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We study the light quark mass dependence of the f0ð600Þ, �ð800Þ, �ð770Þ, and K�ð892Þ resonance
parameters generated from elastic meson-meson scattering using unitarized one-loop chiral perturbation

theory. First, we show that it is possible to fit simultaneously all experimental scattering data up to 0.8–

1 GeV together with lattice results on decay constants and scattering lengths up to a pion mass of

400 MeV, using chiral parameters compatible with existing determinations. Then, the strange and

nonstrange quark masses are varied from the chiral limit up to values of interest for lattice studies. In

these amplitudes, the mass and width of the �ð770Þ and K�ð892Þ present a similar and smooth quark mass

dependence. In contrast, both scalars present a similar nonanalyticity at high quark masses. Nevertheless,

the f0ð600Þ dependence on the nonstrange quark mass is stronger than for the �ð800Þ and the vectors. We

also confirm the lattice assumption of quark mass independence of the vector two-meson coupling that, in

contrast, is violated for scalars. As a consequence, vector widths are very well approximated by the

Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation, and their masses are shown to scale like their

corresponding meson decay constants.
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I. INTRODUCTION

Although QCD is well established as the theory of
strong interactions, the fact that its coupling becomes large
at energies below 1–2 GeV keeps the hadronic realm
beyond the reach of perturbative calculations. In that re-
gime, lattice methods are a useful tool to calculate QCD
observables, although the discretization involved in this
technique introduces complications of its own, in particu-
lar, related to chiral symmetry breaking and the implemen-
tation of realistic small masses for the light quarks. Despite
the remarkable success of lattice studies, results on light
meson resonances are few and usually obtained at very
large quark masses compared with their physical values
[1,2]. This is particularly so for the light scalars, very
relevant for nuclear attraction, but whose calculations are
hindered by the so-called ‘‘disconnected diagrams.’’ Very
recently [3], an alternative technique, based on chiral
perturbation theory (ChPT) and dispersion relations, has
been applied to calculate the dependence of the f0ð600Þ (or
‘‘sigma’’) and �ð770Þ resonances on the pion mass—in
practice, the average mass of the u and d quarks. Now
the starting parameters are physical and resonances appear
in amplitudes that describe real data on �� scattering. The
predicted dependence for the �ð770Þ compares remarkably
well with previous and later lattice predictions. For the
scalar sigma it shows a nonanalyticity that should be taken
into account when extrapolating future lattice data to
physical values. In this work we extend this study to
include the strange quark mass within an SU(3) ChPT
formalism. Our aim is threefold: first, to confirm previous
results within a more general formalism. Second, to ana-
lyze the dependence on the average mass of the u and d

quarks of the K�ð892Þ and �ð800Þ strange resonances. The
latter, despite being a scalar, and very similar to the
f0ð600Þ, is much more feasible for lattice calculations
within the next few years [4] due to its nonzero isospin
and strangeness. Third, we also study the dependence of all
the f0ð600Þ, �ð800Þ, �ð770Þ, and K�ð892Þ parameters in
terms of the strange quark mass. Finally, let us remark that
the dependence of hadronic observables, meson masses in
particular, is not only of relevance for lattice calculations,
but also for anthropic considerations [5] or the study of the
cosmological variability of fundamental constants [6].
Thus, in the next two sections we introduce very briefly

the basic notation of ChPT, explain the relation between
pseudoscalar meson and quark masses, and review the
unitarization procedure. In Sec. II, we show the fits to the
existing experimental data on elastic scattering as well as
to lattice results on pion and kaon masses, their decay
constants, and scattering lengths on the highest isospin
channels. Section III is devoted to the dependence of light
resonance properties on the nonstrange quark masses. In
Sec. IV we then study the dependence with the strange
quark mass and in Sec. V we present our summary and
conclusions.

A. Chiral perturbation theory

As is well known, pions, kaons, and etas can be identi-
fied with the Nambu-Goldstone bosons (NGB) of the
spontaneous chiral symmetry breaking of QCD. If quarks
were massless, so should be the NGB and they would be
separated by a mass gap of the order of 1 GeV from other
hadrons, thus becoming the only relevant QCD degrees of
freedom at low energies. Of course, quarks are not mass-
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less, but the u, d, and s flavors have a sufficiently light
mass to be considered as a perturbation. It is thus possible
to write a low energy effective Lagrangian out of pion,
kaon, and eta fields, known as chiral perturbation theory
[7]. This Lagrangian is built as the most general derivative
and mass expansion that respects the symmetries of QCD,
particularly its chiral symmetry breaking pattern. Except
for the leading order (LO), fixed by symmetry and the scale
of spontaneous symmetry breaking, all terms in the
Lagrangian are multiplied by a low energy constant
(LEC) that contains the information on the underlying
QCD dynamics and also renormalizes the loop diagrams
with vertices from lower orders. In this way, pion, kaon,
and eta observables are obtained as a model independent
expansion in powers of momenta and masses over the
chiral scale 4�f0 ’ 1:2 GeV, where f0 is the pion decay
constant in the chiral limit (as it is customary, for quantities
at leading order in the quark mass expansion we will use
the 0 subscript).

In particular, partial wave amplitudes for elastic meson-
meson scattering are obtained within ChPTas an expansion

tðsÞ ¼ t2ðsÞ þ t4ðsÞ þ � � � ; t2k ¼ Oðp2kÞ; (1)

where p denotes either momenta or meson masses.
Actually, these partial waves carry definite isospin I and
total angular momentum J, but we have momentarily sup-
pressed these labels for clarity. As we have just com-
mented, the leading order t2ðsÞ corresponds to the current
algebra results and only depends on the scale of sponta-
neous chiral symmetry breaking f0. The next-to-leading
order t4ðsÞ contains one-loop diagrams made of vertices
from the lowest order Lagrangian, plus tree level diagrams
of Oðp4Þ. Within the SU(3) formalism, these tree level
diagrams are multiplied by LECs, denoted as Li, which
are independent of masses or momenta, and have been
determined from different experiments. In Table I we
provide several sets for the eight Li that appear in

meson-meson scattering to one loop. Those with an r
superscript carry a dependence on the regularization scale
� [7], customarily chosen at� ¼ M�. Of course, that scale

dependence cancels in the calculation of physical observ-
ables. The values in the second column come from the
‘‘main fit’’ of aKl4 analysis to two loops [8], whereas those
in the third column come from the same reference, but to
one loop. Naively one would expect the LECs obtained in
our unitarized one-loop fits to lie somewhere in between
these two sets of values, since unitarization reproduces one
of the most relevant numerical contributions from the two-
loop calculation, namely, the s-channel leading logs. As
one of our main interests is �K scattering and the K�ð892Þ
and �ð800Þ resonances, we also provide the values ob-
tained from a very rigorous treatment of K� scattering
lengths in terms of the Roy-Steiner dispersion relations [9].
The rest of the columns correspond to unitarized ChPT fits
that we will explain in Sec. II.
In this work, we are interested in the quark mass depen-

dence of the amplitudes, which appears in ChPT through
Lagrangian terms that contain the quark mass matrixM ¼
diagðm̂; m̂; msÞ, that is treated as a perturbation. Note that

we work in the isospin limit m̂�mu ¼ md ¼ ðmphys
u þ

mphys
d Þ=2. Chiral symmetry is explicitly broken by these

mass terms and the NGB acquire masses, which, at leading
order, read [7]

M2
0� ¼ 2m̂B0; M2

0K ¼ ðm̂þmsÞB0;

M2
0� ¼ 2

3
ðm̂þ 2msÞB0:

(2)

Let us recall that the constant B0 is defined from the values
in the chiral limit of the chiral condensate and the pion
decay constant as follows: B0 ¼ �h0j �qqj0i0=f20, and thus

it carries no quark mass dependence. To one loop, there are
some corrections, and the physical meson masses now read

TABLE I. Oðp4Þ chiral parameters (� 103) evaluated at � ¼ M�. The second and third columns come from the two- and one-loop
analysis listed in [8], where L4 and L6 were set equal to zero. The fourth column comes from a careful �K dispersive analysis [9] using
the Roy-Steiner formalism. The IAM III column is one of the sets obtained from an older fit with the coupled channel IAM [10] (only
statistical uncertainties are shown). The columns labeled Fit I and Fit II correspond to the simultaneous fit to experiment and lattice
data performed in this work, which are described in Sec. II together with their uncertainties.

LECs Ref. [8] Oðp6Þ Ref. [8] Oðp4Þ Ref. [9] IAM III Fit I Fit II

Lr
1 0:53� 0:25 0.46 1:05� 0:12 0:6� 0:09 1.10 0.74

Lr
2 0:71� 0:27 1.49 1:32� 0:03 1:22� 0:08 1.11 1.04

L3 �2:72� 1:12 �3:18 �4:53� 0:14 �3:02� 0:06 �4:03 �3:12
Lr
4 0 (fixed) 0 (fixed) 0:53� 0:39 0 (fixed) �0:06 0.00

Lr
5 0:91� 0:15 1.46 3:19� 2:40 1:9� 0:03 1.34 1.26

Lr
6 0 (fixed) 0 (fixed) � � � �0:07� 0:20 0.15 �0:01

L7 �0:32� 0:15 �0:49 � � � �0:25� 0:18 �0:43 �0:49
Lr
8 0:62� 0:20 1.00 � � � 0:84� 0:23 0.94 1.06

Lr
8 þ Lr

6 0:62� 0:20 1.00 3:66� 1:52 0:7� 0:46 1.24 1.04

2Lr
1 � Lr

2 0:35� 0:57 �0:57 0:78� 0:24 �0:02� 0:20 1.09 0.44
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M2
� ¼ M2

0�

�
1þ�� ���

3
þ 16M2

0K

f20
ð2Lr

6 � Lr
4Þ

þ 8M2
0�

f20
ð2Lr

6 þ 2Lr
8 � Lr

4 � Lr
5Þ
�
; (3)

M2
K ¼ M2

0K

�
1þ 2��

3
þ 8M2

0�

f20
ð2Lr

6 � Lr
4Þ

þ 8M2
0K

f20
ð4Lr

6 þ 2Lr
8 � 2Lr

4 � Lr
5Þ
�
; (4)

M2
� ¼ M2

0�

�
1þ 2�K � 4

3
�� þ 8M2

0�

f20
ð2Lr

8 � Lr
5Þ

þ 8

f20
ð2M2

0K þM2
0�Þð2Lr

6 � Lr
4Þ
�

þM2
0�

�
��� þ 2

3
�K þ 1

3
��

�

þ 128

9f20
ðM2

0K �M2
0�Þ2ð3L7 þ Lr

8Þ;

�P ¼ M2
0P

32�2f20
log

M2
0P

�2
; P ¼ �;K; �: (5)

Note, however, that all the quark mass dependence always
appears through the leading order masses M2

0P defined in

Eq. (2). As a matter of fact, this also happens in the ChPT
amplitudes, which means that studying the quark mass
dependence, keeping B0 fixed, is nothing but studying
the meson mass dependence. In practice, and in order to
get rid of the B0 constant, we will recast all our results in
terms of masses normalized to their physical values:

m̂

m̂phys
¼ M2

0�

M2
0� phys

; (6)

ms

ms phys
¼ M2

0K �M2
0�=2

M2
0K phys �M2

0� phys=2
: (7)

Note that, from now on, a quantity with a ‘‘phys’’ subscript
refers to the value of that quantity in the physical case.
Thus, in this work wewill change quark masses, that, using
Eqs. (3)–(5), imply a change in meson masses, which are
the ones appearing explicitly in the ChPT scattering am-
plitudes. There are many advantages in using meson
masses as the variation parameter, since, contrary to quark
masses that have a complicated and scale dependent defi-
nition on the QCD renormalization scheme, meson masses
are observables, with no scale dependence and a straight-
forward physical interpretation. Actually, many lattice re-
sults are also recast in terms of pion or kaon mass
variations. Unfortunately the simple relations in Eqs. (6)
and (7) are exact only when written in terms of the leading
order masses M0P, not the observable ones. Nevertheless,
the one-loop corrections become numerically small when

taking ratios so that, to a good degree of approximation, the
reader still can think in terms of physical meson masses
instead of their leading order values. Actually, in Fig. 1 we
show that within the range of quark mass variations that we
will consider in this work, the naive, but intuitive, relations

m̂

m̂phys
’ M2

�

M2
� phys

; keeping ms ¼ ms phys; (8)

ms

ms phys
’ M2

K

M2
K phys

; keeping m̂ ¼ m̂phys (9)

are a very good approximation—within less than 10%
error—to the correct ratios in Eqs. (6) and (7) that we
actually use. To make our presentation of the results
more intuitive we will give, when possible, our results
both in terms of quark mass variation and the correspond-
ing meson mass variation. At this point we have to address
the question of how much we can vary the quark masses
before our approach breaks down. First we want the pion
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FIG. 1. Top panel: The ratio ðM2
�=M

2
� physÞ=ðm̂=m̂physÞ; bottom

panel: ðM2
K=M

2
K physÞ=ðms=ms physÞ. Within the range of variation

of this work, a relative variation of a quark mass can be also
understood as the same relative variation in the corresponding
meson mass squared to within �10% accuracy. The continuous
and dashed lines correspond to fit I and II sets of LECs given in
Table I.
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always lighter than the kaon and eta since otherwise the
elastic approximation would make no sense for �� or K�
scattering. Second, ChPT seems to work for masses as high
as 500 MeV, since we already know that it provides a fairly
good description of low energyK� scattering, even though
MK � 500 MeV. Thus, when changing the nonstrange
quark mass, keeping ms fixed, we will show results up to
M� < 440 MeV but not beyond, since then MK ’
600 MeV. Equivalently, this means m̂=m̂phys � 9.

Concerning the strange quark variation with m̂ fixed, we
will consider 0:7<ms=ms phys < 1:3, since M� barely

changes and 400 MeV<MK < 585 MeV. This ensures
that the mK þm� is not below the mK� mass so that we

would need a coupled channel formalism. Of course, the
closer to the estimated applicability limits the less reliable
our formalism will be. The SU(3) �� and K� one-loop
amplitudes were first calculated in [11], although for tech-
nical reasons explained in [12] needed for the implemen-
tation of exact unitarity later on, we use the expressions in
the appendix of [12], but written in terms of all physical
constants M�, MK, M�, f�, fK, f� as explained in [10].

For completeness we show here the decay constant depen-
dence on meson masses.

f� ¼ f0

�
1� 2�� ��K þ 4M2

0�

f20
ðLr

4 þ Lr
5Þ þ

8M2
0K

f20
Lr
4

�
;

fK ¼ f0

�
1� 3��

4
� 3�K

2
� 3��

4
þ 4M2

0�

f20
Lr
4

þ 4M2
0K

f20
ð2Lr

4 þ Lr
5Þ
�
;

f� ¼ f0

�
1� 3�K þ 4Lr

4

f20
ðM2

0� þ 2M2
0KÞ þ

4M2
0�

f20
Lr
5

�
:

(10)

Of course, for �� and K� elastic scattering the most
relevant quark mass dependence comes via M�, MK and
f�, fK (since etas only appear in loops). Consequently, the
LECs that play the most important role are L4, L5, L6, and
L8, since they appear in Lagrangian terms that contain
explicitly powers of the quark mass matrix. In contrast,
the Lagrangian terms proportional to the L1, L2, and L3

constants only contain derivatives and thus are somewhat
less relevant for the quark mass dependence, but more
relevant in terms of s dependence. Finally, let us remark
that despite the fact that their effect is encoded in the LECs,
the ChPT amplitudes, being an expansion, cannot describe
resonances and their associated poles in the second
Riemann sheet. Actually, resonances are usually identified
with a saturation of the unitarity constraints, which for
elastic partial waves of definite isospin I and angular
momentum J read

Im tIJðsÞ ¼ �ðsÞjtIJðsÞj2 ) jtIJðsÞj � 1=�ðsÞ; (11)

where �ðsÞ ¼ 2k=
ffiffiffi
s

p
and k is the center of mass momen-

tum. The above equations imply that the partial wave can
be recast in terms of a single phase or ‘‘phase shift’’:

tIJðsÞ ¼ expi�IJðsÞ sin�IJðsÞ=�ðsÞ: (12)

In this work we are only interested in the ðI; JÞ ¼ ð0; 0Þ, (1,
1), and (2, 0) channels for �� scattering and ðI; JÞ ¼
ð1=2; 0Þ, ð1=2; 1Þ, and ð3=2; 0Þ for �K scattering. For sim-
plicity we will drop the IJ subindex when discussing
general properties of elastic partial waves. Note, however,
that the ChPT expansion Eq. (1), being basically a poly-
nomial in energy, violates the bound in Eq. (11) as the
energy increases and cannot generate poles. Still, ChPT
satisfies elastic unitarity perturbatively:

Im t2ðsÞ ¼ 0; Imt4ðsÞ ¼ �jt2ðsÞj2; . . . : (13)

But, of course, elastic unitarity can be badly violated if the
ChPT series is extrapolated close to a resonance. For these
reasons, the resonance region lies beyond the reach of
standard ChPT. However, we will see next that ChPT can
be used in an alternative way.

B. Dispersion relations, unitarity, and ChPT

Instead of simply extrapolating its series to higher en-
ergies, ChPT can be used to calculate the subtraction
constants of a dispersion relation for the two-body ampli-
tude. These constants correspond to the values of the
amplitude or its derivatives at a low energy point where
the use of ChPT is well justified. The remaining informa-
tion to build the amplitude comes from the strong con-
straints of analyticity and unitarity.
First of all, it is straightforward to rewrite the strong

nonlinear elastic unitarity constraint given in Eq. (11), as
follows:

Im 1=tðsÞ ¼ ��ðsÞ: (14)

This means that, from unitarity, we know exactly the
imaginary part of 1=t in the elastic region. We are only
left to determine the real part of 1=t.
Concerning the analyticity constraints, for simplicity let

us consider first the case of two identical particles, as in��
scattering. Then, the analytic structure in the complex s
plane is rather simple: it has a ‘‘right’’ or ‘‘physical’’ cut on
the real axis from threshold to þ1, and a ‘‘left’’ cut from
�1 to s ¼ 0. By means of the Cauchy theorem, a disper-
sion relation provides the amplitude anywhere inside the
cut complex plane in terms of a weighted integral of its
imaginary part over the cuts.
In our case, instead of t we are interested in a dispersion

relation for 1=t since we know exactly its imaginary part in
the elastic region thanks to Eq. (14). For convenience, and
since t2 is real, instead of 1=t we define G ¼ t22=t, that also
has a right cut (RC) and a left cut (LC). Since scalar waves
are known to have dynamical Adler zeros in the low energy
region below threshold, we will also allow for a pole
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contribution PC in GðsÞ. All in all, we can write a disper-
sion relation for GðsÞ as follows:

GðsÞ ¼ Gð0Þ þG0ð0Þsþ 1

2
G00ð0Þs2 þ s3

�

�
Z
RC

ds0
ImGðs0Þ
s03ðs0 � sÞ þ LCðGÞ þ PC: (15)

In the elastic region, unitarity in Eq. (11), together with
Eq. (13), allows us to evaluate exactly ImG ¼ ��t22 ¼�Imt4 on the RC. Note the three 1=s0 factors—called
subtractions—that we have introduced to suppress the
high energy part and, in particular, the inelastic contribu-
tions, so that the integrals are dominated by the low energy
region. But once the integrals are dominated by the low
energy, it is well justified to use ChPT inside the integrals
and thus, for instance, the LC integral to one loop ChPT is
given by LCðGÞ ’ LCð�t4Þ þ � � � .

The price to pay for the three subtractions is that analy-
ticity only determines the function up to a second order
polynomial Gð0Þ þG0ð0Þsþ 1

2G
00ð0Þs2. However, note

that its coefficients correspond to the values of the ampli-
tude or its derivatives at s ¼ 0, where ChPT can be safely
applied. In particular, to one loop, Gð0Þ ’ t2ð0Þ � t4ð0Þ,
G0ð0Þ ’ t02ð0Þ � t04ð0Þ, and G00ð0Þ ¼ �t004 ð0Þ, since t002 ð0Þ
vanishes. Let us neglect for the moment the pole contribu-
tion, which is of higher order and only numerically relevant
below threshold. Then one finds that all contributions can
be recast in terms of the leading t2ðsÞ and next-to-leading
t4ðsÞ ChPT amplitudes. Finally, we arrive at the so-called
inverse amplitude method (IAM) [13,14]:

tðsÞ ’ t22ðsÞ
t2ðsÞ � t4ðsÞ : (16)

Remarkably, this simple equation ensures elastic unitarity,
matches ChPT at low energies, and, using LECs compat-
ible with existing determinations, describes fairly well data
up to somewhat less than 1 GeV, generating the �, K�, �,
and � resonances as poles on the second Riemann sheet. It
has been shown [15] that the scalars can actually be gen-
erated mimicking the LEC, tadpole, and crossed channel
diagrams by a cutoff of natural size, and thus it is said that
scalars are ‘‘dynamically generated’’ from, essentially,
meson-meson dynamics (meson loops). In contrast, to
generate the vectors, a precise knowledge of the LECs is
needed, namely, of the underlying, non-meson-meson
QCD dynamics.

Here we will update this description of experimental
data but furthermore we will simultaneously describe the
existing lattice results for decay constants and some scat-
tering lengths.

The IAM equation above is just the one-loop result, but
it can be easily and systematically extended to higher
orders of ChPT or generalized within a coupled channel
formalism [10,12,16], generating also the a0ð980Þ, f0ð980Þ
and the octet �. However note that there is no dispersive

justification for the coupled channel approach formula1

and that is the main reason, apart from simplicity, why
we have restricted our analysis to the elastic case.
For completeness, and even though it will be negligible

except for very high masses near the applicability limits of
our approach, let us now include the pole contribution PC
ignored so far. Its contribution can be calculated explicitly
from its residue [17] and, to one loop, we find a modified
IAM (mIAM) formula:

tmIAM ¼ t22
t2 � t4 þ AmIAM

;

AmIAM ¼ t4ðs2Þ � ðs2 � sAÞðs� s2Þ½t02ðs2Þ � t04ðs2Þ�
s� sA

;

(17)

where sA is the position of the Adler zero in the s plane, and
s2 its LO approximation. The standard IAM is recovered
for AmIAM ¼ 0, which holds exactly for all partial waves
except the scalar ones. Above, and in the usual IAM
derivation [14] AmIAM was neglected, since it formally
yields a next-to-next-to-leading-order (NNLO) contribu-
tion and is numerically very small, except near the Adler
zero, where it diverges. However, if AmIAM is neglected, the
IAM Adler zero occurs at s2, correct only to LO, it is a
double zero instead of a simple one, and a spurious pole of
the amplitude appears close to the Adler zero. All of these
caveats are removed with the mIAM, Eq. (17). The differ-
ences in the physical and resonance region between the
IAM and the mIAM are less than 1%. However, as we will
see, for largeM� the � and � poles ‘‘split’’ into two virtual
poles below threshold, one of them moving toward zero
and approaching the Adler zero region, where the IAM
fails. Thus, we will use for our calculations the mIAM,
although it is only relevant for the mentioned second � and
� poles, and only when they are very close to their corre-
sponding Adler zeros.
Finally, we want to comment on the unequal mass case,

since we also want to describe K� elastic scattering. The
main difference now is that the left cut extends from�1 to
s ¼ ðM1 �M2Þ2, and also that there is a circular cut,
centered at s ¼ 0 with radius jM2

1 �M2
2j. Again their

main contribution comes from a region where ChPT can
be applied. This time, however, t2ðsÞ has two zeros instead
of one,

s2� ¼ 1
5ðM2

K þM2
� � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M4

K � 7M2
KM

2
� þ 4M4

�

q
Þ;

and the modification to the IAM reads

1If we followed a similar approach the left cuts would mix
when calculating the inverse matrix and produce spurious ana-
lytic structures.

STRANGE AND NONSTRANGE QUARK MASS DEPENDENCE . . . PHYSICAL REVIEW D 81, 054035 (2010)

054035-5



AmIAMðsÞ ¼ t2ðsÞ2
t02ðs2þÞ2

�
t4ðs2þÞ

ðs� s2þÞ2
� ðs2þ � sAÞ

ðs� s2þÞðs� sAÞ

�
�
t02ðs2þÞ � t04ðs2þÞ þ

t4ðs2þÞt002 ðs2þÞ
t02ðs2þÞ

��
:

(18)

Once again we note that this modification will be numeri-
cally negligible except in the close vicinity of the Adler
zero. The poles of the resonances under study will only
come close to that region for very high values of the quark
masses, in the limit of applicability of ChPT and our
approach.

Before describing our fits, we want to remark that, in the
IAM derivation above, ChPT does not play any role outside
its applicability limits. By including three subtractions we
have suppressed strongly all contributions to the integrals
in high energy regions where ChPT results are not reliable.
Finally, the three subtraction constants, which correspond
to values of the amplitudes or their derivatives at s ¼ 0 are
well calculated with ChPT. Of course, this is just a one-
loop calculation, although the generalization to higher
orders is tedious but straightforward. Hence, our approach
does not model the left or inelastic cuts, but just uses the
corresponding ChPT approximation that, in principle, can
be improved order by order, eventually including more
subtractions.

II. FITS TO DATA AND LATTICE RESULTS

As commented before, it has been known for a long time
[14] that with the one-loop elastic IAM (the mIAM is
almost identical) in Eq. (16) it is possible to obtain a
remarkable description of �� and K� experimental data
up to somewhere below 1 GeV. Simultaneously, the IAM
generates the poles associated to the f0ð600Þ, �ð770Þ,
K�ð892Þ, and �ð800Þ resonances and this is achieved using
parameters compatible with those of standard ChPT [12].
However, that description was obtained from a fit to ex-
perimental data, and therefore it is mostly sensitive to the
LECs L1, L2, L3 that predominantly govern the s depen-
dence of partial waves, but much less so to the rest of the
LECs that carry an explicit meson mass dependence. Of
course, since now we want to extrapolate the IAM fits to
nonphysical masses, it is very important that we use a good
description of the mass dependence in observables like
masses, decay constants, etc. before extracting conclusions
about resonance behavior. For that reason, we are present-
ing here an updated IAM description of experimental data
simultaneously fitted to the available lattice results on the
mass dependence of M�=f�, M�=fK, and MK=fK as well
as scattering lengths for the doubly charged channel in��,
K�, and KK scattering. Note that for the moment, these
lattice data are only available in the highest isospin combi-
nation for each particle pair.

In order to change the masses and decay constants
according to Eqs. (3)–(5) and (10), we need first to extract
the tree level quantities: M2

0�, M2
0K, and f0 from the

physical values of the pion, kaon, and eta masses as well
as the three decay constants f�, fK, and f�. Note thatM

2
0�

will be obtained from the Gell-Mann-Okubo relation:
4M2

0K �M2
0� � 3M2

0� ¼ 0. Since there are more physical

values than tree level constants, for a given set of LECs we
actually use the tree level constants that best fit the physical
ones. Thus, the physical masses and decay constants that
we will obtain when recovering them from the tree level
ones will be only approximate. This is, of course, the
consequence of using a truncated expansion—ChPT to
one loop—to describe observables.
We have made two fits whose resulting LEC sets are

given in the two last columns of Table I. Since there are
many parameters, there are strong correlations. Thus, sets
with quite different parameters can give raise to acceptable
descriptions of data, depending on how one weights ex-
periment and lattice results. On fit I we have fitted to
experimental data coming from [18] and to lattice results
given in [19]. Despite we show in Fig. 1 these data, for the
ðI; JÞ ¼ ð0; 0Þ and ð2; 0Þ waves, where many different ex-
periments are actually incompatible, we have fitted to the
phase shifts arising from the dispersive analysis of the
experimental data in [20], where a complete set of forward
dispersion relations and Roy equations was constrained on
a phenomenological fit to all waves. For the (1, 1) wave we
have used also the phenomenological phase shifts from that
solution since, apart from the dispersive constraints, it fits
the data of the electromagnetic form factor of the pion,
which is much more reliable and precise than the existing
experiments on (1, 1) pion-pion scattering. Anyway, since
for �K and other waves we are still using scattering, and
also because the method has an intrinsic error due to the
NLO approximation on the integrals, we have added in
quadrature to the experimental data errors a constant error
of 2 degrees and a variable error of 5% of the phase shift
and to lattice results on masses over decay constants 5% of
their values also in quadrature to their errors. We have also
introduced a constraint so that the LECs do not differ much
from those found in the Kl4 analysis to two loops of [8], by
weighting also in the 	2 the LECs with the values in [8].
On fit II we have given an additional weight to the large
1=Nc constraint 2L1 � L2 ¼ 0 (dividing its error by 10
when calculating the 	2) whereas we have relaxed the
constrains on �11 and �1=20 (dividing their 	2 by 1.5).

For comparison, also in Table I we provide three typical
sets of LECs available in the literature obtained from data
analyses using dispersive techniques plus ChPT. Those on
the first and the second columns come from a one- and two-
loop analysis of Kl4 decays [8], where L4 and L6 were set
equal to zero (following leading order 1=Nc arguments).
The ‘‘Roy-Steiner’’ column comes from a dispersive
analysis of �K scattering [9]. Note that the LECs in these
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sets are frequently within more than 2 standard deviations
from one another, and we consider that their difference is
indicative of the typical size of systematic uncertainties in
our knowledge of LECs. As commented above, since the
one-loop IAM generates correctly only the s-channel lead-
ing logs of the two-loop calculation, which are dominant at
low energies, it is not clear whether we should compare
with the LECs obtained in the one- or two-loop ChPT
analysis. Actually, all of our IAM LECs lie very close, or
within the uncertainties, of at least one of the previous
determinations given in the table. Taking into account the
uncertainties in these nonunitarized determinations, we
consider that the agreement between the IAM LECs and
previous determinations is fair. Let us remark that the
relevant fact about this comparison is to note that we do
not need to make any fine-tuning of the LECs, like chang-
ing well-established signs, changing order of magnitude,
etc., to describe the experimental and lattice data
simultaneously.

Finally, we also provide in Table I, the IAM III set of
LECs, which corresponds to one of the three fits obtained
using the coupled channel IAM in [10]. This set was fitted
to experimental data only and the uncertainties quoted are

just statistical. Taking into account that we are using the
single channel IAM instead of the coupled channel one,
and the estimate of systematic uncertainties discussed
above, we see that our new fits, including new experimen-
tal data and lattice results, are not too different from those
already obtained in [10].
In Fig. 2 we show the results of our fits compared with

experimental data on �� and �K elastic scattering phase
shifts. The best description is given by fit I (continuous
line), whereas fit II gives a somewhat too heavy �ð770Þ
vector resonance (by roughly 50 MeV, i.e., a 6% error). For
comparison, we show as a dotted line the results of the
IAM if we used the ChPT LECs obtained from the two-
loop analysis of Kl4 decays listed in Table I. We also show
as a dot-dashed line the results that would be obtained if the
nonunitarized ChPTone-loop results, using the same set of
LECs, are extrapolated to higher energies. Note that the
IAM results describe rather well both the resonant and
nonresonant shapes up to 1 GeV or slightly above, except
for the scalar-isoscalar �00 that is only described up to
800 MeV. This is due to the presence of the sharp rise
caused by the f0ð980Þ resonance that decays mostly to two
kaons and can only be described with the coupled channel
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FIG. 2. Results of our IAM fits versus experimental data on �� and �K scattering. The continuous and dashed lines correspond,
respectively, to fits I and II, whose parameters are given in Table I. For comparison we show the results of the IAM if we used the ChPT
LECs obtained from the two-loop analysis of Kl4 decays listed also in Table I (dotted lines) as well as the results of standard
nonunitarized ChPTwith the same set of LECs (dot-dashed lines). The plotted data correspond to experimental results [18], which are
often incompatible. For that reason, in our fits, and for �� scattering, we have actually used the results of a dispersive analysis of these
data [20].
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IAM formalism, [10,12,16], that we do not use here for the
reasons explained above.

Those results are, of course, well known, and these fits
would just be an update of [10] if we had not also included
lattice data on the fit that we show in Fig. 3. Note that we
are fitting results on M�=f�, M�=fK, and MK=fK and the
�þ�þ, KþKþ, and Kþ�þ scattering lengths [19]. Once
again we show fits I and II as continuous and dashed lines,
respectively, together with IAM results using the LECs
from a two-loop analysis of Kl4 decays listed in Table I
(dotted line) and nonunitarized ChPT to one loop with the
same set of LECs (dot-dashed line). As explained above,
we do not consider that our method should be trusted for
pion masses heavier than 440 MeV, being optimistic, and
that is why the heavier mass region is shown as a gray area.

III. DEPENDENCE ON u AND d QUARK MASSES

Now that we have a good description of both the energy
dependence of pion-pion amplitudes together with the
mass dependence of the few observables available from
lattice, we can change the value of the light quark mass,

keeping ms fixed, and predict the behavior of the reso-
nances generated within the IAM.

A. Light vector mesons: The �ð770Þ and K�ð892Þ
The �ð770Þ and K�ð892Þ vector resonances are well-

established q �q states belonging to an SU(3) octet. The first
is produced in �� scattering, and its quark mass depen-
dence was already studied within SU(2) ChPT [3]. Here we
will just check that we reobtain very similar results within
the SU(3) formalism, while describing simultaneously the
lattice observables shown in Fig. 3. However, the K�ð892Þ
appears in �K scattering and can only be obtained using
SU(3) ChPT as we do here.

1. Mass and width

Thus, in Fig. 4, we show the dependence of the light
vector resonances on the nonstrange quark masses, using
one-loop SU(3) ChPT unitarized with the IAM. For each
resonance, these masses and widths are defined from the
position of their associated pole in the second Riemann
sheet, through the usual Breit-Wigner identification:ffiffiffiffiffiffiffiffiffi
spole

p 	 M� i�=2. We show the results for fits I and II
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FIG. 3. Result of the unitarized fits to lattice calculations of M�=f�, M�=fK, MK=fK and the �þ�þ, KþKþ, Kþ�þ scattering
lengths. The continuous and dashed lines correspond, respectively, to fits I and II, whose parameters are given in Table I. For
comparison we show the results of the IAM if we used the ChPT LECs obtained from the two-loop analysis of Kl4 decays listed also in
Table I (dotted lines) as well as the results of standard nonunitarized ChPTwith the same set of LECs (dot-dashed lines). Lattice results
come from [19]. The gray area lies beyond our applicability region; however, it is useful to check that our description does not
deteriorate too rapidly.
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as continuous and dashed lines, respectively. The results
for both fits are very consistent and their difference can be
taken as an estimation for systematic uncertainties in the
choice of LECs. To suppress systematic uncertainties we
give all quantities normalized to their physical values. Note
that we provide two scales for the mass variation: In the
upper horizontal axis, we show the variation of the quark
mass in terms of m̂=m̂phys, whereas in the lower horizontal
axis we show the variation of the pion mass in terms of

M�=M
phys
� . The one-loop ChPT relation between these two

scales is given by Eqs. (2) and (3). To be precise, this
relation changes for different LECs, but, as we already
showed in Fig. 1, the difference is too small to be observed
with the naked eye in the axes of Fig. 4.

In the left panels we also show, as a dotted line, the
SU(2) ChPT result already obtained in [3], which is fairly
consistent with the new SU(3) results. Of course, the
difference is somewhat larger when the pion mass is closer
to the kaon mass, and the kaons start playing a more
prominent role. Of course, since the SU(2) results [3] al-
ready described fairly well the available lattice calculations
for the �ð770Þ mass, so it happens with the SU(3) results

here. In addition, this ensures that the M� dependence on

M� agrees nicely with the estimations for the two first
coefficients of its chiral expansion [21], which was already
checked in the SU(2) case [3].
Since the vertical scale is the same for the �ð770Þ and

K�ð892Þ plots, the similarity of their behavior is very
evident. Both their masses increase smoothly as the quark
mass increases, but much slower than the pion mass. Some
differences can be observed for small m̂, but this is due to
the fact that the SU(3) breaking between the �ð770Þ and the
K�ð892Þ is more evident since we keepms fixed to its large
physical value. What is interesting to observe is that the
naive rule of thumb frequently used in the literature [22],
that @MR=@m̂ ¼ Nv

R, where Nv
R is the number of valence

nonstrange quarks, yields the correct order of magnitude
(and this is how it has been used in [22]) but would predict
a 2:1 relation for the slope of the �ð770Þwith respect to that
of the K�ð892Þ, which is not observed for light quarks.
Continuing with our analysis, we note that, as the quark

mass increases, the two-pion and pion-kaon threshold grow
faster than the masses of the resonances and, as a conse-
quence, there is a strong phase space suppression than can
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account exclusively for the decrease of their widths. We
show in the lower panels theM� dependence of �� and �K�

normalized to their physical values. The decrease of the
widths is largely kinematical, following remarkably well
the expected reduction from phase space as the masses of
the NGB increase [thin continuous and dashed lines cor-
responding to fits I and II, respectively, although for the
�ð770Þ they overlap so well that the thin lines are not seen].
This result was already found for the �ð770Þ within the
SU(2) formalism and is nicely confirmed here. This sug-
gests that there is no dynamical effect through the vector
coupling to two mesons, as we will analyze next.

2. Coupling to two mesons

The dynamics of resonance-meson-meson interaction is
encoded in the coupling constant that we obtain from the
residue of the amplitude at the pole position as follows:

g2 ¼ �16� lim
s!spole

ðs� spoleÞtðsÞ 3

4k2
; (19)

where the normalization factors are chosen to recover the
usual expression for the two-meson width of narrow vector
resonances:

�V ¼ jgj2 1

6�

jkj3
M2

V

; (20)

jkj being the modulus of the meson three-momentum.
Actually, by identifying

ffiffiffiffiffiffiffiffiffi
spole

p ¼ MV � i�V , we have ex-

plicitly checked that we obtain the same numerical value
for the coupling with both equations. We find jg���j ’ 6:1

and jgK��Kj ’ 5:5.
Then, in Fig. 5 we show the dependence of the g��� (left

panel) and the gK��K (right panel) couplings with respect to
the pion mass (lower horizontal scale) or the nonstrange
quark mass m̂ (upper horizontal scale). In order to suppress
systematic uncertainties, we have normalized the cou-
plings to their physical values. Note that the g��� is

remarkably constant, deviating from its physical value by
2% at most, despite the fact that the quark mass is changed
by a factor of 9. It is also relevant because it justifies the
constancy assumption made in lattice studies of the �ð770Þ
width [23]. The gK��K is also quite independent of the
nonstrange quark mass, deviating by 10% at most in the
chiral limit and by less than 4% when the quark mass is
increased by a factor of 9. The results for fits I and II are
almost indistinguishable.
The constancy of the vector-meson-meson couplings,

together with the classic KSRF relation [24], provides a
striking connection between the quark mass dependence of
the rho mass and the pion decay constant. Actually, the
KSRF relation, obtained from the partially conserved axial
current and vector meson dominance, reads

g2��� ’ M2
�=8f

2
�: (21)

Note that in our calculation we are obtaining M� from a

one-loop ChPT unitarized calculation, whereas f� comes
simply from the next-to-leading-order ChPT calculation,
but, of course, without unitarization. It is therefore quite
remarkable that the ratio M�=f� obtained from our ampli-

tudes, shown in Fig. 6, is constant within less than 5%
accuracy, when the quark mass varies by a factor of 9, or
the pion mass by a factor of 3. Note that, as usual, in Fig. 6
we have normalized the ratio to its physical value. It seems
that the simple KSRF relation holds remarkably well up to
surprisingly large values of the nonstrange quark mass, and
therefore the M� quark mass dependence can be recast

with the same factor as that for f�.
A similar result is found for the K�ð892Þ whose ratio

MK�=f� is also shown in Fig. 6 to deviate by less than 2%
from its physical value. Note that, according to the second
reference in [24], the fK dependence does not show up in
the relation. Actually, had we used MK�=

ffiffiffiffiffiffiffiffiffiffiffiffi
f�fK

p
instead,

the deviation would have been a factor of 3 larger.
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B. Light scalar mesons: The f0ð600Þ and �ð800Þ
The f0ð600Þ, or sigma, and the �ð800Þ scalar mesons are

still somewhat controversial. The main problem is their
huge width that makes their experimental identification
complicated. Despite the fact that their pole mass and
width has been determined by several groups with the
help of model independent dispersive techniques (with
and without ChPT input) and a fairly reasonable agreement
(see [9,14,25] for recent determinations), they are still cited
with extremely cautious and conservative estimates in the
PDG [26]. Their nature is even more controversial, and as
commented above, there are no present lattice calculations
with realistic quark masses that could shed some light on
the problem. It is therefore even more interesting to obtain
predictions on their quark mass dependence. Compared
with the vector case, there is an additional complication
because now we do not necessarily expect a similar be-
havior between the �ð800Þ and the f0ð600Þ, since although
the former should belong to an SU(3) octet, the latter could
be in the singlet, the octet, or have a significant mixture of
both. As a matter of fact, there are indications that its
singlet component is actually dominant [27,28].

1. Mass and width

As the data show in Fig. 2, the sigma and kappa reso-
nances do not present a peak nor a Breit-Wigner shape in
the meson-meson scattering ðI; JÞ ¼ ð0; 0Þ and ð1=2; 0Þ
waves, respectively. Once again, these masses and widths
are defined from the position of their associated pole in the
second Riemann sheet, as follows:

ffiffiffiffiffiffiffiffiffi
spole

p 	 M� i�=2, but

one should keep in mind that these scalar states do not
present the typical Breit-Wigner shape, so there is no
immediate equivalence of the mass in terms of a peak in
the cross section or a time delay in the propagation.

In Fig. 7 we show the pole mass and width dependence
of light scalar resonances on the nonstrange quark mass. As
in Fig. 4, we show quantities normalized to their physical

values and we provide two scales for the horizontal axis:
m̂=m̂phys (upper horizontal axis) and M�=M� phys (lower

horizontal axis). Once again, the continuous line represents
the results for fit I, the dashed line those of fit II, and the
dotted line stands for the results of unitarized SU(2) ChPT
for the f0ð600Þ. As before we find that the fits I and II are
very consistent with each other, and, for the f0ð600Þ also
with the existing SU(2) calculation of [3].
The most prominent feature of the scalars behavior is the

appearance of two branches for the mass as defined above,
already observed for the � in [3]. The reason is that for
physical values of the quark mass, the poles associated
with resonances appear as conjugated poles in the second
Riemann sheet, i.e., there are poles at

ffiffiffiffiffiffiffiffiffi
spole

p 	 M� i�=2.

Of course, only the one in the lowest half plane is continu-
ous with the physical amplitude in the real axis, and this is
the one responsible for the physical resonance. However,
as the quark mass increases these poles move closer to the
real axis until they join in a single pole below threshold, but
still in the second Riemann sheet. If the quark mass is
increased further, the poles split again but without leaving
the real axis. The position of each one of these poles
corresponds to each one of the branches that we show in
the upper panels of Fig. 7.
Although this qualitative behavior is a well-known pos-

sibility for potentials in scalar channels, one-loop unita-
rized ChPT is predicting the quark mass value for which it
occurs, which is a genuine prediction for QCD. For scalar-
isoscalar �� scattering it was already observed in the
SU(2) case [3]. Here we are confirming this position
when using SU(3) instead of SU(2) ChPT, but we see it
also happening for the �ð800Þ, although the point at which
it happens depends more on the set of LECs. For this
reason, we think that the existence of this nonanalyticity
of the �ð800Þ pole is robust, but not so much the precise
quark mass value where it occurs.
This ‘‘apparent splitting’’ cannot occur for higher partial

waves since they all carry a k2J factor that forces the
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conjugated poles to join the real axis exactly at threshold,
and then one of them jumps to the first Riemann sheet.

Apart from the evident qualitative similarities between
the behavior of the f0ð600Þ and the kappa, it is also clear
that quantitatively they behave somewhat differently. In
particular, the growth of the �ð800Þmass before the ‘‘split-
ting point’’ is much softer than for the f0ð600Þ, and even
softer than the �ð770Þ and K�ð892Þ growth shown in Fig. 4
(please note the difference in scales between both figures).

In the lower panels of Fig. 7 we show the quark mass
dependence of the sigma and kappa widths. On the left we
show that the decrease of the sigma width we find with the
SU(3) one-loop IAM is very consistent between fits I and
II, and confirm the previous results within SU(2) [3]. On
the right we show the results for the �ð800Þ width. We also
show that the width decrease for both of them cannot be
attributed to the phase space reduction, due to the increase
of pion and kaon masses, naively expected from the narrow
width approximation

�S ¼ jgj2 1

8�

jpj
M2

S

; (22)

which we show as a thin continuous (dashed) line corre-

sponding to fit I (II). Despite the fact that the shape of the
decrease is slightly different for the � and �, both scalars
behave very differently than vector mesons. Actually, we
will see next that this implies that the scalar couplings to
two mesons have a much stronger quark mass dependence
than the vector ones.

2. Coupling to two mesons

As we have just seen, the narrow width approximation in
Eq. (22) above is of little use for scalars. But, of course, we
can still extract the coupling constant from the residue as
we did for vectors, although now the equation reads

g2 ¼ �16� lim
s!spole

ðs� spoleÞtðsÞ: (23)

We find jg���j ’ 2:86 GeV and jg��Kj ’ 3:6 GeV, to be
compared to jg���j ’ 2:97� 0:04 GeV and jg��Kj ’
4:94� 0:07 GeV, obtained in [28] or the jg���j ’ 2:2
average obtained in [29]. The agreement is fairly reason-
able, taking into account that the data that have been used,
the� and � poles, and the models in those references differ
substantially for each reference.
Thus, in Fig. 8 we show the quark mass dependence

(upper horizontal scale) or pion mass dependence (lower
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horizontal scale) of g��� and g��K. As usual, all quantities
are normalized to their physical values. Compared with
Fig. 5 (note the different scales), we see that these cou-
plings show a much stronger quark mass dependence.
Moreover, they increase dramatically near the point of
the apparent splitting. Beyond that point there are two
nonconjugate poles lying on the real axis below threshold
in the second Riemann sheet. For this reason, after the
splitting point we plot two curves for each fit. The lowest
curve corresponds to the pole closest to the threshold that
eventually jumps into the first Riemann sheet. This thresh-
old crossing from one sheet to the other corresponds to the
point where the coupling tends to zero in the figures, in
good agreement with the well-known result in [30].
Actually this can be checked numerically, because, as
shown in [31] the coupling is inversely proportional to
the energy derivative of the one-loop function [GðsÞ in
[31] and JðsÞ in ChPT [12]], which is divergent at thresh-
old. Despite this consistency check, within our approach
this occurs at pion masses close to the naive applicability
limit, and therefore the exact M� value when this happens
is not very reliable.

IV. DEPENDENCE ON THE STRANGE QUARK
MASS

Up to here we have only been changing the values of the
nonstrange quark mass keeping ms fixed. However, since
we are dealing with the full SU(3) ChPT formalism, we are
now able to change the strange quark, keeping m̂ fixed. The
dependence of hadronic observables on the strange quark
mass is also of interest for lattice studies and for cosmo-
logical considerations [6]. As we explained in Sec. I A we
will only vary the strange quark mass in the limited range
0:7<ms=ms phys < 1:3 to ensure that the kaon does not

become too heavy to spoil the ChPT convergence nor too
light to require a coupled channel formalism to deal with
the K�ð892Þ or �ð800Þ resonances, thus introducing addi-
tional model dependences in our approach.

A. Light vector mesons: The �ð770Þ and K�ð892Þ
1. Mass and width

As in previous sections we define the mass and width of
the vector resonances from the position of their associated
poles. Thus, in the upper panels of Fig. 9 we show the
quark mass dependence (or kaon mass dependence in the
lower horizontal scale) of the � and K�ð892Þmasses. In the
lower panels we show the dependence of their widths. As
usual, all quantities are normalized to their physical values
to suppress systematic uncertainties.
As could be expected, both the mass and width of the

�ð770Þ, being nonstrange, are almost independent of the
strange quark mass within the range of study. Note that the
� mass actually decreases very slightly, by roughly 1%.
Since the pion mass almost remains constant—see Eq. (3)
and the L6, L4 values in Table I—this implies that phase
space decreases slightly for smaller strange quark mass and
the �ð770Þ width decreases accordingly. Actually, we can
check in Fig. 9 that the width reduction follows remarkably
well the phase space reduction expected from Eq. (20)
(thin continuous and dashed lines).
Looking now at the right panels of Fig. 9, we notice that,

as expected, the K�ð892Þ shows a much stronger depen-
dence than the �ð770Þ on the strange quark or the kaon
masses. On the one hand, when the kaon mass is made
lighter, the K�ð892Þ mass decreases, as it happened when
changing the light quark mass, although much faster, i.e.,
up to 5% when the kaon mass decreases by 20%.
Nevertheless, and contrary to what happened when reduc-
ing m̂, the K�ð892Þ width increases significantly, up to
40%. This is due to the fact that the K�ð892Þ decays to
�K, but the kaon mass decrease is faster than that of the
K�ð892Þ. On the other hand, when the kaon mass is made
heavier, the K�ð892Þmass grows, but much slower than the
kaon mass, so that phase space shrinks and the resonance
width decreases once more. We are also showing as thin
lines the expected variation of the widths if their only quark
mass dependence came from the change in the particles
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masses and the naive phase space suppression in Eq. (20)
(thin continuous lines for fit I and thin dashed lines for
fit II). We see that they are in very good agreement with our
results from the IAM, which suggest that their coupling to
two mesons is almost independent of the quark masses,
which we will see next.

2. Coupling to two mesons

Thus, in Fig. 10 we show the dependence both onms and
kaon masses of the vector to meson-meson couplings. As

usual everything is normalized to their physical values. It
can be noted that within the range of variation under study,
which is 30% for the strange quark mass in either direction,
both the g��� and gK��K couplings change by 1% at most.

In Fig. 11 we show the results for the KSRF relation
variation in terms of the strange quark mass. Since the �
coupling has virtually no dependence on ms, the relation
remains trivially constant. For the K�ð892Þ the relation is
well satisfied (to within less than 5% from the physical
value) in the whole ms range of our study.
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B. Light scalar mesons: The f0ð600Þ and �ð800Þ
We simply repeat the procedure we used to study the

light quark variation in Sec. III B, but this time changing
the strange quark mass instead, and keeping m̂ fixed.

1. Mass and width

Thus, in Fig. 12, we show the variation of the sigma and
�ð800Þ masses and widths with respect to the kaon mass

variation (lower horizontal scale) or the strange quark mass
(upper horizontal scale). Once again all masses are nor-
malized to their physical values. As could be expected, we
see in the left panels that the change on the sigma is smaller
than 1% on both mass and width (beware we have changed
the scale with respect to the previous Fig. 7 to make the
changes more visible).
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A much bigger effect is seen for the �ð800Þ in the right
panels, whose mass changes by as much as 12% from its
physical value within the range of study, whereas the width
changes by as much as 20%. However, its mass depen-
dence, despite being somewhat stronger than for its vector
counterpart K�ð892Þ, is still softer than for the kaon itself.
This is the reason why, as the �ð800Þ becomes lighter its
width increases, and vice versa.

In the lower panels we have also plotted the expected
naive phase space reduction. This time, however, as the
sigma properties barely depend on the strange quark mass,
we only see a significant deviation from that naive behavior
in the case of the �ð800Þ.

2. Coupling to two mesons

For all means and purposes, with respect to strange
quark mass variations, the sigma coupling to two mesons
turns out to be a constant within our approximation, as can
be seen in the left panel of Fig. 13.

In contrast, the g��K coupling shows some dependence
on the strange quark mass. Actually, it grows by 6% when
the kaon mass is increased by 18% from its physical value.

V. SUMMARYAND CONCLUSIONS

In this work we have studied the quark mass dependence
of the light vector and scalar resonances generated as poles
of meson-meson scattering elastic amplitudes within uni-
tarized one-loop chiral perturbation theory. This depen-
dence is of interest to relate lattice results to hadronic
observables, but also for anthropic and cosmological con-
siderations. The use of an SU(3) formalism extends pre-
vious studies within SU(2), allowing us to study the
behavior of strange resonances like the �ð800Þ and
K�ð892Þ, but also to study variations not only of the light
u and d quark masses, but also of the strange quark mass.

After a brief introduction on how ChPT provides a
model independent expansion of pion, kaon, and eta
masses and decay constants, as well as their two-body
interaction amplitudes, we have reviewed how this series

can be used inside a dispersion theory formalism to con-
struct the so-called inverse amplitude method amplitudes
that satisfy elastic unitarity while respecting the ChPT
expansion. It has been known for a long time that the
elastic IAM reproduces well the meson-meson elastic scat-
tering data up to 800–1000 MeV, including the resonance
region. Note that we have refrained for the moment to use
the very successful coupled channel IAM precisely be-
cause at present it lacks a dispersive derivation, and we
want to avoid as much model dependence as possible. Of
course the experimental data may fix rather well the energy
dependence but not so well the mass dependence. For that
reason we have presented here a new IAM analysis includ-
ing simultaneously the existing lattice results on meson
masses, decay constants, and scattering lengths. We obtain
a fairly good description of experiment and lattice data
using chiral parameters rather similar to existing one- and
two-loop determinations. No fine-tuning of parameters is
required. Once this is done, we have varied the quark
masses within certain ranges that ensure the applicability
of the elastic IAM for the resonances under study:
m̂=m̂phys � 9 and 0:7<ms=ms phys < 1:3 (m̂ is the average

mass of the u and d quarks). In practice, in ChPTwe have
changed the squared pion and kaon masses, which, at
leading order, are proportional to quark masses. Although
we have shown in Fig. 1 that this simple approximation
works within roughly 10% accuracy, we have carefully
included the full one-loop corrections, and shown the
quark and meson mass variation independently in all plots.
In the second Riemann sheet of these amplitudes, the

IAM generates the—conjugated pairs of—poles associated
to the vector �ð770Þ, K�ð892Þ and scalar f0ð600Þ and
�ð800Þ resonances. Light vector resonances are well estab-
lished and there is little relevance on whether we refer to
their ‘‘pole’’ or Breit-Wigner mass and widths. In contrast,
the scalar f0ð600Þ, or sigma and the �ð800Þ are rather
controversial due to their large apparent width and the
lack of a Breit-Wigner shape in the meson-meson scatter-
ing phase shifts. To avoid complications, we have always
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presented our results in terms of pole definitions of masses,
widths, and couplings.

For the f0ð600Þ and �ð770Þ resonances, which appear in
�� scattering, we have nicely confirmed the similar uni-
tarized one-loop SU(2) ChPT analysis performed in [3].
When increasing m̂ both the sigma and � masses grow
faster than the pion mass, whereas their widths decrease.
However, the �ð770Þ mass behaves smoothly in the whole
quark mass range, whereas, roughly at M� � 340 MeV,
the f0ð600Þ pole and its conjugated pair meet in the second
Riemann sheet below threshold, producing a nonanalytic-
ity—or apparent splitting in two branches—of the sigma
mass in terms of M�. In addition, we confirm that the
�ð770Þ width decrease, as m̂ grows, follows remarkably
well the simple expectations of phase space reduction al-
ready found within the SU(2) formalism. Once again, such
a simple behavior is not observed for the sigma.

Of course, the SU(3) formalism allows us now to study
also the K�ð892Þ and �ð800Þ resonances in �K scattering.
We find that both the mass and width of the K�ð892Þ
behave qualitatively and quantitatively in a very similar
way to those of the �ð770Þ, which could be expected given
the fact that they belong to the same octet. In addition, we
have explicitly calculated here their couplings to two me-
sons, from the residue of the partial wave at their associ-
ated pole, finding that they are both remarkably
independent of the nonstrange quark mass, as suggested
from the width behavior. The K�ð892Þ coupling is quite
well approximated by a constant, although not so well as in
the � case. This could be of relevance when computing its
width on the lattice as it has already been done for the �
[23].

It therefore seems that light quark masses play no sig-
nificant role in the dynamics of the dominant decay modes
of vector mesons, namely � ! �� and K� ! �K, since
their couplings seem to be independent of light quark
masses and all their width variation can be attributed to
the phase space modification due to changes in the masses
of all particles.

Furthermore, this provides a hint, checked here by ex-
plicit calculation, that the KSRF relation, that approxi-

mates these couplings by g ’ MV=2
ffiffiffi
2

p
f�, holds to less

than 5% when changing m̂ from 0 to 9 times its physical
value. It is remarkable that this relation is so well satisfied,
first, because ours is a one-loop calculation, which, in
principle includes higher order pion mass corrections to
KSRF, and the pion mass becomes rather large, but, sec-
ond, because our resonance masses come from unitarized
amplitudes whereas f� stems from the nonunitarized ChPT
truncated series.

Concerning the �ð800Þ, its behavior is qualitatively
similar to that of the sigma, including the apparent mass
splitting in two branches, which is a feature that can only
occur for scalars. However, the �ð800Þ nonstrange quark
mass dependence is softer than for the sigma. Still the pion
mass where the �ð800Þ apparent mass splitting occurs is

similar to that of the sigma, although with bigger uncer-
tainties M� � 340–400 MeV. Of course, contrary to the
vector case, one could now expect some differences be-
tween the two scalars since they do not necessarily belong
to the same octet and actually, the sigma is believed to be
predominantly the singlet state [27,28], and it could even
allow for a glueball component. As we did with the vectors,
in this work we have also calculated explicitly the behavior
of the scalar couplings to two mesons under quark mass
variations. We find a qualitatively similar behavior for both
g��� and g��K: contrary to vectors, they cannot be con-
sidered constant within the variation range, particularly
whenM� comes close to the apparent mass splitting value,
where it suffers a dramatic enhancement.
Finally, since we use the SU(3) formalism, we have been

able to study the dependence of light resonance properties
on the strange quark mass. Because of the fact that the
physical mass of the kaons is already quite high but also
because we want the MK þM� threshold to be signifi-

cantly above the K�ð892Þ mass, we have limited our study
to the range 0:7<ms=ms phys < 1:3. As could be naively

expected, and in contrast to strange resonances, the masses
and widths of both the nonstrange � and � are remarkably
independent of the strange quark mass. This time, the
�ð800Þ mass has a much stronger dependence than that
of theK�ð892Þ—actually, it grows a factor of 3 faster. Once
again, the K�ð892Þ width follows remarkably well the
behavior dictated by phase space only, and we have
checked that its �K coupling is almost independent of
ms. The KSRF relation is also a fairly good approximation
in the whole energy range, although not as good as in the
case of the nonstrange quark. Concerning the �ð800Þ, once
again its coupling is strongly dependent on the quark mass,
so that its width does not follow the naive phase space
behavior.
In summary, we have presented an exhaustive study on

the strange and nonstrange quark mass dependence of light
scalar and vector resonances appearing in elastic
Goldstone bosons scattering. For the future, this work
could be extended to other light scalar mesons like the
f0ð980Þ and a0ð980Þ using a coupled channel formalism,
that is somewhat less rigorous as it has no dispersive
derivation, and also is much more complicated due to the
presence of the K �K threshold.
To conclude, and apart from the interest for studies of

constraints on hadronic properties from cosmological or
anthropic considerations, we think that the quark mass
dependence studied here will be within the reach of lattice
studies in the not too distant future—it is already so for the
� meson—and we expect our results to be useful in the
chiral extrapolation of lattice results to physical values.
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