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By an application of the geometrical techniques of Lie, Cohen, and Dickson it is shown that a 

system of differential equations of the form x~ri = F; (where r; > 1 for every i = 1 , ... ,n) cannot 
admit an infinite number of pointlike symmetry vectors. When r; = r for every i = 1, ... ,n, upper 
bounds have been computed for the maximum number of independent symmetry vectors that 
these systems can possess: The upper bounds are given by 2n 2 + nr + 2 (when r> 2), and by 
2n 2 + 4n + 2 (when r = 2). The group of symmetries of xlr = ° (r> 1) has also been computed, 
and the result obtained shows that when n > 1 and r> 2 the number of independent symmetries of 
these equations does not attain the upper bound 2n 2 + nr + 2, which is a common bound for all 
systems of differential equations of the formxlr = F(t,x, ... ,xlr - 1 ) when r> 2. On the other hand, 
when r = 2 the first upper bound obtained has been reduced to the value n2 + 4n + 3; this number 
is equal to the number of independent symmetry vectors of the system x = 0, and is also a common 
bound for all systems of the form x = F (t,x,x). 

PACS numbers: 02.30.Hq, 02.30.Jr, 02.20. + b 

I. INTRODUCTION 

This paper should be considered as a continuation of a 
series of papers by the authors, 1 in this and other journals, on 
the fascinating subject of the symmetries of systems of differ­
ential equations. In these papers both the direct and the in­
verse problem concerning the symmetries have been studied, 
as well as certain connections between the symmetry vectors 
and the first integrals of systems of differential equations. 
Although some global results have been obtained, most of 
the results obtained are of a local character. 

In the present paper we obtain, following the geometri­
cal and local techniques contained in the classical treatises of 
Lie and Scheffers, Cohen, and Dickson,2 upper bounds for 
the number of independent pointlike symmetry vectors of 
differential equations of the form 

xlr = F(t,x, ... ,xlr -I), (i) 

where r> 1 andx stands for (xl, ... ,xn ). The case r = 1 has not 
been studied, since it is well known-see, for instance, the 
first and fourth papers quoted in Ref. I-that when r = 1 the 
number of independent symmetries is always infinite. 

We obtain in Sec. III the upper bound 2n 2 + nr + 2 
(r> 2), as well as the number of independent symmetry vec­
tors of the systemxlr = 0, which is given by n2 + nr + 3, and 
the explicit expression of them. Since 2n 2 + nr + 2 is greater 
than n2 + nr + 3 when n > 1, the problem arises of knowing 
whether or not the upper bound 2n2 + nr + 2 is attained by a 
system of differential equations of this type, when n > 1. 

Similarly, for a system of the form x = F(t,x,x), we ob­
tain in Sec. IV the upper bound 2n2 + 4n + 2, which is re­
duced in Sec. V to n2 + 4n + 3 by using a remarkable prop­
erty ofthe projective group. This last upper bound is attained 
by the system x = 0, whose symmetry group is the projective 
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group of pointlike transformations of the space [(t,x)]. 
When n = 1, i.e., when only a single differential equa­

tion is considered, the upper bounds obtained reduce to 
r + 4 (when r> 2) and 8 (when r = 2). These two results are 
classical and well known, and the proof we give of them in 
Sec. II tries only to be a bit more careful than the classical 
proofs, at the same time preparing the reader for a clearer 
understanding of the more complicated case of a normal sys­
tem of differential equations of the form 

x~r, = F;. r; > 1, Vi = 1, ... ,n. (ii) 

As is shown in Sec. VI, a system of this type possesses only a 
finite number N(n;rl,. .. ,rn) of independent symmetry vec­
tors, and this number grows without limit when either n or 
some of the r;'s tend to infinity. The conclusion is that a 

system of differential equations of the type x:r, = F;, with 
r; > 1 for every i, does not admit a Lie group (in the general­
ized sense of a group of transformations with an infinite 
number of essential parameters) as its symmetry group. 

The reader should consult the classical treatises cited in 
Refs. 2 and 5 for most of the definitions and the notation 
used here, as well as the first three papers of this series cited 
in Ref. 1. 

II. MAXIMUM NUMBER OF INDEPENDENT SYMMETRY 
VECTORS OF A DIFFERENTIAL EQUATION OF ORDER 
r> 1 

In order that the reader can follow us without difficulty 
in the more complicated case of a normal system of differen­
tial equations, it is convenient to treat first the relatively 
simple case of a single differential equation of the form 

Xlr = F(t,x,;x, ... ,xlr -I). (1 ) 

We remind the reader that when r = 1 Eq. (1) always 
possesses an infinite number of independent symmetry vec-

2006 J. Math. Phys. 24 (8), August 1983 0022-2488/83/082006-16$02.50 © 1983 American Institute of Physics 2006 

Downloaded 10 May 2011 to 147.96.22.210. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



tors. I On the contrary, when r> 1 Eq. (1) does not admit, in 
general, pointlike families of symmetries of the form 

t' = t + €.a(t,x), 

x' = x + €·b (t,x). 
(2) 

In particular, when r = 2, one can even classify I all the 
differential equations of the form 

x =F(t,x), (3) 

admitting at least one symmetry vector of type (2) different 
from zero. 

Moreover, concerning the pointlike symmetry vectors, 
it is a classical result that when r> 1, Eq. (1) admits no more 
than eight symmetry vectors (if r = 2) and no more than 
(r + 4) if r > 2. The proof of this result, or at least the funda­
mental ideas behind it, can be found in the classical treatises 
of Lie, Cohen and Dickson.2 For the sake of completeness, 
we present here a proof of this classical result, which tries to 
be a bit more careful than the one presented by the above­
mentioned authors, and at the same time prepares the reader 
for the more complicated case of a normal system of differen­
tial equations of the following type: 

xir
; = F;. rj > 1, Vi = l, ... ,n, (4) 

where the smooth functions F j appearing in (4) depend, of 

h . bl (" - I (r. - 1 course, on t e vana es t;XI,. .. ,x1 ;Xn, ... ,xn 
We begin by studying the case r> 2: 
(a) Consider the unique solution tP (t; A) of (1) corre­

sponding to the initial conditions (to,xo, ... ,x~ - 2; A ), and let 
PI = (tl,xl = tP (ttl), with tl sufficiently close to to, and 

tP (t) = tP (t;x~- I) (5) 

for an arbitrary, but fixed, x~ - I. We shall now show that for 
certain neighborhoods UI of PI and II of x~ - I there exists a 
unique smooth (i.e., C'X» function 01:Ur-+II satisfying 

(i) 01(PI ) = x~- I; 

(ii) If P = (t,x)EUI and x(r -IE II' then 

tP (t;X(r -I) = X iffx(r -I = OI(P), 

That is, through every point of UI there passes a unique 
integral curve of (1) whose (r - 1 )th derivative lies on II hav­
ing a contact of order (r - 2) at Po = (to,xo) with the integral 
curve Yo of (1) corresponding to the initial conditions 
(to,xo, ... ,x~- I). 

The proof follows from the fact that, regarded as func­
tions of t and of the initial conditions to,xo, ... ,x~- I, the solu­
tions of (1) are Coo functions, provided only that the function 
F appearing in (1) is, as we shall assume throughout this 
paper, a Coo function of its variables. Therefore, tP (t;Jt ) will be 
also smooth in t andA, and since the triplet (tl,XI,x~- I) satis­
fies the equation 

x = tP (t;Jt), (6) 

in order to complete our proof, it suffices to show that for t I 
sufficiently close to to the "transversality condition" 

atP I #0 (7) 
aA (t,.xg"-') 

holds; indeed, if this were the case, the implicit function 
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theorem3 applied to (6) in a neighborhood of the point 
(t I ,x l,x~ - I) would yield A as a smooth function ° I of the 
variables t and x. 

Now, one can obviously write 

tP (t;Jt) = Xo + ;(o(t - to) + ... + x~- 2(t - to)'- 2 /(r - 2)! 
+ A (t - to)'- I /(r - I)! + (t - to)' R (t,A.), (8) 

R (t,A. ) being a Coo function of t and A near (to,x~- 1).4 
Therefore, one can also write 

atP (t - to)' - I ( )r aR - = + t-to -
aA (r- I)! aA 

and, accordingly, 

(9) 

This last expression guarantees that (7) holds provided 
only that one chooses t I # to satisfying 

I(t l - to)·RII < 1/(r - I)!, (11) 

which is possible since R is continuous (COO in fact). 
Summarizing, the implicit function theorem applied to 

(6) yields the unique smooth function ° I satisfying conditions 
(i) and (ii) above. 

(b) Let now tPl(t;Jt ) be the maximal solution oft 1) corre­
sponding to the initial conditions (tl,xl, ... ,xr- 2;Jt ), where 

X\k = tP (k(t l ) (12) 

and tP (t) is the function defined by (5). Choosing now a third 
point P2 on Yr:flUI sufficiently close to PI' and repeating the 
construction sketched in (a) with Po and PI replaced respec­
tively by PI and P2, we obtain a second function 02:U2-I2 
satisfying: 

(a) 02(P2) = xr - IE 12; 
(b) If P = (t,x)EU2 and x(r -IEl2, then 

tPI(t;x(r-I)=x iff x(r-I=02(P), 

Since U = UlnU2 #0and UC UI, themappingO:U_II XI2 

defined by 

R---+O (P) = (OI(P ),02(P)) (13) 

is such that, given any two integral curves of (1), YI = (t,nt)) 
and Y2 = (t,f2(t I), having a contact of order (r - 2) with Yo, 
respectively, at Po and PI and satisfying 

Jt-l(tO)ElI, J1'-I(t l)El2, (14) 

then YI and Y2 will pass through a point FEU if and only if 

(ft-l(tO),f1'-l(ttl) = O(P). (15) 

(e) Let now Uo be an open subset of (UlnU2) - Yo: If 
PEUo, then P will be an isolated point ofYlnr2 [where YI and 
Y 2 are, of course, the curves defined in (b) passing through P ]. 

In fact, if this were not the case one could immediately 
write 

(16) 

where P = (tp,xp ). Clearly, we can restrict ourselves to the 
case to < tp < tl VPEUo' We then defineJ(t) as follows: 
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f(t) = !fl(t) when t<tp, 
V2(t) when t-;.t p. 

(17) 

Then condition (16) guarantees thatf(t ) is a Coo function in 
some interval J-::J (to,t tl such that 

flr-I(to) =ft-l(tO)ElI. (18) 

Therefore, thecurvey = ! (t,f(t)) J isan integral curve of 
(1) having a contact of order (r - 2) with Yo at Po and passing 
throughPIEU1: Hence (18) and the properties of the function 
OJ [see (i) and (ii) above] imply that 

(19) 

It follows, by uniticity, thatf(t) = </J (t) and, in particular, 
PEYo, contrary to the definition of Uo. 

Therefore, one can safely assume that, for every PEUo, 
YI and Y2 meet transversally at P, that is, 

fIIS(tp)#fiS(tp), for some s, O<s<r. (20) 

The results obtained in Sec. II(a)-(c) imply the existence 
of an open neighborhood Uo near Po having the following 
property: Through every point P of Uo it is possible to draw 
two integral curves of (1), YI and Y2' such that Pis isolated in 
YlnY2 and in addition YI and Y2 have a contact of order 
(r - 2) with Yo, respectively, at Po and PI' 

(d) Assume now the S is a pointlike symmetry vector of 
(1) such that any integral curve of (1) having a contact of 
order (T - 2) with Yo either at Po or PI is invariant under the 
local one-parameter group of transformations generated by 
S. That is, the graph! (t,f(t )) J corresponding to any solution 
fIt ) having this property will be left invariant by any member 
g of the local one-parameter group G generated by S. 

Under these circumstances, YI and Y2 will be invariant 
under G and, accordingly, the same thing will happen with 
YlnY2' Now, since P is isolated in y 1nY2' P will be left invar­
iant under the action of any gEG sufficiently close to the 
identity transformation, by continuity. This proves that S 
vanishes at P: since P was an arbitrary point of Uo, we con­
clude that S vanishes on Uo. 

(e) Let us now compute the number of conditions suffi­
cient in order that any integral curve of (1) having a contact 
of order (r - 2) with Yo at Po or PI be, as a subset of R 2, 

invariant under the local one-parameter group G generated 
by S (in short, under S). 

If S is given by 

a a 
S = 'P(t,x) - + t,b(t,x) -, (21) 

at ax 
then sir - I) , the extension ofS to the variables t,x,x, ... ,xlr -I, 
will be given by 

sir-I) =S+ 'il 

t,bi~, 
I~ I ax 

where 

tiP = t/J by definition 

and, of course, 

2008 J. Math. Phys., Vol. 24, No.8, August 1983 

(22) 

(23) 

.!!.... = ~ +x~ + ... +xlk_a_ + .... 
dt at ax axlk - I (24) 

First of all, we notice that a sufficient condition in order 
that an integral curve of( 1), Y = {(t,x(t)) J, be invariant under 
S is that Sir - I) vanish on its initial conditions 
(to,x(to), ... ,xlr - I (to)), since S is by hypothesis a symmetry 
vector of(1). Therefore, in order that S leave invariant any 
integral curve of (1) having a contact of order (T - 2) with Yo 
at Po or PI it will be sufficient that 

(25a) 

and 

(25b) 

hold for every value of Xl' - I . 
Conditions (25a) are clearly equivalent to the following 

set of (r + 1) equalities: 

'P(to,xo) = 0, 

t,b(to,xo) = 0, 

t/JI(to,xo.xo) = 0, (26) 

t,b' - 2 (to'xo, ... ,x~ - 2) = 0, 

t,br- l(to'XO""'x~- 2,xl'- 2) = 0, VXlr-IER, 

where the functions t/Ji were defined by (23). Since, for i> 1, 
the functions t/Ji are easily seen to have the following affine 
structure, 

t,bi = A;(t,x, ... ,XIi-I)Xli + Bi(t,x, ... ,Xli - I), (27) 

conditions (26) are equivalent to the following set of (r + 2) 
equations: 

'P (to,xo) = t/J(to,xo) = t/Ji (to'xo, ... ,x~) = 0, 

i = 1, ... ,r - 2, (28) 

A, _ I (to,xo, ... ,x~ - 2) = B r _ I (to,xo, ... ,Xb - 2) = ° 
[notice that r> 2 by hypothesis, and therefore r - 1> 1 im­
plies that t,b' - I has indeed the affine structure (27) with 
i=r-l]. 

Conditions (25a), and hence (28), imply (as has been re­
marked above) that any integral curve of (1) having a contact 
of order (r - 2) with Yo at Po is invariant under S. In particu­
lar, if(28) holds, then Yo itselfis invariant under S. and there­
fore S has to be parallel to the tangent vector to Yo on every 
point of YO' that is, 

[
a. a ] Sp =a(t) - +</J(t)-
at ax 

(29) 
v P = (t,</J (t ))EYo 

for some Coo function a(t ); by setting equal the coefficients of 
a/at in both members of (29), we conclude that a(t ) = 'P (P) 
and therefore 

[
a. a ] Sp = 'P(P) - + </J(t)-
at ax 

v P = (t,</J (t ))EYo' (30) 

Therefore, in order that PI be invariant under S a single 
condition suffices, namely, 
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cp(tl,xd = o. (31) 

When this last condition holds, the invariance of Yo un­
der S implies that any linear element of order k at PI' 
(tl,xl, ... ,x\k), is invariant underS(k), for every valueofk. Con­
sequently, 8(k) vanishes at the point (tl,xl, ... ,x\k) for every 
value of k, in particular for k = l, ... ,r - 1; hence we have 

1//(tl,XI, ... ,xi[) = 0, i = 1, ... ,r - 2, 
(32) 

A ( (r - 2) (r - 1 + B (t (r - 2) - 0 r- I tl,XI'''''X I 'X I r-I l>""X I -

as a consequence of (28) and (31). Therefore, in order that 
(25b) be also satisfied, only one additional condition is suffi­
cient (and not two, as it would seem), namely, 

Ar_ I (tl,xl'''',x((- 2) = O. (33) 

Indeed, using the last Eq. (32), we get 
(32) 

Ar_ Ix1r-1 + Br_ I = Ar_ 2(X(r- 1 - X((-I) = 0 (34) 

for every value of x(r - 1 if and only if (33) holds [of course, 
Ar_ I and Br_ I have to be evaluated at (tl,xI, ... ,Xr- 2) in 
(34)]. 

Therefore, the (r + 4) conditions (28), (31), and (33) are 
sufficient in order that any integral curve of (1) having a 
contact of order (r - 2) with Yo at Po or PI be invariant under 
the symmetry vector of (1), S given by (21). 

(t) Let us show finally that, when r> 2, Eq. (1) does not 
admit more than r + 4 linearly independent symmetry vec­
tors. 

Indeed, suppose that SI,,,,,Sr+ 5 are r + 5 symmetry 
vectors of (1). Since the conditions in order that a vector field 
be a symmetry vector of (1) constitute a system of linear 
partial differential equations, any linear combination 

r+ 5 

X= I CiSi (35) 
i= 1 

ofSI,,,,,Sr+ 5 will also be a symmetry vector of (1). 
On the other hand, conditions (28), (31), and (33) are 

easily seen to be linear in the components of the vector field 
S, by the linearity of the functions 1// in these components. 
Therefore, imposing that X satisfy conditions (28), (31), and 
(33), we obtain a linear and homogeneous system of r + 4 
algebraic equations in the unknowns CI, ... ,Cr + 5' whose coef­
ficients are real numbers depending on the vector fields 
SI,,,,,Sr + 5 and on the fixed values of (to,xo'''',x~ - 2) and 
(t I'X 1, .. ·,xl( - 2). Since the number of equations in this system 
exceeds the number of unknowns, it has a nontrivial solution 
c~ , ... ,c~ + 5' and, consequently, the vector field 

r- 5 

Xo = I C?Si (36) 
i= 1 

will satisfy conditions (28), (31), and (33). Hence Xo must 
vanish on Uo, the open set defined in H(c), and, consequently, 

r + 5 

L cJSj = 0 (37) 
j~ I 

on Uo, implying that SI,,,,,Sr_ 5 are linearly dependent on 
Uo, contrary to our initial assumption. This completes the 
proofthat for r> 2 there are at most (r + 4) independent 
symmetry vectors of (1). 

2009 J. Math. Phys., Vol. 24, NO.8, August 1983 

(g) The case r = 2 must be considered separately, since 
for i = 1 the affine structure of tf/ , given by 

1// = Ai(t,x, ... ,X(i- I~(i + B;(t,x, ... ,xli- I) (38) 

is no longer valid, and therefore the previous reasonings fail. 
Indeed, we are going to see that the maximum number of 
independent symmetry vectors of (1) is equal to eight when 
r=2. 

In order to prove this statement, we start from the 
expression ofS I, the first extension ofS: 

8
1 = 8 + [¢I" + (¢I,x - CP,,)X - Cp,x _X2] ! . (39) 

The line element (to,xo,x) will be invariant under SIVx 
provided that the following five conditions are satisfied: 

cplpo = ¢llpo = 0, 
(40) 

¢I"lpo = (¢I,x - cp,,)lpo = Cp,x Ipo = 0, 

where Po = (to,xo) as before. Denoting again by<p (t) thesolu­
tion of the differential equation 

x = F(t,x,x), (41) 

corresponding to the initial conditions (to,xo,xo), only one 
condition is now sufficient in order that a second point 
PI = (tl,xd chosen on the integral curve of(41) associated to 
the solution <p (t ) be invariant under the symmetry vector S of 
(41), namely, 

cp(Pd = 0 (42) 

exactly as in Sec. II(e). 
When (40) and (42) are satisfied, bothP) and the integral 

curveyoof(41) associated with the solution <p (t ) are invariant 
under S, and, consequently, the line element (t),<p (t)),¢ (t.)) 
will be also invariant under S I. The following relation is 
therefore automatically satisfied: 

¢I"lp, = - (¢I,x - cp,,)lp,¢ (t l ) + cp,x Ip} 2(t)), (43) 

leading to 

S)I(I"x",;:) =Slp, + (¢I,x -cp,I)lp,(x-x.) 

I (. 2 . 2) +cp,x p, XI -X , (44) 

where X) =¢(t)). 
If one now imposes on S) the two additional conditions 

(45) 

then any line element of the form (t),x),x) will be left invar­
iant by SIVx. 

Consequently, the eight conditions (40), (42), and (45) 
replace the (r + 4) conditions obtained when r> 2, and, 
therefore, by the reasoning following in Sec. II(t), we con­
clude that Eq. (41) has at most eight independent symmetry 
vectors. 

(h) We shall see in this section that the upper bounds on 
the number of independent symmetry vectors of Eq. (1) ob­
tained above cannot be improved. Indeed, it is a standard 
result5 that for r = 2 the equation 

x =0 (46) 

has exactly eight independent symmetry vectors; on the oth­
er hand, we are going to prove now that the equation 
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(47) 

has exactly r + 4 independent symmetry vectors when r> 2. 
Thus the upper bounds obtained above are actually attained 
by (47) for every r>2 and therefore cannot be improved. 

Let us prove that (47) has exactly r + 4 independent 
symmetry vectors when r> 2. 

Indeed, calling sn the nth extension of S, we have 

sn = q; (t,x)!-. + ¢r(t,x) ~ + ¢rl(t,x,x) ~ + ... 
at ax ax 

+ ¢rn (t,x, ... ,xin
) ~ • (48) 

axin 

It is easy to verify that the following identity holds: 

¢I = di¢r _ ± (i)XIi - k+ I dkq; . (49) 
dt' k~ I k dt k 

The condition to be satisfied in order that Eq. (1) admit 
S as a symmetry vector can be written in compact form as 
follows: 

sr(xir _ F) = 0 if xir - F(t,x, ... ,xir - I) = 0, (50) 

i.e., the subset of the space {(t,x .... ,xir ) J defined by 

xlr _ F(t,x, ... ,xlr- I) = 0 (51) 

must be invariant under the rth extension of S. 
For the particular case ofEq. (47), condition (50) reads 

sr(x(r) = 0 if xir = 0, (52) 

that is, 

¢rr (t,x, ... ,x(r - I ,0) = o. (53) 

Taking into account the structure of ¢ri , given by (49), 
Eq. (53) reduces to 

[ dr~ _ i (r)x1r - k+ 1 dk~] =0. (54) 
dt k ~ I k dt xlr ~ 0 

Let us see now that (54) has indeed (r + 4) independent 
solutions (q; (t,x),¢r(t,x)). 

In order to show this, consider first the solutions of (54) 
with q; = 0 given by 

tf(t,x) = clx + Cz + C3t + ... + c r + I t r
- I, 

(55) 
q;(t,x) = O. 

These particular solutions of (54) provide a set of(r + 1) 
independent symmetry vectors of (47). 

Next, since (54) is freefrom~ [the coefficient of ~ in (54) 
being x lr , which must be set equal to zero], another solution 
of (54) is obviously given by 

~ = a, aeR, ¢r = 0, (56) 

that is, 

(57) 

We have therefore (r + 3) independent solutions of (54), 
given by (55) and (57). The additional independent solution 
of (54) is easily found taking into account the identity 

dP(tx) = tx(p + (P)X(P-I, pEN, 
dtP \1 

(58) 

whence we get 
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dr(tx) I =rx1r-l. 
dt r x[r~o 

(59) 

Therefore, if we look for a symmetry vector having the struc­
ture 

a a s = tx - + q; (t,x) - , 
ax at 

the following relation should be satisfied by qJ(t,x): 

Ir - 1 (r) Ir _ I .. (r). d r q; 0 
rx - 2 x q; - ." - r x dt r = . 

A particular solution of(61) is obviously 

q;=tz/(r-l). 

(60) 

(61) 

(62) 

Multiplying q;(t,x) = t z/(r - 1) and ¢r(t,x) = tx by the factor 
(r - 1), we arrive at the following solution of (54): 

q; = t z, ¢r = (r - l)tx, (63) 

which is clearly independent of the other (r + 3) solutions of 
(54) previously found, given by (55) and (57). 

Therefore, (54) has at least r + 4 independent solutions 
(55), (57), and (63), and hence (47) has at least r + 4 indepen­
dent symmetry vectors: since for r> 2 it has at most r + 4 
independent symmetry vectors, as we proved in Sec. II(f), it 
follows that (47) has exactly r + 4 independent symmetry 
vectors when r> 2. 

The reader should notice that these (r + 4) symmetry 
vectors do behave, under the Lie-Jacobi bracket, as the gen­
erators of a Lie group. That is, one can write 

r+ 4 

[S;'Sj] = L C7j Sk' i,} = 1, ... ,r + 4. (64) 
k=1 

This property follows from the fact that ifSi and Sj are 
two symmetries of (1), then the same thing will happen also 
with their Lie-Jacobi bracket lSi ,Sj]. 

Indeed, the condition that Sk be a symmetry vector of 
(1) can be written as follows6

: 

[S~-l,X] =fdt,x, ... ,x(r-I)X, (65) 

X being the vector field canonically associated with Eq. (1): 

X =!..- + x ~ + ... + F(t,x, ... ,x(r- I) _(a I . (66) 
at ax ax r-

On the other hand, we have the following identity7: 

[A,B]P = [AP ,BP
], pEN, (67) 

where A and B are arbitrary vector fields. 
Therefore, since Si and Sj are by hypothesis symme­

tries of (1), we have 
(67) 

[[Si ,Sj Y -\ ,X] = [[S; - 1 ,Sf - I],X] 

= (Jacobi's identity) - [[S;- I,X],S;- I] 

_ [[X,S; - I],S; - I] 
165) 

= _ [./j X,S; - I] + [/; X,S; - I ] 

(65) 

=./j(/;X) + (S;-I./j)X 

- /;(./jX) - (S;- ~)X 

=gijX, (68) 
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with 

(69) 

Hence the Lie-Jacobi bracket [Sj ,Sj] satisfies (65) and is 
therefore a symmetry vector of (1). 

It easily follows that [Sj ,Sj] must be a linear combina­
tion ofSI, ... ,S, + 4' since if this were not the case (47) would 
have r + 5 independent symmetry vectors: SI""'S, + 4 and 
[Sj ,Sj]' contrary to what has been already proved in Sec. II(t) 
(since r> 2). Obviously, the same conclusion holds for Eq. 
(46). 

III. MAXIMUM NUMBER OF INDEPENDENT SYMMETRY 
VECTORS OF THE SYSTEM x(r = 0 (r> 2) 

We show in this section that a system of differential 
equations of the form 

xl' = F(t,x, ... ,xl'- I), 
(70) 

x = (xI, ... ,xn )ERn, FEeoo
, and r> 2, 

does not admit more than 2n2 + nr + 2 independent sym­
metry vectors. It would be nice to produce an example of a 
system of differential equations of the form (70) with n > 1 
possessing this maximum number of independent symmetry 
vectors. Unfortunately, the system 

Xl' = 0, r> 2, (71) 

has only n2 + nr + 3 independent symmetry vectors, which 
is equal to the previously quoted upper bound 2n2 + nr + 2 
only when n = 1. Therefore, the open problem remains of 
either showing that the system xl' = ° has more independent 
symmetry vectors than any system of type (70)-in which 
case the number 2n2 + nr + 2 should be substituted by the 
number n2 + nr + 3 as an upper bound on the number of 
independent symmetry vectors of (70)---or of producing a 
concrete example of a differential system of type (70) with the 
maximum number s of independent symmetry vectors 
(n 2 + nr + 3 <s<2n2 + nr + 2). 

(a) Let Yo be the integral curve of (70) corresponding to 
the initial conditions 

(72) 

and PI = (tl,X I) be a point on Yo sufficiently close to 
Po = (to,xo). By a reasoning completely similar to that fol­
lowed in Secs. II(a), (b), (c), one can prove that there exists an 
open neighborhood UCR XR n near Po such that through 
every point P of U it is possible to draw two integral curves of 
(70), YI and Y2' with the following two properties: 

(i) YI and Y2 have a contact of order (r - 2) with Yo, 
respectively, at Po and PI' 

(ii) P is isolated in Ylnr2' 
(b) Assume now that the vector S defined by 

a n a 
S = (j?(t,X) - + L t/Jj (t,X) -

at j= I aX j 

(73) 

is a symmetry vector ofEqs. (70). Ifwe were able to construct 
S in such a way that any integral curve of (70) having a con­
tact of order (r - 2) with Yo either at Po or PI be invariant 
under the local one-parameter group G generated by S, then 
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in particular the two paths YI and Y2 considered above would 
be invariant under G, and, consequently, 

(74) 

But, by construction, Pis isolated in YlnY2; therefore, we can 
write 

g(P)=P (75) 

for any gEG sufficiently close to the identity transformation. 
Hence S must vanish at P, and, since P was an arbitrary point 
of U, we conclude that S is identically zero on U. 

(c) Let us now show that in order that any integral curve 
of (70) having a contact of order (r - 2) with Yo at Po or PI be 
invariant under S, 2n2 + nr + 2 linear conditions on S suf­
fice. 

First, we must impose that the linear element of order 
r-l 

(76) 

be invariant under S' - I for every value of xl' - I, that is, 

Condition (77) can be written in detail as follows: 

(j? (to,xo) = 0, 

,jJ(to,xo) = 0, 

"'k (to,xo,oo.,xli') = 0, k = 1,00.,r - 2, 

",'-I(to,xo,00.,x~-2,xl'-I) = 0, 'Vxl'-IER n, 

(77) 

(78) 

where, of course, ",k = (t/J~ ,oo.,t/J~). Taking into account the 
identity [analogous to (49)] 

d ,-I.I, 
t/J~-I = 'Pj 

dt'- I 

_ ~ x l.'- k _T'_ 
,- I (r - 1) d km 

k~1 k I dt k ' 
i = 1,00.,n (79) 

and the structure of dkj Idtk , given by 

d kj _ ~ aj Ik Ik _ I 
-k - L -Xj +B(t,x,oo.,X ), 
dt j=laXj 

(80) 

f (t,x)f--+j(t,X)EIR., 

we conclude that t/J~ - I has the following affine structure: 
n 

.1,' - I _ ~ A (t . )xl' - I B ( I, - 2) '/'j - L jj ,x,x j + j t,x,oo.,x , 
j=1 

A = at/Jj _ x a(j? _ (r _ 1) d(j? 8 
IJ a I a d IJ' 

Xj Xj t 

provided that r - 1> 1, i.e., r> 2. 

(81) 

Therefore, taking (81) into account, (78) is equivalent to 
the following set of n2 + nr + 1 linear conditions on the 
components of S: 

(j?(to,Xc) = t/Jj (to,Xc) = 0, 

t/J7(to,xo,00.,~k) = 0, 

Aij(to,xo,xo) = 0, 

B;(to,xo,oo.,x~ - 2) = 0, 

i,j = 1,00.,n, k = 1,00.,r - 2. 

(82) 

Next, in order to assure that the linear element at PI 
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(tl,XI, ... ,xr-2,Xlr-I), X\k = ~Ik(td, (83) 

is invariant under sir -I for every value ofxlr -I [where~(t) is 
of course the solution of (70) corresponding to the initial 
conditions (to,xo, ... ,xg--I)] we must impose that 

(84) 

Now, ifS satisfies conditions (82), then the integral 
curve ro will be invariant under S, since S is by hypothesis a 
symmetry vector of (70). Therefore, S must be parallel to the 
tangent vector to r 0 on every point of r 0' that is, 

[an a ] Sp =<p(P) - + L cp;(t)- , 'v'P=(t,~(t))Ero' 
at ;=1 ax; 

(85) 

Consequently, PI will remain invariant under S if 

(86) 

This last condition automatically implies that the linear 
element at PI 

(tl,XI, ... ,X\k) (87) 

is invariant under Sk for every value of k; therefore, for 
k = r - 1 we have, taking into account (81); 

n 

B;(t l ,x\, ... ,xr- 2
) = - L A;j(t\,XI,X\)xI;-I, 

j=1 

i = 1, ... ,n. (88) 

Consequently, the linear element (83) will be invariant 
under sr - I if 

n 

L Aij(t\,xl,xd(xY- 1 
- X~-I) = 0, i = 1, ... ,n, 

j=1 

xlr -I = (xr-I, ... ,x~-I), (89) 

xr- I = (Xrl-I, .. ·,xrn- I). 

Since (89) must hold for every value of xlr -I, we must 
finally impose that 

Aij(tl,xl,xd = 0, i,j = 1, ... ,n. (90) 

The 2n2 + nr + 2 equations (82), (86), and (90) guaran­
tee that any integral curve of (70) having a contact of order 
(r - 2) with ro at Po or PI be invariant under the symmetry 
vector of (70) S. The linearity of these equations in the com­
ponents ofS is a direct consequence of the linearity of sir -I. 

(d) We shall now compute the maximum number of in­
dependent symmetry Vt;ctors of the system 

Xlr = 0, X = (x ", .. ,xn ), r> 2. (91) 

By the reasoning given in Sec. 11th) they will automatically 
close as a Lie algebra under the Lie-Jacobi bracket. 

The necessary and sufficient conditions in order that 
the vector field 

a n a 
S = <p(t,x) - + L tP; (t,x) -

at ;=1 ax; 
be a symmetry vector of (91) can be written as follows: 

",r lx" = 0 = 0 (92) 

or, taking into a account (79), 
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± (r)x~r-k+1 dk~1 =0. 
k = 2 k dt x" = 0 

i = 1, ... ,n. (93) 

At this point it is important to have in mind the structure of 
dSI(t,x)ldf, which can be shown to be 

dj 
dtS 

n 

X L 
itt ...• i p = 1 

Irl = rl + ... + rp, rl <r2 < ... <rp' c;, ... rpEN. (94) 

An immediate consequence of (94) is that a term of the form 
x~r- IXj cannot appear in (93) from the development of dr tP;I 
dtr- I, since (r + 1) + 2 = r + 1> r. A term of this type can 
only arise, therefore, from the expressions 

_(r)xlr_ l d
2

<p (r )dr-I<p (95) 
2 I dt 2 ' r - 1 dt r - I 

also appearing in (93). These two terms are different when 
r - 1 =/= 2, i.e., when r> 3, and therefore for r> 3 the coeffi­
cient of the term x~r - IXj is either 

- G)<PJ' when i=/=j, 

or (96) 

- [G) + r ]<p,j, when i = j, 

whereas, for r = 3, x~' - IXj reduces tox;xj , whose coefficient 
is simply 

- 3<p,j' i,j = 1, ... ,n. (97) 

Since (93) must be an identity in x,x, ... ,xl' -I, and<p, tP; do not 
depend on these variables, the coefficient of the term xl' - IXj 
must equal zero; taking into account (96) (for r> 3) and (97) 
(for r = 3), we conclude that 

<P.j = 0, j = l, ... ,n. (98) 

Accordingly, for every symmetry vector of (91) we have 

<p(t,x) = I(t). (99) 

Note that the above reasoning obviously fails when 
r = 2, since then the term x~r - IXj reduces to x;xj , which is 
absent from (93) by the restriction x = O. 

Substituting (99) into (93), we obtain 

d'~1 _ ± (r)x\'-k+1 Ik (t) =0, 
dt x" = 0 k = 2 k 

i = 1, ... ,n. (100) 

Remembering (94) again, we realize that the term 
xy- IXk appears in (100) only through d' tPi1dt' lxi, = 0 and its 

coefficient is (up to the positive integer c~.r _ 1 ) tPi.jk' There­
fore, we must have 

aztP; = 0, "k 1 I,j, = , ... ,n. 
aXj aXk 

(101) 

Similarly, considering the coefficients of the terms 
xy- I withj=/= 1, which again only appear in (100) through 

d'tP;ldt 'Ix" = 0' we obtain 
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a 2tPi 0 .. 1 '..J.' -- = , I,} = , ... ,n, l-rJ. 
ataxj 

(102) 

When i = j, considering the coefficient of the term xl' - 1 

in (100), we get 

a2tP (ry. C~_I --'- - (t) = 0, i = 1, ... ,n. 
at aXi 2 

(103) 

Since c~ _ 1 is a positive integer, we can rewrite (103) as 
follows: 

a 2tPi = Kj(t), i = 1, ... ,n [K = (2r) c~_ 1 > 0]. 
ataxi 

(104) 

Considering now the coefficient of the term indepen­
dent of i,x, ... ,xl' -I in (100), we are led to 

a'tPi = 0, i = 1, ... ,n. 
at' 

(105) 

From Eq. (101) we readily obtain 
n 

tPi = 2: aij(t)xj + b;(t), (106) 
j=1 

and, taking (102) and (104) into account, we immediately 
arrive at 

n 

tPi = 2: aijxj + Ki(t)xi + bi(t), 
j=1 

aijER Vi,j = 1, ... ,n, (107) 

and, substituting (107) into ( 105), we finally get 

KII' + I(t)xi + b I'(l) = O. (108) 

Therefore, we must have 

I(t) = P,(t), bi(t) = Q~_ I (t), i = 1, ... ,n, (109) 

P, and Q ~ _ 1 being polynomials of maximum degree rand 
(r - 1), respectively. From (107) and (109) we get the follow­
ing structure of tPi' 

n 

tPi = 2: aijxj + KX)',(l) + Q ~_ 1 (t) (aijER), (110) 
j= I 

and, substituting it back into (100), we arrive at 

K-, [x»,(t)] d' I 
dt x"= 0 

- kt2 (~)xl'- k + IP~k(t) = O. (111) 

Applying Leibnitz's theorem to the first term of (111), we 
obtain 

(112) 

Since we are considering now the case r> 2, we can 
compare the coefficients of xl' - I and x!' - 2 in both members 
of (11 2), obtaining 

K·r·P,(t) = G}p,(t), 

K.(;}P,(t) = G}p,(t ). 
(113) 
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It is easy to prove by induction that c~ _ 1 = r; hence 
K = (r - 1)/2 [see (104)]. The first equation in (113) reduces 
to an identity and the second one leads to 

P,(t) = 0, VtER, (114) 

i.e., P, (t) = a + bt + ct 2 (a,b,cER). 

Conversely, if (114) holds, then (112) is automatically satis­
fied. Therefore, the "general solution" of (93) is obtained by 
substitutingP,(t) = a + bt + ct 2into(11O),and,consequent­
ly, the general solution of (92) is 

cp = a + bt + ct 2, 

n 

tPi = 2: AijXj + c(r - l)tx i + Q~_ I (t), 
j=1 

i = I,. .. ,n, a,b,c,AijER, 

(115) 

where we have set Ai) = aij + !b (r - 1 )c5ij (c5ij being, of 
course, the Kronecker delta). 

From (115) we immediately obtain the following set of 
n2 + nr + 3 independent symmetry vectors of(91): 

a 
Xi -a ' i,j = 1, ... ,n, 

Xj 

tPi!......, p=O,l, ... ,r-l, i=l, ... ,n, (116) 
aXi 

a a 2 a n a 
-, t-, t - + (r-1)t· 2: X k --. 
at at at k = 1 ax k 

This establishes the point we wanted to make: when 
n > t and r> 2, the system of differential equations xl' = 0 
does not provide us (as happened for n = 1) with a maximum 
number of independent symmetry vectors equal to the upper 
bound 2n 2 + nr + 2 obtained in III(a)-(c). Therefore, it re­
mains an open problem to find systems of differential equa­
tions-if any-whose maximum number of independent 
symmetry vectors is greater than the number n2 + nr + 3. 

Finally, note that, when n = 1, the symmetry vec­
torsi 116) reduce to the symmetry vectors of xl' = 0 comput­
ed in Sec. lI(h), as it should be. 

IV. MAXIMUM NUMBER OF INDEPENDENT SYMMETRY 
VECTORS OF THE SYSTEM" = F 

We show in this section that a system of differential 
equations of the form 

x=F(t,x,i), x=(x1, ... ,xn ) (117) 

cannot possess more than 2(n + 1 f independent symmetry 
vectors. We also compute, by a direct procedure, all the sym­
metry vectors of the system x = 0, obtaining only 
n2 + 4n + 3 independent vectors. Since this number is less 
than the upper bound 2(n + 1)2 mentioned above, the open 
question arises of whether or not there exist differential sys­
tems admitting more than n2 + 4n + 3 independent symme­
try vectors. 

In Sec. V we show that this is not the case: In other 
words, the maximum number ofindependent symmetry vec­
tors admitted by any system of the form (117) is never greater 
than n2 + 4n + 3, the number of independent symmetry 
vectors of the system x = o. 

F. Gonzalez-GascOn and A. Gonzalez-LOpez 2013 

Downloaded 10 May 2011 to 147.96.22.210. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



(a) Let 

a n a 
s=cP- + L tPi-at i~ I aX i 

( 118) 

be a pointlike symmetry vector of (117); then it is easy to 
verify that the structure ofSI (the first extension ofS to the 
variables l,x,x) is the following: 

SI =S+ i tP;·~ , 
i~1 aXi 

n 

tPi = L tPi,jXj + tPi" 
j~ I 

- Xi ( i CP,jXj + cp,,). 
j~ I 

(119) 

Therefore, it is clear that the linear element (to,xo,x) = (Po,x) 
will be left invariant by S I iffor every value ofx the following 
set of n 2 + 3n + 1 linear equations in the components of S 
holds: 

cp(Po) = 0, "'(Po) = OJ 
tPi,,(PO) = CP,j(Po) =:.. a , i,j = 1, ... ,n. 

(tPi,j - cp" t5d(Po) - a 
(120) 

Similarly, a second point PI = (tl,xtllying on the inte­
gral curve Yo of (117) corresponding to the initial conditions 
(to,xo,xo) will be left invariant by S provided only that 

(121) 

since, exactly as in Secs, II and III, (121) and the fact that S is 
a symmetry vector of ( 117) and PI lies on an integral curve of 
(117) imply that ",(PI) = 0 as well. 

Finally, from all that has been said in Secs, II and III, it 
should be clear by now that, in order that any linear element 
at PI' (PI'X), be invariant under SI, the following n2 + n lin­
ear conditions in cP and", suffice: 

(122) 

since when (120), (121) and (122) hold tPi,,(Ptl automatically 
vanishes, due to the fact that the linear element (PI'X I) tan­
gent to Yo is then invariant under SI. 

Accordingly, the 2(n + 1)2 conditions (120), (121), and 
(122) are sufficient in order that any linear element atPoor PI 
be invariant under SI; since these conditions are linear in the 
components ofS, the same construction followed in Secs. II 
and III can be repeated now, with the result that Eq. (117) 
does not admit more than 2(n + If independent symmetry 
vectors. 

(b) We now compute all the pointlike symmetry vectors 
of the system 

x = 0, x = (xI" .. ,xn ) (123) 

in order to establish whether or not the dimension of the 
vecto! space generated by these symmetries equals the upper 
bound 2(n + 1)2 obtained above. 

Since the necessary and sufficient conditions in order 
that (118) be a symmetry vector of (123) are 

tf!7lx~o =0, i= 1, ... ,n, (124) 

computing tf!71 x ~ 0 and setting equal to zero the coefficients 
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of 1, Xi' andxixj , we arrive at the following system of partial 
differential equations in cP, "': 

CP,jk = a ) 
tPi,1t = a 
.,.... = 15 .. (1 15)' i,j,k = 1, ... ,n, 
'f/I,jk CP,k, Ij + jk 

tPi,j! = !CP,lt I5ij 
From (125a) and (125b) we get 

n 

cP= L Cj(t}xj +D(t), 
j~ I 

tPi = A;(x)t + B;(x). 

Substituting (126) into (125c) and (125d), we obtain 

Ai(X) = ai(xi ), 

n 

B;(x)=bi(Xi )+ L bij(xi}xj' 
j~ I 

(j"l'I) 

(125a) 

(125b) 

(l25c) 

(125d) 

(126) 

(127) 

Substituting (127) back into (126), we obtain, after some 
easy calculations, the general solution of (125): 

n 

cP= L (cjt+cj)Xj +at 2 +dt+d', 
j~1 

n 

tPi = (axi + ai)t + L CjXiXj 
• j=1 

n 

+ L bijxj + bi' 
j~ I 

(128) 

From (128) we obtain the following set of n2 + 4n + 3 
independent generators of the vector space of the symme­
tries of (123): 

a 
at ' 
a 

ax
i

' 

a 
t­at ' 

a 
1-, aXi 

a 
x·­

I at 
a x­

j aX
i 

, i,j = 1, ... ,n. (129) 

By the reasoning followed in Sec. II, the set of vectors 
(129) closes as a Lie algebra under the Lie-Jacobi bracket. 

It is not difficult to verify that the set of symmetry vec­
tors given by (129) is a set of generators for the projective 
pseudogroup of the space {(t,x) J = R n + I , whose finite 
expression is given by 

~n+1 + , kj~ I aijxj ai,n+2 
X= , 

I ~n+lb b kj~ I jXj + n+2 

Xn + I = t, i = 1, ... ,n + 1. (130) 

The projective pseudo group does precisely possess 
(n + 2)2 - 1 = n2 + 4n + 3 essential parameters, and, 
therefore, n2 + 4n + 3 independent generators (see the Ap­
pendix). 
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v. REDUCTION OF THE MAXIMUM NUMBER OF 
INDEPENDENT SYMMETRIES OF THE SYSTEM jt = F 

We show in this section that the system (117) does not 
admit more than n2 + 4n + 3 independent symmetry vec­
tors, thereby achieving an improvement of the maximum 
number of independent symmetry vectors of (117), 
2n 2 + 4n + 2, derived in Sec. IV. The new upper bound ob­
tained in this section cannot be further improved, since in 
Sec. IV, it has been shown that the system i = 0 has precise­
ly n2 + 4n + 3 independent symmetry vectors. 

The proof given here uses the following remarkable 
property of the projective pseudogroup of R n + I : 

If a projective transformation T of R n + I leaves n + 3 
points of Rn + I fixed, and these points are in "generic posi­
tion," then Tis the identity transformation.s (We say that 
n + 3 points of R n + I are in generic position if for every selec­
tion of n + 2 of them the n + 1 vectors obtained choosing 
one of these n + 2 points as the origin and the rest as end 
points are linearly independent.) 

(a) Let PI"",Pn + 3 be n + 3 points of R n + I such that 

(131) 

Let us assume for the moment that these points can be 
chosen in such a way that to any couple of them (Pj,lj ) with 
i =/=j there corresponds an integral curve Yij = {(t,cI»jj (t )) 
.x ItER. J of ( 117) passing through Pj and Pj : We shall prove 
III Sec. V (e) that this assumption can indeed be satisfied. 

Assuming then that we have chosen the points 
P!'""'Pn + 3 in a such a way that this last assumption holds 
true, by a straightforward generalization of the argument 
given in Sec. II(a) one can prove the following result: 

If the points PI""'Pn + 3 are sufficiently close to each 
other, then for every pair (i,j) with i=/=j there exist open 
neighborhoods Ujj and Pj and V;j ofi jj = ~jj (t j ) such that 
through every point P of Ujj there passes exactly one integral 
curve of (117) containing Pj , with velocity ( = derivative 
with respect to time t ) at ( lying in V; j' 

Suppose now that the vector field S given by (118) is a 
symmetry of (117) leaving all the points P1"",Pn + 3 invar­
iant. It is clear that in order to achieve it the following 
(n + l)(n + 3) conditions are sufficient: 

cp (Pj ) = 0, th (Pj ) = 0, i = 1, ... ,n + 3,j = 1, ... ,n. 
(132) 

Equations (132) automatically imply that the integral 
curves Yij (i=/=j) are subsets of Rn + I invariant under S, and 
therefore that the n + 2 linear elements at P 

I 

(Pi>Xjj ), i=/=j, (133) 

are also invariant under SI, for every i = 1, ... ,n + 3. 
Indeed, if g is a transformation belonging to the local 

one-parameter group generated by S and sufficiently close to 
the identity, then we have by continuity 

., d I 
X jj = ds s~ti(gcl»jj)(S)EVjj 

(134) 
[ gYij = I (s,( gcl»jj )(s))lsER. J 1 

since XjjEVjj by construction. But this necessarily implies 
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that gYjj = Yjj' since both Yjj and its transform gYjj pass 
through Pj with velocity at Pj lying in Vi), and the equality 
of Yjj and its transform implies obviously that i jj equals i~., 
its transform under S., as claimed. IJ 

(b) Consider now a finite transformation 

t' = g(t,x), x' = f(t,x) (135) 

such thatPj is invariant under (135), for fixed iEll, ... ,n + 3 J. 
As is well known, the transformation induced by (135) on the 
derivatives x at Pj is given by 

x' = ~; ~ I f.j(Pj )Xj + f.t (pj) 

~;~I g)Pj)ij +g,t(pj)' 
(136) 

i.e., any curve I (t,a(t ))ltER. J passing through Pj such that 
a(tj) = x will be transformed under (135) into another curve 
I (s,b(s))lsER J through Pi> with b(t j ) = x'. 

Since Pi is fixed, (136) implies that the velocities at Pi 
transform under a projective transformation, whose param­
eters depend, of course, on the point Pi that is being kept 
fixed. Denoting now by 

t' = g(t,x;a), x' = f(t,x;a), (137) 

the local one-parameter group of transformations generated 
by the symmetry S satisfying conditions (132), then SI acts 
on the velocities at Pi as a one-parameter subgroup Gi of the 
projective pseudogroup of R n = Ii J. Furthermore, every 
transformation gEGi leaves invariant the n + 2 linear ele­
ments at Pi given by (133), as we have just seen: therefore, if 
we are able to choose the velocities iij (i =1= j, i fixed) in generic 
position (by an appropriate selection of the points 
PI"",Pn + 3)' then, by the property of the projective pseudo­
group quoted at the beginning of this section, we can con­
clude that Gj reduces to the identity transformation and, 
therefore, that SI leaves every linear element at Pi invariant. 

(c) Suppose now that we are able to find a set of n + 3 
points of R n 

+ I IP1""'Pn + 3J satisfying (131), and the fol­
lowing additional requirement: The two sets of (n + 2) vec­
tors of Rn given by 

I i jj ~ = 2,3, ... ,n + 3 J, I i 2k Ik = 1,3,4, ... ,n + 3J (138) 

are in generic position in R n 
. According to III(a), we can find 

an open neighborhood U in Rn + I such that through every 
?~i~tPof U there pass two integral curves of(117), YI and Y2' 
JOlllmg P, respectively, with PI and P2 in such a way that Pis 
isolated in YlnY2' Since (131), (132), and (138) imply that ev­
ery linear element at PI or P2 is invariant under Sand S is by 
hypothesis a symmetry vector of (117), it follows that Y I and 
Y2 are both invariant under S; therefore, P has to be invariant 
under S, since Pis isolated in YlnY2' Hence every point of Uis 
invariant under S, implying that S = 0 on U. 

Since conditions (132) are clearly linear in the compo­
nents of S, we can again apply the argument of Sec. II(f) to 
conclude that (117) does not admit more than n2 + 4n + 3 
independent symmetry vectors. 

The only point meriting a separate treatment in order 
that our proof be complete is the following: We have to show 
that it is indeed possible to find a set of n + 3 points of R n + I 

satisfying conditions (131) and (138), such that every pair of 
points of this set can be joined by an integral curve of (117). 
In order to prove this statement, the lemma that follows is of 
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great practical value since. as we shall explain below. it re­
duces the problem of finding the set of points PI""'Pn + 3 

with the properties mentioned above to an easier one. 
(d) Lemma: Let Po = (to,Xo) be a point of R I + n and call 

«I»(t,~) the unique solution oft 117) corresponding to the initial 
condition (Po,~)' Consider the straight line of R 1 + n parallel 
to (l,v) and passing through Po, whose equation is 

t=to+s, x=xo+sv VsER. (139) 

Then one can find E> 0 such that for every s such that 
0< Is I < E there is an integral curve of (117) passing through 
Po and (to + s,xo + suI, whose derivative at to, hIs), satisfies 

lim hIs) = v. 
s->D 

Proof The function f(s,~) defined by 

f(s,~) = (1*0 + s,~) - Xo - s~ 

(140) 

(141) 

is a C'" function [since the function F appearing in (117) is 
assumed in what follows to be of class C'" ]9 and satisfies 

Therefore, we can write 

11 a 
f(s,~) = - f(Os,~) dO, 

o ao 
and, since 

~ ~(Os,l'-) = s·f s (Os,~), ao ~ . 
f(s,~) can be factorized as follows: 

f(s,~) = s.g(s,~), 

(g(S'~) = f !s(Os,~) dO ), 

where g(s,~) is C'" since f is C'" . 
Therefore, we have 

(142) 

(143) 

(144) 

(145) 

«I»(to + s,~) = s·g(s,~) + Xo + s~, gEC'" (146) 

and the intersection of the integral curve {(t,«I»,(t,~))ltER 1 
with the straight line (139) leads to the equation 

s·g(s,~) + Xo + s~ = Xo + sv (147a) 

or, since s'iO, 

v = ~ + g(s,~). (147b) 

Equation (144) implicitly defines ~ as a C'" function of 
s, ~ = hIs). Indeed, define a function 'I\J, (s,~) as follows: 

'I\J(s,~) = ~ + g(s,~) - v. (148) 

Then we have 

'I\J(O,v) = g(O,v) = 0 (149) 

[since g(O,~) = f~ f,s (O,~) dO = 0 VsER on account of the de­
finition (141)], and 

(D~'I\J)(O,v) =1 + (D~g)(O,v) =1 
(150) 

(I = identity matrix of dimension n) 

[taking into account that g(O,~) = 0 for every ~, as we have 
just shown]. 

Equations (149) and (150) allow us to apply the implicit 
function theorem to the function 'I\J(s,~) at the point (0, v), thus 
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obtaining ~ as a function of s, ~ = hIs), in a sufficiently small 
neighborhood lsi < E of s = O. The function hIs) satisfies 

h(O)=v, (ISla) 

¢(s,h(s))=O if lsi <E. (151b) 

It follows that the integral curve of (117) corresponding 
to the initial condition (Po,h(s)) passes through Po and 
through the point (to + s,Xo + sv) [by (146)-(148) and (151)]; 
in addition, we have 

lim hIs) = h(O) = V 
s->D 

(152) 

on account of (ISla) since hIs) is a continuous function (as a 
matter of fact, h is COO , as follows from the fact that g is Coo 
and the implicit function theorem). This completes the proof 
of the lemma. 

(e) Consequences o/the lemma: Let {PI'''',Pn + 31 be a 
set of n + 3 points of R I + n , P; = (t; ,X; ), satisfying the fol­
lowing conditions: 

i'ij, t; 'itj; (153a) 
the two sets of points of R n 

{ 
X; - XI I' 2 3 3} _ 1=, , ... ,n + , 
t; tl 

(153b) 

{
X, - x21 } 

I _ j = 1,3, ... ,n + 3 
tj t2 

are in generic position in R n 
• 

We shall indicate at the end of this section how to construct 
sets of n + 3 points of R I + n satisfying conditions (153). 

Consider now the transformation Ha :R I + n --+R I + n 

defined as follows: 

Ha(P)=PI +a(P-PI)=P, aER,a>O. (154) 

If IPI'''''Pn + 31 satisfy conditions (153), the same will hap­
pen with I P~ , ... ,P~ + 31, since we have 

xr - x% a(x; - xk ) X; - Xk 

t~-t% a(t;-tk) t;-tk 
(152) 

When a-o, pr--+P~for every i = 1, ... ,n + 3, but the 
directions (t; - tj ,X; - xj ) defined by every pair of points 
P;'Pj with i'ij remain invariant under Ha. 

Therefore, by repeated application of the lemma proved 
above, it follows that, for sufficiently small a, for every pair 
of points P; ,Pj with i 'i j there is an integral curve of (117) 
joining P; with Pj and satisfying 

lim cj,~j(t;) = Xi - x; , 
a->D tj - t; 

(156) 
i,j = 1, ... ,n + 3, i'ij, 

where cl>fj (t ) is the solution oft 117) whose associated integral 
curve passes through P; and ~ . 

Furthermore, it is easy to verify that if m + 2 points of 
R m are in generic position, any sufficiently small perturba­
tion applied to them will lead again to a set of m + 2 points in 
generic position; this is essentially due to the fact that generi­
city is defined in terms of linear independence of certain sets 
of vectors, and linear independence is preserved by suffi-
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ciently small perturbations. It follows [by (153b)] that the 
two sets of vectors of R n defined by 

I cj,~j Ii = 2, ... ,n + 31, 
(157) 

Icj,~j~= 1,3, ... ,n + 31 
are in generic position in Rn , if we choose a sufficiently 
small. 

The conclusion is, therefore, that if PI, .. ·,P n + 3 satisfy 
condition (153), then one can find aER such that the new set 
of points P~ , ... ,P~ + 3 satisfy conditions (131) and (138). The 
only point that remains to be proved is, therefore, that it is 
indeed possible to find PI"",Pn + 3 such that conditions (153) 
are satisfied. 

To this end, notice that if the following points of R n 

10,vI,,,,,vn 1 (158) 

are in generic position, it immediately follows that the fol­
lowing set of n + 3 points of R I + n , 

I (O,O),(ro,O),(rl,vil,···,(rn + I 'Vn + I ) I, 
(159) 

rj #0 Vi = O,I, ... ,n + 1, rj #rj Vi#j, 

satisfies conditions (153), provided only that the numbers 

ro, rj - 1, i = l, ... ,n + 1, (160) 

are chosen sufficiently small. 
Indeed, choosing PI = (0,0) andP2 = (ro,O), the two sets 

of vectors 

{ 0 Vj . II} -,-, 1= , ... ,n + , 
ro rj 

(161) 

{ 0 Vj . II} --,---, 1= , ... ,n+ 
- ro rj - ro 

are both in generic position in R n 
, since they are obtained by 

applying an arbitrarily small perturbation to the set of vec­
tors (158), which are by hypothesis generic in R n 

• 

VI. MAXIMUM NUMBER OF INDEPENDENT 
SYMMETRIES OF THE SYSTEM 
J;r, = ~(t; X1, ••• , .,;;. -'; ••• ;Xn' ••• .x';n - \'; > 1 

The results obtained in Secs. II-V indicate that systems 
of differential equations of the form 

xl' = F(t,x, .. . ,x(' - I), 
(162) 

x = (xl, ... ,xn ), r> 1, 

possess a finite number of independent symmetry vectors 
and that the system xc' = ° possesses a number of indepen­
dent symmetries that tends to infinity when either r or n tend 
to infinity, thus showing that the upper bound for the maxi­
mum number of independent symmetry vectors of(162) 
tends to infinity when either r or n tend to infinity. 

We shall see in this section that these results hold as well 
for the more general class of systems of the form 

xi" = Fj(t;y), 

(163) 

i = 1, ... ,n, 1 < rj • 
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The restriction rj > 1 for every i is essential for the valid­
ity of these results, since it is not difficult to give examples of 
systems of the form (163) with rio = 1 for some io possessing 
an infinite number of independent symmetries. This is what 
happens, for example, with "split" systems of the form 

XI = FI(I,xd, 

(164) 

r; > 1 for every i = 2, ... ,n, 

admitting an infinite number of independent symmetries of 
the form 

t' = t, xi = XI + E.¢(t,xd, 
(165) 

X; = Xi for every i = 2, ... ,n, 

where ¢(t,xl) is such that ¢(t,xdaiax i is a symmetry vector 
of the equation 

XI = FI(t,x l ) (166) 

[since it is well known that every first-order equation like 
(166) admits an infinite number of independent symme­
tries lO

]. 

A less trivial example of a differential system of the 
form (163) with ri = 1 for some io admitting an infinite num-

o 
ber of independent symmetries is the following: 

X = F(t,x), ji = G(t,x). (167) 

Indeed, the necessary and sufficient condition in order that 
S(t,x, y) = 7J(t,x) al ay be a symmetry vector of (167) turns 
out to be the following linear partial differential equation in 

7J: 

7Jrt = - 27J,x F - 7Jxx F2 - 7Jx F (F = F, + Fx F ). 
(168) 

Equation (168) is Kowalewskian in the variable t, and 
therefore I I possesses an infinite number oflocal solutions, 
depending on two arbitrary functions fix) and g(x); for in­
stance; 

fix) = 7J(O,x), g(x) = 7J,(O,x). (169) 

Therefore, the system (167) possesses an infinite num­
ber of independent symmetries, as claimed. 

(a) We begin now the proof of the assertions made at the 
beginning of this section. 

As in previous sections [I1(a), (b), (c); III(a)] it is not 
difficult to show that, given the initial value (to,yo), where 

_( (,,-I .. ('n-I) 
Yo - XOI, .. ·,XOI ""'XOn ""'XOn , (170) 

and denoting by 4>(t) the solution of (163) corresponding to 
this initial condition, for PI = (t l ,4>(II)) = (tl,xd sufficiently 
close to Po = (IO,xOI, ... ,xOn) = (to,xo) one can find an open 
neighborhood U in R I + n such that through every point P of 
U there pass two integral curves of (163), 
YI = !(t,4>I(t ) I tEll CR 1 andY2 = I(t l ,4>2(t ))ltEl2 CR j,satis­
fying 

if> \~(to) = X6~, if> ~~(td = X(I~ 

for every k = 1, ... ,rj - 2 and i = 1, ... ,n, 
P is isolated in Y I ny 2' 

where we have set x\~ = if> \k(t ,). 
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(b) Let 

a n a 
S = cp(t,x) - + I ¢; (t,x) -

at ;~ I ax; 
(172) 

be a symmetry vector of (163). If for every PE U the two inte­
gral curves of (163), Y I and Y 2' defined above are invariant 
under S, then Pwill be invariant under S, since by (171b) Pis 
isolated in ylnY2' and, consequently, S will vanish at P for 
every PEU, i.e., S will vanish identically on U. Therefore, by 
the arguments given in Sec. II(c), (e), to compute an upper 
bound for the maximum number of independent symmetry 
vectors of (163) it suffices to find the number oflinear equa­
tions in the components ofS that guarantee the in variance of 
the following linear elements of order (r n - 1) under S rn - I: 

( 
Irl - 2 f; F. Fir n - r 1 

Zo = to'XOI,,,,,XOI '!ol' 01'"'' 01 ; ... ; 

Ir - 2 f; ) 
XOn""'XO~ '~n' 

Ir - 2 f; ) 
X 1n , ... ,XI~ ':'n 

for every S = (SI, ... ,Sn), rn = max r;. 
; 

where we have set 

Flk=~FI 
at dt k t (t,x~l- 2, . .• x~: - 2';1;' .;X(Tn •...• x~~ - 2,5,,)' 

(J' = 0,1, 

dan [. a -=-+ I X;-+'" 
dt at ;~I ax; 

+x1r,-I_a_ +F_a_] 
I I' 

a ir, - 2 air, - I 
x; x; 

(173) 

(174) 

[Equations (174) simply state that the derivatives ofF 
appearing in (173) are to be computed along the integral 
curves of(163), YI-for F~-and Y2-for F\~.] 

The in variance of the linear elements (173) for every 
value of S is in turn equivalent to the following set of linear 
equations in the functions cp and ¢;: 

'Vs, cp(Po) = ¢;(Po) = ¢~(Zo) = 0, 

k = 1, ... ,rn - 1, i = 1, ... ,n, 

for Zo, and 

'VS, cp(PI ) = ¢;(Pd = ¢7(zd = ° 
k = 1, ... ,rn - 1, i = 1, ... ,n 

( 175) 

(176) 

for ZI' At this point it is important to note that ¢7(z,,) de­
pends on S not only explicitly, but also implicitly, through 
FIjJ (p = 1, ... ,rn - rj,j = 1, ... ,n). 

More precisely, taking into account the structure of ¢7, 
given by (79) and (94), we see that ¢~(zu) depends on the 
variables S, FIjJ polynomially; ¢7(zu) is a polynomial in the 
variables S, F IjJ whose coefficients are linear combinations of 
the partial derivatives of the functions cp and ¢ evaluated at 

P Th I f ( (rl - 2 Ir - 2) 
u' e constant va ues 0 tu; Xul '''''Xul ;",;Xun , ... ,Xu~ 

appear in ¢7(zu) implicitly through the variables FIjJ and 
explicitly as coefficients of the partial derivatives of the func­
tions cp and ¢. 

As a consequence, it immediately follows that the ful-
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fillment of (175)-(176) is guaranteed by afinite number of 
linear conditions on the functions cp and ¢, namely the van­
ishing of cp(P u)' "'(P u) and of all the coefficients appearing in 
¢7(zu) regarded as a polynomial in the variables Sand FIjJ 
(p= 1, ... ,rn -rj;j= 1, ... ,n),foreveryvalueof 
k = 1, ... ,rn - 1, i = 1, ... ,n and for (J' = 0,1. Indeed, these 
conditions involve only the constant values of 

(tu, xu; Xul , ... ,x~; - 2; ... ;xun , ... ,x~~ - \ and their linearity in 
cp, ¢ is a direct consequence of the linearity of(175), (176) in cp 
and ¢' 

Clearly, not all of the above conditions are independent: 
For instance, following the reasoning of Sec. III(c), it would 
be easy to verify that the vanishing of¢(Pd and of the term 
independent of the variables S, F\} in ¢7(zd are a conse­
quence of all the other conditions, and therefore this condi­
tion could be omitted. But the point here is that, at any rate, 
the number of the conditions obtained above isfinite; there­
fore, the argument given in Sec. II(t) shows that the number 
of independent symmetry vectors of(163) is also finite, since 
it cannot exceed the number of these conditions. 

(b) We shall now see that the least upper bound on the 
number of independent symmetries of(163) tends to infinity 
when either n or some of the r; tend to infinity. Indeed, 
consider the system 

(r, ° . 1 Xi = , I = , ... ,n. (177) 

The necessary and sufficient condition in order that 
(172) be a symmetry vector of (177) can be expressed as fol­
lows: 

¢~'I "k = 0, i = 1, ... ,n. 
Xk = O. k = l. .... n 

(178) 

Taking into account the structure of ¢~', given by Eq. 
(79), we observe that (177) admits the particular solutions 

d
r

,¢; I cp=O, -- =0. 
r, (rk dt Xk ~ 0, k ~ I ..... n 

(179) 

A particular solution of (179) is the following one, de­
pendent on rl + r2 + ... + rn arbitrary constants: 

cp = 0, ¢; = a? + alt + ... + a~i-It'i-I, 
i = 1, ... ,n. (180) 

From (180) we obtain the following set of rl + r2 + ... + rn 
independent symmetry vectors of (177): 

a t~. .... tri- I ~. (181) 
ax,.' ax,." ax,. 
Since the number rj + r2 + ... + rn evidently tends to 

infinity when either n or some of the r; tend to infinity, it 
follows that the same thing will happen with the least upper 
bound on the number of independent symmetries of(163), 
since the least upper bound by definition is greater than or 
equal to the number of independent symmetries of (177), 
which in turn exceeds the number rl + r2 + ... + rn, as we 
have just shown. 

VII. FINAL REMARKS 

I t has been shown that a system of differential equations 
of the type (163) can only admit an ordinary local Lie group 
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(i.e., a local Lie group with afinite number of essential pa­
rameters) of pointlike symmetries. This result precludes the 
possibility that a system of differential equations of this kind 
admit a Lie group of symmetries with an infinite number of 
parameters (as the formal group of locally invertible trans­
formations of the manifold ((t,x) J = R 1 + n , for instance). As 
is well known. this result is no longer valid when dynamical 
symmetries are considered (see. e.g., the paper by the authors 
cited in Ref. 1). 

It has also been shown that a system of differential 
equations of the kind (70), with r> 2, does not admit more 
than N(r.n) independent symmetries. where the number 
N (r.n) satisfies the following inequalities: 

n 2 + nr + 3<N(r.n)<2n 2 + nr + 2. (182) 

In addition. the system xlr = 0 has exactly n2 + nr + 3 
independent symmetries: Therefore. it would be nice to show 
that, when n > 1, this number cannot be surpassed by the 
number of independent symmetries of any system of the kind 
(70). or, if this were not the case, to exhibit a system of this 
kind having more than n2 + nr + 3 independent symme­
tries. Also open is the problem of obtaining computational 
algorithms for constructing systems of the kind (70) with any 
preassigned number of symmetries s [not exceeding the max­

imum number of independent symmetries allowed to every 
equation of the kind (70). for given nand r]. 

When n = 1. the least upper bound to the number of 
independent symmetries of of an equation of the kind (1) 
when r> 2 is given by the number r + 4. this number being 
equal to the number of independent symmetries of the equa­
tion xlr = 0 when r> 2. 

If r = 2. the least upper bound to the number of inde­
pendent symmetries of(70) is given by n2 + 4n + 3. the num­
ber of independent symmetries of the system x = O. There­
fore. in this case no new feature distinguishes the two cases 
n> 1 and n = 1. since in both cases the maximum number of 
symmetries is attained by the system (or equation) x = 0 
(x =0). 

It is also interesting to notice that the least upper bound 
to the number of independent symmetries ofa system of the 
kind (163) tends to infinity when either n or some of the r, 
tend to infinity; this result is not completely unexpected. in 
view of the fact that the general solution of(163) depends on 
r l + r2 + '" + rn parameters. 

Another interesting consequence of the previous results 
is that, when r is kept fixed-say r = 2, which is the case of 
Newtonian mechanics-and a certain group G of transfor­
mations of the manifold !(t,xl,···,xn) J depending ons param­
eters is given, then no equation of the form x = F(t,x,x) can 
possess as many symmetries as G if s > n2 + 4n + 3. But con­
sidering the action of GN 

, the group of transformations of 
N 

the manifold R 1 + n X ... X R 1 + n induced by G, the possibil-

ity remains open that, for N sufficiently high, the group GN , 

which also possesses s essential parameters, is a symmetry 
group (of generally nonpointlike transformations) of some 
system of the form 

x, = F,(t,xP""XN,X1, ... ,XN) 

i = I •... ,N, N> 1 [Xi = (xl, ... ,xn,)]. (183) 
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If this were the case for any G, we could then assert that 
any group of pointlike transformations of the manifold 
( (t,x) J = R 1 + n could be considered, when extended in the 
natural way to systems of more than one Newtonian particle, 
as a symmetry group of a system of this kind. The problem 
would be, of course, to find the number N appropriate for a 
given group G and, more importantly. the functions Fi ap­
pearing in (183). 

Further work on these open problems is going on and 
will appear in forthcoming papers of this series. 
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APPENDIX 

For completeness reasons. we give here some defini­
tions concerning the projective group and a direct proof 
showing that this group is a symmetry group of the system 
X=O. 

(i) Real (m - I)-dimensional projective spaceRP"' - 1 is 
usually defined as the quotient set 

RP"' - 1 = (Rm - (OJ)! - (AI) 

where - denotes the following equivalence relation: 

y-xqy = ex. 

x,yERm -(OJ, cER -(OJ. 
(A2) 

Therefore, the elements of RP"' - 1 are straight lines 
passing through the origin. with the origin removed. It is a 
standard result12 that RP"' -] is a differentiable manifold, 
with the differentiable structure induced by the charts (U" 
!p, ) defined by 

U, = ![x]ERP"' -I lx, #OJ, 

!p,([x]) = (x/x" ... ,x, _llx"x, + ]/xi, ... ,xm Ix,), (A3) 

i = 1, ... ,m, 

where [x] denotes the equivalence class of xERm - (0 J. 
Geometrically, (x]/xi, ... ,Xi _/xi ,l,x, + Jxi, ... ,xm lx, ) 

are nothing but the coordinates of the point of R m defined by 
the intersection of the straight line [xJ with the hyperplane 
x, = 1. 

Every linear nonsingular transformation L: R m -+Rm 
canonically induces a so-called projective transformation 1.: 
RP"' - J -+RP"' -] as follows: 

L ([xJ) = [Lx] V[x]ERP"' - 1 • (A4) 

L is well defined, since L is by hypothesis nonsingular 
and therefore xE(Rm A- ! 0 J )qLXE(Rm - ! 0 J). 

Geometrically, L ([x]) is nothing but the straight line 
(with the origin removed) obtained by transforming the 
straight line [xJ under L. 

Let us see now what is the expression of a projective 
transformation in terms of the coordinates of one of the 
charts (A3), for instance, the chart (Um ,!Pm)' Ifwe denote by 
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lij (i,j = l, ... ,m) the matrix elements of L relative to the ca­
nonical basis of Rm , then we have 

A _I 
UmnL (Um) = Vm, (AS) 

where Vm is the open subset of Urn (and hence of Rpm - I, 

since Urn is itself open in Rpm - I ) defined by 

Vm = ![x]ERpm - I IxEtlllnUm , (A6) 

il being the hyperplane of R m whose equation is 
m 

il: I ImiXi = O. 
i= 1 

If we denote by 

Ui = Xi/X m, i = l, ... ,m - 1, 

(A7) 

(AS) 

the coordinates of [X]E V m relative to the chart ( Urn ,q; m ), 
then the coordinates ofL ([X])EUm relative to the same chart 
will be given by 

, _ (LX)i _ ~;: I lijXj 
u· - -- - --"~:........:.::.......:.-

'(Lx)m ~;: I Imjxj 

~;: I lijuj + lim 
i = l, ... ,m - 1. (A9) 

Note that L depends on m 2 
- 1 essential parameters 

since, for any ci=O, Land cL induce the same projective 
transformation L. 

From the identities 

(AlO) 

it follows that the set of all projective transformations forms 
a group, called the projective group: the dimension of the 
projective group of Rpm is, according to what has been said 
above, equal to (m + 1)2 - 1 = m2 + 2m. 

(ii) Let us show now that the system of differential equa-
tions 

(All) 

is symmetrical under the local transformations (sufficiently 
close to the identity) defined by 

, ~r: II lijxj + l;,n + 2 

Xi = n+1 
~j=1 In+z,jxj +In+2,n+2 

with Xn + I = t, (A12) 

where it is understood that the point (xl, ... ,xn,t) belongs to a 
certain open subset W of R n + I such that the denominator 
appearing in (A12) does not vanish on W. 

We can regard (xl, ... ,xn,t) as the coordinates relative to 
the chart ( Un + 2 ,q; n + Z ) of the point [y]ERP" + I defined as 
follows: 

(AB) 

Similarly, we consider (A12) as the expression in,.!he 
chart (Un + 2 ,q;n + 2 ) of the projective transformation L in­
duced by the linear transformation L: R n + 2 _Rn + 2 whose 
matrix elements (relative to the canonical basis of R n + 2) are 
the numbers l;j (i,j = l, ... ,n + 2) appearing in (A12). 

The general solution of the system (A 11) is the follow-
ing: 

Xi(t) = aJ + bu i = l, ... ,n, ai,biER, (AI4) 
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FIG. 1 

which can be regarded as the implicit equation of the straight 
line of RP" + I whose parametric equations are 

Xi = aiA + bi' Xn + I = A, i = l, ... ,n, AER. (AIS) 

To the "straight line" (A IS) there corresponds the fol­
lowing subset of R n + 2 : 

Yi = ,u(aiA + b,.), Yn + I = ,uA, 
(A16) 

Yn+Z =,u, i= l, ... ,n, AER,,uER - {Ol· 

Geometrically, (A16) is obtained from (AlS) as follows: 
for each point of the form (alA + bl, ... ,anA + bn ,t,I) in the 
hyperplane Yn + Z = 1 of R n + 2 , we draw the straight line 
joining this point to the origin of R n + 2 ; the union of all the 
straight lines thus obtained with the origin removed is pre­
cisely the subset of R n + 2 defined by (A16). 

It is not difficult to verify that (A 16) can be alternatively 
obtained from the two-dimensional subspace ilz or R n + Z 

defined by 

Yi = vai + ,ubi' i = l, ... ,n, 
(A17) 

Yn + I = v, Yn + 2 =,u, v, ,uER, 

by simply removing all the points of the straight line rCil2 

given by 

Yi = 1]au i = l, ... ,n, 

Yn+1 =1], Yn+Z =0, 1]ER 

(see Fig. 2). 

(AlS) 

Since L is a linear, nonsingular transformation, it trans­
forms ilz - r into il; - r', where il; = L (ilz) is a two-di­
mensional subspace of Rn + Z and r' = L (r) is a straight line 
contained in il;. Furthermore, since (A12) can be chosen 
arbitrarily close to the identity (whose parameters are given 
by l;j = cfJij , for every cER - (O I), it follows that il; - r' 
intersects the hyperplane Y n + Z = 1, since this hyperplane 
intersects the set ilz - r. 

The intersection of il 2 - r' with the hyperplane 
Yn + z = 1 is a straight line, whose equation we write in the 
form 
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~. 

FIG. 2. 

y; = a; f.l +P;, Yn+2 = 1, 
(AI9) 

i = I, ... ,n + 1, f.lER, 

where a; andp; are fixed real numbers depending on aj and 
bj (j = I, ... ,n) and on the matrix elements l;j 
(i,j = I, ... ,n + 2) of L. 

It follows that the equations in the chart (Un + 2 ,f/Jn + 2) 
of the subset of RP" + I obtained by applying L to the subset 
of RP" + I whose equation-in the same chart-is (AI5) are 
the following: 

x; = a; f.l + P;, i = I, ... ,n + 1. (A20) 

Since L is arbitrarily close to the identity, and clearly 
an + I = I when L is equal to the identity, it follows that 
an + I #0; therefore, we can use the (n + l)th equation of 
(A20) to solve for f.l as a function of t ': 

f.l=(t'-Pn+d/a n + l • (A2I) 

Substituting back into (A20), we see that (A20) is equivalent 
to the following set of equations: 

x; =A;t' +B;, i= l, ... ,n, (A22) 

where 

(A23) 

Since we have shown that by applying (AI2) to an arbi­
trary solution (AI4) of (All) we obtain another solution of 
(All), given by (A22), it follows that (AI2) is a symmetry of 
the system (All), as we had claimed. 

ADDENDUM 

We shall show here that the function R (t,A. ) defined by 
(8) is a C'" function. 
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Indeed, we have 

(t - tor R (t,A ) 

= _1_ f' <p Ir (S,A )(t - S)lr - I ds 
(r - 1)1 )'0 

(i) 

by Cauchy's integral form for the remainder of the Taylor 
expansion of <p (t,A. ) around t = to (for fixed A ). \3 

Performing the change of variable, 

s = to + u(t - to), uE[O,I], (ii) 

we immediately obtain 

f' <p Ir (s,A. )(t - s)lr - I ds 
)'0 

= (t - tor L <p Ir (to + u(t - to),A. )(1 - ur -I duo (iii) 

Comparing (i) with (iii), we get 

1 Sal R (t,A. ) = -- <p Ir (to + u(t - to),A. ) 
(r- I)! 0 

X(I- ur- I du, (iv) 

which is clearly of class Ck in the variables (t,A. ) provided 
that <p (t,A. ) is of class C + k • 

Since by hypothesis <p (t,A. ) is of class C'" , it follows that 
R (t,A. ) is also of class C'" , as claimed. 
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