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Abstract. In this paper we study generalized Poincaré-Andronov-Hopf bifurcations of dis-
crete dynamical systems. We prove a general result for attractors in n-dimensional manifolds
satisfying some suitable conditions. This result allows us to obtain sharper Hopf bifurca-
tion theorems for fixed points in the general case and other attractors in low dimensional
manifolds. Topological techniques based on the notion of concentricity of manifolds play a
substantial role in the paper.

Affectionally dedicated to Maŕıa Jesús Chasco on the ocassion of her 65th birthday

1. Introduction and preliminaries

1.1. Introduction. In this paper we study families of homeomorphisms fλ : M −→ M
parametrized by the unit interval and defined on n-dimensional manifolds. We assume that
f0 has an attractor that loses its stability and becomes a repeller for every λ > 0. This
phenomenon is known as generalized Poincaré-Andronov-Hopf bifurcation or, shorlty, Hopf
bifurcation.

Definition 1. Let M be an n-dimensional manifold and fλ : M −→ M be a family of
homeomorphisms continuosly depending on a parameter λ ∈ [0, 1]. Suppose that K ⊂ M is
an attractor of f0. We say that K undergoes a Hopf bifurcation at λ = 0 if K is a repeller of
fλ for every λ > 0.

The study of this kind of bifurcations was originated in the works of Poincaré and was
continued by Andronov and Hopf. The most famous Hopf bifurcation result refers to the
development of periodic orbits from a stable fixed point of a family of flows induced by a
family of ordinary differential equations defined on the plane. There is an analogous result
for parametrized families of diffeomorphisms due to Naimark [26], Sacker[33] and Ruelle and
Takens [31]. For further information about Hopf bifurcations see the book on bifurcation
theory by Mardsen and McCracken [22]. See also [44] for information about the foundations
of bifurcation theory.
In this paper we study Hopf bifurcations of general attractors of discrete dynamical systems.

In particular, we use homotopical techniques to study the topology of the attractors generated
by Hopf bifurcations. We use a form of homotopy theory known as shape theory or Borsuk’s
homotopy theory. This theory has proved to be very useful to study attractors of flows
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[14, 15, 18, 29, 36, 41, 42]. However in the discrete case this theory has limitations produced
by the lack of natural homotopies provided by the dynamical system [32, 35]. The theory
of shape has been used to study bifurcations in the case of continuous dynamical systems
[3, 4, 5, 13, 43] and it has also been used to study Hopf bifurcations of fixed poins of planar
homeomorphisms [2].

The main result of this paper is the following:

Main Theorem. Let M be an n-dimensional manifold and fλ : M −→ M be a family of
homeomorphisms continuosly depending on a parameter λ ∈ [0, 1]. Suppose that

(1) K is an attractor of f0.
(2) K is a topological spine of some compact n-dimensional manifold with boundary N ⊂

M that satisfies the concentric rigidity property.
(3) K undergoes a Hopf bifurcation at λ = 0.

Then, there exists λ0 > 0 such that for every λ with 0 < λ < λ0 there exists an attractor Kλ

that has the Borsuk’s homotopy type (shape) of ∂N and converges to K upper semicontinuosly
as λ tends to 0.

As applications of this result we obtain sharper Hopf bifurcation theorems for:

• Fixed points in n-manifolds.
• Arbitrary attractors in connected 2-manifolds.
• Tame knots in 3-manifolds.
• Tame two sided closed 2-manifolds in 3-manifolds.
• Tame 3-manifolds with boundary in 3-manifolds.
• We also obtain other kind of bifurcations involving lower-dimensional attracting spheres.

1.2. Preliminaries.

1.2.1. Attractors. We recall some standard definitions of dynamical systems. Let X be a
locally compact metric space and f : X −→ X a homeomorphism. Given a subset Y ⊂ X
the ω-limit set of Y is defined as

ω(Y ) =
⋂

n>0

(
⋃

k≥n

fk(Y )

)
.

The set ω(Y ) is a closed, invariant set. We say that a compactum K is an attractor if it
possesses a neighborhood U such that K = ω(U). The subset A(K) =

⋃
n≥0

f−n(U) is
called basin of attraction of K and is an open invariant subset of X . Attractors are invariant
sets and satisfy the following stability property: for every compactum P ⊂ A(K) and every
neighborhood V of K there exists n0 ≥ 0 such that fn(P ) ⊂ V for every n ≥ n0. A useful way
of characterizing attractors is by means of the so-called traping regions. A trapping region
W ⊂ X is a compactum with non-empty interior such that f(W ) ⊂ W̊ . Here W̊ denotes the
topological interior of W . Attractors are determined by trapping regions in the sense that if
K is an attractor it possesses a trapping region W and

K =
⋂

n≥0

fn(W )
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is an attractor contained in W . Notice that trapping regions are robust in the sense that if
W is a trapping region for a homeomorphism f and g is another homeomorphism sufficiently
close to f then W is also a trapping region for g.
A repeller K ⊂ X is a compact set which is an attractor for f−1 and we call basin of

repulsion of K, and denote it by R(K), to the basin of attraction of K for f−1. For more
information about attractors see [1].

1.2.2. Bicollars. Let M be an n-dimensional manifold. An (n−1)-manifold N ⊂ M is said to
be bicollared if there exists an embedding h : N × [−1, 1] −→ M such that h(N × {0}) = N .
Notice that by the Theorem of invariance of domain C = h(N × [−1, 1]) is a neighborhood
of N in M .

1.2.3. Triangulations and tame subsets. A triangulation of a topological space X is a pair
(S, h) where S is a locally finite simplicial complex and h : X −→ |S| is a homeomorphism
between X and the geometric realization of S.
It is known that every manifold of dimension not larger than three admits a triangulation.

This result was proved by Radó in dimension two and by Moise in dimension three. Moreover,
every triangulation of a manifold of dimension n ≤ 3 is combinatorial. That is, the star of
every vertex of the triangulation is combinatorially equivalent to an n-dimensional simplex.
The book by Moise [24] contains the proofs of these deep results.
Let M be a 3-manifold. We say that a compactum K ⊂ M is tame if there exists a

triangulation (S, h) of M and a subcomplex T ⊂ S such that (T , h|K) is a triangulation
of K. A useful criterion for tameness is [38, Lemma 5] which establishes that if M is a
3-manifold with boundary

(1) A closed 2-manifold S ⊂ int(M) is tame in int(M) if it is bicollared.
(2) A compact 3-manifold with boundary P ⊂ int(M) is tame in int(M) if ∂P is bicollared.

1.2.4. Algebraic topology and Borsuk’s homotopy theory. In this paper we shall make use of
some concepts from Algebraic Topology including Alexander and Lefschetz duality theorems.
We denote by H∗ and H∗ the singular homology and cohomology functors respectively and
by Ȟ∗ the Čech cohomology functor. Some standard references covering this material are the
books by Hatcher [16] and Munkres [25].
We shall make use of a form of homotopy theory known as Borsuk’s homotopy theory or

shape theory that has proved to be useful in the study of attractors of dynamical systems.
A detailed treatment about the theory of shape can be found in the books by Borsuk [7],
Mardesič and Segal [21] and Dydak and Segal [9].
Suppose that X and Y are compact metric spaces. We shall make use of the following

properties:

(1) If X and Y have the same homotopy type then X and Y have the same shape.
(2) If X and Y are ANRs then X and Y have the same homotopy type if and only if X

and Y have the same shape.
(3) If X and Y have the same shape then X and Y have isomorphic Čech cohomology

groups.

Notice that polyhedra, CW-complexes and manifolds are examples of ANRs.
We shall use the following criterion for shape equivalence (see [36, Theorem 6]):
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Let {Nk}k≥0 be a sequence of metric compacta such that Nk+1 ⊂ Nk for every k ≥ 0 and
K =

⋂
k≥0

Nk. If for every k ≥ 0 the inclusion ik : Nk →֒ N0 is a shape equivalence then so
is the inclusion i : K →֒ N0.

In addition we shall also make use of Borsuk’s classification of the shape of plane continua
that ensures that two continua contained in R2 have the same shape if and only if they
separate R2 into the same number of connected components ([6, Theorem 9.1]).

1.3. Outline of the paper. The paper is structured as follows: in Section 2 we introduce
the definition of concentric manifolds and the concentric rigidity property. We show that
the concentric rigidity property is satisfied by the n-dimensional closed ball (Proposition 4)
and by any compact manifold with boundary of dimension two and three (Proposition 5).
In Section 3 we introduce topological spines and give a characterization of them in terms
of bases of neighborhoods (Proposition 7). In addition we deduce that if K is a topological
spine of some compact n-manifold with boundary N then the inclusion i : K →֒ N is a
shape equivalence (Corollary 8). We also present some examples of attractors in R3 that
are not spines of any compact 3-manifold with boundary contained in R3 (Example 1 and
Example 2). Section 4 is devoted to present some applications of the Main Theorem. We
prove that if a fixed point undergoes a Hopf bifurcation it expels an attractor with the
Borsuk’shomotopy type of the (n − 1)-dimensional sphere, where n is the dimension of the
phase space (Theorem 11). We see that if an attracting proper subcontinuum of a connected
2-manifold undergoes a Hopf bifurcation it expels an attractor with the Borsuk’s homotopy
type of a finite disjoint union of circles (Theorem 12). The number of components of this
attractor is determined whenever the phase space is either the plane or the 2-sphere. We
also study Hopf bifurcations of tame manifolds contained in 3-manifolds. We show that if an
attracting tame knot in a 3-manifold undergoes a Hopf bifurcation it expels an attractor with
the Borsuk’s homotopy type of either the torus or the Klein bottle (Theorem 13). We see
that if an attracting tame two sided closed 2-manifold K in a 3-manifold undergoes a Hopf
bifurcation it expels an attractor with the Borsuk’s homotopy type of the disjoint union of
two copies of K. We also prove that if a tame compact 3-manifold with boundary contained in
a 3-manifold undergoes a Hopf bifurcation it expels an attractor with the Borsuk’s homotopy
type of its boundary. In Section 5 we present some general results about attractors. In
Section 6 we present the proof of the Main Theorem. Finally, in Section 7 we study Hopf
bifurcations that occur inside invariant submanfolds, that is, for the restriction of the family
of homeomorphisms to an invariant submanifold. In particular, we see that if a fixed point is
contained in some invariant n-dimensional manifold and undergoes a Hopf bifurcation inside
this invariant manifold, then it expels an attractor that has the Borsuk’s homotopy type of
Sn−1.

2. Concentric manifolds and the concentric rigidity property

In this section we recall the concept of concentricity and introduce the concentric rigidity
property. We also see that the closed n-dimensional ball and every compact two and three
manifold with boundary satisfy this property.
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Definition 2. Let M and N be compact n-dimensional manifolds with boundary such that
N ⊂ int(M). We say that M and N are concentric if M \ int(N) is homeomorphic to
∂M × [0, 1].

Remark. From the definition it follows that if N ⊂ int(M) is concentric with M , then M
is obtained from N by attaching an exterior collar. This ensures that N is homeomorphic to
M (see for instance the proof of [16, Proposition 3.2]). It also follows that ∂N is bicollared.
To see this observe that since N is a compact manifold with boundary, ∂N has a collar C
contained in N . As a consequence C ∪ (M \ int(N)) is a bicollar of ∂N .

Motivated by the work by Edwards about concentricity of 3-manifolds [10, 11] we introduce
the following definition.

Definition 3. Let M be a compact n-dimensional manifold with boundary. We say that M
has the concentric rigidity property if given a pair of compact n-manifolds with boundary M0

and M1 that satisfy:

(1) M0 ⊂ int(M1) ⊂ M1 ⊂ int(M).
(2) ∂M1 is bicollared and homeomorphic to ∂M .
(3) M0 is concentric with M .

Then M1 is concentric with both M0 and M .

Remark. It follows from the definition that the concentric rigidity property is a topological
property.

The following result shows that the n-dimensional closed ball satisfies the concentric rigidity
property. To prove this result we need a powerful result known as the annulus Theorem.

Annulus Theorem. Let B′ be an n-cell contained in the interior of an n-cell B. Suppose
that ∂B′ is bicollared. Then B \ int(B′) is homeomorphic to Sn−1 × [0, 1].

We recall that an n-cell is a topological space homeomorphic to the n-dimensional closed
ball. The annulus Theorem was proved by Radó in dimension 2 [28], by Moise in dimension
3 [23], by Quinn in dimension 4 [27] and by Kirby [19] for n ≥ 5. See also [8, Theorem 7.5.3,
pg. 374].

Proposition 4. The n-dimensional closed ball satisfies the concentric rigidity property.

Proof. Let M be the n-dimensional closed ball. Suppose that M0 and M1 are compact
n-manifolds with boundary satisfying (1), (2) and (3) from Definition 3. Since ∂M1 is a
bicollared (n− 1)-sphere contained in int(M), the generalized Schöenflies Theorem [8, Theo-
rem 2.4.8, pg. 62] ensures that ∂M1 is the boundary of a topological closed n-ball B ⊂ int(M).
In addition, ∂M1 decomposes M into two connected components. We see that B = M1. To
see this notice that

M \ ∂M1 = int(B) ∪ (M \B) = int(M1) ∪ (M \M1).

Since ∂M1 and M are connected and M1 is compact int(M1) is also connected. Hence int(M1)
must be one of the components ofM \∂M1. The other component must beM \M1. Reasoning
in the same fashion int(B) must be a component of M \ ∂M1 and, hence, it must coincide
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either with int(M1) or with M \M1. The second possibility is excluded since M \M1 contains
∂M while ∂M is not contained in int(B).

It remains to see that the closed topological ball M1 is concentric with both M and M0.
Since ∂M1 is bicollared and M1 ⊂ int(M) the concentricity of M1 with M follows from the
annulus Theorem. On the other hand, since M0 is concentric with M , it follows that ∂M0 is
bicollared in M and, since int(M1) is open in M and M0 ⊂ int(M1), ∂M0 is also bicollared
in M1. Therefore a new application of the annulus Theorem ensures that M0 and M1 are
concentric. �

We see that in addition to closed balls there are many other compact manifolds with
boundary that satisfy the concentric rigidity property.

Proposition 5. Every compact n-manifold with boundary satisfies the concentric rigidity
property for n = 2 and n = 3.

Proof. Let M be a compact n-manifold with boundary and suppose that M0 and M1 are
compact n-manifolds with boundary satisfying (1), (2) and (3) from Definition 3.

Suppose that n = 2. Since M and M0 are concentric it follows that M \ int(M0) is
homeomorphic to a finite disjoint union of closed annuli. Let A be a component ofM\int(M0).
Condition (1) ensures that the closed annulus A contains exactly one component of ∂M1 and
that this component separates the two boundary components of A. Then invoking the 2-
dimensional annulus Theorem in each component ofM \int(M0) ensures thatM1 is concentric
with both M0 and M .

Suppose that n = 3. Since M0 is concentric with M it follows that ∂M0 is bicollared in M
and, since int(M1) is open in M , ∂M0 is also bicollared in M1. In addition, ∂M1 is bicollared
by assumption. Since M0 has bicollared boundary in M1 and M1 has bicollared boundary in
M2, [38, Lemma 5] guarantees that M0 is tame in int(M1) and M1 is tame in int(M). The
result follows from [11, Theorem 2]. �

3. Topological spines

In this section we introduce the concept of topological spine and study some of its proper-
ties. In addition we see some examples of attractors of discrete dynamical systems that are
not topological spines.

Definition 6. Let N be a compact n-manifold with boundary. We say that a compactum
K ⊂ int(N) is a topological spine of N if N \K is homeomorphic to ∂N × [0,+∞).

There are some other definitions of spine in the literature. See for instance [17] or [40].
The following result gives a characterization of spines in terms of bases of neighborhoods.

Proposition 7. Suppose that N is a compact n-manifold with boundary. A compactum
K ⊂ int(N) is a topological spine of N if and only if K possesses a basis of neighborhoods
{Nk}k≥0 comprised of compact n-manifolds with boundary satisfying

(1) N0 = N .
(2) Nk+1 ⊂ int(Nk).
(3) Nk and Nk+1 are concentric.
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Proof. Since K is a spine of N there exists a homeomorphism h : ∂N × [0,+∞) −→ N \K.
For every k ≥ 0 we define

Nk = K ∪ h(∂N × [k,+∞)).

We see that Nk is a compact neighborhood of K for every k > 0. The compactness of
of Nk follows from the fact that N \ Nk = h(∂N × [0, k)) is open in N \ K and, thus, in
N . Hence, Nk is closed in N and, therefore, compact. Nk is a neighorbood of K since
K ⊂ Nk \ h(∂N × {k}) ⊂ Nk and Nk \ h(∂N × {k}) is open being the complement of
the compact set h(∂N × [0, k]). Notice that this also ensures that Nk is a n-manifold with
boundary ∂Nk = h(∂N × {k}). Hence Nk+1 ⊂ int(Nk). The concentricity of Nk and Nk+1

follows from the fact that

Nk \ int(Nk+1) = h(∂N × [k, k + 1]).

Conversely, suppose that {Nk} is a basis of neighborhoods of K comprised of compact
n-manifolds with boundary satisfying (1), (2) and (3). First observe that

N \K =
⋃

k≥0

(N \ int(Nk+1))

We construct step by step a homeomorphism N \ K to ∂N × [0,+∞) as follows. Since
N is concentric with N1 there exists a homeomorphism h1 : N \ int(N1) −→ ∂N × [0, 1]
such that h1(x) = (x, 0) for every x ∈ ∂N . Reasoning in the same fashion, we can find a
homeomorphism h̄2 : N1 \ int(N2) −→ ∂N1× [0, 1] such that h̄2(x) = (x, 0) for every x ∈ ∂N1.
Let H : ∂N1×[0, 1] → ∂N×[1, 2] be the homeomorphism given by H(x, t) = (h1|∂N1

(x), t+1).
Then, the map h2 : N \ int(N2) −→ ∂N × [0, 2] defined as

h2(x) =

{
h1(x) if x ∈ N \N1

H ◦ h̄2(x) if x ∈ N1 \ int(N2)

is a homeomorphism that extends h1. If we continue this process we are able to construct,
for each k, a homeomorphism hk : N \ int(Nk) −→ ∂N × [0, k] that extends hk−1. We define
h∞ : N \K −→ ∂N × [0,+∞) as h∞(x) = hk(x) if x ∈ N \Nk. It is not difficult to see that
h∞ is a continuous and open bijection and, hence, a homeomorphism. �

Remark. A direct consequence of Proposition 7 is that the compactum K is a spine of Nk

for every k ≥ 0.

Corollary 8. Let N be a compact n-manifold with boundary and suppose that K is a topo-
logical spine of N . Then the inclusion i : K →֒ N is a shape equivalence.

Proof. Since K is a spine of N it possesses a basis of neighborhoods {Nk} comprised of
compact n-manifolds with boundary satisfying conditions (1), (2) and (3) of Proposition 7.
Since Nk+1 ⊂ int(Nk) and Nk and Nk+1 are concentric, it follows that there exists a strong
deformation retraction from Nk \ int(Nk+1) onto ∂Nk+1. This strong deformation retraction
extends to a strong deformation retraction from Nk onto Nk+1 by keeping all the points of
int(Nk+1) fixed. Therefore for every k ≥ 0 the inclusion ik+1,k : Nk+1 →֒ Nk is a homotopy
equivalence. As a consequence, the inclusion ik : Nk →֒ N is also homotopy equivalence for
every k ≥ 0 and, hence, a shape equivalence. Then the inclusion i : K →֒ N is a shape
equivalence. �
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It can be seen using smooth Lyapunov functions that every attractor of a smooth flow on
a smooth n-dimensional manifold M is a topological spine of some compact n-manifold with
boundary N with N ⊂ M . The following examples show that this does not hold in general
for attractors of homeomorphisms.

Example 9. Consider the homeomorphism f : R3 −→ R3 that carries the standard solid
torus T in R3 into its interior as depicted in Figure 9. The compactum

K =
⋂

n≥0

fn(T )

is an attractor of f known as the dyadic solenoid. We see thatK cannot be a topological spine
of any compact d-dimensional manifold with boundary N . Suppose, arguing by contradiction,
that there exists a compact d-dimensional manifold N having K as a topological spine. Then
Corollary 8 ensures that i : K →֒ N is a shape equivalence. Since shape equivalences induce
isomorphisms in Čech cohomology it follows that

Ȟ∗(K;Z) ∼= Ȟ∗(N ;Z) ∼= H∗(N ;Z).

The last isomorphism holds because N is a manifold with boundary. Since N is compact
H∗(N ;Z) is finitely generated in every dimension and, hence, so is Ȟ∗(K;Z). Consider the
family {Tn}n≥0 where Tn = fn(T ). The construction and the continuity property of Čech
cohomology ensure that

Ȟ1(K;Z) ∼= lim−→H1(Tn;Z)

where the bonding maps are the homomorphisms induced by the inclusions in,n+1 : Tn+1 →֒
Tn. For each n ≥ 0 the set Tn is a solid torus and hence H1(Tn;Z) is isomorphic to Z. In
addition, for each n ≥ 0 the solid torus Tn+1 winds two times around Tn and, thus, all the
bonding maps are the multiplication by 2. Since Ȟ1(K;Z) is finitely generated there must
be some n0 ≥ 0 and cohomology classes w1, . . . , wk ∈ H1(Tn0

;Z) whose images in Ȟ1(K;Z)
generate Ȟ1(K;Z). Taking into account that every bonding map is injective it follows that
every bonding map is also surjective for n ≥ n0. This is in contradiction with all the bonding
maps being the multiplication by 2. ThereforeK cannot be a spine of any compact d-manifold
with boundary.

Example 10. In a similar way as in Example 9 we consider a homeomorphism f : R3 −→ R3

that carries the standard solid torus T in R3 into its interior as depicted in Figure 10. The
attractor K determined by T is known as the the Whitehead continuum. Since the solid torus
f(T ) is contractible in T it follows that each solid torus fn+1(T ) is contractible in fn(T )
and, as a consequence, K has the Borsuk’s homotopy type (shape) of a point. In particular,
Ȟ∗(K;Z) is finitely generated in every dimension. In spite of this K is not a topological spine
of any compact 3-manifold with boundary N ⊂ R3 since if it were [38, Theorem 4] would
ensure the existence of a flow in R3 having K as an attractor. However it follows from [39,
Example 47] that K cannot be an attractor of a flow in R3.

4. Applications of the Main Theorem

In this section we study Hopf bifurcations of fixed points and Hopf bifurcations of attractors
in dimensions 2 and 3.
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T

f(T )

Figure 1. Construction of the dyadic solenoid as an attractor of a homeomor-
phism of R3.

T

f(T )

Figure 2. Construction of the Whitehead continuum as an attractor of a
homeomorphism of R3.

4.1. Hopf bifurcations of fixed points.

Theorem 11. Suppose that p is an asymptotically stable fixed point for f0 that undergoes a
Hopf bifurcation. Then, there exists λ0 > 0 such that for every λ with 0 < λ < λ0 there exists
an attractor Kλ which has the Borsuk’s homotopy type (shape) of Sn−1 and converges to {p}
upper semicontinuosly as λ tends to 0.

Proof. This results follows from the Main Theorem taking into account that p is a spine of
an n-cell contained in M and that n-cells have the concentric rigidity property. �

Remark. Theorem 11 also holds if we substitute the fixed point by a cellular attractor.

4.2. Hopf bifurcations in 2-manifolds.
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Theorem 12. Suppose that M is a connected 2-manifold and K ( M is an attractor of f0
that undergoes a Hopf bifurcation at λ = 0. Then, there exists λ0 > 0 such that for every λ
with 0 < λ < λ0 there exists an attractor Kλ that has the Borsuk’s homotopy type (shape)
of a disjoint union of a finite number of circles and converges to K upper semicontinuosly
as λ tends to 0. In particular, if M is either R2 or S2 and K is connected the number of
components of Kλ coincides with the number of components of M \K.

Proof. Since K is an attractor of f0 [32, Theorem 1] ensures that Ȟk(K;Z2) is finitely gen-
erated for k = 0, 1. Then [37, Lemma B.3] together with [37, Lemma B.5] ensure that K has
a basis of neighborhoods {Nk}k≥0 satisfying the conditions (2) and (3) of Proposition 7 and,
as a consequence, K is a spine of N = N0. Since compact 2-manifolds with boundary satisfy
the concenctric rigidity property by Proposition 5 the Main Theorem ensures the existence of
λ0 > 0 such that for 0 < λ < λ0 there exists an attractor Kλ with the shape of ∂N converging
to K upper semicontinuously as λ → 0. Since N is a compact 2-manifold with boundary it
follows that ∂N is a disjoint union of a finite number of topological circles. If M is either R2

or S2 by Alexander duality K separates M into a finite number k of components and if K is
connected Borsuk’s characterization of the shape of plane continua ensures that K has the
shape of a wedge of k− 1 circles. Then, since N is a compact 2-manifold with boundary and
N and K have the same shape, N has the homotopy type of a wedge of k− 1 circles. Taking
into account that N is contained in M it follows that N is homeomorphic to a 2-sphere with
the interiors of k disjoint topological disks removed. Therefore ∂N is homeomorphic to the
disjoint union of k circles.

�

4.3. Hopf bifurcations in 3-manifolds. Let M be a 3-manifold and K ⊂ M a compactum.
For each x ∈ K consider the inclusion ix : (M,M \ K) →֒ (M,M \ {x}). We say that K
preserves orientation if there exists a homology class αK ∈ H3(M,M\K;Z) such that ix∗(αK)
is a generator of H3(M,M \ {x};Z) ∼= Z for each x ∈ K. Otherwise we say that K reverses
orientation.

Theorem 13. Suppose that M is a 3-manifold and K ⊂ M is a tame knot that is an attractor
for f0. Suppose that K undergoes a Hopf bifurcation at λ = 0. Then, there exists λ0 > 0 such
that for every λ with 0 < λ < λ0 there exists an attractor Kλ that has the Borsuk’s homotopy
type (shape) of the torus if K preserves orientation or the Borsuk’s homotopy type of the
Klein bottle if K reverses orientation. Moreover, Kλ converges to K upper semicontinuosly
as λ tends to 0.

Proof. Since K is tame we may assume without loss of generality that M and K are the
geometric realizations of some simplicial complexes S and T with T a subcomplex of S.
Possibly after subdiving S we may assume that T is a full subcomplex of S. That is, for any
simplex σ ∈ S not contained in K such that σ ∩ K 6= ∅, the intersection σ ∩ K is either a
vertex, an edge or a 2-dimensional face of σ. Let S ′ be a derived subvidision of S near K (see
[30, pg. 32]). The simplicial neighborhood N(T ,S ′) is defined as the union of the simplices
of S ′ whose intersection with K is non-empty. The Simplicial Neighborhood Theorem [30,
Theorem 3.11, pg. 34] ensures that the geometric realization N = |N(T ,S ′)| is a compact
3-manifold with boundary such that K ⊂ int(N). In addition, from [8, Lemma 3.4.1, pg.
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125 ] N is homeomorphic to the mapping cylinder with respect to a piecewise linear map
r : ∂N −→ K. That is, N is homeomorphic to the quotient space

(∂N × [0, 1]) ⊔K

(x, 1) ∼ r(x)
.

This ensures that K is a topological spine and a strong deformation retract of N . Consider
the long exact sequence of singular homology of the pair (N, ∂N).

(1) · · · −→ H3(N ;Z) −→ H3(N, ∂N ;Z) −→ H2(∂N ;Z) −→ H2(N ;Z) −→ · · ·

Since N and K have the same homotopy type it follows that H3(N ;Z) ∼= H2(N ;Z) ∼= {0}.
Taking this and (1) into account we get that H3(N, ∂N ;Z) ∼= H2(∂N ;Z). As a consequence
∂N is orientable if and only if N is orientable. We see that ∂N is connected. Consider the
terminal part of the long exact sequence of reduced homology with Z2 coefficients of the pair
(N, ∂N).

(2) · · · −→ H1(N, ∂N ;Z2) −→ H̃0(∂N ;Z2) −→ H̃0(N ;Z2) −→ H̃0(N, ∂N ;Z2) −→ 0

Since N is connected H̃0(N ;Z2) ∼= {0}. On the other hand, Lefschetz duality Theorem
ensures that H1(N, ∂N ;Z2) ∼= H2(N ;Z2) ∼= {0}. Taking this and (2) into account it follows

that H̃0(∂N ;Z2) ∼= {0} and, hence, ∂N is connected. A new application of Lefschetz duality
gives that χ(N, ∂N) = −χ(N) and, since χ(N, ∂N) = χ(N)−χ(∂N), it follows that χ(∂N) =
2χ(N) = 0. Therefore ∂N is a connected closed 2-manifold with zero Euler characteristic.
Thus ∂N is homeomorphic to the torus if N is orientable and to the Klein bottle if N is not.
It remains to see that N is orientable if and only if K preserves orientation. Suppose that N
is orientable. Then the open 3-manifold int(N) is orientable and [16, Lemma 3.27, pg. 236]
ensures the existence of a homology class αK ∈ H3(int(N), int(N)\K;Z) such that ix∗(αK) is
a generator of H3(int(N), int(N) \ {x};Z) for each x ∈ K, where ix : (int(N), int(N) \K) →֒
(int(N), int(N)\{x}) denotes the inclusion map. Let k : int(N) →֒ M and jx : (M,M \K) →֒
(M,M \ {x}) be the inclusions. Then for each x ∈ K we get the following commutative
diagram

(3)

H3(int(N), int(N) \K;Z)
k∗−−−→ H3(M,M \K;Z)yix∗

yjx∗

H3(int(N), int(N) \ {x};Z)
k∗−−−→ H3(M,M \ {x};Z)

The excision property of homology ensures that the homomorphisms k∗ in (3) are isomor-
phisms. As a consequence, the homology class βK = k∗(αK) ∈ H3(M,M \ K;Z) satisfies
that jx∗(βK) is a generator of H3(M,M \ {x};Z) for each x ∈ K. Therefore K preserves
orientation.
Suppose that K preserves orientation. Then H3(M,M \K;Z) 6= {0} and excision ensures

that H3(int(N), int(N) \K;Z) 6= {0}. On the other hand, since ∂N is collared in N and K
is a spine of N it easily follows that H3(N, ∂N ;Z) ∼= H3(int(N), int(N) \K;Z) and, hence,
nontrivial. Therefore N is orientable.
The result follows from the Main Theorem. �
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We recall that a connected closed 2-manifold S contained in a 3-manifold M is two sided
in M if S separates every sufficiently small connected neighborhood of itself in M . More
precisely, S is two sided in M if there exists a neighborhood V of S in M such that if W is
a connected neighborhood of S in M with W ⊂ V , then W \ S is not connected. In general
we say that a (possibly not connected) closed 2-manifold S contained in a 3-manifold M is
two sided in M if every component of S is two sided in M .

Theorem 14. Suppose that M is a 3-manifold and K ⊂ M is a tame closed 2-manifold that
is two sided in M . Suppose that K is an attractor for f0 that undergoes a Hopf bifurcation
at λ = 0. Then, there exists λ0 > 0 such that for every λ with 0 < λ < λ0 there exists an
attractor Kλ that has the Borsuk’s homotopy type of two disjoint copies of K and converges
to K upper semicontinuosly as λ tends to 0.

Proof. Since K ⊂ M is a tame closed 2-manifold that is two sided in M [24, Theorem 3,
pg. 192] ensures that K is bicollared. Let C be a bicollar of K. Then there exists a
homeomorphism h : C −→ K × [0, 1] such that h(K) = K × {0}. Hence K is a topological
spine of C and the result follows by applying the Main Theorem. �

Theorem 15. Suppose that M is a 3-manifold and K ⊂ M is a tame compact 3-manifold with
boundary that is an attractor for f0. Suppose that K undergoes a Hopf bifurcation at λ = 0.
Then, there exists λ0 > 0 such that for every λ with 0 < λ < λ0 there exists an attractor Kλ

that has the Borsuk’s homotopy type of ∂K and converges to K upper semicontinuosly as λ
tends to 0.

Proof. Since K ⊂ M is a tame compact 3-manifold with boundary ∂K is bicollared [24,
Theorem 2, pg. 191]. Let C be a bicollar of ∂K and consider the compact 3-manifold with
boundary N = K ∪ C. The construction ensures that K ⊂ int(N) and that K and N are
concentric. Therefore K is a topological spine of N and the result follows by applying the
Main Theorem. �

5. A characterization of attractors

In this section we present some results regarding attractors in locally compact metric spaces
that will be useful in the sequel. These results are well known in the case of flows (see [34,
Lemma 3.1] and [34, Lemma 3.2]). They are probably also well-known in general but since
we did not find any reference about them in the discrete case we state and prove them here.

Let X be a locally compact metric space and f : X −→ X a homeomorphism. An invariant
compactum K ⊂ X is said to be isolated if it is the maximal invariant set contained in a
compact neighboord N of itself. Such a neighborhood N is said to be an isolated neighborhood.
In particular, attractors are isolated invariant. sets. Let N be a compactum that is the closure
of its interior. We define the exit set of N as

N− = {x ∈ N | f(x) /∈ N̊}.

Let K be an isolated invariant set. A compact pair (N,L) is said to be a filtration pair if it
satisfies

(1) N and L are the closure of their interiors.

(2) N \ L is an isolated neighborhood of K.
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(3) L is a neighborhood of N− in N .

(4) f(L) ∩N \ L = ∅.

Filtration pairs were introduced and studied by Franks and Richeson in [12]. A useful
fact about filtration pairs is that every isolated invariant set has a basis of neighborhoods
comprised of filtration pairs [12, Proposition 3.5] and [12, Theorem 3.6].
The following result can be regarded as a discrete version of [34, Lemma 3.1]. The proof

for the discrete case is an adaptation of the proof for flows using filtration pairs to overcome
the lack of continuous trajectories.

Proposition 16. Let X be a locally compact metric space and f : X −→ X a homeomor-
phism. Then, an invariant compactum K ⊂ X is an attractor if and only if there exists
a neighborhood U of K such that for every x ∈ U \ K there exists some nx > 0 such that
f−nx(x) /∈ U .

Proof. Suppose that K is an attractor and let U be a compact neighborhood such that
K = ω(U). Assume that x ∈ U such that f−n(x) ∈ U for every n ≥ 0. Then, x ∈ fn(U) for
every n ≥ 0 and, as a consequence, x ∈ ω(U) = K. This proves the necessity.
Conversely, let U be a neighborhood of K satisfying that for every x ∈ U \ K there is

some nx > 0 such that f−nx(x) /∈ U . The existence of such neighborhood ensures that K
is an isolated invariant set. Let (N,L) be a filtration pair for K contained in U . Then,
the condition on U ensures that for each x ∈ N \ K there exists some mx > 0 such that
f−mx(x) /∈ N . Since L is compact there exists n0 > 0 such that for every point x ∈ L,
∪0≤n≤n0

f−n(x) * N . Now choose a neighborhood V ⊂ N of K disjoint from L and with the
additional property that fn(V ) ⊂ N for every n with 0 ≤ n ≤ n0. Then fn(V ) ⊂ N for
every n ≥ 0. Indeed, suppose on the contrary that there exists a point x ∈ V and n′ > 0
such that fn′

(x) /∈ N . Taking into account that L is a neighborhood of N− choose nL > 0
such that fn(x) ∈ N for every n with 0 ≤ n ≤ nL, f

nL(x) ∈ L and fnL+1(x) /∈ N . Notice
that, by assumption, nL ≥ n0. Since fnL(x) ∈ L there exists k with 0 ≤ k ≤ n0 such that
fnL−k(x) /∈ N . This is in contradiction with the choice of nL. Hence, ω(V ) is a compact
invariant set contained in N with K ⊂ ω(V ) and, since N is an isolating neigborhood of K
the equality follows. �

Proposition 17. Let X be a locally compact metric space and let f : X → X be a home-
omorphism. Suppose that K is an attractor of f and that K0 ⊂ K is an attractor of f |K.
Then K0 is an attractor of f .

Proof. Since K is an attractor of f and K0 is an attractor of f |K, Proposition 16 ensures the
existence of neighborhoods V and W of K and K0 respectively such that for every x ∈ V \K
there exists nx > 0 such that f−nx(x) /∈ V and for every x ∈ (W ∩K)\K0 there exists mx > 0
such that f−mx(x) /∈ W . Then, U = V ∩W is a neighborhood of K0 and, if x ∈ U \K0 we
have two possibilites, either x ∈ U \K and f−nx(x) /∈ U or x ∈ U ∩K \K0 ⊂ (W ∩K) \K0

and f−mx(x) /∈ U . Therefore, Proposition 16 ensures that K0 is an attractor of f . �

6. Proof of the Main Theorem

Let W be a trapping region of K for f0. By assumption K is a topological spine of some
compact n-manifold with boundary N contained in M . By Proposition 7 we may assume
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that N ⊂ W̊ and that ∂N is bicollared. We recall that the Theorem of invariance of domain
guarantees that int(N) coincides with the topological interior of N . Since W is a trapping
region of K there exists k > 0 such that fk

0 (W ) ⊂ int(N). Then, the continuous dependence
on the parameter ensures the existence of λ0 > 0 such that W is a trapping region for fλ for
0 < λ < λ0 satisfying that

(4) fk
λ (W ) ⊂ int(N).

Let Sλ be the attractor of fλ determined by W . Since K is an invariant set for fλ contained
in W it follows that K ⊂ Sλ. Moreover, the attracting character of Sλ ensures that the basin
of repulsion Rλ of K is also contained in Sλ. Then

(5) Kλ = Sλ \ Rλ

is an attractor for fλ|Sλ
and, since Sλ is an attractor, Proposition 17 ensures that Kλ is an

attractor for fλ.
We prove that Kλ has the Borsuk’s homotopy type of ∂N . Since Rλ is an open set such

that K ⊂ Rλ ⊂ N by Proposition 7 there exists a compact n-manifold with boundary
N1 ⊂ Rλ that is concentric with N and such that K ⊂ int(N1). Let A0 = N \ int(N1) be the
compact n-manifold with boundary bounded by ∂N and ∂N1. The manifold A0 is a compact
neighborhood of Kλ. Moreover, since the basin of attraction of Kλ is Aλ \ K where Aλ is
the basin of attraction of Sλ, it follows that A0 is contained in the basin of attraction of Kλ.
As a consequence there exists j > 0 such that f j

λ(A0) ⊂ int(A0). If for every m > 0 we

choose Am = fmj
λ (A0) we get a sequence of compact n-manifolds with boundary such that

Am+1 ⊂ int(Am) and

(6) Kλ =
⋂

m≥0

Am.

We see that A0 and A1 are concentric. Since f j
λ is a homeomorphism and A1 = f j

λ(A0) it
follows that

(7) int(A1) = f j
λ(int(A0)) = f j

λ(int(N) \N1) = f j
λ(int(N)) \ f j

λ(N1).

Then

(8) A0 \ int(A1) = ((N \ int(N1) \ f
j
λ(int(N))) ∪ ((N \ int(N1)) ∩ f j

λ(N1)).

Since N1 ⊂ f j
λ(N) ⊂ N and A1 ⊂ int(A0) it easily follows that N1 ⊂ int(f j

λ(N1)) ⊂ f j
λ(N1) ⊂

N . Taking this into account together with the fact that N1 ⊂ f j
λ(N) in (8) yields

(9) A0 \ int(A1) = (N \ f j
λ(int(N))) ∪ (f j

λ(N1) \ int(N1)).

The compact n-manifold with boundary f j
λ(N) ⊂ int(N) has bicollared boundary homeo-

morphic to ∂N and satisfies that N1 ⊂ int(f j
λ(N)). Hence, since N1 is concentric with N and

N has the concentric rigidity property it follows that f j
λ(N) is concentric with N . Reasoning

in the same fashion with f j
λ(N1) we get that f

j
λ(N1) and N1 are concentric. The concentricity

of A0 and A1 follows from this discussion after noticing that the fact that N1 ⊂ int(N) ensures
that the union in (9) is disjoint.



HIGHER DIMENSIONAL TOPOLOGY AND GENERALIZED HOPF BIFURCATIONS 15

Since A0 and A1 are concentric and for m > 0 the map

fmj
λ |A0

: (A0, A1) −→ (Am, Am+1)

is a homeomorphism we obtain that Am is concentric with Am+1 for every m ≥ 0. As a
consequence Kλ is a topological spine of A0 and, hence, Corollary 8 guarantees that the
inclusion i : Kλ →֒ A0 is a shape equivalence. Hence, Kλ has the Borsuk’s homotopy type of
A0. However, the concentricity of N and N1 ensures that A0 is homeomorphic to ∂N × [0, 1]
and, thus, has the homotopy type of ∂N . Therefore Kλ has the shape of ∂N .
To finish the proof we observe that (4) ensures that Kλ ⊂ int(N). Since N can be chosen

arbitrarily close toK, it follows thatKλ converges toK upper-semicontinuously as λ → 0. �

7. A generalization: attracting spheres of lower dimensions.

We have seen in Theorem 11 that when an asymptotically stable point p undergoes a
Hopf bifurcation in an n-dimensional manifold then a family of attractors with the Borsuk
homotopy type of Sn−1evolves from p . There are, however, other bifurcations in which, under
partially weaker conditions, attractors are still produced with the Borsuk homotopy type of
Sk for some k < n − 1. Consider for instance the discrete system in R3 corresponding to
the time 1 function of the Lorenz flow depending on the classical parameter r (the Rayleigh
number) [20]. It is known that for r = 1 a pitchfork bifurcation takes place at the origin
which creates attractors which are 0-dimensional spheres. This is only a particular case of
more general pitchfork bifurcations in Rn which produce attracting spheres Sk for k < n− 1
evolving from equilibria. In the following proposition we present a result which encompasses
many of these situations.

Theorem 18. Let M be a d-dimensional manifold and fλ : M → M be a family of homeo-
morphisms continuously depending on λ ∈ I. Let N be an n-dimensional submanifold which
is invariant for all λ. Suppose that the point p ∈ N is an attractor for f0 and a repeller for
the restriction fλ|N for λ > 0. Suppose, additionaly, that there exists a neighborhood V of p
in M (the same for all λ) such that the maximal invariant set of fλ inside V is contained in
N . Then there exists λ0 > 0 such that for every λ with 0 < λ < λ0 there exists an attractor
Kλ of fλ which has the Borsuk homotopy type of Sn−1. Moreover the family {Kλ} converges
to {p} upper semicontinuously as λ tends to 0.

Remark. Notice that the condition in the statement concerns only the restriction fλ|N but
the conclusion is that Kλ is an attractor of fλ (not only of fλ|N).

Proof. The proof consists of an adaptation of the proofs of previous results to the conditions
of the present theorem.
Let W ⊂ V be a trapping region of p for f0. Consider a topological n-cell C ⊂ N ∩W such

that p ∈ int(C) and ∂C is bicollared in N . Let Ĉ be a neighborhood of p in M such that

Ĉ ∩N ⊂ int(C). Since W is a trapping region of p there exists k0 ≥ 0 such that fk
0 (W ) ⊂ Ĉ

for k ≥ k0. Moreover, the continuous dependence on the parameter ensures the existence of
λ0 > 0 such that W is a trapping region of p and fk

λ (W ) ⊂ Ĉ for λ ≤ λ0 and k ≥ k0. Consider
the attractor Sλ of fλ determined by W . Since for every λ ∈ I the maximal invariant set
inside V is contained in N , the previous discussion ensures that p ∈ Sλ ⊂ int(C). Moreover,
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since Sλ is an attractor, the basin of repulsion Rλ of p for fλ|N is contained in Sλ. Consider
Kλ = Sλ \ Rλ. Then Kλ is an attractor of fλ|Sλ

and, since Sλ is an attractor of fλ, then
Proposition 17 ensures that Kλ is also an attractor of fλ (not just of fλ|N).

We must now prove that Sλ has the Borsuk homotopy type of ∂C ≈ Sn−1. In the sequel
we consider the restriction fλ|N . Take an n-cell C1 ⊂ Rλ concentric with C and such that
p ∈ int(C1). Let A0 = C \ int(C1). Obviously, A0 is a compact neighborhood of Kλ in N
contained in the basin of attraction of Kλ. As a consequence, there exists j > 0 such that
f j
λ(A0) ⊂ int(A0). Now consider Am = fmj

λ (A0) and in this way we obtain a sequence of
compact n-manifolds with boundary such that Am+1 ⊂ int(Am) and Kλ = ∩m≥0Am. The
same argument as in the proof of the Main Theorem proves that Kλ is a topological spine of
A0 and, therefore, the inclusion i : Kλ →֒ A0 is a shape equivalence. Moreover, since C1 has
been chosen to be concentric with C, A0 is homeomorphic to Sn−1 × [0.1], and, thus, A0 is
homotopy equivalent to Sn−1. We conclude that Kλ is shape equivalent to Sn−1. The rest of
the proof is straightforward. �
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The authors thank José M. Montesinos-Amilibia and Jaime J. Sánchez-Gabites for inspiring
conversations.

References

[1] E. Akin, M. Hurley, and J.A. Kennedy. Dynamics of topologically generic homeomorphisms.Mem. Amer.

Math. Soc., 164(783):viii+130 pp., 2003.
[2] H. Barge, A. Giraldo, and J.M.R. Sanjurjo. Bifurcations, robustness and shape of attractors of discrete

dynamical systems. J. Fixed Point Theory Appl., 22(2):1–13, 2020.
[3] H. Barge and J.M.R. Sanjurjo. Flows in R2

+ without interior fixed points, global attractors and bifurca-
tions. Rev. R. Acad. Cien. Serie A. Mat., 112(3):671–683, 2018.

[4] H. Barge and J.M.R. Sanjurjo. Dissipative flows, global attractors and shape theory. Topology Appl.,
258:392–401, 2019.

[5] H. Barge and J.M.R. Sanjurjo. A Conley index study of the evolution of the Lorenz strange set. Phys.
D, 401:132162, 2020.

[6] K. Borsuk. Concerning homotopy properties of compacta. Fund. Math., 62:223–254, 1968.
[7] K. Borsuk. Theory of Shape. Monografie Matematyczne 59. Polish Scientific Publishers, Warsaw, 1975.
[8] R.J. Daverman and G.A. Venema. Embeddings in manifolds, volume 106 of Graduate Studies in Mathe-

matics. American Mathematical Society, Providence, RI, 2009.
[9] J. Dydak and J. Segal. Shape Theory. An Introduction. Lecture Notes in Mathematics, 688. Springer,

1978.
[10] C.H. Edwards. Concentric solid tori in the 3-sphere. Trans. Amer. Math. Soc., 102:1–17, 1962.
[11] C.H. Edwards. Concentricity in 3-manifolds. Trans. Amer. Math. Soc., 113:406–423, 1964.
[12] J. Franks and F. Richeson. Shift equivalence and the Conley index. Trans. Amer. Math. Soc., 352(7):3305–

3322, 2000.
[13] A. Giraldo, V. Laguna, and J.M.R. Sanjurjo. Uniform persistence and Hopf bifurcations in Rn

+. J.

Differential Equations, 256(8):2949–2964, 2014.
[14] B. Günther and J. Segal. Every attractor of a flow on a manifold has the shape of a finite polyhedron.

Proc. Amer. Math. Soc., 119:321–329, 1993.
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