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Abstract 

 

Objective: Considering the increasing use of complexity estimates in neuropsychiatric 

populations, a normative study is critical to define the ‘normal’ behaviour of brain 

oscillatory complexity across the life span. 

Method: This study examines changes in resting-state magnetoencephalogram (MEG) 

complexity – quantified with the Lempel–Ziv complexity (LZC) algorithm – due to age 

and gender in a large sample of 222 (100 males/122 females) healthy participants with 

ages ranging from 7 to 84 years. 

Results: A significant quadratic (curvilinear) relationship (p < 0.05) between age and 

complexity was found, with LZC maxima being reached by the sixth decade of life. 

Once that peak was crossed, complexity values slowly decreased until late senescence. 

Females exhibited higher LZC values than males, with significant differences in the 

anterior, central and posterior regions (p < 0.05). 

Conclusions: These results suggest that the evolution of brain oscillatory complexity 

across the life span might be considered a new illustration of a ‘normal’ physiological 

rhythm. 

Significance: Previous and forthcoming clinical studies using complexity estimates 

might be interpreted from a more complete and dynamical perspective. Pathologies not 
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only cause an ‘abnormal’ increase or decrease of complexity values but they actually 

‘break’ the ‘normal’ pattern of oscillatory complexity evolution as a function of age. 

 

Keywords: Life Span, Ageing, Complexity, Brain Development, White Matter 

Development 

 

Highlights 

 

1. A significant quadratic (curvilinear) relationship between age and oscillatory 

complexity exists, with complexity maxima reached by the sixth decade of life. 

2. As in previous studies, females exhibit higher complexity values than males, at least 

in some brain regions. 

3. The evolution of oscillatory complexity across the life span is interpreted as a 

physiological rhythm which is altered by several brain pathologies. 

 

 

 

 

 

1. INTRODUCTION 

 

Neurophysiological studies of human brain have emphasised the critical role of age 

effects in the electroencephalograms (EEGs) or magnetoencephalograms (MEGs) of 

healthy individuals. As Clarke et al. (2001) pointed out, EEG maturational changes 

were reported even in very early investigations (Lindsley 1939). Matousek and Petersén 
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(1973) established some ‘norms’ for the developing EEG in a large sample of healthy 

individuals aged 1–21 years. John et al. (1980) further studied the developmental 

aspects of the EEG in healthy children and calculated a series of ‘developmental 

equations’ that demonstrated a linear behaviour of the conventional delta, theta, alpha 

and beta bands. Low-frequency bands exhibited a negative slope as a function of age 

while high-frequency bands exhibited the opposite tendency. In essence, a ‘substitution 

process’ occurs. Low-frequency bands (delta and theta) are predominant until the age of 

4 years, but both show a sustained decrease. As age increases, the dominant low-

frequency bands are substituted by activity in the alpha and beta frequency ranges. 

Thus, the mean frequency of the so-called ‘central alpha’ is 7 Hz by the first year of life, 

9 Hz by 4 years of age and stabilises at around 10 Hz in mild adolescence (see Marshall 

et al., 2002). Alpha rhythm in the 8–12 Hz frequency band becomes the most prominent 

rhythm in the awake EEG and MEG of healthy adults. 

Adolescence is a key transition point for the oscillatory activity in the brain. During 

adolescence, a significant tendency to reduced power in all frequency bands was 

observed (Gasser et al., 1988); a power reduction that correlated with a decrease of 

grey-matter volumes in the transition from infancy to early adolescence (Whitford et al., 

2007). These observations are supported by Dustman et al. (1999); they confirmed that 

such decrease of absolute power continues into adulthood, although changes are not so 

radical when compared to the transition between infancy and adolescence. Finally, 

healthy ageing is defined by a new ‘substitution process’ in the spectral profile, 

characterised now by the so-called ‘slowing’ of EEG and MEG traces. Overall, a 

pronounced decrease in the amplitude of the basic alpha rhythm (8–12 Hz) has been 

noticed, accompanied by a power increase in the theta and delta frequency ranges. 

Interestingly, during this new substitution process, low-frequency bands also increase 
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their topographic location, following a posterior-to-anterior tendency (see John et al., 

1988, and the review by Rossini et al., 2007). 

All the above-mentioned studies used classical spectral analysis methods to investigate 

developmental changes. Traditional methods have been challenged by new techniques 

derived from the non-linear analysis theory, since EEG and MEG signals can be 

regarded, at least to some extent, as generated by complex systems with non-linear 

dynamics (Lopes da Silva, 1991; for a critical review on this issue see also Stam, 2005). 

Complexity analysis is a particular form of non-linear analysis that has been applied to 

EEG or MEG data. Unfortunately, there is no consensus for a unique definition of the 

term complexity within this background, and several estimates have been proposed. For 

example, Tononi and co-workers’ (1994) proposed a measure, called ‘neural complexity 

(CN)’, which can be defined as a balance between functional segregation and 

integration in the brain. The correlation dimension is a widely used method that seems 

to represent a non-linear estimate of the number of independent neuronal populations or 

oscillators which give rise to an EEG/MEG signal (Lutzenberger et al., 1995). The 

algorithmic complexity (Kolmogorov, 1965) is defined as the length of the shortest 

computer programme that generates a particular bit string. Most of these complexity 

estimates might be interpreted as a measure of the regularity/variability of brain 

oscillations and/or an attempt to evaluate the number of independent oscillators or 

frequency components underlying the observed signal (Aboy et al., 2006; Lutzenberger 

et al., 1995). 

Complexity estimates have been specifically employed to investigate developmental 

changes of brain oscillatory activity measured with EEG. Anokhin’s group (Anokhin et 

al., 1996) performed dimensional complexity analysis in a large sample of healthy 

males with an age range from 7 to 60 years. Complexity values increased monotonously 
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as a function of age. Gender effects on maturational changes were not investigated in 

these first studies. In an ulterior investigation, Anokhin’s group analysed dimensional 

complexity values in a new sample, now including healthy females with an age range 

from 7 to 66 years (Anokhin et al., 2000). Age effects were identical to those observed 

in their previous study. However, gender emerged as an important variable, since results 

indicated higher complexity values in females. Girls exhibited higher complexity values 

when compared to boys, and gender differences increased until adolescence. The 

authors interpreted these findings as an evidence of faster maturation of cortical activity 

in females. In parallel, Meyer-Lindenberg (1996) confirmed Anokhin’s results using 

correlation dimension (D2) and the first Lyapunov exponent (L1). It is noteworthy that 

gender differences were also reported in some developmental EEG studies using 

conventional spectral measures (see, e.g., Clarke et al., 2001). 

Age-related changes of brain signals have been also investigated by means of estimators 

such as sample entropy and multi-scale entropy. For example, multi-scale entropy 

values were calculated by McIntosh et al. (2008) to assess age-related trial-to-trial 

variability in a face-recognition visual memory task. Results indicated that brain signal 

variability increased with age, and showed a positive correlation with subjects’ accuracy 

on task performance. Authors understood that brain maturation increases brain signal 

variability and this process is accompanied by an increase in behavioural stability. 

Lippé at al. (2009) calculated multi-scale entropies of visual and auditory-evoked 

responses in a sample of healthy infants and children aged 1 month–5 years of age. As 

in all previous studies, complexity increased with age, although signal complexity was 

higher for visual as compared to auditory stimuli. Bruce et al. (2009) accomplished an 

interesting study where the regularity of EEG signals during sleep was compared in 

samples of middle-aged and elderly individuals. Signal complexity was estimated by 
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means of sample entropy, and results indicated that sample entropy was larger in elderly 

individuals in sleep stage 2. 

Overall, these investigations basically support the notion of an uninterrupted, linear 

increase of brain oscillatory complexity during maturation and ageing. In a recent MEG 

study (Fernández et al., 2010), we suggested that such uninterrupted complexity 

increase observed in Anokhin’s studies may be explained by the characteristics of the 

sample. Our sample was composed of subjects between the sixth and eighth decades of 

life, and a linear decrease of complexity scores as a function of age was observed. These 

apparent contradictions suggest that normative studies with larger samples and more 

robust complexity estimates are needed. 

Previous investigations used methods derived from the chaos theory, such as D2 and L1. 

The use of these estimates to characterise biomedical time series poses significant 

problems. First, to accurately compute both metrics, one needs an amount of data 

beyond the experimental possibilities for biomedical time series (Eckmann & Ruelle, 

1992). In addition, time series need to be stationary, something that is usually not true 

with physiological signals. With these limitations in mind, Lempel–Ziv Complexity 

(LZC), a complexity estimator introduced by Lempel and Ziv (1976), has been 

proposed for EEG/MEG signals analysis. The LZC is a metric that, similar to the 

algorithmic complexity, reflects the number of distinct substrings and the rate of their 

recurrence along the given sequence (Radhakrishnan & Gangadhar, 1998). Larger LZC 

values correspond to more complex time series. One important advantage of this metric 

is that it can be calculated even for short data segments and in non-stationary signals 

(Zhang et al., 1999). Moreover, LZC is more precise than L1 for characterising order or 

disorder (Kaspar & Schuster, 1987) and is better suited for the electromagnetic brain 

activity analysis than D2 (Zhang et al., 2001). 
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LZC has been used to analyse EEG and MEG signals in patients with Alzheimer’s 

disease (Abásolo et al., 2006; Fernández et al., 2010; Gómez et al., 2006), attention 

deficit-hyperactivity disorder (ADHD) (Fernández et al., 2009), depression and 

schizophrenia (Li et al., 2008; Fernández et al., 2011a; Méndez et al., 2011;) as well as 

to measure the depth of anaesthesia (Zhang et al., 2001), or to study epileptic seizures 

(Radhakrishnan and Gangadhar, 1998). The increasing clinical use of LZC and other 

estimates of oscillatory complexity is the main reason to carry out a normative study 

where the ‘normal’ behaviour of complexity values is defined according to age and 

gender influences in a large population. This is the main goal of our investigation. 

2. METHODS 

2.1. Participants 

 

Our sample consisted of 222 (100 males/122 females) healthy right-handed participants. 

Subjects’ age ranged from 7 to 84 years (mean age ± standard deviation: 43.83 ± 21.62 

years). No significant differences in terms of age were found between males (42.26 ±  

21.08) and females (45.11 ±  22.05). All participants included in the current 

investigation have been described in some of our previous studies (Fernández et al., 

2002; Fernández et al., 2009; Fernández et al., 2010; Fernández et al., 2011a; Méndez et 

al., 2011; Solesio et al., 2009). 

 

2.2. MEG Data Collection 

MEGs were acquired with a 148-channel whole-head magnetometer (MAGNES 2500 

WH, 4D Neuroimaging, San Diego, CA, USA) placed in a magnetically shielded room 

at ‘Centro de Magnetoencefalografía Dr. Pérez-Modrego’ (Madrid, Spain). Subjects 

were in an awake but resting state with their eyes closed and under vigilance control 
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during the recording. They were asked to avoid blinking and making movements. For 

each subject, 5 min of MEG signal were acquired at a sampling frequency of 678.17 Hz 

using a hardware band-pass filter of 0.1–200 Hz. Afterwards, these recordings were 

downsampled by a factor of 4 (169.549 Hz, 50863 samples). This process consisted of 

filtering the data to avoid aliasing (Nyquist criterion) and downsampling the recordings. 

The anti-aliasing filter was a second-order Butterworth IIR routine applied to the signals 

in both forward and reverse directions to avoid net phase shift with cut-off frequency at 

76.30 Hz (45% of the final sample rate: 169.549 Hz). 

Artefact-free epochs of 20 s were selected off-line. Finally, these epochs were processed 

using a band-pass filter with Hamming window and cut-off frequencies at 1.5 and 40 

Hz. This filter was used to remove the power line frequency (50 Hz in Europe) and the 

DC component from the MEG data. 

2.3. LZC calculation 

LZC is a non-parametric measure for finite sequences related to the number of distinct 

substrings and the rate of their occurrence along the sequence, with larger values 

corresponding to more complexity in the data (Zhang et al., 2001). LZC analysis is 

based on a coarse-graining of the measurements, so the MEG recording must be first 

transformed into a finite symbol string. In this study, a binary sequence conversion was 

used. By comparison with a threshold Td, the original data are converted into a 0–1 

sequence. We used the median as the threshold Td due to its well-known robustness to 

outliers (Nagarajan et al., 2002). The binary string obtained is then scanned from left to 

right and a complexity counter c(n) is increased by one unit every time a new 

subsequence of consecutive characters is encountered in the scanning process. 

To obtain a complexity measure which is independent of the sequence length n, c(n) 

should be normalised. In general, b(n) = n/log2(n) is the upper bound of c(n) for a binary 
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sequence (Zhang et al., 2001). Thus, c(n) can be normalised via b(n): C(n) = c(n)/b(n). 

The normalised LZC, C(n), reflects the arising rate of new patterns along with the 

sequence. 

The detailed algorithm for the measure of the LZC is included in Appendix A. 

2.4. MEG Data Reduction and Analysis 

A normalised LZC value was obtained for each channel and participant. Thus, statistical 

analyses were performed with 148 LZC scores per subject. As in previous studies 

(Fernández et al., 2009; Fernández et al., 2010; Fernández et al., 2011a; Méndez et al., 

2011), the initial 148 LZC values were averaged into five regions: anterior, central, left 

lateral, right lateral and posterior, which are included as default sensor groups in the 4D-

neuroimaging source analysis software (see Fig. 1). 

 

2.5. Statistical Analysis 

The statistical analyses were performed by using Excel, Statistical Package for the 

Social Sciences (SPSS) 19 and Statgraphics 5.1 software. Results are presented as mean 

± standard error. Probabilities p < 0.05 were considered as significant. We studied the 

effect of age and gender on LZC variables by means of two-way analysis of variance 

(ANOVA).The relationship between LZC scores and age was determined by means of 

linear and polynomial regression models. Finally, we examined regional differences 

among LZC variables by means of one-way repeated measures ANOVA with a 

covariate (age) and a between-groups factor (gender). Bonferroni correction was used 

for multiple comparison tests. 

3. RESULTS 

3.1 Age and Gender Effects on LZC 
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In previous studies, we found that age and gender might be modifying factors of LZC 

values (Fernández et al., 2011a; Méndez et al., 2011). Thus, our study began with an 

exploratory analysis by describing data according to these two variables. To this aim, 

participants were subdivided into six age groups: below 19 years (<19), 19–40, 41–60, 

61–70 and above 70 years (>70) (see Fig. 2). Age effects were significant for all LZC 

variables (all p values <0.001). Gender had a statistically significant effect in central (p 

= 0.006) and posterior (p = 0.010) LZC indicating that, overall, females showed higher 

values in these regions. However, the age × gender interaction was only significant for 

the anterior region (p = 0.007). When this interaction was further explored by means of 

pairwise comparisons using Bonferroni correction, we concluded that females’ LZC 

values were higher than those observed in males but this effect was only significant for 

individuals below 19 years (p = 0.007). To better analyse this effect, we investigated 

anterior LZC values within the <19 years group. Thus, separated linear regression 

models were fitted for males and females, considering age as an independent variable. 

The slopes of both models were significantly different from ‘zero’ (slope = 0.014; p = 

0.0415) for males and (slope = 0.0053; p = 0.0322) for females, indicating a positive 

(i.e., increasing) tendency of LZC values in both gender groups. Moreover, the slope of 

the regression line was significantly larger in males than in females (p = 0.045), 

representing a steeper increase of anterior LZC scores in the males group. The intercept 

term (b0 = 0.588 for females and 0.464 for males) was larger in females than in males (p 

= 0.048), indicating that anterior LZC values were significantly higher in females within 

the <19 years group. 

 

Once the exploratory analysis was concluded, the next goal was to model the age 

influence on MEG signals by means of LZC. Intuitively, looking at Figure 3, it might be 
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observed that LZC values seem to increase till they reach a certain maximum, and after 

that point they start to decrease. This suggests to fit a quadratic function (b0 + b1* age + 

b2 * age2) to model such behaviour. Fittings of the quadratic function are displayed in 

Tables 1 and 2. Here, it is important to note that polynomial regression models were 

calculated separately for males and females in anterior, central and posterior regions, 

since gender exerted a significant influence on complexity values within these regions. 

A single model (females + males) was calculated for left and right lateral, since gender 

had no effect on the LZC values of these regions. 

Results demonstrated that all the b2 coefficients were significant (all p values <0.0467), 

confirming the adequacy of a quadratic rather than a linear model to explain age effects 

in all regions (see Fig. 4). This means that, as intuitively noticed, LZC values increase 

(with a brisker increase from infancy to adolescence–early adulthood) till they reach a 

maximum at a certain age and then they tend to slowly decrease. Since results 

confirmed the adequacy of a quadratic model, maxima were calculated for each region 

using the formula: 

Maximum = 
2

1

*2 b

b
−  

 

As it can be observed in Table 2, the complexity maximum in the anterior region was 

reached at a younger age than in other regions, that is, the complexity values started to 

decline earlier. Furthermore, this decline occurred before in females (51.09 years) than 

in males (64.03 years). A similar tendency was observed in the central region, whereas 

we found the opposite trend in the posterior region. Of note, the age × gender 

interaction previously detected in anterior LZC scores also had some influence on this 

modelling. As displayed in Figure 3, males’ and females’ regression curves reach an 

intersection point. Such an intersection point occurs at the age of 66.54 years. 
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Previously, we claimed that females (especially the youngest sample) showed overall 

higher LZC values within this region, but this affirmation is only true until this 

intersection point (i.e., until the age of 66.54 years). Once this point is crossed, the 

decline of LZC is more pronounced in females, and as a consequence males exhibit 

higher LZC values. 

 

3.2. LZC differences across regions 

Considering that previous studies reported regional differences in complexity values, we 

investigated this potential effect in our sample. Results showed a significant effect of 

region (p < 0.001) and age (p < 0.001). As we have described (see subsection 3.1.), 

there is a general tendency to increased LZC values as a function of age in the five LZC 

regions. However, LZC values were clearly different when regional effect was 

considered (see Fig. 2). Bonferroni pairwise comparisons showed that anterior and 

central LZC values were significantly higher when compared to left and right lateral or 

posterior regions (all p values <0.001). Gender effect was very close to the level of 

statistical significance (p = 0.053). Overall, LZC scores in anterior and central regions 

were significantly higher in both males and females, but a slightly different behaviour 

was found in the anterior region. As we previously described, anterior region LZC 

values for older females (>70) tend to show a more pronounced decline when compared 

to males’ values. As a consequence, anterior LZC values in the older females are closer 

to the values of left lateral, right lateral and posterior regions than in the males group. 

4. DISCUSSION 

 

These results represent the first normative study where complexity values have been 

obtained in such a large sample of healthy individuals between the first and eighth 
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decades of life. When compared with previous investigations (Anokhin et al., 1996, 

Anokhin et al., 2000; Meyer-Lindenberg 1996, McIntosh et al., 2008; Pravitha et al., 

2005), three major coincidences were observed: (1) complexity values tended to 

increase as a function of age, (2) although such increase was present in all brain regions, 

complexity values in anterior and central regions were significantly higher compared 

with other regions (see Fig. 4), probably mirroring the greater functional and anatomical 

intricacy of frontal lobes (Fuster, 2002) and (3) females exhibited higher complexity 

values than males, although in our study this effect was only significant in anterior, 

central and posterior regions. When healthy subjects in their seventh and eighth decades 

of life were included in the sample, a significant quadratic, rather than linear, 

relationship between age and complexity was detected. A quadratic relationship meant 

that complexity values tended to increase until they reached a maximum or peak. The 

age of peak was variable and particular for each brain region but, interestingly, it 

basically coincides with the upper limit of Anokhin’s group samples (Anokhin et al., 

1996; Anokhin et al., 2000) where linear behaviours were described. This is to say that, 

in our sample, complexity peaks were reached by the sixth decade of life in most brain 

regions. Once that peak was crossed, complexity values slowly decreased until late 

senescence. 

The first issue addressed by these evidences is the relationship between the evolution of 

conventional spectral parameters and the evolution of complexity scores. The evolution 

of EEG frequency bands as a function of age in children and young adults is well-

known (Matousek and Petersén, 1973; John et al., 1980). Subsequent investigations 

(John et al., 1988) allowed the generalisation of the so-called ‘developmental equations’ 

in middle-aged and elderly individuals. More importantly, the spectral evolution with 

age has been previously compared with the evolution of complexity values. Anokhin 
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and co-workers (1996) found that a significant decrease of theta and alpha power was 

observed during maturation, with only slight changes during middle age. On the 

contrary, complexity scores showed a linear increase, with an abrupt augmentation from 

infancy to adolescence (especially in frontal regions), and a sustained augmentation 

(uniform across brain regions) from adolescence to adulthood. This seminal study 

suggested that spectral and complexity analyses offer two different and complementary 

perspectives on brain maturation. The neurobiological basis of the divergence between 

spectral and complexity evolutions with age have been recently established. Whitford et 

al. (2007) investigated the correlation between grey matter (GM), white matter (WM) 

and relative power in the conventional frequency bands. They hypothesised that the 

significant reduction of GM volume observed in the transition from infancy to 

adolescence should produce a reduction of the EEG power, and results confirmed their 

hypothesis. The linear reduction of GM volume was associated with a reduction of 

relative power, especially in the low-frequency bands. No correlations were found 

between WM volume and relative power in any band. Very recently (Fernández et al., 

2011b), we demonstrated that WM integrity is strongly correlated with MEG 

complexity, as measured by LZC. Consequently, we claimed that our own findings and 

Whitford and co-workers’ results opened the window to the perspective of two 

physiologically independent processes regulating the properties of EEG/MEG signals: 

those associated with GM (conventional linear spectral measures) and those associated 

with WM (non-linear complexity estimators). 

Considering these facts, our results pose two new critical questions: (1) how can we 

explain such a quadratic relationship between age and oscillatory complexity? and (2) is 

there any physiological process in the brain with a similar behaviour? If we accept that 

complexity values estimate the number of independent oscillators (Lutzenberger et al., 
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1995) and/or the number of frequency components that compose the observed signals 

(Aboy et al., 2006), then we should hypothesise that the underlying physiological 

process must be closely related to the generation of oscillatory activity in the brain. 

Anokhin’s group proposed that the observed linear increase of complexity values as a 

function of age might be explained by the ‘continuous formation and modification of 

neural cell assemblies’ that relies on the ‘developmental selection of cortico-cortical 

connections favouring a synchronous excitation of distributed neurons’ (Anokhin et al., 

1996). Following these authors’ reasoning, the proposed underlying process for an 

uninterrupted complexity increase should continue until, at least, middle age. An 

excellent candidate to elucidate this process is the myelination of cortical WM, which is 

intimately involved in the formation of cortico-cortical connections. 

The myelination of cortical WM might allow explaining a process that exceeds the 

period of brain maturation but, according to current knowledge, it would not explicate a 

sustained linear increase of complexity values. Some classical studies (Yakovlev & 

Lecours, 1967) reported a protracted cycle of myelination that continued into the third 

decade of life. However, cortical WM development with age seems to follow a 

quadratic rather than linear behaviour. This effect was first described in some 

volumetric studies (Bartzokis et al., 2001; Sowell et al., 2003; Sowell et al., 2004) 

where WM volumes increased until reaching a certain peak, frequently in the fourth 

decade of life, and then decreased until senescence. The quadratic relationship between 

age and WM has been confirmed by more recent studies using fractional anisotropy 

(FA). The FA is a diffusion tensor imaging (DTI)-derived measure that is particularly 

useful as an estimate of the microstructure and specific organisation of myelinated 

axonal fibres, and may be considered an estimate of WM integrity (Basser & Pierpaoli, 

1996). Using this measure, several authors (Hasan et al., 2007, Hasan et al., 2009; 
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Kochunov et al., 2012; McLaughlin et al., 2007) reported quadratic effects of age on FA 

values, with ages of peak between the third and fifth decades of life and a very slow 

decrease of FA values from these peaks to late senescence. Consequently, we can affirm 

that the quadratic relationship between age and oscillatory complexity shown by our 

results parallels the quadratic relationship between age and cortical WM. 

The similarity of global age-related trajectories is not the only coincidence between 

complexity and WM. One of our findings, which replicated previous studies, was the 

more abrupt increase of complexity values from infancy to adolescence and young 

adulthood, especially in anterior brain regions. A similar, steeper increase of FA values 

from infancy to adolescence has been found in some studies (Lebel et al., 2008; 

McGraw et al., 2002; Snook et al., 2005). Also, our results showed that complexity 

peaks were reached at an earlier age in anterior brain regions, and therefore complexity 

decline started earlier there. Comparably, Bartzokis et al. (2001) described earlier peaks 

of WM volume in frontal regions, while Nusbaum et al. (2001) and Pfefferbaum et al. 

(2005) supported this tendency in DTI investigations. 

At this point, it might be argued that all those similarities between complexity and WM 

are interesting but probably too incidental to establish an actual association. As 

mentioned above, in a previous study, we studied the relationship between LZC and 

WM. Although this in vivo study proved a positive correlation between WM integrity 

(i.e., FA values) and complexity, it might be still questioned if such association meets 

the rationale of our previous hypothesis, that is, if WM is related to the generation of 

oscillatory activity in the brain. EEG/MEG signals are composed of the summation of 

multiple electromagnetic oscillations at different frequencies which derive from the 

collective and synchronous behaviour of neural populations located in different brain 

regions (Cantero et al., 2009; Segalowitz et al., 2010). Therefore, synchronisation 
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among brain regions appears as a basic mechanism to explain the frequencies’ 

variability observed in EEG/MEG signals, which is in turn intimately related to 

oscillatory complexity estimates (Lutzenberger et al., 1995). Is WM involved in 

synchronisation? The excellent review by Fields (2008) might answer this question. 

Fields (2008) points out that WM has been traditionally considered a passive insulation 

substance that ensures the transmission of neural impulses. The author proposes that 

emerging evidence indicates this is a too simplistic perspective, and WM also 

participates in the speed control of impulse conduction and consequently in the 

synchronisation among cortical regions. 

Nevertheless, the assumed relationship between WM and oscillatory complexity cannot 

fully explain all the findings in our study. For example, the complexity peaks are found 

at older ages than the peaks observed in WM studies. Such a delay may indicate that a 

supplementary and currently unknown process is postponing complexity decrease in 

aged individuals. Here, it is important to note that the ‘ages of peak’ in WM 

investigations are variable and, in some particular cases, the decline of FA scores in 

aged subjects was not significant (McLaughlin et al., 2007). Moreover, some classical 

studies (Benes et al., 1994; Pfefferbaum et al., 1994) reported constant WM volumes or 

even signs of myelination until the seventh decade of life. Yet, we still claim that some 

additional processes or confounding factors must be investigated in the future. 

Similarly, females exhibited higher complexity values than males and, to the best of our 

knowledge, no clear WM-related differences between genders have been reported that 

might explain this effect. Although there is no straightforward explanation for a greater 

complexity in females’ brain signals, this finding appeared in all studies investigating 

gender influences on complexity values (Anokhin et al., 2000; Pravitha et al., 2005). 

Unfortunately, the finding was scarcely discussed in physiological terms. Gender 
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differences in brain weight and structure have been reported in several studies during 

the last decades (Dekaban, 1978; Peters, 1991; Witelson, 1989; Witelson et al. 1995), 

but the implication of such differences in complexity values is difficult to determine. 

The study that might be more closely related is that by Benes et al. (1994), where 

significantly higher myelination ratios were reported in females until young adulthood. 

Interestingly, a recent investigation (Luders et al., 2004) informed of a higher ‘cortical 

complexity’ in females, with cortical complexity defined as a gyrification measure 

which estimates the frequency of sulcal and gyral convolutions in some cortical areas. 

Females exhibited significantly greater cortical complexity scores in most areas, and 

authors interpreted this finding to be associated with the underlying cytoarchitecture and 

with specific connectivity patterns in the brain. The relationship between cortical 

complexity and EEG/MEG complexity estimates should also be investigated in the 

future. 

Finally, very recent studies have investigated how the functional organisation of the 

brain may affect the complexity of brain signals. For example, Vakorin et al. (2011) 

explored the relationship between the complexity of individual sources within a network 

and the information exchange between them. Results indicated that the amount of 

information transferred from one source to another correlated with differences in the 

complexity (as estimated with sample entropy) of those sources. Authors interpreted 

their findings by claiming that the propagation of information within a network may be 

described as an accumulation of complexity of the brain signals. Misic et al. (2011) 

investigated the relationship between the variability of a region’s activity and the 

topological role of that region in a functional network. They recorded resting-state 

EEGs and constructed graphs of functional networks. Some graph measures such as 

centrality, efficiency and ‘betweenness’ were estimated to analyse the network 
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behaviour. Their results showed that the centrality of network nodes (i.e., nodes with 

higher number of connections) predict the information content of their physiological 

activity. This might be related with the evidence of a more robust developmental 

increase of entropy values in brain areas such as the precuneus and the posterior 

cingulate. These areas are characterised by their high extrinsic and intrinsic 

connectivity, and are critical for the default-network model of resting-state activity. 

Misic et al.’s study may be considered a new confirmation of the positive correlation 

between complexity and functional connectivity (see Fernández et al., 2011b). 

 

5. SIGNIFICANCE 

Our study is limited by its cross-sectional nature that extrapolates life span data across 

multiple cohorts. A longitudinal rather than cross-sectional study would better address 

the problem of oscillatory complexity evolution across the life span. In spite of this 

limitation, we still claim that this is a comprehensive investigation performed to 

understand complexity evolution and its potential physiological determinants. From our 

point of view, the clinical implications might be of particular relevance. First, normative 

data derived from a considerably large sample of both genders are now available to 

compare with pathological populations. Second, and more important in our opinion, 

previous and forthcoming clinical studies using complexity estimates might be 

interpreted from a more complete and dynamical perspective (see McKey & Milton, 

1987). Considering preceding investigations, clinical populations of different 

pathologies exhibited significantly higher or lower complexity values than controls, but 

such statistical difference only reveals a percentage of the actual dissimilarity between 

the pathological and the healthy states. Recent studies proved that pathologies such us 

mild cognitive impairment, depression, schizophrenia or ADHD (see Fernández et al., 
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2009; Fernández et al., 2010; Fernández et al., 2011a; Méndez et al., 2011) not only 

cause an ‘abnormal’ increase or decrease of oscillatory complexity values but also 

actually ‘break’ the ‘normal’ pattern of complexity evolution as a function of age. For 

instance, patients with major depression presented higher complexity values than 

controls, and these values failed to show the ‘normal’ increase with age that would be 

expected within the age range of the sample. When patients’ symptoms remitted, their 

complexity values decreased (becoming closer to those of controls) and recovered the 

tendency to increase as a function of age observed in healthy individuals within the 

same age range (Méndez et al., 2011). This implies that the disease not only modifies 

the values of a potential biological marker but, more importantly, alters a physiological 

rhythm in the organism. In the study presented here, we have described what might be 

considered a new illustration of a physiological rhythm, that is, the evolution of brain 

oscillatory complexity across the life span. 
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Appendix A. Lempel–Ziv complexity algorithm 

The detailed algorithm for the measure of the LZ complexity is as follows (Zhang et al., 

2001): 

1. Let S and Q denote two subsequences of the original sequence P and SQ be the 

concatenation of S and Q, while SQπ is a string derived from SQ after its last character 

is deleted (π means the operation to delete the last character). 

2. Let v(SQπ) denote the vocabulary of all different substrings of SQπ. 

3. At the beginning, the complexity counter c(n) = 1, S = s(1), Q = s(2), SQ = s(1), 

s(2) and SQπ = s(1). 

4. In general, suppose that S = s(1), s(2),…, s(r), Q = s(r+1) and, therefore, SQπ = 

s(1), s(2),…, s(r). If Q ∈ v(SQπ), then Q is a subsequence of SQπ, not a new sequence. 

5. S does not change and renew Q to be s(r+1), s(r+2), then judge if Q belongs to 

v(SQπ) or not. 

6. The steps 4 and 5 are repeated until Q does not belong to v(SQπ). Now Q = 

s(r+1), s(r+2),…, s(r+i) is not a subsequence of SQπ = s(1), s(2),…, s(r+i-1), so 

increase the counter by one. 

7. Thereafter, S and Q are combined and renewed to be s(1), s(2),…, s(r+i), and 

s(r+i+1), respectively. 

8. Repeat the previous steps until Q is the last character. At this time, the number 

of different substrings is c(n), the measure of complexity. 

 

To obtain a complexity measure which is independent of the sequence length, c(n) 

should be normalised. If the length of the sequence is n and the number of different 

symbols is α, it has been proved (Lempel and Ziv, 1976) that the upper bound of c(n) is 

given by: 
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and c(n) can be normalised via b(n): 
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C(n) is usually a value between zero and one. The normalised LZC reflects the arising 

rate of new patterns along with the sequence (Zhang et al. 2001). A minimum data 

length must be considered to ensure that LZC reveals real data features (Yan and Gao, 

2004). Since a previous work showed that the LZC values become stable for MEGs 

longer than 3000 samples (Gómez et al., 2006), an epoch length of 3392 data points (20 

s) was used in the current study. 
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Table and Figure Legends 

 

Table 1. Polynomial Regression analyses for Anterior, Central and Posterior regions. In 

this particular case fittings are displayed by gender, since we found significant 

differences between males and females in the exploratory ANOVA. The determination 

coefficients (R2) are displayed as a measure of goodness of fit and the p-value for R2 is 

displayed in the bottom row of each cell on the second column. The significance of 

these coefficients indicates that the quadratic fit is better than the linear fit in all genders 

and regions. The age-of –peak (maximum) for the polynomial is given in the last 

column of the Table. 

Table 2. Polynomial Regression analyses for Right lateral and left lateral. As for Table 

1, the p-value for R2 is displayed in the bottom row of each cell on the second column. 

The significance of these coefficients indicates that the quadratic fit is better than the 

linear fit in both regions. The age-of –peak (maximum) for the polynomial is given in 

the last column of the Table 

 

Figure 1. Sensor-space representation of the five regions submitted to statistical 

analyses. 

Figure 2. Mean and standard error values of LZC scores in the five regions, represented 

according to Age and Gender groups. Males’ information is displayed on top, while 

females information is displayed on the bottom of the figure. 

Figure 3. Gender x Age effects in Anterior region (mean and standard error). Females 

complexity values are represented by dashed lines while males’ values are represented 

by solid lines. 
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Figure 4. Data points (female=triangle, male= square) and fitted models of LZC 

variables represented as a quadratic function of Age. For Anterior, Central and Posterior 

regions the polynomial regression models were presented separately for males (solid 

line) and females (dashed line). 
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Table 1. 

 

 b0 b1 b2 Age-of-

peak 

Anterior Male 

R2=0.1955 

p=0.0000 

0.592645 

p=0.0000 

0.003070 

p=0.0038 

-0.000023 

p=0.0402 

64,03 

Female 

R2=0.1150 

p=0.0007 

0.610153 

p=0.0000 

0.003474 

p=0.0005 

-0.000034 

p=0.0017 

51,09 

Central Male 

R2=0.3323 

p=0.0000 

0.578715 

p=0.0000 

0.003706 

p=0.0005 

-0.000025 

p=0.0274 

71,96 

Female 

R2=0.4333 

p=0.0000 

0.590959 

p=0.0000 

0.004071 

p=0.0000 

-0.000031 

p=0.0003 

64,64 

Posterior Male 

R2=0.2564 

p=0.0000 

0.534323 

p=0.0000 

0.003614 

p=0.0023 

-0.000025 

p=0.0467 

69,59 

Female 

R2=0.3498 

p=0.0000 

0.552774 

p=0.0000 

0.003460 

p=0.0004 

-0.000024 

p=0.0211 

71,86 
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Table 2. 

 b0 b1 b2 Age-of-

peak 

Left_Lateral 

 R2=0.2777 

 p= 0.0000 

0.534806 

p=0.0000 

0.004183 

p=0.0000 

-0.000033 

p=0.0001 

62,62 

Right_Lateral 

 R2=0.2922 

 p= 0.0000 

0.5417 

p=0.0000 

0.003325 

p=0.0000 

-0.000021 

p=0.0167 

78,22 

 

 



 36

Figure 1. Sensor-space representation of the five regions submitted to statistical 

analyses. 
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Figure 2. Mean and standard error values of LZC scores in the five regions, represented 

according to Age and Gender groups. Males’ information is displayed on top, while 

females information is displayed on the bottom of the figure. 
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Figure 3. Gender x Age effects in Anterior region (mean and standard error). Females 

complexity values are represented by dashed lines while males’ values are represented 

by solid lines. 
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Figure 4. Data points (female=triangle, male= square) and fitted models of LZC 

variables represented as a quadratic function of Age. For Anterior, Central and Posterior 

regions the polynomial regression models were presented separately for males (solid 

line) and females (dashed line). 

 

 


