table 6). The hypsodont “Cricetidae” could have occupied those more open environments (forest gaps, prairies of edaphic origin, etc.) while the Murinae would have occupied forested habitats (forests, river- sides, etc). Nevertheless, the genera Huerzelerimys and Ruscinomys could have been more catholic given the fact that they cluster with extant genera that occu- py both forested and open environments. Problems derived from actualism force us to be cautious. Correlation between dental morphology and climatic ranges could be different in fossil taxa, and climatic ranges of extinct taxa could be unlike those of extant taxa. Thus we have preferred a con- servative approach to the study of climatic ranges of fossil taxa. Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” Coloquios de Paleontología 248 Vol. Ext. 1 (2003) 237-251 Other source for error is the existence of unknown biomes in the past or that modern biomes have dif- ferent characteristics than in the past. This problem is stronger when the age of taxa or localities increases. This possibility must be kept in mind although we think that Plio-Pleistocene biomes have been sub- stantially equal to modern ones (CLIMAP, 1976; PRISM, 1995). Therefore, we admit that some climatic range assignation may be wrong. However, our intention is not to define species as key climatic indicators, thus they must not be used directly as evidences for the climate of localities that contain those taxa. This work is a necessary methodological step for the Bio- climatic Analysis. This methodology is robust against a limited number of errors in the assignations. Influ- ence of small errors associated to wrong assignation of species is weak because the whole fauna (or the rodent fauna) is used for the climatic inference for a locality. Nevertheless, the climatic range assignations inferred in this work for Iberian Plio-Pleistocene Murinae and hypsodont “Cricetidae” would be con- trasted in studies based on other groups (e.g. large mammals). The results will be used to infer climatic conditions on fossil localities based on complete fau- nas (HERNÁNDEZ FERNÁNDEZ, 2001b). ACKNOWLEDGEMENTS Dr. M.A. ÁLVAREZ SIERRA (Universidad Com- plutense de Madrid) is gratefully acknowledged for reading the preliminary versions of the manuscript and their comments on the same one. We thank the referees, Dr. J.A. VAN DAM (University of Utrecht) and Dr. N. LÓPEZ MARTÍNEZ (Universidad Com- plutense de Madrid), for their insightful comments on this manuscript. This study was supported by the Spanish CICYT (PB98-0691-C03-01; PB98-0691-C03-02). One of the authors (M.H.F.) has a postdoctoral grant from the Education Council of the Comunidad Autónoma de Madrid (CAM), financed by the CAM and by the European Social Fund. REFERENCES ADROVER, R. 1986. Nuevas faunas de roedores en el Mio-Plio- ceno continental de la región de Teruel (España). Interés bioestratigráfico y paleoecológico. 423 págs. Instituto de Estudios Turolenses. Teruel. ADROVER, R., MEIN, P. & MOISSENET, E. 1988. Contribución al conocimiento de la fauna de roedores del Plioceno de la región de Teruel. Teruel, 79 (1): 91-151. ADROVER, R., MEIN, P. & MOISSENET, E. 1993. Roedores de la transición Mio-Plioceno de la región de Teruel. Paleontologia i Evolució, 26-27: 47-84. AGUILAR, J.-P., CALVET, M. & MICHAUX, J. 1986. Description des rongeurs pliocènes de la faune du Mont-Hélène (Pyrénées- Orientales, France), nouveau jalon entre les faunes de Per- pignan (Serrat-d’en-Vaacquer) et de Sète. Palaeovertebrata, 16 (3): 127-144. BACHELET, B. 1990 Muridae et Arvicolidae (Rodentia, Mam- malia) du Pliocène du Sud de la France: Systématique, Evo- lution, Biochronologie. 180 págs. Ph.D. Thesis (unpub- lished). Université des Sciences et Techniques du Languedoc. Montpellier. DE BRUIJN, H., DAWSON, M.R. & MEIN, P. 1970. Upper Pliocene Rodentia, Lagomorpha and Insectivora (Mammalia) from the Isle of Rhodes (Greece) (I, II & III). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Serie B, 73 (5): 535-584. DE BRUIJN, H. & VAN DER MEULEN, A.J. 1975. The Early Pleis- tocene rodents from Tourkobounia-1 (Athens, Greece) (I & II). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Serie B, 78 (4): 314-338. BRYANT, H.N. & RUSSELL, A.P. 1995. Carnassial functioning in nimravid and felid sabertooths: theoretical basis and robut- ness of inferences. In: Functional morphology in Vertebrate Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” 249 Coloquios de Paleontología Vol. Ext. 1 (2003) 237-251 Forested environments Catholic Open environments Castillomys Huerzelerimys Blancomys Occitanomys Ruscinomys Celadensia Paraethomys Trilophomys Rhagapodemus Stephanomys Table 6. Ecological segregation of the Iberian Plio-Pleistocene Murinae and “microtoid” Cricetinae. Tabla 6. Segregación ecológica de los géneros de Murinae y Cricetinae “microtoides” del Plio-Pleistoceno ibérico. Paleontology. J.J. THOMASON, Ed. págs: 116-135. Cambridge University Press. Cambridge. CHIMIMBA, C.T., DIPPENAAR, N.J. & ROBINSON, T.J. 1999. Mor- phometric and morphological delineation of southern African species of Aethomys (Rodentia, Muridae). Biological Journal of the Linnean Society, 67: 501-527. CLIMAP PROJECT MEMBERS. 1976. The surface of the Ice-Age Earth. Science, 191: 1131-1137. COLLINSON, M.E. & HOOKER, J.J. 1987. Vegetational and mam- malian faunal changes in the Early Tertiary of southern Eng- land. In: The origin of Angiosperms and their biological con- sequences. E.M. FRIIS, W.G. CHALONER & P.R. CRANE, Eds. págs. 259-304.Cambridge University Press. Cambridge. COLLINSON, M.E. & HOOKER, J.J. 1991. Fossil evidence of inter- actions between plants and plant-eating mammals. Philo- sophical Transactions of the Royal Society of London, B, 333: 197-208. DAAMS, R. & VAN DER MEULEN, A.J. 1984. Paleoenvironmental y paleoclimatic interpretation of micromammal faunal succe- sions in the Upper Oligocene y Miocene of North Central Spain. Paléobiologie continentale, 14 (2): 241-257. DAAMS, R. & VAN DER MEULEN, A.J. 1989. Implicaciones paleo- climáticas y paleoecológicas de las sucesiones de micro- mamíferos en el Neógeno de la cuenca de Calatayud-Teruel. In: Nuevas tendencias en Paleontología. págs. 223-235. E. AGUIRRE, Ed. Consejo Superior de Investigaciones Científi- cas. Madrid. VAN DAM, J.A. 1996. Stephanodonty in fossil murids: a landmark- based morphometric approach. In: Advances in Morphomet- rics. MARCUS, L.F., CORTI, M., LOY, A., NAYLOR, G. & SLICE, D.E. Eds. págs. 449-461. Plenum Press. New York. VAN DAM, J.A. 1997. The small mammals from the Upper Miocene of the Teruel-Alfambra region (Spain): Paleobiolo- gy and paleoclimatic reconstruction. Geologica Ultraiectina, 156: 1-203. EISENMANN, V. & GUÉRIN, C. 1984. Morphologie functionelle et environnement chez les périssodactyles. Geobios, Memoire Special, 8: 69-74. FEJFAR, O. 1999. Microtoid Cricetids. In: The Miocene land mam- mals of Europe. G.E. RÖSSNER, & K. HEISSIG. Eds. págs. 365- 372. Verlag Dr. Friedrich Pfeil. München. FEJFAR, O. & STORCH, G. 1990. Eine pliozäne (ober-ruscinische) Kleinsäugerfauna aus Gundersheim, Rheinhessen. 1. Nagetiere: Mammalia, Rodentia. Senckenbergiana lethaea, 71 (1/2): 139-184. FREUDENTHAL, M. & MARTÍN SUAREZ, E. 1999. Family Muridae. In: The Miocene Land Mammals of Europe. G.E. RÖSSNER & K. HEISSIG. Eds. págs. 401-409. Verlag Dr. Friedrich Pfeil. München. GIL, E. & SESÉ, C. 1984. Micromamíferos del nuevo yacimiento villafranquiense de Casablanca I (Almenara, prov. de Castel- lón). Estudios geológicos, 40: 243-249. GIL, E. & SESÉ, C. 1985. Micromamíferos (Insectivora, Rodentia y Lagomorpha) del nuevo yacimiento villafranquiense de Casablanca B (Almenara, prov. de Castellón). Estudios geológicos, 41: 495-501. GUERRERO-ALBA, S., PALMQVIST, P., MARTÍNEZ-NAVARRO, B. & ARRIBAS, B. 1997. Estudio morfométrico del caballo de Ven- ta Micena (Orce, Granada) y su comparación con los équidos actuales y del Plio-Pleistoceno de Europa y África. In: XIII Jornadas de Paleontología. A. GRANDAL D´ANGLADE, J.C. GUTIÉRREZ MARCO & L. SANTOS FIDALGO, Eds. págs: 189- 192. Sociedad Española de Paleontología. HERNÁNDEZ FERNÁNDEZ, M. 2001a. Bioclimatic discriminant capacity of terrestrial mammal faunas. Global Ecology and Biogeography, 10 (2): 189-204. HERNÁNDEZ FERNÁNDEZ, M. 2001b. Análisis paleoecológico y paleoclimático de las sucesiones de mamíferos del Plio- Pleistoceno ibérico. 378 págs. Ph.D. Thesis (unpublished). Universidad Complutense de Madrid. Madrid. HERSHKOVITZ, P. 1962. Evolution of Neotropical cricetine rodents (Muridae) with special reference to the phyllotine group. Fieldiana: Zoology, 46: 1-524. HOOPER, E.T. 1952. A systematic review of the harvest mice (genus Reithrodontomys) of Latin America. Miscellaneous publications, Museum of Zoology, University of Michigan, 77: 1-255. HOOPER, E.T. 1957. Dental patterns in mice of the genus Per- omyscus. Miscellaneous publications, Museum of Zoology, University of Michigan, 99: 1-59. JANIS, C. 1995. Correlations between craniodental morphology and feeding behaviour in ungulates: reciprocal ilumination between living and fossil taxa. In: Functional morphology in Vertebrate Paleontology. J.J. THOMASON, Ed. págs: 76-98. Cambridge University Press. Cambridge. KAPPELMAN, J. 1991. The paleoenvironment of Kenyapithecus at Fort Ternan. Journal of Human Evolution, 20: 95-129. KAPPELMAN, J., PLUMMER, T., BISHOP, L., DUNCAN, A. & SCOTT, A. 1997. Bovids as indicators of Plio-Pleistocene paleoenviron- ments in East Africa. Journal of Human Evolution, 32: 229- 256. LACOSTE, A. & SALANON, R. 1973. Éléments de Biogéographie. 271 págs. Fernand Nathan. Paris. LIETH, H. 1975 Primary productivity of the major vegetation units of the world. In: Primary productivity of the biosphere. H. LIETH & R.H. WHITTAKER, Eds. págs. 203-215. Springer Ver- lag. Berlin. MARTÍN SUÁREZ, E. & MEIN, P. 1991. Revision of the genus Castil- lomys (Muridae, Rodentia). Scripta Geologica, 96: 47-81. VAN DER MEULEN, A.J. & DE BRUIJN, H. 1982. The mammals from the Lower Miocene of Aliveri (Island of Evia, Greece). Pro- ceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Serie B, 85 (4): 485-524. VAN DER MEULEN, A.J. & DAAMS, R. 1992. Evolution of Early- Middle Miocene rodent faunas in relation to long-term palaeoenvironmental changes. Palaeogeography, Palaeocli- matology, Palaeoecology, 93: 227-253. MICHAUX, J. 1969. Muridae (Rodentia) du Pliocène Supérieur d’Es- pagne et du Midi de la France. Palaeovertebrata, 3: 1-25. MISONNE, X. 1969. African and Indo-Australian Muridae, evolu- tionary trends. Annales du Musee Royal de l’Afrique Cen- trale, Sciences Zoologiques, Serie 8, 172: 1-219. Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” Coloquios de Paleontología 250 Vol. Ext. 1 (2003) 237-251 MONTOYA, P., ALBERDI, M.T., BLÁZQUEZ, A.M., BARBADILLO, L.J., FUMANAL, M.P., VAN DER MADE, J., MARÍN, J.M., MOLINA, A., MORALES, J., MURELAGA, X., PEÑALVER, E., ROBLES, F., RUIZ BUSTOS, A., SÁNCHEZ, A., SANCHIZ, B., SORIA, D. & SZYNDLAR, Z. 1999. La fauna del Pleistoceno Inferior de la Sierra de Quibas (Abanilla, Murcia). Estudios geológicos, 55: 127-161. ODUM, E.P. 1971 Fundamentals of Ecology. 639 pp. Saunders Company. Philadelphia. PALMQVIST, P., ARRIBAS, A. & MARTÍNEZ-NAVARRO, B. 1999. Eco- morphological study of large canids from the lower Pleis- tocene of south eastern Spain. Lethaia, 32: 75-88. PALMQVIST, P., MENDOZA, M. & JANIS, C.M. 2001. Estimating palaeodiet from craniodental morphology in ancient ungu- lates: a multivariate approach. In: XVII Jornadas de la Sociedad Española de Paleontología. G. MELÉNDEZ, Z. HER- RERA, G. DELVENE & B. AZANZA, Eds. Publicaciones del Seminario de Paleontología de Zaragoza, 5: 412-423. PLUMMER, T.W. & BISHOP, L.C. 1994. Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. Journal of Human Evolution, 27: 47-75. PRISM PROJECT MEMBERS. 1995. Middle Pliocene paleoenviron- ments of the Northern Hemisphere. In: Paleoclimate and Evolution, with emphasis on human origins. E.S. VRBA, G.H. DENTON, T.C. PARTIRDGE & L.H. BURCKLE, Eds. págs. 197- 212. Yale University Press, New Haven. RENAUD , S. 1999. Size and shape variability in relation to species differences and climatic gradients in the African rodent Oenomys. Journal of Biogeography, 26 (4): 857-865. RENAUD, S. & VAN DAM, J.A. 2002. Influence of biotic and abiot- ic environment on dental size and shape evolution in a Late Miocene lineage of murine rodents (Teruel Basin, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 184: 163-175. RENAUD, S., MICHAUX, J., JAEGER, J.-J. & AUFFRAY, J.-C. 1996. Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lin- eage. Paleobiology, 22: 255-265. RENAUD, S., BENAMMI, M. & JAEGER, J.-J. 1999a. Morphological evolution of the murine rodent Paraethomys in response to climatic variations (Mio-Pliocene of North Africa). Paleobi- ology, 25 (3): 369-382. RENAUD, S., MICHAUX, J., MEIN, P., AGUILAR, J.-P. & AUFFRAY, J.C. 1999b. Patterns of size and shape differentiation during the evolutionary radiation of the European Miocene murine rodents. Lethaia, 32: 61-71. ROHLF, F.J. 1993. NTSYS-pc, 1.80. Numerical Taxonomy and Mul- tivariate Analysis System. Exeter Software, Nueva York. RUMMEL, M. 1999. Tribe Cricetodontini. In: The Miocene land mammals of Europe. G.E. RÖSSNER, & K. HEISSIG. Eds. págs. 359-364. Verlag Dr. Friedrich Pfeil. München. SCHAUB, S. 1938. Tertiäre und Quartäre Muridae. Mémoires Soci- eté Paleontologie Suisse, 61: 1-38. SESÉ, C. 1989. Micromamíferos del Mioceno, Plioceno y Pleisto- ceno de la cuenca de Guadix-Baza (Granada). Trabajos sobre Neógeno/Cuaternario, 11: 185-213. SNEATH, P.H.A. & SOKAL, R.R. 1973. Numerical Taxonomy. The principles and practice of numerical classification. 573 pp. W.H. Freeman & Co. San Francisco. STRAHLER, A.N. & STRAHLER, A.H. 1987. Modern Phisical Geog- raphy. 550 págs. John Wiley y Sons. New York. VIRIOT, L., CHALINE, J., SCHAAF, A. & LE BOULENGÉ, E. 1993. Ontogenetic change of Ondatra zibethicus (Arvicolidae, Rodentia) cheeck teeth analyzed by digital image processing. In: Morphological change in Quaternary mammals of North America. R..A. MARTIN & A.D. BARNOSKY. Eds. págs. 373- 391. Cambridge University Press. Cambridge. WALTER, H. 1970. Vegetationszonen und Klima. 245 pp. Eugen Ulmer. Stuttgart. VAN DE WEERD, A. 1976. Rodent faunas of the Mio-Pliocene con- tinental sediments of the Teruel-Alfambra region, Spain. Utrecht Micropaleontological Bulletin, Special Publications, 2: 1-217. VAN DE WEERD, A. 1979. Early Ruscinian rodents and lagomorphs (Mammalia) from the lignites near Ptolemais (Macedonia, Greece) (I, II & III). Proceedings of the Koninklijke Neder- landse Akademie van Wetenschappen, Ser. B, 82: 127-170. VAN DE WEERD, A., ADROVER, R., MEIN, P. & SORIA, D. 1977. A new genus and species of the Cricetidae (Mammalia, Roden- tia) from the Pliocene of South-Western Europe. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschap- pen, Serie B, 80 (5): 429-439. VAN DE WEERD, A. & DAAMS, R. 1978. Quantitative composition of rodent faunas in the Spanish Neogene and paleoecological implications (I & II). Proceedings of the Koninklijke Neder- landse Akademie van Wetenschappen, Serie B, 81 (4): 448-473. WILSON, D.E. & REEDER, D.M. 1993. Mammal Species of the World: a taxonomic and geographic reference. 1206 pp. Smithsonian Institution Press. Washington. Hernández Fernández & Peláez-Campomanes Ecomorphological characterization of Murinae and hypsodont “Cricetidae” 251 Coloquios de Paleontología Vol. Ext. 1 (2003) 237-251