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Abstract

We present some results on the mathematical treatment of a global two-
dimensional diffusive climate model. The model is based on a long time avera-
ged energy balance and leads to a nonlinear parabolic equation for the averaged
surface temperature. The spatial domain is a compact two-dimensional Rieman-
nian manifold without boundary simulating the Earth. We prove the existence of
bounded weak solutions via a fixed point argument. Although, the uniqueness
of solutions may fail, in general, we give a uniqueness criterion in terms of the
behaviour of the solution near its “ice caps”.

1. Introduction

This work is concerned with the nonlinear parabolic problem of the form

(P )

{
ut − div

(
|∇u|p−2∇u

)
∈ QS(x)β(u)− G(u) + f in (0, T )×M,

u(x, 0) = u0(x) in M,
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where M is a C∞ two-dimensional compact connected oriented Riemannian ma-
nifold without boundary (and so, no boundary conditions are needed in (P )). We
assume a fixed time T > 0 as well as Q > 0, S ∈ L∞(M) and p ≥ 2. The function
G is increasing and β represents a bounded maximal monotone graph in R

2 (e.g. of
the Heaviside type).

The problem (P ) arises in the modeling of some problems in Climatology. The
so-called Energy Balance Models were introduced in 1969 by M.I. Budyko and W.D.
Sellers, independently. They are diagnostic models intended to understand the evo-
lution of the global climate on a long time scale. Their main characteristic is the
high sensitivity to the variation of solar and terrestrial parameters. This kind of
models has been used in the study of the Milankovitch theory of the ice-ages.

The model is obtained from an energy balance equation for the Earth’s surface:

heat variation = Ra −Re +D, (1)

where Ra and Re represent the absorbed solar and the emitted terrestrial energy
flux, respectively. D represents the heat diffusion, given by a second order diffusion
operator.

Another characteristic is the spatial domain, it is the whole Earth’s surface and
the time scale is considered relatively large. In seasonal models a smaller scale of
time is introduced, in order to analyze the effect of the seasonal cycles in the climate
and in particular in the ice caps formation.

Let us express each component of the above balance in mathematical terms. The
distribution of temperature u(t, x) is expressed pointwise after a standard average
process, where the spatial variable x is in the Earth’s surface which may be identified
with a compact Riemannian manifold without boundary M (for instance, the two-
sphere S2), and t is the time variable. The heat variation is the product of the
heat capacity c and the partial derivative of the temperature u with respect to the
time. The absorbed energy Ra depends on the planetary coalbedo β. The coalbedo
function represents the fraction of the incoming radiation flux which is absorbed by
the surface. In ice-covered zones, reflexion is greater than over oceans, therefore, the
coalbedo is smaller. One observes that there is a sharp transition between zones of
high and low coalbedo. In the energy balance climate models, a main change of the
coalbedo occurs in a neighbourhood of a temperature u = −100C. This variation is
modelled by a discontinuous function in the Budyko model and it will be treated as
a maximal monotone graph in R

2

β(u) =



βi u < −10

[βi, βw] u = −10

βw u > −10 ,
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where βi and βw represent the coalbedo in the ice-covered zone and the free-ice zone,
respectively and 0 < βi < βw < 1 (the value of these constants has been estimated
by observation from satellites).

In the Sellers model, β is a function more regular (at least, Lipschitz), as for
instance

β(u) =



βi u < ui,

βi −
(
u−ui

uw−ui

)
(βi − βw) ui ≤ u ≤ uw,

βw u > uw,

where ui and uw are fixed temperatures closed to −100C.

In both models, the absorbed energy is given (formally) by

Ra = QS(x)β(x, u)

where S(x) is the insolation function and Q is the so-called solar constant.
The Earth’s surface and atmosphere, warmed by the Sun, reemit part of the

absorbed solar flux as an infrared long-wave radiation. This energyRe is represented,
in the Budyko model according to the Newton cooling law, that is,

Re = Bu+ C . (2)

Here, B and C are positive parameters, which are obtained by observation, and can
depend on the greenhouse effect. However, in the Sellers model, Re is expressed
according to the Stefan-Boltzman law

Re = σu4, (3)

where σ is called emissivity constant and u is in Kelvin degrees.
The heat diffusion D is given by the divergence, with negative sign, of the

conduction heat flux Fc and the advection heat flux Fa. Fourier’s law expresses

Fc = −kc∇u

where kc is the conduction coefficient. The advection heat flux is given by

Fa = −v∇u

and it is known (see e.g. (Childress-Ghil, 1987)) that the speed of the atmospheric
flux v on the planetary scale can be incorporated by a diffusion coefficient ka. So,
D = div(k∇u) with k = kc +ka. In the pioneering models, the diffusion coefficient
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k was considered as a positive constant. Later, P.H. Stone, (Stone, 1972) proposed
a coefficient k = |∇u|, in order to consider the negative feedback in the eddy fluxes.
Therefore, the heat diffusion is represented by the operator D = div(|∇u|∇u). The
formulation proposed in (P ) is more general and it includes as particular case p = 3
(the case p = 2 gives a linear diffusion, that is, k constant). These physical laws,
incorporated in (1), lead to problem (P ) where Re(u) = G(u) − f and where c is a
constant given (which can be assumed equal to one by rescaling). Of course, this
hypothesis simplifies the Earth’s geography. E.g. c is greater over oceans than over
land, but such a formulation adds more mathematical difficulties than the presence
of the (possibly) discontinuous “source” term QS(x)β(u). The general case c = c(x)
requires a different study, which is the subject of the work (Bermejo, Dı́az and Tello,
1998) where the numerical analysis is also studied.

The goal of the present paper is to carry over previous results (North, 1979),
(Hetzer, 1990), (Xu, 1991), (Dı́az, 1993) and others, for a one-dimensional simplified
problem. Such simplification considers the averaged temperature over each parallel
as the unknown. So, the two-dimensional model (P ) is reduced in a one-dimensional
model whenM is the two-sphere and considering the spherical coordinates. There-
fore, the obtained model is

(P1)



ut −

(
(1− x2)p/2

)
|ux|p−2ux)x ∈ QS(x)β(u)−Re(u) in (0, T )× (−1, 1),(

1− x2
)
|ux|p−2ux = 0 in x = −1, x = 1,

u(x, 0) = u0(x) in (0, 1),

where x = sinθ and θ is the latitude. Artificial boundary conditions has been
introduced in (P1), justified by the fact that meridional heat flux in the poles must
be zero. The existence of solutions and the free boundary (the curve separating the
regions {x : u(x, t) < −10} and {x : u(x, t) > −10}) in problem (P1) with linear
diffusion (p = 2) was studied in (Xu, 1991) and, later, for the nonlinear case (p ≥ 2)
by (Dı́az, 1993), where the uniqueness and nonuniqueness of solutions was studied.
We are concerned with similar existence and uniqueness results for more general
two-dimensional model whose spatial domain is a Riemannian manifold without
boundaryM.
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2. Preliminaries: analysis on manifolds

The physical origin of the problems of concern suggests to consider spatial domains
which are not open subsets of R

n. This is the case for the Earth’s surface, which
is typically treated as a two-sphere. A suitable general framework for our inves-
tigations is class of C∞ two-dimensional connected compact oriented Riemannian
manifolds without boundary. LetM belong to that class. It is well known that the
differentiable structure of M allows us to extend certain notions from Differential
Calculus in R

2 to the two-dimensional manifolds. This approach uses local charts
(Wλ,wλ) where wλ : Wλ → R

2 is a C∞ diffeomorphism and p ∈ Wλ ⊂ M. The
pair (w1

λ(p), w2
λ(p)) may be considered as the coordinates of p, which we denote by

(θλ, ϕλ).
A function f : M → R is differentiable of class Cr(M) if for each p ∈ M

there exits a chart (Wλ,wλ) in p such that f ◦w−1
λ is defined on a neighbourhood

E ⊂ R
2 of wλ(p) and it is of class Cr(E,R). Every function f : M → R has

a local representation f̃(θ, ϕ) = f ◦ w−1
λ (θ, ϕ). Sometimes, we denote the local

representation of f by f . We also recall that the tangent space in p is denoted by
TpM. The tangent bundle TM is ∪p∈MTpM. Let (Wλ,wλ) be a chart in p ∈ M
and let {θλ, ϕλ} be the associated coordinates system, then the set { ∂

∂θλ
|p, ∂

∂ϕλ
|p}

is a basis of TpM and so, dim TpM = 2 = dim M. Notice that if f : M → R

then

∂

∂θ
(f)|p =

∂(f ◦ w−1
λ )

∂θ
|wλ(p)

∂

∂ϕ
(f)|p =

∂(f ◦ w−1
λ )

∂ϕ
|wλ(p) .

The global definition is obtained by using a partition of unity subordinated to a
covering of M which is given by the domains of the charts. Such partition allow
us to extend local properties (on each chart) to global properties (on the whole
manifold).

We consider a Riemannian metric g on the manifoldM, that is, for each p ∈M,
TpM has a inner product gp : TpM×TpM→ R which is a differentiable function of
p. Let gij denote the coefficients of a matrix associated to gp. The coefficients of g
for points of the domain Wλ are expressed by gij(θ, ϕ) depending of the coordinates
θ, ϕ of q = x−1(p) and so, a metric gλ on Wλ is obtained. The definition of gp on
TpM× TpM is determined by

gp

( ∂

∂θ
,
∂

∂θ

)
= g11, gp

( ∂

∂ϕ
,
∂

∂ϕ

)
= g22, gp

( ∂

∂θ
,
∂

∂ϕ

)
= g12 = g21,
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and so, if v = v1
∂
∂θ + v2

∂
∂ϕ we have that

gp(v,v) = (v1, v2)
(
g11 g12
g12 g22

) (
v1
v2

)
.

Finally, the partition of unity (αλ)λ∈Λ subordinated to {Wλ}λ∈Λ allows us to define
a Riemannian metric g from gλ, g =

∑
λ∈Λ

αλgλ. When the considered manifold is

the sphere of radius R (M = S2
R) with the atlas of the spherical coordinates, we

have g11 = R2 sin2 ϕ, g22 = R2, g12 = g21 = 0.
An easy modification of a well known result (see e.g. (Dı́az, 1985) Chap. 4)

gives the following.

Lemma 1

Let {eθ, eϕ} be a basis of TpM and let ξ and η belong to TpM,

ξ = ξ1eθ + ξ2eϕ , η = η1eθ + η2eϕ .

Then, if p ≥ 2 and |ξ| =
√
gp(ξ, ξ), we have that

gp(|ξ|p−2ξ − |η|p−2η, ξ − η) ≥ C|ξ − η|p.

We introduce, as in (Aubin, 1982), (Boothby, 1975), (Chavel, 1984) and (Gallot-
Hullin-Lafontaine, 1987) some operators arising in partial differential equations on
manifolds. The gradient of a differentiable function f : M → R is given by the
vector field gradMf :M→ TM such that each point p ∈ M maps into the vector
gradMf(p) ∈ TpM defined by

gradMf|p =
∑
i,j

gij
∂f̃

∂yj

∂

∂yi
,

where gij are the coefficients of the inverse matrix gp and { ∂
∂y1

, ∂
∂y2
} is the basis of

TpM associated to the coordinates system {y1, y2} in p. We also use the notation
∇f for the gradient of f . Let X = h1

∂
∂θ + h2

∂
∂ϕ be a vector field of TpM, it is

defined the divergence of X as the scalar field

div X =
1√
g

∂

∂θ

(
h1
√
g
)

+
1√
g

∂

∂ϕ

(
h2
√
g
)
,
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where
√
g =

√
g11g22 − g2

12. Moreover, if eθ = 1√
g11

∂
∂θ , eϕ = 1√

g22
∂
∂ϕ form an

orthogonal basis of TpM then divX may be expressed as

div X = gp(Deθ
(X), eθ) + gp(Deϕ(X), eϕ).

Since the vectors ∂
∂θ and ∂

∂ϕ can be nonconstant, we introduce the covariant deriva-
tives

D ∂
∂yi

( ∂

∂yj

)
= Γkij

∂

∂yk
where y1 = θ, y2 = ϕ, (1)

where Γkij are the Christoffel symbols, defined by

Γkij =
∑
l=1,2

1
2
(
∂iglj + ∂jgli − ∂lgij

)
gkl. (2)

For the case X = |gradMu|p−2gradMu and the above orthonormal basis it is not
difficult to see that

div
(
|∇u|p−2∇u

)
=

=
uθ
g11

p− 2
2

(
u2
θ

g11
+
u2
ϕ

g22

)(p−4)/2(
2uθuθθ
g11

+ u2
θ

∂

∂θ

( 1
g11

)
+

2uϕuϕθ
g22

+u2
ϕ

∂

∂θ

( 1
g22

))

+
uϕ
g22

p− 2
2

(
u2
θ

g11
+
u2
ϕ

g22

)(p−4)/2(
2uθuθϕ
g11

+u2
θ

∂

∂ϕ

( 1
g11

)
+

2uϕuϕϕ
g22

+ u2
ϕ

∂

∂ϕ

( 1
g22

))

+
1√
g11

(
u2
θ

g11
+
u2
ϕ

g22

)(p−2)/2 (
uθθ√
g11

+ 2uθ
∂

∂θ

( 1√
g11

)
+

uθ√
g11

Γ1
11 +

uϕ
√
g11

g22
Γ1

12

)

+
1√
g22

(
u2
θ

g11
+
u2
ϕ

g22

)(p−2)/2 (
uϕϕ√
g22

+ 2uϕ
∂

∂ϕ

( 1√
g22

)
+

uϕ√
g22

Γ2
22 +

uθ
√
g22

g11
Γ2

21

)
.

So, if p = 2 we get the Laplace-Beltrami operator on M,

∆u =
uθθ
g11

+ 2uθ
1√
g11

∂

∂θ

( 1√
g11

)
+
uθ
g11

Γ1
11 +

uϕ
g22

Γ1
12

+
uϕϕ
g22

+ 2uϕ
1√
g22

∂

∂ϕ

( 1√
g22

)
+
uϕ
g22

Γ2
22 +

uθ
g11

Γ2
21 .
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In the particular caseM = S2
R, we arrive at

div(|∇u|p−2∇u) =

=
uθ

R2 sin2 ϕ

p− 2
2

(
u2
θ

R2 sin2 ϕ
+
u2
ϕ

R2

)(p−4)/2 (
2uθuθθ
R2 sin2 ϕ

+
2uϕuϕθ
R2 sin2 ϕ

)

+
uϕ
R2

p− 2
2

(
u2
θ

R2 sin2 ϕ
+
u2
ϕ

R2

)(p−4)/2(
2uθuθϕ
R2 sin2 ϕ

− 2u2
θ cotϕ

R2 sin2 ϕ
+

2uϕuϕϕ
R2

)

+
1

R sinϕ

(
u2
θ

R2 sin2 ϕ
+
u2
ϕ

R2

)(p−2)/2 (
uθθ

R sinϕ
+
uϕ cosϕ

R

)

+
1
R

(
u2
θ

R2 sin2 ϕ
+
u2
ϕ

R2

)(p−2)/2 (uϕϕ
R

)
.

We use the special notation

∆pu := div
(
|∇u|p−2∇u

)
. (6)

We recall some function spaces on manifolds. Denote byD(M) the space of functions
C∞(M) with compact support on M. In this case, since M is compact, D(M) =
C∞(M). L2(M) represents the space of functions u : M → R measurable on M
such that

∫
M
|u|2dA < +∞, i.e.

∑
λ∈Λ

∫
wλ(Wλ)

αλ
∣∣u(w−1

λ (θλ, ϕλ))
∣∣2√detgλdθλdϕλ < +∞ .

L2(M) is endowed with the usual inner product and the norm

(f, g)L2(M) :=
∫
M
fgdA, ‖f‖L2(M) := (f, f)1/2L2(M).

Lp(M) is defined from the Riemannian density dA as the set of measurable functions
onM such that∫

M
|u|pdA < +∞ if 1 ≤ p <∞, and ess sup |u| < +∞ if p =∞ .

So,
(
L2(M), (, )

)
is a Hilbert space and (Lp(M), ‖ · ‖p) is a Banach space, where

1 ≤ p ≤ ∞. L2(TM) represents the Hilbert space of the vector fields X :M→ TM
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endowed with the inner product in L2 induced by g in TpM, i.e. letX = h1eθ+h2eϕ,
X ∈ L2(TM) if ∫

M
< X,X > dA < +∞ .

Since we assumeM is compact, H1(M) is defined as the closure of C∞(M) for the
inner product

(f, h)H1(M) := (f, h)L2(M) + (gradMf, gradMh)L2(TM)

=
∑
λ∈Λ

{∫
wλ(Wλ)

αλf
(
w−1
λ (θλ, ϕλ)

)
h
(
w−1
λ (θλ, ϕλ)

)√
detgλdθλdϕλ

+
∫
wλ(Wλ)

αλg
λ(gradMf, gradMh)

√
detgλdθλdϕλ

}
.

If s ∈ N, we denote by Hs(M) the closure of C∞(M) for the norm

‖ · ‖Hs(M) =

(∫
M

( ∑
1≤k≤s

∑
ij=1,2, j=1,..k

|Di1Di2 ...Diku|2 + |u|2
)
dA

)1/2

,

where D1 =Deθ , D2 =Deϕ and |Di1Di2 ...Diku|2 = g(Di1Di2 ...Diku,Di1Di2 ...Diku).
If m ∈ N, we denote by Wm,p(M) the set of measurable functions u on M such
that

‖u‖m,p :=

(∫
M

( ∑
1≤k≤m

∑
ij=1,2, j=1,..k

|Di1Di2 ...Diku|p + |u|p
)
dA

)1/p

<∞ .

As in the case where M is an open set of R
n, it follows that Hs(M) is a Hilbert

space and Wm,p(M) is a Banach space. Moreover, u ∈ W 1,p(M) if and only if
u ∈ Lp(M) and gradMu ∈ Lp(TM) (in the weak sense).

As we will see in the following section, the mathematical treatment of (P ) leads
us to introduce the following “energy space”

V :=
{
u :M→ R, u ∈ L2(M), ∇Mu ∈ Lp(TM)

}
,

which is a reflexive Banach space if 1 < p < ∞. A useful technical result is the
following

Theorem 1
Let M be a two-dimensional compact Riemannian manifold. Then

if p = 2, V ↪→ Lq(M), ∀q ∈ [2,∞), if p > 2, V ↪→ L∞(M) .

with continuous embedding.
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By using the compactness of the manifoldM, it is not difficult to extend known
results about compact embeddings for open sets.

Theorem 2
Let 2 ≤ p <∞ then the embedding V ⊂ L2(M) is compact.

Although the result is well known for standard Sobolev spaces (see (Aubin,
1982), pp. 44), we have estimated the constants of these embeddings which will be
useful in some later computations. More precisely, the constants

C1,2,q = 2µ2/qk(2, q)2ν−1 max {1, µ}
(
1 + sup|∇αλ|

)2
, (7)

C1,p,∞ = 2p−1k(p,∞)p max
{
ν−p/2, ν−1µp/2

}
×

(
1 + C1,2,p sup |∇αλ|

)p max
{
1, |M|(p−2)/2

}
(8)

satisfy
‖f‖2Lq(M) ≤ C1,2,q

(
‖∇f‖2L2(TM) + ‖f‖2L2(M)

)
,

‖f‖pL∞(M) ≤ C1,p,∞
(
‖∇f‖pLp(TM) + ‖f‖pL2(M)

)
,

for all f ∈ V . Here, the constants k(2, p) and k(p,∞) are independent of M and
the constants ν and µ are given by

ν ‖ X ‖2 ≤ g(X,X) ≤ µ ‖ X ‖2 ∀X ∈ TM,

(such constants exist thank toM is a compact manifold).

3. Existence of solution to the problem (P )

Motivated by model background described in Section 1, we introduce the following
structure hypotheses: p ≥ 2, Q > 0,

(HM) M is a C∞ two-dimensional compact connected oriented Riemannian man-
ifold of R

3 without boundary,
(Hβ) β is a bounded maximal monotone graph in R

2, i.e. |z| ≤ M ∀z ∈ β(s),
∀s ∈ R.

(HG) G : R→ R is a continuous strictly increasing function such that G(0) = 0,
and |G(σ)| ≥ C|σ|r for some r ≥ 1,

(Hs) S :M→ R, S ∈ L∞(M), s1 ≥ S(x) ≥ s0 > 0 a.e.x ∈M,
(HT

f ) f ∈ L∞((0, T )×M), (resp. (H∞
f ) f ∈ L∞((0,∞)×M))),

(H0) u0 ∈ L∞(M).
The possible discontinuity in the coalbedo function causes that (P ) does not have
classical solutions in general, even if the data u0 and f are smooth. Therefore, we
introduce the notion of weak solution with respect to the “energy space” V .
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Definition 1. We say that u :M→ R is a bounded weak solution of (P ) if

i) u ∈ C([0, T ];L2(M)) ∩ L∞((0, T )×M) ∩ Lp(0, T ;V )
ii) there exists z ∈ L∞((0, T ) × M) with z(t, x) ∈ β(u(t, x)) a.e. (t, x) ∈

(0, T )×M such that

∫
M
u(T, x)v(T, x)dA−

∫ T

0

< vt(t, x), u(t, x) >V ′×V dt

+
∫ T

0

∫
M
< |∇u|p−2∇u, ∇v > dAdt+

∫ T

0

∫
M
G(u)vdAdt

=
∫ T

0

∫
M
QS(x)z(t, x)vdAdt+

∫ T

0

∫
M
fvdAdt+

∫
M
u0(x)v(0, x)dA

∀v ∈ Lp(0, T ;V ) ∩ L∞((0, T )×M) such that vt ∈ Lp
′
(0, T ;V ′) ,

where <,>V ′×V denotes the duality product in V ′ × V .

In this section we prove the following result

Theorem 3

Let u0 ∈ L∞(M). There exists at least a bounded weak solution of (P ).
Moreover, if T = +∞ and f verifies (H∞

f ), the solution u of (P ) can be extended to

[0,∞)×M such that u ∈ C([0,∞), L2(M)) ∩ L∞((0,∞)×M) ∩ Lploc((0,∞);V ).

As in the one-dimensional model (Dı́az, 1993), we use the techniques of (Dı́az-
Vrabie, 1987), based in fixed point arguments which are useful for nonmonotone
equations, possibly multivalued.

3.1. The operator A. Properties. A comparison principle

We define the operator A as follows

A : D(A) ⊂ L2(M) −→ L2(M)

u −→ −∆pu+ G(u) ,
(9)

where D(A) = {u ∈ L2(M) : −∆pu+ G(u) ∈ L2(M)} (recall (6)).
We have
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Proposition 1

Let us define φ : D(φ) ⊂ L2(M)→ R by

φ(u) =




1
p

∫
M
|∇u|pdA+

∫
M
G(u)dA u ∈ D(φ)

+∞ u �∈ D(φ)
(10)

where G(u) =
∫ u

0

G(σ)dσ and

D(φ) :=
{
u ∈ L2(M), ∇u ∈ Lp(TM) and

∫
M
G(u)dA < +∞

}
.

Then

i) φ is proper, convex and lower semicontinuous in L2(M).
ii) A = ∂φ where A is given by (9) and D(A) = L2(M).
iii) A generates a compact semigroup of contractions S(t) on L2(M) for t ∈ (0, T ).

The proof is an easy adaptation of some well known results (see e.g. (Brezis,
1973) or (Barbu, 1976)) for bounded open sets (a detailed proof can be found in
(Tello, 1996)). We also have a comparison principle for the operator A defined in
(9). Now, we consider the operator A from W 1,p(M) into Lp

′
(M) and so,

Proposition 2 (Weak comparison principle)

Let G : R → R be a continuous and strictly increasing function. Let f, f̃ ∈
L2(M) such that f ≤ f̃ and let u, ũ ∈ D(A) with G(u),G(ũ) ∈ L2(M) weak solutions

of the equations

(Pf ) −∆pu+ G(u) = f

(Pf̃ ) −∆pũ+ G(ũ) = f̃ .

then u ≤ ũ enM. Actually, if f and f̃ are arbitrary in L2(M) and we replace G(u)
with G(u) + u we have

‖(u− ũ)+‖L2(M) ≤ ‖(f − f̃)+‖L2(M) ,

i.e. the operator ∆pu+ G(u) is T-accretive in L2(M).
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Once more, the proof is an easy adaptation of the known results (see (Tello,
1996) for details).

3.2. Multivalued functions. A fixed point theorem

Here we recall several concepts in multivalued functions that we need for our
later purpose.

Definition 2. Let X be a Banach space and let Ω be a measurable set of R
n. A

mapping F : Ω �→ 2X is called measurable if for each closed subset C ⊂ X, the set
F−1(C) := {y ∈ Ω : F (y) ∩ C �= ∅} is Lebesgue measurable in R

n.

Definition 3. Let U be a topological space. A mapping F : U �→ 2X is called
continuous (resp. weakly continuous) at u ∈ U , if (i) F (u) is nonempty bounded
closed and convex set, (ii) for every open (resp. weakly open) subset D ⊂ X

satisfying F (u) ⊂ D there exists a neighbourhood V of u, such that F (v) ⊂ D

∀v ∈ V .

We are interested in applying a version of the Schauder-Tychonoff Theorem
which we state as in (Vrabie, 1987), in the form

Theorem 4

Let X be a Banach space. Assume that (i) K ⊂ X is a nonempty, convex and

weakly compact set, (ii) L : K → 2X with nonempty convex and closed values, such

that L(u) ⊂ K ∀u ∈ K. If graph(L) is weakly × weakly sequentially closed, then L
has at least one fixed point in K, i.e. ∃u ∈ K such that u ∈ L(u).

3.3. Proof of the existence of solution

Let us consider the Cauchy problem associated to the operator A defined by (9),

(Ph)



du

dt
(t) +Au(t) � h(t) t ∈ (0, T ), in X = L2(M)

u(0) = u0, u0 ∈ L2(M) .

The properties of A given by Proposition 1 and the abstract results of (Brezis,
1973) guarantee that (Ph) has a unique solution (in the sense of semigroups)
in C([0, T ];L2(M)) for every h ∈ L2((0, T );L2(M)). Furthermore u is a weak
solution in the sense of distributions and verifies u ∈ Lp((0, T );V ),

√
tut ∈

L2((0, T );L2(M)), u ∈ W 1,2((δ, T );L2(M)), 0 < δ < T . Since β is bounded,
it is clear that there exists h ∈ L2((0, T );L2(M)) such that h ∈ QSβ(u) + f
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a.e.(t, x) ∈ (0, T )×M. Let us see that the study of the existence of solutions for the
problem (P ) can be reduced to prove that an operator L has at least a fixed point.
Let Y = Lp((0, T );L2(M)). Let us define L : K → 2L

p((0,T );L2(M)) by the following
process. First of all we define

K =
{
z ∈ Lp((0, T );L∞(M)) : ‖z(t)‖L∞(M) ≤ C0 a.e.t ∈ (0, T )

}
with C0 = Qs1M + ‖f‖L∞((0,T );L∞(M)). Let us see that K verifies the hypotheses
of Theorem 4.

i) Obviously, K is nonempty and convex (due to the triangle inequality for
L∞(M) norm). Moreover, K is weakly compact in Lp((0, T );L2(M)). Indeed,
since Lp((0, T ); L2(M)) is a reflexive Banach space, it suffices to show that K is
bounded in Lp((0, T );L2(M)) and weakly closed. Clearly

‖z(t)‖L2(M) ≤ C‖z(t)‖L∞(M) ≤ CC0 = C1 a.e.t ∈ (0, T ).

Taking the essential supremum of both sides of this inequality, we get

‖z(t)‖L∞((0,T );L2(M)) ≤ C‖z(t)‖L∞((0,T );L∞(M)) ≤ C1 ,

and therefore
‖z(t)‖Lp((0,T );L2(M)) ≤ C2 ∀z ∈ K.

Let us see that K is weakly closed: if z is in the closure of K then there exists a
sequence {zn} ⊂ K such that zn ⇀ z in Lp((0, T );L2(M)). Thus,

znk(t) ⇀ z(t) in Lq(M) ∀q ∈ (1,∞), a.e. t ∈ (0, T )

and from ‖z‖L∞(M) = limq→∞ ‖z‖Lq(M) and

‖z‖Lq(M) ≤ lim
n→∞

sup ‖zn‖Lq(M) ≤ C0, ∀q,

we have that z ∈ K.
Now, we fix u0 ∈ L2(M) and define the solution operator (or generalized Green

operator)
I0 : K → C([0, T ];L2(M))

z → v

where v is the solution of (Ph) associated to h ≡ z. Since A is a m-accretive operator,
∀z ∈ Lp((0, T );L2(M)) there exists a unique solution in C([0, T ];L2(M)) (we recall
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thatK ⊂ Lp((0, T ); L2(M))). So, the operator I0 is well defined. Given f ∈ L2(M),
we also define the superposition operator associated with QS(x)β + f(x),

F : L2(M)→ 2L
2(M)

v → {h ∈ L2(M) : h(x) ∈ QS(x)β(v(x)) + f(x) a.e.x ∈M}, (11)

i.e. h−f
QS ∈ β(v) a.e. x ∈M. In the general case f ∈ Lp((0, T ); L2(M)) this operator

is defined F : Lp((0, T );L2(M)) → 2L
p((0,T );L2(M)). Finally, we define L by

L(z) =
{
h ∈ Lp((0, T );L2(M)) : h(t) ∈ F(I0(z)(t)) in L2(M) a.e.t ∈ (0, T )

}
.

Let us see that L verifies the hypotheses of Theorem 4. In the following proposition
we are going to state some properties of the previously defined operators which are
proved easily (see for instance (Tello, 1996)).

Proposition 3

Let β : R→ 2R be a bounded maximal monotone graph and let F : L2(M)→
2L

2(M) be a superposition operator associated with the graph QSβ + f defined by

(11). Then

i) F has nonempty closed convex values;

ii) F is bounded in L2(M);
iii) F(w) ⊂ L∞(M) ∀w ∈ L2(M), in the case f ∈ L∞(M) (or f ∈ L∞((0, T )×M);
iv) F : L2(M)→ 2L

∞(M) is bounded;

v) the graph of F is strongly × weakly sequentially closed in L2(M)× L2(M).

Also we need the following

Proposition 4 ((Vrabie, 1987), Corollary 2.3.2).

Let A : D(A) ⊂ L2(M) → 2L
2(M) be defined by Ax = ∂φ(x) for each x ∈

D(A) = D(∂φ), where φ : L2(M) → R ∪ {+∞} is a proper, l.s.c., convex function

of compact type. Then, for each u0 ∈ D(A), the mapping

I0 : Lp((0, T );L2(M)) → C([0, T ];L2(M))
z → v

where v is the solution of (Ph) associated with h ≡ z, is sequentially continuous

from Lp((0, T );L2(M))−weak into C([0, T ];L2(M))−strong.
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From structure hypotheses, it is obvious that L(u) ⊂ K ∀u ∈ K. Finally, let
us prove that graph(L) is weakly × weakly sequentially closed in Lp((0, T ); L2(M))

× Lp((0, T );L2(M)). Indeed, let (z, h) ∈ graph(L)
weak×weak

then there exists
(zn, hn) ∈ graph(L) such that

zn ⇀ z weakly in Lp((0, T );L2(M)) ,

hn ⇀ h weakly in Lp((0, T );L2(M)) ,

hn ∈ L(zn) ∀n ∈ N (i.e. hn(t) ∈ F(I0(zn)(t)) a.e.t ∈ (0, T ) ∀n). Let us see that
(h ∈ L(z) i.e. h(t) ∈ F(I0(z)(t)) a.e.t ∈ (0, T )). From Proposition 4,

I0(zn)→ I0(z) ∈ C
(
[0, T ], L2(M)

)
and therefore

I0(zn)(t)→ I0(z)(t) in L2(M) a.e. t ∈ (0, T ) .

Using that graph(F) is strongly × weakly sequentially closed, we get the following

(I0(zn)(t), hn(t)) ∈ graphF ⊂ L2(M)× L2(M) a.e. t ∈ (0, T ) ,

I0(zn)(t)→ I0(z)(t) in L2(M) a.e.t ∈ (0, T ) ,

hn(t)→ h(t) in L2(M) a.e.t ∈ (0, T ) ,


 ⇒

⇒
{

(I0(z)(t), h(t)) ∈ graphF a.e.t ∈ (0, T )

i.e. h(t) ∈ F(I0(z)(t)) a.e.t ∈ (0, T ) .

Thus, h ∈ L(z) and graph(L) is weakly × weakly sequentially closed.
So, we have verified the assumptions of Theorem 4 and it proves the first asser-

tion of Theorem 3.

3.4. Proof of the global existence

In order to complete the proof of Theorem 3, we are going to show that the
solution u can be continued up to t = ∞, when (H∞

f ) is fulfilled. Let us see that
u ∈ C([0,∞), L2(M)). In fact, multiplying the equation by u, and integrating on
M, we get∫

M
utudA+

∫
M
|∇u|pdA+

∫
M
G(u)udA =

∫
M
QSzudA+

∫
M
fudA, z ∈ β(u).

(12)
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We recall that for all z ∈ β(u) we have that m ≤ z ≤M ,
1
2
d

dt

∫
M
|u|2dA+

∫
M
|∇u|pdA+ c

∫
M
|u|2dA ≤ C + ε‖u‖2L2(M)

where C = C(ε, ‖S‖∞,M, ‖f‖L∞((0,∞);L∞(M))). Then

d

dt
‖u(t)‖2L2(M) ≤ −C1‖u(t)‖2L2(M) + C2, C1, C2 > 0 (13)

and by Gronwall’s inequality,

‖u(t)‖2L2(M) ≤ e−C1t‖u0‖2L2(M) +
C2

C1
(1− e−C1t) .

The above expression tends to C2
C1

as t→ +∞ and therefore

‖u(t)‖L2(M) ≤ k ∀t > 0 (with k independent of t) . (14)

By a well known result (see e.g. (Cazenave - Haraux, 1990) Theorem 4.3.4) u can
be extended to (0,∞), hence, u ∈ C([0,∞);L2(M)).

We also have that u ∈ Lploc((0,∞);V ). In fact, from the estimate (14) we deduce
that u ∈ L∞((0,∞);L2(M)) and then u ∈ Lploc((0,∞);L2(M)). Let us estimate
the norm ‖∇u‖Lp(TM). Integrating (12) on (0, T ), we arrive at

1
2

∫
M

(|u(T )|2 − |u0|2)dA+
∫ T

0

∫
M
|∇u|pdAdt+

∫ T

0

∫
M
|u|2dAdt

≤ Q‖S‖∞
∫ T

0

∫
M
|u|dAdt+

∫ T

0

‖f‖L2(M)‖u‖L2(M)dt .

By the continuous embedding L∞(0, T ) ⊂ L1(0, T ) and Young’s inequality, this is
majorised by

C0Q‖S‖∞M‖u‖L∞((0,∞);L1(M)) +
ε

2

∫ T

0

∫
M
|u|2dAdt+ Cε‖f‖L∞((0,∞);L2(M)) ,

where C0 = C0(T ). So, we arrive at∫
M
|u(T )|2dA+

∫ T

0

∫
M
|∇u|pdAdt+

(
C − ε

2

) ∫ T

0

∫
M
|u|2dAdt ≤ k2

where k2 = k2(
∫
M |u0|2, Q, ‖S‖∞,M, ‖u‖L∞((0,∞);L1(M)), ‖f‖L∞((0,∞);L2(M)), C0).

In particular, ∫
M
|u(T )|2 ≤ k2,

∫ T

0

∫
M
|∇u|p ≤ k2 ∀T.

Thus u ∈ Lploc((0,∞);V ). In order to finish the proof of Theorem 3 we establish
that u ∈ L∞((0,∞)×M) as follows:

Lemma 2
Let u0 ∈ L∞(M) and f ∈ L∞((0,∞)×M) then u ∈ L∞((0,∞)×M).
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Proof. Let u(x, t) be the unique solution of the problem

{
ut −∆pu+ G(u) = MQS(x) + f+(t, x) on (0,∞)×M

u(0, x) = u+
0 (x) = max {0, u0(x)} on M.

We notice that −∆pu + G(u) is a maximal monotone operator in L2(M) which
guarantees the existence of u. Since u+

0 ≥ 0, MQS(x)+f+(t, x) ≥ 0 and the operator
under consideration is T-accretive in L2(M), it is clear that u ≥ 0. Moreover

‖u‖L∞((0,∞)×M) ≤ L := max
{
‖u+

0 ‖∞ , G−1(‖MQS‖∞ + ‖f+‖∞)
}
.

Observe that L is an upper solution and the operator A is T-accretive in L2(M),
which guarantees the above relation. Analogously, if u(x, t) is the unique solution of

{
ut −∆pu+ G(u) = mQS(x) + f−(x)

u(0, x) = u−0 (x) = min {0, u0(x)}

we have

‖u‖L∞((0,∞)×M) ≤ max
{
‖u−0 ‖∞ , G−1(‖mQS‖∞ + ‖f−‖∞)

}
.

Finally, since

ut −∆pu+ G(u) ≤ ut −∆pu+ G(u) ≤ ut −∆pu+ G(u)

u−0 ≤ u0 ≤ u+
0

and A is T-accretive in L2(M), u(x, t) ≤ u(x, t) ≤ u(x, t). It follows that

‖u‖L∞((0,∞)×M) ≤ max
{
‖u‖L∞((0,∞)×M), ‖u‖L∞((0,∞)×M)

}
, (15)

∀t > 0. �
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4. On the uniqueness of solutions

The question of uniqueness has different answers for the different coalbedo functions
under consideration, depending on whether the coalbedo is supposed to be discontin-
uous or not. For the Sellers model (β locally Lipschitz), the uniqueness is obtained
by standard methods (see (Dı́az, 1993)). Although (P ) is a pde of parabolic type,
in the Budyko model (β multivalued), there are cases of nonuniqueness. E.g. one
finds (Dı́az, 1993) infinitely many for a one-dimensional model with constant f and
initial condition u0 satisfying

u0 ∈ C∞(I), u0(x) = u0(−x) ∀x ∈ [0, 1],

u
(k)
0 (0) = 0 where k = 1, 2, u0(0) = −10

u′0(x) < 0, x ∈ (0, 1), u′0(1) = 0


 (16)

Notice that these initial data u0 are very “flat” at the level −10. This nonuniqueness
result for the Budyko model with a suitable initial datum carries over to the two-
dimensional model whenM = S2. Each solution u1(t, x) of an 1D model generates a
solution u2(t, x, y) of 2D model by rotation about the axis through the poles (notice
that the initial datum u2(0, x, y) is independent of the longitude), i.e. u2(t, x, y) =
u1(t, sinθ) where (x, y) ∈ S2 with latitude θ. It is not difficult to prove that u2 is a
solution of (P ) for the initial datum u1(0, senθ).

4.1. Existence of a maximal solution and a minimal solution

We start by proving the following

Lemma 3

The problem (P ) has a maximal solution u∗ and a minimal solution u∗, i.e. u∗

and u∗ are solutions of (P ) such that every solution u of (P ) verifies that u∗ ≤ u ≤ u∗

in (0, T )×M.

Proof. Let u be the solution of the problem

(P )

{
ut −∆pu+ G(u) = QS(x)M + f(x, t) in (0, T )×M,

u(x, 0) = u0(x) in M,

and let u be the solution of the problem

(P )

{
ut −∆pu+ G(u) = QS(x)m+ f(x, t) in (0, T )×M,

u(x, 0) = u0(x) in M.
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Clearly u and u are upper solution and lower solution of problem (P ), respectively.
In fact, every z ∈ L2((0, T );L2(M)) verifying z ∈ β(u) fulfills z ≤ M a.e. on
(0, T )×M. Analogously, if z ∈ β(u) then m ≤ z.

We construct sequences {uk}k∈N and {uk}k∈N by the following iteration process

(P k)

{
ukt −∆pu

k + G(uk) = QS(x)β(uk−1) + f(x, t) in (0, T )×M,

uk(x, 0) = u0(x) in M.

(Pk)

{
ukt −∆puk + G(uk) = QS(x)β(uk−1) + f(x, t) in (0, T )×M,

uk(x, 0) = u0(x) in M,

where u1 = u and u1 = u and where β and β are real monotone functions verifying

β(s) ∈ β(s) such that if z ∈ β(s) then z ≤ β(s)

β(s) ∈ β(s) such that if z ∈ β(s) then β(s) ≤ z .

In other words, β and β coincide with β in the set where β is not multivalued and
are equal to max {β(s)} and min {β(s)} for s in the set where β is multivalued,
respectively.

Step 1. The sequences {uk}k∈N and {uk}k∈N are monotone.
Let us see that u2 ≤ u1 = u. Take the test function (u2− u)+ in (P 2) and (P ).

Considering the difference we obtain
∫ T

0

∫
M

(u2
t − ut)(u2 − u)+

∫ T

0

∫
M
< |∇u2|p−2∇u2 − |∇u|p−2∇u,∇(u2 − u)+ >

+
∫ T

0

∫
M

(G(u2)− G(u))(u2 − u)+ =
∫ T

0

∫
M
QS(x)(z −M)(u2 − u)+

where z = β(u). Since QS(x) ≥ 0 a.e. x ∈ M and (z(x, t) −M) ≤ 0 a.e. (t, x) ∈
(0, T )×M, (u2(x, t)− u(x, t))+ ≥ 0 a.e. (t, x) ∈ (0, T )×M, we have

0 ≤ 1
2

∫
M
|(u2(T )− u(T ))+|2 ≤

∫ T

0

∫
M
QS(x)(z −M)(u2 − u)+ ≤ 0 .

Hence, u2 ≤ u. Let us assume, by induction, uk−1 ≤ ... ≤ u2 ≤ u and let us see that
uk ≤ uk−1. Arguing as before, we arrive at

0 ≤ 1
2

∫
M
|(uk(T )− uk−1(T ))+|2 ≤

∫ T

0

∫
M
QS(x)(zk−1 − zk−2)(uk − uk−1)+.
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From the monotonicity of β we deduce that

1
2

∫
M
|(uk(T )− uk−1(T ))+|2 = 0

and so, uk ≤ uk−1. Analogously, {uk} is a monotone nondecreasing sequence. In
this way we have constructed two monotone sequences, that is, {uk}k∈N verifies
u ≥ u2 ≥ ... ≥ uk−1 ≥ uk ≥ ... and {uk}k∈N verifies ... ≥ uk ≥ uk−1 ≥ ... ≥ u2 ≥ u.

Moreover, since the upper and the lower solutions u and u are ordered, reasoning
by induction we arrive at uk ≥ uk ∀k. From u ≥ u and assuming uk−1 ≥ uk−1 we
have

0 ≤ 1
2

∫
M
|(uk(T )− uk(T ))+|2 ≤

∫ T

0

∫
M
QS(x)(zk−1 − zk−1)(uk − uk)+ ≤ 0 .

This follows immediately from β is a monotone graph, uk−1 ≥ uk−1 and so zk−1 −
zk−1 ≤ 0 a.e. (x, t) ∈ (0, T )×M.

Step 2. The sequences {uk}k∈N and {uk}k∈N are convergents in Lp((0, T );L2(M)).

The monotone sequence {u−uk}k∈N verifies that u−uk ≥ 0 and
∫ T

0

∫
M
u−uk ≤∫ T

0

∫
M
u − u = C then, sup

∫ T

0

∫
M u − uk ≤ C. So, by the monotone convergence

theorem we can conclude that there exists φ ∈ L1((0, T )×M) such that u−uk → φ

a.e. (t, x) ∈ (0, T )×M and u−uk → φ in L1((0, T )×M). Now, calling u∗ = u−φ
we have that uk → u∗ in L1((0, T ) ×M). In order to obtain the convergence in
Lp((0, T );L2(M)) (p > 1) we consider the sequence {|u− uk|p}, which also verifies
the hypotheses of the monotone convergence theorem. Similar reasoning yields that
{uk} converges to u∗.

Step 3. u∗ and u∗ are solutions of (P ). Consider the weak formulations of (P k)
and (Pk) and study what happen when k → ∞. We have the following a priori
estimates:

‖uk(T )‖L2(M) ≤ C1 ‖uk(T )‖L2(M) ≤ C1

‖uk‖L2(0,T ;V ) ≤ C1 ‖uk‖L2(0,T ;V ) ≤ C1 .

If u0 ∈ V , we also have that ‖ukt ‖L2((0,T );L2(M)) ≤ C2, ‖ukt‖L2((0,T );L2(M)) ≤ C2.

Thus, we obtain the convergences: uk ⇀ u∗ weakly in L2(0, T ;V ), uk → u∗ strongly
in L2((0, T );L2(M)), uk ⇀ u∗ weakly in L2(0, T ;V ) and uk → u∗ strongly in
L2((0, T );L2(M)). Since β is a maximal monotone graph then zk ⇀ z∗ ∈ β(u∗)
weakly in L2((0, T );L2(M)) and zk ⇀ z∗ ∈ β(u∗) weakly in L2((0, T );L2(M)).
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From the above estimates we also deduce that

|∇uk|p−2∇uk ⇀ Y ∗ weakly in L2(0, T ;Lp
′
(TM)),

|∇uk|p−2∇uk ⇀ Y∗ weakly in L2(0, T ;Lp
′
(TM)).

In order to obtain the weak formulation of (P ) as limit of the weak formulations
of (P k) and (Pk) as k → ∞, we need establish that Y ∗ = |∇u∗|p−2∇u∗ and Y∗ =
|∇u∗|p−2∇u∗. This is a consequence of the fact

lim
k→∞

∫ T

0

∫
M
< |∇uk|p−2∇uk − |∇χ|p−2∇χ , ∇u∗ −∇χ > dAdt ≥ 0 , (17)

for any χ ∈ V . Taking χ = u∗ + λξ in (17), with λ < 0 and letting λ → ∞, and
again with λ > 0 we obtain∫ T

0

∫
M
< Y ∗ − |∇u∗|p−2∇u∗ , ∇ξ > dAdt = 0 .

The proof of (17) has been detailed in (Tello, 1996). Analogously, we get Y∗ =
|∇u∗|p−2∇u∗. Finally, taking k →∞ in the weak formulation of (Pk) and (P k) we
have the conclusion of this step.

Final step. Every solution u of (P ) verifies that u∗ ≤ u ≤ u∗. Let u be a solution
of the problem (P ). Let us see that uk ≤ u ≤ uk. We have that u1 ≤ u ≤ u1.
Indeed, take the test function (u1 − u)+ in the weak formulation of (P ) and (P ).
Now, taking the difference of the obtained expressions, we arrive at

0 ≤ 1
2

∫
M
|(u1 − u)+|2 ≤

∫ T

0

∫
M
QS(x)(m− z)(u1 − u)+ ≤ 0 .

This implies that (u1 − u)+ = 0 a.e. t, that is, u1 ≤ u. Similarly, u ≤ u1.
Again, by induction, assume uk−1 ≤ u ≤ uk−1 and take (uk − u)+ in the weak

formulation of (Pk) and (P ). Arguing as in step 1, we have uk ≤ u.
Finally, since uk → u∗ and uk → u∗ in L∞(M) ∀t ∈ (0, T ), we conclude that

u∗ ≤ u ≤ u∗. Hence, u∗ is the minimal solution of (P ) and u∗ is the maximal
solution. �

4.2. Uniqueness of nondegenerated functions

A criterion of uniqueness for one-dimensional latitude dependent models of
Budyko type was given in (Dı́az, 1993) under so-called nondegeneracy hypothe-
ses. The goal of this section is to extend these arguments to the two-dimensional
models on a manifold. First, we introduce the notion of nondegeneracy for functions
defined on a manifoldM.
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Definition 4. Let w ∈ L∞(M). We say that w satisfies the strong nondegeneracy
property (resp. weak) if there exist C > 0 and ε0 > 0 such that for any ε ∈ (0, ε0)

|{x ∈M : |w(x) + 10| ≤ ε}| ≤ Cεp−1

(resp. |{x ∈ M : 0 < |w(x) + 10| ≤ ε}| ≤ Cεp−1), where |E| denotes the Lebesgue
measure on the manifoldM for all E ⊂M.

Theorem 5

(i) Assume that there exists a solution u of (P ) such that u(t) verifies the strong

nondegeneracy property for any t ∈ [0, T ] then u is the unique bounded weak solution

of (P ).

(ii) There exists at most one solution of (P ) verifying the weak nondegeneracy

property.

The proof is based on the fact that β generates a continuous operator from
L∞(M) to Lq(M) ∀q ∈ [1,∞), although β is discontinuous, when the domain of
such operator is the set of functions verifying the strong nondegeneracy property.
More precisely, we have

Lemma 4

(i) Let w, ŵ ∈ L∞(M) and assume that w satisfies the strong nondegeneracy prop-

erty. Then for any q ∈ [1,∞) there exists C̃ > 0 such that for any z, ẑ ∈ L∞(M)
with z(x) ∈ β(w(x)) and ẑ(x) ∈ β(ŵ(x)) a.e. x ∈M, we have that

‖ z − ẑ ‖Lq(M)≤ (bw − bi) min
{
C̃ ‖ w − ŵ ‖(p−1)/q

L∞(M) , |M|
1/q

}
. (18)

(ii) If w, ŵ ∈ L∞(M) and satisfy the weak nondegeneracy property then∫
M

(
z(x)− ẑ(x)

)(
w(x)− ŵ(x)

)
dA ≤ (bw − bi)C ‖ w − ŵ ‖pL∞(M) . (19)

Proof of Lemma 4

Let ε0 be given as in the Definition 4 for w. If ‖ w − ŵ ‖L∞(M)> ε0 then

‖ z − ẑ ‖Lq(M)≤ (bw − bi)|M|1/q ≤ (bw − bi)
|M|1/q

(ε0)(p−1)/q
‖ w − ŵ ‖(p−1)/q

L∞(M) .

Assume now that ‖ w − ŵ ‖L∞(M)≤ ε0. Define the coincidence sets

A :=
{
x ∈M : w(x) = −10

}
, Â :=

{
x ∈M : ŵ(x) = −10

}
,
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and consider the decompositionM = A∪M+∪M−, M = Â∪M̂+∪M̂−, where
M+ := {x ∈ M : w(x) > −10}, M− := {x ∈ M : w(x) < −10} and where
M̂+,M̂− are defined in the some way but with ŵ replacing w. Let z, ẑ be defined
as in the statement. Then

|z(x)− ẑ(x)| ≤ (bw − bi) if x ∈ A ∪ Â ∪ (M+ ∩ M̂−) ∪ (M− ∩ M̂+)

z(x) = ẑ(x) if x ∈ (M+ ∩ M̂+) ∪ (M− ∩ M̂−)

‖ z−ẑ ‖Lq(M)≤ (bw−bi) min
{
|A∪Â∪(M+∩M̂−)∪(M−∩M̂+)|1/q, |M|1/q

}
. (20)

On the other hand, if ε < ε0 then
(
A ∪ Â ∪ (M+ ∩ M̂−) ∪ (M− ∩ M̂+)

)
⊂ Bε,

where Bε := {x ∈ M : −10 − ε ≤ w(x) ≤ −10 + ε}. Indeed, it is clear that
A ⊂ Bε. Furthermore, ŵ(x)− ‖ w − ŵ ‖L∞(M)≤ w(x) ≤‖ w − ŵ ‖L∞(M) +ŵ(x)
a.e.x ∈ M. So, it is obvious that Â ⊂ Bε. If x ∈ M+ ∩ M̂− then −10 < w(x) ≤
ε + ŵ(x) < −10 + ε and so, x ∈ Bε. Finally, if x ∈ M− ∩ M̂+, we have that
−10 − ε ≤ −10 − |w(x) − ŵ(x)| ≤ ŵ(x) + w(x) − ŵ(x) ≤ w(x) < −10 and thus
x ∈ Bε. Consequently, the inequality (18) is obtained from the strong nondegeneracy
property of w. In order to prove (ii), we assume that w and ŵ satisfy the weak
nondegeneracy property. Arguing as in (i) we can suppose that ‖ w−ŵ ‖L∞(M)≤ ε0.
Observe that if x ∈ A ∩ Â then (z(x)− ẑ(x))(w(x)− ŵ(x)) = 0 and if w(x) �= −10
(resp. ŵ(x) �= −10) and x ∈ Â (resp. x ∈ A) we have that x ∈ {x ∈ M : 0 <
|w(x) + 10| ≤ ε} (resp. {x ∈M : 0 < |ŵ(x) + 10| ≤ ε}). So, we arrive at (19). �

Proof of Theorem 5

Step 1. Estimates. Assume that there exist two bounded weak solutions u and û
of (P ), where u verifies the strong nondegeneracy property, i.e.

ut −∆pu+ G(u) = QSz + f in (0, T )×M

ût −∆pû+ G(û) = QSẑ + f in (0, T )×M

u(0) = û(0) = u0 ,

for some z ∈ β(u) and ẑ ∈ β(û). Taking the test function (u − û) in the weak
formulation of these problems and considering the difference, we obtain

1
2
d

dt

∫
M
|u(t)− û(t)|2dA+

∫
M

(G(u)− G(û))(u− û)dA

+
∫
M
< |∇u(t)|p−2∇u(t)− |∇û(t)|p−2∇û(t), ∇u(t)−∇û(t) > dA

= Q

∫
M
S(x)(z(x, t)− ẑ(x, t))(u(x, t)− û(x, t))dA . (21)
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Let us estimate these integrals. Since p ≥ 2, the expression∫
M
< |∇u(t)|p−2∇u(t)− |∇û(t)|p−2∇û(t), ∇u(t)−∇û(t) > dA

is majorised by

C0

∫
M
|∇u(t)−∇û(t)|pdA

(see Lemma 1), in particular if p = 2 then C0 = 1. Moreover, using the embeddings
of Theorem 1 we have that if p > 2

C̃0

∫
M
|∇u(t)−∇û(t)|pdA ≥ C0

C1,p,∞
‖u− û‖pL∞(M) − C̃0 ‖ u− ũ ‖2L2(M), (22)

where C̃0 = C0 ‖ u−ũ ‖L∞((0,T );L2(M)) and where C1,p,∞ is given in (8). If p = 2, we
have that V = H1(M) and the continuous embedding V ⊂ Lσ(M) for all σ ∈ [1,∞).
So, for any σ ∈ [1,∞), we have∫

M
|∇u(t)−∇û(t)|2dA ≥ 1

C1,2,σ
‖u− û‖2Lσ(M)− ‖ u− û ‖2L2(M), (23)

where C1,2,σ is defined in (7). Since u and û are bounded weak solutions of (P ), it
is obvious that u− û ∈ L∞(M). This fact allows us to use the property

‖ · ‖L∞(M) = lim
σ→∞

‖ · ‖Lσ(M)

|M|1/σ .

That is, ∀ε > 0 ∃σ0 > 1 such that ∀σ > σ0, we have that

‖ u− û ‖2L∞(M) ≤
‖ u− û ‖2Lσ(M)

|M|2/σ + ε .

From the monotonicity of G we have∫
M

(
G(u)− G(û)

)
(u− û)dA ≥ 0 .

Since u verifies the strong nondegeneracy property, we can apply Lemma 4 for q = 1
to get the estimate∫

M
QS(z − ẑ)(u− û)dA ≤ ClQ ‖ S ‖L∞(M)‖ u− û ‖pL∞(M)
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where Cl = (bw − bi)Ĉ. Inserting the above estimates into (21), we arrive at

1
2
d

dt
‖ u− û ‖2L2(M) ≤

(
ClQ ‖ S ‖L∞(M) −

C0

C1,p,∞

)
‖ u− û ‖pL∞(M)

+ C̃0 ‖ u− û ‖2L2(M) , (24)

in the case p > 2, and obtain for the case p = 2,

1
2
d

dt
‖ u− û ‖2L2(M) ≤

(
ClQ ‖ S ‖L∞(M) −

|M|2/σ
C1,2,σ

)
‖ u− û ‖2L∞(M)

+ ‖ u− û ‖2L2(M) +
ε

C1,2,σ
, (25)

Step 2. Now, we distinguish two cases,

CASE 1: if ClQ ‖ S ‖∞ −
C0

C1,p,∞
≤ 0 and p > 2, then

1
2
d

dt
‖ u− û ‖2L2(M)≤ C̃0 ‖ u− û ‖2L2(M) .

Now, by Gronwall’s Lemma, we deduce that

‖ u− û ‖2L2(M)≤ e2C̃0t ‖ u0 − û0 ‖2L2(M)= 0 .

This proves part i) of Theorem 5 for this case. Now, for p = 2, if ClQ ‖ S ‖∞
− 1
C1,2,σ

≤ 0, arguing as before, we obtain that

‖ u− û ‖2L2(M) ≤ e2t ‖ u0 − û0 ‖2L2(M) −
2ε

C1,2,σ
(e2t − 1)

≤ −2εClQ ‖ S ‖∞ (e2t − 1) .

Finally, since the above inequality is true for all ε, we conclude the uniqueness.

CASE 2: if ClQ ‖ S ‖∞ − 1
C1,p,∞

> 0, we consider a suitable rescaling (M �→ Mδ).
That is, a dilatation D of magnitude δ > 0 on the manifold (M,g), D : M ⊂
R

3 → R
3, D(x) = x̃ = δx. This dilatation allows us to define an atlas {(W̃λ, w̃λ)}

on Mδ as follows W̃λ := D(Wλ), w̃λ : W̃λ → R
2, w̃λ(x̃) = wλ( x̃δ ). We can consider

a partition of unity {α̃λ} subordinated to the covering {W̃λ} of Mδ defined by
α̃λ(x̃) = αλ(x̃/δ), where {αλ} is a partition of unity subordinated to the covering
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{Wλ} of M. In particular, we have that sup|α̃λ| = sup|αλ|. Moreover, D defines a
metric g̃ onMδ, and its coefficients g̃ij depend on g in the following way: g̃ij = δ2gij .
It follows that

ν ‖ ψ ‖2 ≤ g(ψ,ψ) ≤ µ ‖ ψ ‖2 ∀ψ ∈ TM

ν̃ ‖ ψ̃ ‖2 ≤ g̃(ψ̃, ψ̃) ≤ µ̃ ‖ ψ̃ ‖2 ∀ψ̃ ∈ TMδ

where ν̃ = δ2ν and µ̃ = δ2µ. Obviously (Mδ, g̃) is also a Riemannian manifold of
dimension 2.

Let u a real function defined on M. Its local representation in the new coor-
dinates is given by ũ :Mδ → R, ũ(x̃) = u( x̃δ ). Moreover, the derivatives verify the
following relation:

∂ũ

∂x̃i
(x̃) =

1
δ

∂u

∂xi

( x̃
δ

)
i = 1, 2, 3 .

Now, the local representation of p-Laplacian operator, detailed in the above section,
is given by

δpdivMδ

(
|∇Mδ

ũ|p−2∇Mδ
ũ
)

= divM
(
|∇Mu|p−2∇Mu

)
.

So, the equation in the new coordinates is

(Pδ)



ũt − δpdivMδ

(
|∇Mδ

ũ|p−2∇Mδ
ũ
)

+ G(ũ) ∈ QSβ(ũ) + f in (0, T )×Mδ

ũ(0, x̃) = u0

(
x̃
δ

)
.

Clearly, if ũ is a solution of (Pδ) then u : M → R defined by u(x) = ũ(δx) is a
solution of (P ). Moreover, the uniqueness of (Pδ) implies the uniqueness of (P ), and
conversely. Let us see that there exists δ > 0 such that the solution of (Pδ) is unique.
Let uδ and ũδ two solutions of (Pδ) such that uδ verifies the strong nondegeneracy
property. Arguing as in step 1, we arrive at

1
2
d

dt

∫
Mδ

∣∣uδ(t)− ûδ(t)∣∣2dAδ

+ δp
∫
Mδ

< |∇uδ|p−2∇uδ − |∇ûδ|p−2∇ûδ,∇uδ −∇ûδ > dAδ

+
∫
Mδ

(
G(uδ)− G(ûδ)

)
(uδ − ûδ)dAδ = Q

∫
Mδ

Sδ(zδ − ẑδ)(uδ − ûδ)dAδ
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for some zδ ∈ β(uδ) and ẑδ ∈ β(ûδ). Here, Sδ is defined by Sδ :Mδ → R, Sδ(x̃) =
S( x̃δ ). (24) and (25) allow us to estimate uδ− ûδ for uδ and ûδ solutions of (Pδ). So,
if p > 2,

1
2
d

dt
‖ uδ − ûδ ‖2L2(Mδ)

≤
(
Cl,δQ ‖ Sδ ‖L∞(Mδ) −

C0δ
p

C1,p,∞,δ

)
‖ uδ − ûδ ‖pL∞(Mδ)

+C̃0 ‖ uδ − ûδ ‖2L2(Mδ)
, (26)

and for p = 2,

1
2
d

dt
‖ uδ − ûδ ‖2L2(Mδ)

≤
(
Cl,δQ ‖ Sδ ‖L∞(Mδ) −

δ2|Mδ|1/σ
C1,2,σ,δ

)
‖ uδ − ûδ ‖2L∞(Mδ)

+ ‖ uδ − ûδ ‖2L2(Mδ)
+

ε

C1,2,σ,δ
. (27)

Now, we are concerned with the dependence of the constants Cl,δ, C1,p,∞,δ and
C1,2,σ,δ on δ. Let us consider the Banach space Vδ = {u ∈ L2(Mδ) : ∇u ∈
Lp(TMδ)}.

In order to estimate Cl,δ, we study how the estimates of Lemma 4 for q = 1
change when we replace M withMδ. We have that

‖ zδ − ẑδ ‖2L1(Mδ)
≤ (bw − bi)C̃δ ‖ uδ − ûδ ‖p−1

L∞(Mδ)

where C̃δ =max {Cδ, |Mδ|
εp−1
0
} = δ2max {C, |M|

εp−1
0
} = δ2C̃ and C, Cδ are the constants

of nondegeneracy forM andMδ, respectively. So, Cl,δ = δ2Cl.

Now, we recall that C1,2,σ,δ verifies

‖ f ‖2Lσ(Mδ)
≤ C1,2,σ,δ

(
‖ ∇f ‖2L2(TMδ)

+ ‖ f ‖2L2(Mδ)

)
.

Since ν̃ = δ2ν, µ̃ = δ2µ and |α̃λ| = 1
δ |αλ|, we get

C1,2,σ,δ = 2δ4/σ−2µ2/σk(r, p, σ)2ν−1 max{1, δ2µ}
(
1 + sup

1
δ
|∇αλ|

)2

,

where k is a positive constant independent of δ.
The constant C1,p,∞,δ, depends on the continuity constant for the embedding

Vδ ⊂ L∞(Mδ). More precisely, if δ = 1 and p > 2 we obtain the constant given in
(8). Therefore,

C1,p,∞,δ=2p−1k(p, r)p max
{
δ−pν−p/2, δp−2ν−1µp/2

}(
1 + δ2/p−1µ1/pk(r, 2, p)ν−1/2

×max
{
1, δµ1/2}

(
1 + sup

1
δ
|∇αλ|

)
sup

1
δ
|∇αλ|

)p
max

{
1, δp−2|M|(p−2)/2

}
.
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Finally, we define the constant Kp,δ,

Kp,δ :=



Cl,δQ ‖ Sδ ‖L∞(Mδ) −

δ2|M|2/σ
C1,2,σ,δ

if p = 2 ,

Cl,δQ ‖ Sδ ‖L∞(Mδ) −
δpC0

C1,p,∞,δ
if p > 2 .

Clearly ‖ Sδ ‖L∞(Mδ)=‖ S ‖L∞(M). So, observing the dependence of the above
constants on δ, we have that if p ≥ 2 then lim

δ→0
Kp,δ = 0. This fact allows us to

reduce the proof to case 1.
In order to prove part (ii) of Theorem 5, we assume that there exist two bounded

weak solutions u and û of (P ) which verify the weak nondegeneracy property. Ar-
guing as in (i), we have that the term

1
2
d

dt
‖ u− û ‖2L2(M) +

C0

C1,p,q
‖ u− û ‖pL∞(M)

is majorised by ∫
M
QS(z − ẑ)(u− û)dA + C̃0 ‖ u− û ‖2L2(M)

where C1,p,q = C1,p,∞ if p > 2, C1,2,σ if p = 2 and where C̃0 is defined in (22). Thus,
using (ii) of Lemma 4, we have

1
2
d

dt
‖ u− û ‖22≤

(
CdQ ‖ S ‖L∞(M) −

C0

C1,p,q

)
‖ u− û ‖p∞ +C̃0 ‖ u− û ‖22

where Cd is the constant of the weak nondegeneracy property (Lemma 4). It follows
the uniqueness as in (i), by studying the sign of the constant CdQ ‖ S ‖L∞(M)

− 1
C1,p,q

and by rescaling when it is negative. �

4.3. A criterion of existence of nondegenerated solutions for the one-
dimensional model

We are concerned with conditions for u0 and f under which a nondegenerated
solution exists. This questions allows different answers and can be formulated in a
setting which is more general than that of problem (P ). For p = 2 we have

Proposition 5
Let w ∈ C1((−1, 1)) such that there exists ε0 > 0 satisfying

(i) the set {x ∈ (−1, 1) : |w(x) + 10| ≤ ε0} has a finite number of connected
components Ij with j = 1, .., N and for any j there exists xj ∈ Ij such that w(xj) =
−10,
(ii) there exists δ0 > 0 such that if x ∈ Ij then |wx(x)| ≥ δ0.

Then w satisfies the strong nondegeneracy property.
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Proof. Let ε ∈ (0, ε0) and x ∈ {y ∈ (−1, 1) : |w(y) + 10| ≤ ε}, x ∈ Ij . We can apply
the mean value theorem on the connected component Ij . There exist x′ ∈ Ij between
x and xj such that w(x)−w(xj) = wx(x′)(x−xj). So, |x−xj | = |w(x)−w(xj)|

|wx(x′)| , and
since x′ ∈ Ij , |wx(x′)| ≥ δ0, we conclude that

|x− xj | ≤
|w(x) + 10|

δ0
≤ kε ,

for some k > 0. This means that |Ij | ≤ 2kε and so |{x ∈ (−1, 1) : |w(x) + 10| ≤
ε}| ≤ 2Nkε. �

Now, we study the case where the function w is a solution of (P1). First, we
approximate u by the solution uε of the problem



ut − ((1− x2)|ux|p−2ux)x = QS(x)βε(u)− Gε(u) + f(x) in (0, T )× (−1, 1)

(1− x2)ux = 0 in x = −1yx = 1

u(x, 0) = u0(x) in (−1, 1) ,

where βε and Gε are monotone approximations of β and G of class C1. We assume,
by simplicity, f, u0 ∈ C1(−1, 1). Let |uε| ≤ K on (0, T ) × (−1, 1). The function
v = ux verifies



vt − ((1− x2)|v|p−2v)xx = v(QS(x)β′

ε(u)− Gε(u)) +QSx(x)βε(u) + fx(x)

(1− x2)v = 0 in x = ±1

v(x, 0) = v0(x) in (−1, 1) .

Denote a(t, x) := QS(x)β′
ε(u) − Gε(u) and b(t, x) = QSx(x)βε(u) + fx(x). Assume

there exist x and x with −1 < x < x < 1 such that

(H1)



Sx(x) ≥ 0 ∀x ∈ (−1, x) , Sx(x) ≤ 0 ∀x ∈ (x, 1)

fx(x) ≥ 0 ∀x ∈ (−1, x), fx(x) ≤ 0 ∀x ∈ (x, 1)

u0x(x) ≥ 0 ∀x ∈ (−1, x), u0x(x) ≤ 0 ∀x ∈ (x, 1) .

We also assume

(H2)

{
uε,x(t, x) ≥ 0 ∀t ∈ [0, T ], uε,x(t, x) ≤ 0 ∀t ∈ [0, T ] ,

uε(t, x) > −10 ∀t ∈ [0, T ], uε(t, x) < −10 ∀t ∈ [0, T ] .
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Notice that the first condition of (H2) is fulfilled if for instance S(x), f(x) and
u0(x) are even functions and x = x = 0. Now, we call w(t, x) := e−λtv(t, x). Then
v = weλt and

wt = e−λt
(
−λv + ((1− x2)|v|p−2v)xx − va(t, x)− b(t, x)

)
= −λw +

(
(1− x2)e−λt/p−1|w|p−2w

)
xx
− aw − be−λt

≥
(
(1− x2)e−λt/p−1|w|p−2w

)
xx

+ be−λt ,

where λ satisfies

−λ− a(t, x) ≥ 0 i.e. λ ≤ −sup a(t, x).

We recall that since |uε| ≤ K, there exists such λ.

Lemma 5
Let h(t, x) verify


ht −

(
(1− x2)e−λt/p−1|h|p−2h

)
xx

= be−λt in (0, T )× (−1, x) ,

h(t, x) = −10 ∀t ∈ (0, T ) ,

h(x, 0) = u0x(x) if x ∈ (−1, x) .
Then

uε,x(t, x) ≥ eλth(t, x) ≥ 0 ∀(t, x) ∈ (0, T )× (−1, x). �

Proof. It suffices to apply the comparison principle to h and w = e−λtuε,x (which
is an upper solution). Notice that the elliptic second order operator associated is
T-accretive in L1(−1, x) (hence this is a little variation of the results of (Benilan,
1972)). �

Similarly, we can obtain that

ux(t, x) ≤ −eλth(t, x) ≤ 0 ∀(t, x) ∈ (0, T )× (x, 1),

for suitable λ and h. These two results imply the condition (ii) of Proposition 5.
Now, we assume that u(t, x) satisfies condition (i) and we also assume

(H3) u(t, x) satisfies condition (i) ∀t ∈ [0, T ] .

In view of the known results in the literature, it seems not difficult to prove that
hypothesis (H3) is fulfilled if the data u0(x) and f(x) pass only finitely many times
through −10 and −10 < u(t, x) ∀(t, x) ∈ (0, T )× (x, x). �

The conclusion of section 3.4 is that if (H1), (H2) and (H3) are fulfilled, then
the solution u, limit of uε is nondegenerated. Finally, we have the result for two-
dimensional solutions by rotation about the axis passing through the poles.



50 D́ıaz and Tello

References

1. H.W. Alt and S. Luckhaus, Quasilinear Elliptic - Parabolic Differential Equations, Math. Z. 183
(1983), 311–341.

2. T. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampere Equations, Springer-Verlag, New
York, 1982.

3. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhooff Inter-
national Publishing, 1976.

4. Ph. Benilan, Evolution Equations and Accretive Operator, Lecture Notes, Univ. of Kentucky,
1981.

5. Ph. Benilan, Equations d’évolution dans un espace de Banach quelconque et applications, These,
Orsay 1972.

6. R. Bermejo, Numerical solution to a two-dimensional diffusive climate model, In Modelado de
Sistemas en Oceanografı́a, Climatologı́a y Ciencias Medio - Ambientales: Aspectos Matemáticos
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