Optimization strategies in credit portfolio
management

Benjamin Ivorra ¢, Bijan Mohammadi *
and Angel Manuel Ramos'?

f Departamento de Matematica Aplicada,
Universidad Complutense de Madrid
Plaza de Ciencias n°® 3, 28040, Madrid, Spain
® benjamin.ivorra@mat.ucm.es
b angel@mat.ucm.es
! Mathematics and Modelling Institute
Montpellier University, 34095 Montpellier, France
mohamadi@math.univ-montp2.fr

ABSTRACT - This paper focuses on the application of an original global
optimization algorithm, based on the hybridization between a genetic algorithm
and a semi-deterministic algorithm, for the resolution of various constrained
optimization problems for realistic credit portfolios. Results are analyzed from a
financial point of view in order to confirm their relevance.
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1 Introduction

Continuous development of derivative credit products [1] makes risk man-
agement an important activity in asset allocation of financial structures. Credit
risk is the risk of trading partners, called counterparties, not fulfilling their
obligations on the due date resulting into losses for investors (this includes
bankruptcies such as Enron (2001) and WorldCom (2002) cases [2]). The main
objective of credit risk management is to provide models and tools allowing to
estimate and eventually reduce amount of losses. One of the most important
mathematical contribution in this field was the development of risk measures,
such as Value at Risk [3]. But, risk measures are highly non linear functions.
In addition, credit losses are characterized by large probabilities of small earn-
ings together with small probabilities of large losses. This makes difficult the
approximation of the loss density function which is necessary for the evalu-
ation of the risk measure resulting in a non-convex and costly optimization
problem. Therefore, one needs efficient global optimization techniques. In lit-
erature, many works deal with a convexified version of risk measures, resulting
on an over-estimation of the risk [4, 5].



In this paper, we focus on the application of a new optimization method
for the improvement under constraints of credit portfolio performances, namely
non-convex risk measures and income. This method is based on the hybridiza-
tion between a genetic algorithm [6] and an original semi-deterministic method
[7]. The portfolio considered here comes from a real case proposed by 'BNP-
Paribas s Portfolio Management Team’ and belongs to a complex category of
credit portfolio called Collateralized Loan Obligations (CLO) [1].

In Sections 2 and 7, we describe the general CLO structure and present the
model used to compute its risk measure and income. Section 3 gives a short
introduction to our optimization algorithm. Finally, in Section 4 we present
the considered optimization problems and analyze the results obtained with our
algorithm.

2 Credit portfolio model

We present the general structure of a credit portfolio and explain how to
evaluate its performances.

2.1 General structure

We focus on a portfolio (called master portfolio) compound by parts of other
portfolios (called inner portfolio).

2.1.1 Inner Portfolios: Collateralized Loan Obligations

Collateralized Loan Obligations (CLO) are security interests in pools of as-
sets, that usually comprise loans (also called facilities). The objective, for fi-
nancial institutions, is to buy securitization to protect themselves from possible
defaults of counterparties in the CLO. Investors, such as insurance companies,
bear the credit risk (or a part of it) and receive until the CLO maturity date a
periodic remuneration increasing with the level of risk.

Multiple slices of securities are issued by the CLO, offering various credit
risk characteristics to investors. Slices are ranked, according to their degree of
credit risk (the higher risked slice is called junior, the medium risked slices are
called mezzanines and the lower risked slice is called senior). More precisely, if
there is a default, investors on junior slice first cover the loss. In cases where the
loss is superior to the junior slice amount of money, other investors, successively
from mezzanines to senior, cover the remaining losses. However, the investor “s
earning increases with risk exposition.

2.1.2 Master portfolio - Collateralized Loan Obligations®

During last years, the relative stability in corporate credit shifted investor
interest further toward structured instruments to enhance yield, CLO? (CLO
Square) emerged. The CLO? (or Master CLO) may be constructed on the basis
of single slice CLOs. A CLO? simply consists into a repackaging transaction
of one or several single slices of CLOs (the Inner CLOs (ICLO)). In addition
to these ICLO slices, a set of additional stand-alone assets (here loans), called
Single-Names (SN), can be included in the portfolio. And eventually, the CLO?
is divided in slices that will be proposed to investors.



A CLO? has several interesting features: it is a highly diversified portfolio, it
proposes two layers of subordination (one at the level of the ICLOs and one at
the level of the investment slices in the Master CLO) and it is more resilient to
low /medium losses scenarios. On the other hand, CLO? clearly leaves investors
exposed to more extreme systemic market conditions, in the sense that they
experience no losses up to a point for about 90% of the cases, after which the
loss deterioration is fairly fast and highly severe [1].

Analyzing a CLO? is difficult. There is an entire portfolio of credits to ana-
lyze combined with the complexity of the slicing. Sophisticated credit portfolio
models, such as the one proposed in the next subsection, should be used.

2.2 CLO? loss evaluation model

The present model aims at evaluating our portfolio and in particular, com-
pute its risk measures and its income.

We consider a portfolio compound by nsicr.,o € IN ICLO slices and ngy € IN
SNs.

This portfolio contains n € IN different facilities (here loans), included in
ICLOs and SNs, denoted by (Fac;)i=1.. n-

Each facility Fac;, i = 1.....n, is characterized by its client Cl; (the counter-
party), nominal NO; (the amount of money), maturity date T; (the contract end
date), spread Sp; (the rate of interest), geographical zone C;, industry sector
I;, rating Rat; (An evaluation of a client “s relative safety from an investment
standpoint), loss given default LGD; (the percentage of money lost in case of
default), R-square R; (Represents the degree of correlation between the value of
a client’s assets and the behavior of the global economy). All those informations
are furnished by private institutions.

For each ICLO slices i, i = 1.....ns1cro, we know its nominal NOgrcoro;,
amount of subordination Subs;cro, (the position of the slice in the ICLO i)
and rating Ratsrcro;-

All those input data are stocked in a set denoted by PORT.

We denote by L the random variable associated to the portfolio loss amount.
In order to compute the portfolio risk measure, we need to determine its density
function Br. To do so, we introduce i, op the discrete version of (3, where
AB € NN is a discretization step size. (1, ap is evaluated using M € IN iterations
of a Monte-Carlo algorithm described in section 7.

Then, using data stocked in PORT and (i, A, we are able to compute:

e Income (IC): the amount of money received by a person or organization
because of return on investments. In our case, this is given by:

IC(PORT) = ) Sp, x NO; (1)
=1

e Risk measure: for the chance that return on a given investment is dif-
ferent than expected. This includes possible partial or total loss.

One can give a more formal description of what said above. Let Q be a
finite set of states of nature, & a o-algebra and IP a risk measure. Any
element X of the probability space L>(Q, S, IP) is called risk and any



mapping w : L®(2,3,IP) — IR is called risk measure on L>(Q, 3, IP).
Here, we focus on a particular and popular risk measure: the Value at
Risk (VaR).

The VaR, of a random variable X € L*°(Q, 3, 1IP), is defined as:

VaRu(X) = inf[L/| /0 Bx(@)dz > (1 — )] @)

where (x is the loss density function of X and « > 0 is a given confidence
level (i.e. a percent level).

VaR, (L) can be interpreted as the nominal value of the smallest loss of
the worst o % losses. A complete presentation of risk measures and VaR
can be found in [4, 5, 8, 3].

3 Global optimization methods
We consider the following minimization problem:

min J (x) (3)
where J : 2 — IR is the cost function, z is the optimization parameter belonging
to an admissible space Q C IRV, with N € IN.

In this section, we give a short presentation of an original optimization
method used to solve (3). This algorithm is based on an hybridization between
a semi-deterministic algorithm and a particular genetic algorithm to which one
aims to provide suitable populations for global search.

3.1 genetic algorithm

Genetic algorithms (GA) approximate the solution of (3) J through a sto-
chastic process based on an analogy with the Darwinian evolution of species [9]:
a first family, called ’population’, X° = {29 € Q,1 = 1,...,N,} of N, possible
solutions of the optimization problem, called ’'individuals’, is randomly gener-
ated in the search space (). Starting from this population, we build recursively
Ngen new populations, called generations, X* = {z! € Q,1 = 1,..., N,} with
i = 1,.., Ngen through three stochastic steps, called selection, crossover and
mutation. Below, we present GA through an original matrix-form formulation.

We first rewrite X™ using the following (N, N)-real valued matrix form:

zi(1) ... xi(N)
Xt=| i (4)
v, (1) . @iy (N)

Selection: Each individual, xf is ranked with respect to its cost function
value J(x}) (i.e. the lower is its value of J(z}) the higher is the ranking).
Then N, individuals are randomly selected (individuals with better ranking have
higher chances to be selected), with eventual repetitions, to become ’parents’.



Introducing a binary (N, Np)-matrix S?, generated according to previous
ranking and selection processes, with Sj , = 1 if the kth individual of X" is the

selected 'parent’ number j and S; x = 0 otherwise, we define:
XHB =8I (5)

Crossover: This process leads to a data exchange between two ’'parents’
and the apparition of two new individuals called ’children’. We determine, with
a probability p., if two consecutive parents in X*t1/3 should exchange data or
if they are directly copied into the intermediate population X*+2/3,

Introduce a real-valued (N, Np,)-matrix C* where for each couple of consec-
utive lines (25 —1,25) (1 <j < % in case Ny isevenor 1 <j < N”Q_l
N, is odd), the coefficients of the 25 — 1th and 2jth rows are given by:

in case

Céj—l,Qj—l = A1, Céj—l,Qj =1-Ay, Céj,Zj—l = A2, Céj,Qj =1-X
In this expression:
e \; = Ay = 1 if parents are directly copied (with a probability 1 — p,.).
e )\; and \s are randomly chosen in ]0, 1] if a data exchange occurs between
the two parents (with probability p.).

Other coefficients of C* are set to 0. If N, is odd, the N,th parent is directly
copied, i.e Cyy n =1.

This step can be summarized as:

Xi+2/3 — CiX’i+1/3 (6)

Mutation: This process leads to new parameter values for some individuals
of the population. More precisely, each child is modified (or mutated) with a
fixed probability p,,.

Introduce for instance a random perturbation matrix £ with an i-th line
equal to:

e a random vector ¢; € IRV, according to the admissible space (2, if a mu-
tation is applied to the ith child (with probability p,,).

e 0 if no mutation is applied to the ith child (with probability 1-p,,).
This step can then take the following form:

Xi+1 — Xi+2/3 +(c;z (7)
Therefore, the new population can be written as:
Xt =(CiSiXt 4 & (8)

With these three basic evolution processes, it is generally observed that the
best obtained individual is getting closer after each generation to the optimal
solution of the problem [9].In practice, as final convergence is difficult with
GA based algorithms, one should always complete GA iterations by a descent
method for better accuracy.

Engineers like GAs because these do not require sensitivity computation,
perform global and multi-objective optimization and are easy to parallelize.
Their drawbacks remain their computational complexity, possible degeneracy
and lack of accuracy already mentioned and cured coupling with descent meth-
ods. The hybridization with the semi-deterministic algorithm presented below
aims to reduce computational complexity.



3.2 Hybrid optimization algorithm

Consider an optimization algorithm to solve (3). This we call core opti-
mization algorithm. It has an output denoted by Ag(xq, P,€) where xo € € is
the starting point, P the parameters of the algorithm and ¢ € IR defining the
stopping criterion.

Solving (3) with the considered core optimization algorithm means to solve

Islgfrzl Ao(s, P,e) (9)
where P and € are fixed.

In order to solve (9), we propose to use a multi-layer semi-deterministic al-
gorithm (here, we use the simplified notation SDA) based on the secant method
coefficients [7]. In the sequel, we present a particular implementation of this al-
gorithm in the case where a genetic algorithm is considered as core optimization
algorithm.

The objective of a such hybridization is to reduce the GA computational
complexity keeping the efficiency of the method: SDA providing informations
on the choice of the population and GA performing global optimization with
this population. More precisely, we consider the following algorithms, denoted
by (A;)L_,, corresponding to I € IN layers of the considered SDA and reading:

Step 1- Input: X} ,,J', ..., J", Pe

For [ going from 1 to J*

Step 2.1- 0; = Ai—l(X&h Jl, ceey Ji_l,P, 6)
Step 2.2- If min{J(ox),k =1,...,I1} < e Go to Step 3
Step 2.3- We construct X87l+1 = {xfﬂ’j € Q,j =1...N,} as following:

Vj e [I’Np]v JC;‘Jrl,j = x; - J(Ol)J RO

(on)=J(zT)
End of the loop For
Step 3- Output: A;(X?,J° ..., J% €) = argmin{J (o), k = 1,...,i}

i i
where Ty ;€ Xo,l

where X&l = {1‘71j € Q,j =1..N,} € QN is an initial population for Ag
and (J¥)g—1..; € IN’ are the iteration number of each algorithm AF.

In cases where there is evolution of the best element, this algorithm regener-
ates an initial population closer to this best element. In other words, the zone
near this element will be better explored. In other cases, the secant method
used in Step 2.2 allows to redistribute the initial population far from the cur-
rent solution (See [7, 10, 11] for more details).

We call this approach HGSDA (Hybrid Genetic/Semi-Deterministic Algo-
rithm).

3.3 Parameters in algorithms

In this paper, HGSDA is applied using the two-layer SDA Ay (i.e. I =
2) with J! = J?2 = 5 and € = —co (i.e. the algorithm runs until the given
complexity).

In addition, the GA parameters are turned as follows: the population size is
set to Np = 10 and the generation number is set to Ngen = 10 . The selection



is a roulette wheel type [9] proportional to the rank of the individual in the
population. The crossover is barycentric in each coordinate with a probability of
pe = 0.55. The mutation process is non-uniform with a probability of p,, = 0.55.
A one-elitism principle, that consists in keeping the current best individual in
the next generation, has been imposed.

This set of parameters gives a good compromise between computational com-
plexity and result accuracy. It has been applied and compared with a classical
genetic algorithm on various benchmark test cases [7] and industrial applications
[10, 11, 12, 13].

4 Portfolio optimization problems

In this section we are interested by optimizing the allocation structure (i.e.
the nominal of each ICLO slices and SNs) of an initial portfolio, respecting given
constraints, in order to improve its performances. We consider the two following
optimization problems:

e P;: Reduce the portfolio risk measure keeping its income higher than the
initial value.

e P»: Maximize the portfolio income keeping its risk measure lower than
the initial value.

The risk measure considered here is the VaR with a confidence level set to
a = 0.1%, this level is often used in banking system. It avoids too extreme, and
thus non realistic, risk scenarios.

The initial portfolio has a CLO? structure and is compound by 500 facilities
dispatched in ngicr,o = 40 ICLO slices and ngy = 54 SNs. The portfolio
nominal is close to 2 x 10° Euros (E), its income near to 2 x 10” E and its
VaRg 019 = 1.9 x 10® E. It has been constructed in collaboration with ’BNP-
Paribas “s Portfolio Management Team’ using recent market data in order to be
as realistic as possible (those data can be found in [7]).

4.1 Parameterization

The parameters considered here are the nominal of ICLO slices and SNs com-
pounding the portfolio and the nominal of other SNs owned by ’BNP-Paribas
Portfolio Management Team’ that can be added to the portfolio (18 SNs).

Thus the set of parameters is represented by the following real vector:

z = (NOsicLo, , -, NOsicro4o NOsny s -.., NOgn,, ) (10)

In order to obtain a realistic optimized portfolio, respecting prescribed in-
vestment rules all parameters are subject to the following constraints:

e Avoid too much concentration in one facility: each nominal must be infe-
rior to 10® E.

e Avoid small facility investment: if a nominal is lower than 5 x 10% E it is
set to 0 E.



e Use rating quality: each ICLO slice or SN have a certain rating. If the
rating is good, the nominal can be raised or decreased. If the rating is fair,
the nominal must be inferior to the initial portfolio value. Furthermore,
for some problematic cases (fair rating and liquidity problem), the nominal
is kept to the initial value.

Due to those constraints, the total number of parameters is nparam = 65.
The admissible space is 2 = []/?7*™ 0 x [5 x 10°, u;], where u;=initial value, in
cases when the facility can only be reduced and u; = 108 in other cases.

4.2 Cost function

Optimization problems P; and P, are of the form:

& 7@ "
where the cost function J(z) corresponds to the desired performance value of the
portfolio associated with parameters x in Q. Qcons = {2 € Q/lc < C(x) < uc}
with C, uc and lc being respectively the constraint function, the upper and lower
boundary value of the constraint. J(z) is evaluated using the model described
in previous Section 2.2.

According to the work performed in [4], we reformulate the optimization
problem (11) including the constraints in J using wall functions. To do so, we
introduce a new function J in Q to be minimized

J(z) = J(x) + Y (max(uc — C(x),0) + max(C(x) — lc,0)) (12)

where ¥ > 1, and we rewrite problem (11) as:

min J (x) (13)

4.3 Results and discussion

The initial and optimized portfolio allocation structures are depicted by
Figure 1. All results presented in this Subsection are reported on Table 1.

The algorithm used to solve P; and P» is HGSDA, applied with parameters
presented in Subsection 3.3. During this work, we prefer to use a non-gradient
based method as sensitivity analysis is difficult to perform. Indeed, gradient
directions push the solution out of Q¢q,s resulting on a slow convergence of the
algorithm and gradient approximation is time consuming (because of interme-
diate Monte Carlo simulations). The use of HGSDA is also justified as we do
not need too much precision on the optimized result (due to market evolution
it is not possible to strictly respect the optimized allocation structure).

Opverall, one optimization process requires approximatively 2000 evaluations
of J and a computational time of 6 hours on a 3 Giga-Hertz PC with 1 Giga-
byte of memory. Convergence histories of the best element for P; and P, are
presented in Figure 2.

At the end of each optimization, a sensitivity analysis is performed on the
initial and optimized portfolios. To do so, nominals are randomly increased or
decreased by 107 E. In both cases, the optimized result is more stable than the
initial one on the Income and VaRg 1% values.



Results obtained for P, - VaR, % reduction with IC > 2 x 107 E
VaRg 1% has been reduced by 30 % of its initial value. The portfolio income is
kept to the initial value. This is foreseeable as the result must be situated on the
constraint border. Indeed, a portfolio having an income superior to 2 x 10’E can
be improved by projecting it on the constraint border, the risk is then reduced
as each nominal is decreased.

Result obtained by HGSDA suggests to choose a diversified allocation struc-
ture, with a high number of different facilities, each one having an average
nominal of 2 x 107 E (less for higher risk products).

Due to the high correlation between each ICLO slices (the same product is
present in various ICLOs), the total nominal invested on this kind of product
is reduced by 26 %. In fact, although a simple ICLO is robust to low loss
scenarios, combining those ICLOs with a high nominal increase the high loss
scenarios probability: if a default occurs in one ICLO other ICLOs have higher
chances to be impacted as well.

In comparison, investing on diversified SNs with a reasonable nominal a-
mount decreases the chance to encounter high loss scenarios: Defaults in various
sectors and countries should occur in a same scenario to raise a critical loss
amount. Thus the total nominal of SNs is increased and equitably divided.

Results obtained for P, - IC maximization with VaR 19 < 1.9 x 108 E
Income has been increased by 28%. As a consequence total portfolio nominal
has augmented by 57 %, but for the same reasons as previously, the SN nominal
proportion has been raised (+88%). In order to improve the portfolio income
and control its risk level, essentially SNs combining good spread and good rating
have been privileged. Another consequence of the risk constraint is that the
optimized portfolio still relatively diversified. As expected, optimized portfolio
VaRg 19 value is equal to the constraint boundary.

5 Conclusion

An original hybrid genetic algorithm has been applied to optimize the per-
formances of a complex and realistic portfolio. Obtained results are satisfactory
and in adequacy with financial intuition. Furthermore, even if this intuition
can help to generate a general portfolio structure, optimization method has fur-
nished a precise allocation structure. In that sense, optimization algorithms
are powerful tools that can help portfolio managers to improve their portfolio
characteristics.
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7 Appendix: Algorithm for the evaluation of 3,

We consider a portfolio with the inputs given in Subsection 2.2. In order to
compute a discrete version of its loss density function, denoted by £, Ap where
AB € IN is a discretization step size, we consider the following Monte-Carlo
algorithm:

Step 1- Compute the covariance matrix X of facilities:

Y represents the correlation between each facility clients present in the port-
folio. As it is often used, we decided to apply the Kealhofer, McQuown and
Vasicek (KMV) correlation model (a complete description of this model can be
found in [14]) in order to specify X:

The KMV model is a factor model [15]. It does not model the correlations
directly, but in reference to 14 random variables (Ek)lngM that model the
global economic trends and random variables P, and Pc,, specific to the activity
sector I; and the geographical area C,,. Those factors Ek;, Pc, and P, are
supposed to be independent and normally distributed. Thus, the correlation
cor(i,7) between two clients associated to facilities ¢ and j is given by:

+4/1—R7y/1 - R25;;

(14)
where §;; = 1 if i = 4, 0 if not. ai, (C and 3% are real coefficients that models
the dependence of each client i to the factors Ef , Pc, and P, respectively and

such that 2?:1 (a}c)Q + (ﬁPCi)z + (ﬁPIi)Q —1.

14
COT(i,j) = RZRJ Zazai + ﬂPCt ﬂPCj + IBPL; 61‘_’1]‘
k=1

For m from 1 to M € IR

Step 2- Generate a default time vector I':

The default time 7; of a particular facility Fac; is a random variable rep-
resenting the time from which the associated client Cl; is in default (the time
0 corresponding to the creation date of the portfolio). The random vector
I = (71,...,7n) is called default times vector. Each particular value of the de-
fault times vector I' corresponds to a possible evolution scenario of the portfolio
(See [15] for more details).

In practice, 7; is given by:

7= F1(0(v;)) (15)

2
where
e O(.) denotes the standard normal Gaussian density function.

e v; is the i”" component of a Gaussian vector V = (v1, ..., v,), with zero
mean, covariance matrix ¥ (computed in Step 2) and unit variances, given
by:

V==E (16)

where G is a standard Gaussian vector, = is a Cholesky decomposition
=t=

of ¥ (which is a symmetric, positive-definite matrix) defined as ¥ = ==
[16].

10



e F; is the marginal default probability function of 7; [17] defined by:

In fact, we are able to approximate easily F; thanks to the rating Rat, (the
rating gives the internal default probabilities associated with each annual
horizon) [15].

Step 3- Compute L,, the loss amount of the scenario m:
We first compute the loss amount L; ,, of each facility Fac;, ¢ =1...n, given
by:
Lim = (LGD; x NO;)x0,1,)(73), (18)

where xo,1,(7:) = 1 if 73 € [0, T4}, 0 elsewhere.
Then, we consider two cases:

o if Fac; is a SN, we add L; ,, to L,

e if Fac; is included in the ICLO j, we add L; ;, to the loss amount L;cro,,m
of the ICLO j.

For each ICLO slice j, j = 1...ns1cLo, the loss Lsrcro; m occurring into our
master CLO is given by:

Lsicro;,m = max{min{Licro, m — Subsrcro,, NOsrcro, },0} (19)

Thus L,, is given by

MSICLO n
L= > LsicLoem + > Lk,m (20)
k=1 k=1,Facy is a SN

Step 4- Complete 3, aAp:
This step is done according to AB and L,,: We add 1/M to the value of the
discrete interval of B, Ap where L,, is included.

End of the loop For
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y | Nominal [ Nom. SICLO | Nom. SN [ IC | VaRg ¢
Initial | 2. x10° 7.5 x108 1.25 x10° | 2.1 x107 | 1.9 x108
Sen. - - - 3% 7%
P, 2 x109 5.5 x108 1.45 x10% | 2.1 x107 [ 1.3 x108
Evo. 0% -26% +11% 0% -31%
Sen. - - - 1% 1%
P, 3.2 x107 7.5 x108 2.7 x10% | 3. x10% | 1.9 x108
Evo. +57% +6% +88% +28% 0%
Sen. - - - 2% 1%

Table 1: Results obtained for problems P; and P,. From (Left) to (Right),
main portfolio characteristics: Nominal, ICLO slices nominal (Nom. SICLO),
SN nominal (Nom. SN), Income (IC) and VaR ;5. From (Top) to (Bottom),
initial and optimized portfolios (P, and P,). Evolution (Evo.) between initial
and optimized portfolio and a sensitivity analysis (Sen.) are also reported.
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Figure 1: Portfolios allocation structure: (Top) Initial, (Middle) P;-optimized
and (Bottom) Ps-optimized. (Left) nominal of ICLO slices (Right) nominal
of SNs
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Figure 2: Convergence histories (normalized cost function value vs. iteration
number) of the best element during optimization process for problems (Top)

P, and (Bottom) Ps.
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