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1. Introduction

In 1953 A. Grothendieck introduced the property known as Dunford-
Pettis property [18]. A Banach space X has the Dunford-Pettis property
(DPP in the sequel) if whenever (xn) and (ρn) are weakly null sequences
in X and X∗, respectively, we have ρn(xn) → 0. It is due to Grothendieck
that every C(K)-space satisfies the DPP. Historically, were Dunford and
Pettis who first proved that L1(µ) satisfies DPP. Since its introduction, the
DPP has been intensively studied and developed in many classes of Banach
spaces.

In the last twenty years the problem of determine when the projective
tensor product of two Banach spaces satisfies the Dunford-Pettis property
has focussed the attention of several researchers.

Since the DPP is inherited by complemented subspaces, it follows that
X and Y satisfy the DPP whenever X⊗̂πY has this property. However,
M. Talagrand showed in [26] that this necessary condition is not always
sufficient finding a Banach space X such that X∗ has the Schur property
and X∗⊗̂πL

1[0, 1] does not satisfy the DPP. In 1987, R. Ryan proved that
X⊗̂πY satisfy the DPP and does not contain a subspace isomorphic to `1 if
and only if X and Y have both properties.

In [4], the authors show that, for infinite compact Hausdorff spaces K1

and K2, then the projective tensor product of C(K1) and C(K2) has the
DPP if and only if K1 and K2 are scattered, equivalently, C(K1) and C(K2)
do not contain `1. This result was generalised to the more general setting
of C*-algebras and JB*-triples, by showing that the projective tensor prod-
uct of two Banach spaces X and Y satisfies the DPP and property (V ) of
Pelczynzki if and only if X and Y have both properties and do not contain
`1. As a consequence it is shown that the projective tensor product of two
infinite dimensional C*-algebras or JB*-triples E and F (see definition be-
low) satisfies the DPP if and only if E and F satisfy the DPP and do not
contain `1.

First author partially supported by I+D MCYT project no. BFM2002-01529, and
Junta de Andalućıa grant FQM 0199 and second author partially supported by I+D
MCYT project no. BFM2001-1284.
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In 1997, W. Freedman introduced an strictly weaker version of the DPP,
called the alternative Dunford-Pettis property (see [15]). A Banach space X
has the alternative Dunford-Pettis property (DP1 in the sequel) if whenever
xn → x weakly in X, with ‖xn‖ = ‖x‖ = 1, and ρn → 0 weakly in X∗,
we have ρn(xn) → 0. Freedman shown in the same paper that DPP and
DP1 are equivalent for von Neumann algebras. L. J. Bunce and the first
author of the present note prove in [7] that the same result remains true
for general C*-álgebras. In the setting of JBW*-triples, it was shown in [1]
that a JBW*-triple W has the DP1 if and only if it satisfies the DPP or the
Kadec-Klee property (KKP in the sequel).

Recently, F. Cabello, D. Pérez-Garćıa and the second author of the present
note prove in [9] that when the projective tensor product of two infinite di-
mensional C(K) fails the DPP it also fails a weaker property by showing
that it contains a complemented copy of `2.

The main goal of this note is to study the DP1 on projective tensor
products of C*-álgebras and JB*-triples. The main difference between DPP
and DP1 is that DPP is and isomorphic property (that is, it is preserved
by isomorphisms) while the DP1 is an isometric property (preserved by
surjective linear isometries and not, in general, by isomorphisms) (see [15,
Example 1.6]). In the case of DP1, this will add the difficulty of working
with isometric conditions on the projective tensor product of two Banach
spaces.

In Section 2, we generalise some results obtained in [9] by replacing the
C(K) spaces with more general Banach spaces. More concretely, if E and
F are Banach spaces such that E contains c0 and F contains a C(K) space
containing `1, then E⊗̂πF contains a complemented copy of `2. As a con-
sequence, we show that the projective tensor product of two C*-algebras or
JB*-triples contains a complemented copy of `2 whenever it fails the DPP.

In Section 3, we completely describe those C*-algebras whose projective
tensor product satisfies the DP1. The main tool to solve this problem is
Theorem 3.5 where we prove that if E and F are two Banach spaces such
that E contains an isometric copy of c0 and F contains and isometric copy
of C[0, 1], then E⊗̂πF does not have DP1. This result allows us to show
that if E and F are JB∗-triples such that E is not reflexive and F contains
`1, then E⊗̂πF does not have DP1. As a consequence, Corollary 3.7 shows
that the projective tensor product of two infinite dimensional C*-algebras A
and B satisfies DP1 if and only if A and B have DP1 and contain no copy
of `1, equivalently, A⊗̂πB satisfies DPP.

Notation: Let X be a Banach space. Through the paper we denote by X∗

the dual space of X. If Y is another Banach space, L(X,Y ) (respectively,
K(X,Y )) will stand for the Banach space of all bounded linear operators (re-
spectively, compact linear operators) from X to Y . We usually write L(X)
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and K(X) instead of L(X,X) and K(X,X), respectively. The projective
tensor product of X and Y will be denoted by X⊗̂πY .

A JB*-triple is a complex Banach space E equipped with a continuous
triple product

{., ., .} : E ⊗ E ⊗ E → E

(x, y, z) 7→ {x, y, z}
which is bilinear and symmetric in the outer variables and conjugate linear
in the middle one and satisfies:

(a) (Jordan Identity)

L(x, y) {a, b, c} = {L(x, y)a, b, c} − {a, L(y, x)b, c}+ {a, b, L(x, y)c} ,

for all x, y, a, b, c ∈ E, where L(x, y) : E → E is the linear mapping
given by L(x, y)z = {x, y, z};

(b) The map L(x, x) is an hermitian operator with non-negative spec-
trum for all x ∈ E;

(c) ‖ {x, x, x} ‖ = ‖x‖3 for all x ∈ E.

Every C∗-algebra is a JB∗-triple with respect to

{x, y, z} = 2−1(xy∗z + zy∗x),

every JB∗-algebra is a JB∗-triple with triple product

{a, b, c} = (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗,

and the Banach space B(H,K) of all bounded linear operators between two
complex Hilbert spaces H,K is also an example of a JB∗-triple with respect
to {R,S, T} = 2−1(RS∗T + TS∗R).

A subspace I of a JB*-triple E is called a triple ideal if {E,E, I} +
{E, I,E} ⊂ I. If I satisfies that {I, E, I} ⊂ I, then I called an inner ideal
of E.

A JBW*-triple is a JB*-triple which is also a dual Banach space. The
bidual of a JB*-triple E is a JBW*-triple with a triple product extending
the one on E (compare [14]).

Every JB*-triple is a Jordan triple. Therefore, given a tripotent e (i.e.
{e, e, e} = e) in a JB*-triple E, there exists a decomposition of E in terms
of the eigenvalues of L(e, e):

E = E0(e)⊕ E1(e)⊕ E2(e)

where Ek(e) = {x ∈ E : L(e, e)x = k
2x} for k = 0, 1, 2. Ek(e) is called the

Peirce k-space of e. The following rules are satisfied:
(1) {Ei(e), Ej(e), Ek(e)} ⊆ Ei−j+k(e), where i, j, k = 0, 1, 2 and El(e) =

0 for l 6= 0, 1, 2.
(2) {E0(e), E2(e), E} = {E2(e), E0(e), E} = 0.
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The projection Pk(e) of E onto Ek(e) is called the Peirce k-projection of e.
These projections are given by

P2(e) = Q(e)2;
P1(e) = 2(L(e, e)−Q(e)2);
P0(e) = IdU − 2L(e, e) +Q(e)2, .

where Q(e) is the conjugate linear operator on E defined by

Q(e)(x) := {e, x, e} .

Let E be a JB*-triple. A tripotent e ∈ E is called minimal if E2(e)
coincides with Ce. Two tripotents e, f ∈ E are called orthogonal whenever
L(e, f) = 0 (equivalently, L(f, e) = 0).

2. Complemented copies of `2 in the projective tensor product
of Banach spaces

As we said in the introduction, in this section we extend some of the
results in [9] to a wider class of Banach spaces, which in particular includes
C∗-algebras and non reflexive JB∗-triples.

We start recalling some known notions. Given X and 1 ≤ p ≤ ∞, we
say that a (finite or infinite) sequence (xn)n ⊂ X is strongly p-summable if
(‖xn‖)n ∈ `p. In that case we define its strong p-summing norm by

‖(xn)n‖p =

(∑
n

‖xn‖p

) 1
p

.

Analogously we say that (xn)n is weakly p-summable if, for every x∗ ∈ X∗,
(〈x∗, xn〉)n ∈ `p. In that case we define the weak p-summing norm of (xn)
by

‖(xn)n‖ω
p = sup


(∑

n

〈x∗, xn〉p
) 1

p

: x∗ ∈ BX∗

 .

We recall that, if 1 ≤ p < +∞, an operator T : X −→ Y is called
p-summing it takes weakly p-summable sequences to strong p-summable
sequences, that is, if there exists a constant K > 0 such that, for every
p-weak summing sequence (xn)n ⊂ X

(1)

(∑
n

‖T (xn)‖p

) 1
p

≤ K‖(xn)‖ω
p

In that case, we define the p-summing norm of T by πp(T ) = min{K :
K verifies (1)}.

The following result is proved in [9].
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Lemma 2.1. Let (bn) ⊂ C(K2) be a bounded sequence (for instance,
‖bn‖ ≤ C for every n ∈ N) and let (en) ⊂ C(K1) be a sequence such that
‖(en)n‖ω

1 ≤ 1. Then, the sequence (en ⊗ bn) ⊂ C(K1)⊗̂πC(K2) verifies that

‖(en ⊗ bn)n‖w
2 ≤

√
2C.�

We state now our first result, which gives sufficient conditions for the
projective tensor product to have a complemented copy of `2.

Theorem 2.2. Let E,F be Banach spaces such that E contains c0 and F
contains a C(K) space G containing `1. Then E⊗̂πF contains a comple-
mented copy of `2.

Proof. The proof is a generalization of [9, Theorem 1]. Let (xn)n ⊂ E be
sequence equivalent to the canonical basis of c0, and let (x∗n)n ⊂ E∗ be
a sequence biorthogonal to (xn)n. Let also q : G −→ `2 be a surjective
operator. By Grothendieck’s theorem q is 2-summing, hence, according to
[13, Theorem 4.15], q can be extended to a quotient q̃ : F −→ `2. Let
(bn)n ⊂ G ⊂ F be a bounded sequence such that q̃(bn) = q(bn) = en, where
(en) is the canonical basis in `2. According to Lemma 2.1 the sequence
(xn ⊗ bn)n is 2-weak summing when considered in c0⊗̂πG. Therefore, since
the natural operator c0⊗̂πG −→ E⊗̂πF is continuous, (xn ⊗ bn) is also 2-
weak summing when considered in E⊗̂πF . Therefore (see for example [13,
Proposition 2.2]) we can define an operator

θ : `2 −→ E⊗̂πF

by
θ(en) = xn ⊗ bn.

Defined this way θ is bounded by KG times a bound for the sequence (bn)n,
where KG is Grothendieck’s constant.

We also define an operator

ϕ : E⊗̂πF −→ `2

by
ϕ(a⊗ b) = (x∗n(a)q(b)n)n.

It is easy to see that ϕ is well defined, continuous, and that ϕ ◦ θ is the
identity map on `2, which finishes the proof. �

Remark 2.3. Let us recall that, given λ > 1, a Banach space X is said to
be an L∞,λ space if every finite dimensional subspace Y ⊂ X is contained
in a finite dimensional space Z ⊂ X for which there exists an isomorphism
v : Z −→ `dim Z

∞ such that ‖v‖‖v−1‖ < λ. We say that X is an L∞ space if
it is an L∞,λ space for some λ > 1. L∞(µ) and C(K) spaces are the basic
examples of L∞-spaces. Clearly, our previous Theorem remains true if G is
any L∞ space.
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It has been recently shown in [3] that the projective tensor product of
two JB∗-triples fails the DPP if and only if at least one of them contains `1.
As an application of our previous result we prove that in that case, actually
there is a complemented copy of `2 in the projective tensor product. We
recall first some known results.

Let x be an element in a complex JB∗-triple E, and denote by E(x) the
JB∗-subtriple of E generated by x. It is known that there exists a locally
compact subset Sx of (0,+∞) such that Sx ∪ {0} is compact and E(x) is
JB∗-triple isomorphic to the C∗-algebra C0(Sx), via a triple isomorphism Ψ,
which satisfies Ψ(x)(t) = t (t ∈ Sx) (cf. [21, 4.8], [22, 1.15] and [16]). The
subset Sx is called the triple spectrum of x.

It is well known that for every infinite dimensional C*-álgebra A there
exists an infinite sequence (xn) in A+ satisfying xnxm = xmxn = 0 and
‖xn‖ = 1, for all n 6= m (compare [20, 4.6.13]). Since the subtriple generated
by a single element x in a complex JB*-triple E is isomorphic as JB*-triple
(and hence isometric as Banach space) to a C*-algebra, we can conclude,
from [11, Theorem 6] and [6, Proposition 4.5], that for every non-reflexive
complex JB*-triple, E, there exists an infinite sequence (xn) in E satisfying
L(xn, xm) = L(xm, xn) = 0 and ‖xn‖ = 1, for all n 6= m. It is well known
that (xn) is equivalent to the basis of c0 (compare, for example, [19, §4]).
Therefore, we have:

Corollary 2.4. Let E,F be JB∗-triples such that E is not reflexive and F
contains `1. Then E⊗̂πF contains a complemented copy of `2. �

The corresponding result in the setting of C*-algebras follows straightfor-
wardly from the above Corollary.

Corollary 2.5. Let A,B be two infinite dimensional C∗-algebras such that
B contains `1. Then A⊗̂πB contains a complemented copy of `2. �

There is also a local version of Theorem 2.2.

Theorem 2.6. Let E,F be Banach spaces each one of them containing
an isomorphic copy of L∞ spaces G,H. Then E⊗̂πF contains uniformly
complemented copies of the `n2 ’s.

Proof. Let us fix n ∈ N. There exists an n-dimensional space X ⊂ G
such that d(X; `n∞) ≤ C, where C is a constant independent of n. In X we
consider the canonical basis (xn

m)n
m=1 and we consider a sequence (xn∗

m )n
m=1 ⊂

E∗ biorthogonal to it.
We fix an ε > 0 and Dvoretzky’s Theorem, assures the existence of a

number N ∈ N such that `n2 is (1 + ε)-contained in `N1 . Therefore, there
exists a quotient qn : `N∞ −→ `n2 and a constant K such that, for every
1 ≤ n ≤ m there exists bmn ∈ `N∞ with ‖bmn ‖ ≤ K and qn(bmn ) = em, where
K is a constant independent of n and 1 ≤ n ≤ m. We consider a space
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Y ⊂ H verifying d(Y, `N∞) ≤ C where is again independent of N . We
consider the quotient q̂n : Y −→ `n2 induced by qn. The 2-summing norm of
q̂n is bounded by ‖qn‖KGC(1 + ε) (independently of n) and hence applying
again [13, Theorem 4.15] q̂n can be extended to a quotient q̃n : F −→ `n2
with no greater norm. Now the proof proceeds as in Theorem 2.2. �

Corollary 2.7. Let E,F be non reflexive JB∗-triples. Then E⊗̂πF contains
uniformly complemented copies of the `n2 ’s. In particular, the result remains
true whenever E and F are infinite dimensional C∗-algebras.

We will substantially improve this last corollary in our next result.

In [3, Remark 2.7], the authors prove the existence of JB∗-triples E,F
such that E⊗̂πF has DPP, (E⊗̂πF )∗ is a Schur space and (E⊗̂πF )∗∗ does
not have DPP.

Until quite recently, the (essentially) unique example of a space X with
the DPP, such that X∗ does not have DPP was Stegall’s example c0(`n2 );
(c0(`n2 ))∗ = `1(`n2 ) is a Schur space, but (c0(`n2 ))∗∗ = `∞(`n2 ) contains a
complemented copy of `2, and therefore does not have DPP [25].

Recently it was known that the same situation happens with c0⊗̂πc0: that
is, (c0⊗̂πc0)∗ is a Schur space but (c0⊗̂πc0)∗∗ does not have DPP ([17, 8]).
Very recently, it was proved in [9] that c0⊗̂πc0 contains a complemented
copy of c0(`n2 ).

We prove next that the above mentioned projective tensor product of
JB∗-triples appearing in [3] contains a complemented copy of c0⊗̂πc0, and
hence it also contains a complemented copy of c0(`n2 ). Therefore, Stegall’s
example remains essentially unique.

Other interesting examples of JB*-triples are constituted by the so-called
Cartan factors, Cα (α = 1, . . . , 6), defined as follows: let H and K be
complex Hilbert spaces and let j : H → H be a conjugation (conjugate
linear isometry of period-2) on H, C1 = L(H,K), C2 = {x ∈ L(H) : jx∗j =
−x}, C3 = {x ∈ L(H) : jx∗j = x}, C4 is a complex spin factor (that
is, a renormed Hilbert space, see for example [3, Page 9]), C5 = M1,2(O),
and C6 = H3(O), the hermitian 3 × 3 matrices with entries in the eight-
dimensional Cayley division algebra O. The elementary JB*-triples, Kα

(α = 1, . . . , 6), introduced in [5, page 330], can be described in the following
way: K1 = K(H,K), Kα = Cα ∩ K(H), for α = 2, 3, and Kα = Cα, for
α = 4, 5, 6.

The following result, which is needed to prove Corollary 2.9, is probably
interesting by itself.

Theorem 2.8. Let E be a not reflexive JB*-triple non containing `1. Then
E contains a complemented copy of c0.

Proof. Let A denote the weak*-closed triple ideal generated by all minimal
tripotents of E∗∗, and let K0(E) = E ∩ A. It is known that K0(E) is an
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inner ideal of E (compare [6, Corollary 3.5]). It is also known that K0(E)
is a c0-sum of a family, {Ki}i∈Λ, of elementary JB*-triples [6, Lemma 3.3].

It is known that a JB*-triple satisfies the RNP if and only if it is reflexive
(compare [11, Theorem 6]). Now it follows from [5, Theorem 3.4] and [6,
Proposition 4.5] that the triple spectrum of every element x ∈ E is countable
and there exists at least one x in E whose triple spectrum, Sx, must be
infinite. Arguing as in the proof of [5, Theorem 3.4, (iv) ⇒ (v)] (see also
the proof of [5, Proof of Lemma 3.2], we deduce that, for each n ∈ N, E
contains a set {e1, . . . , en} of pairwise orthogonal minimal tripotents of E∗∗.
In particular, we have K0(E) 6= {0}. ¿From [2, Lemma 3.7 and Theorem
3.8] we deduce that there exists a sequence (en) ⊂ E of pairwise orthogonal
tripotents of E∗∗.

Therefore, there exists an inner ideal I of E containing a sequence (en) of
pairwise orthogonal tripotents of E∗∗. The series

∑
n en is weak*-convergent

to a tripotent u ∈ I∗∗ (compare [19]). Since for each x ∈ I, the series∑
n∈N P2(en)(x) converges in the weak*-topology of I∗∗ to P2(u)(x) we de-

duce that the mapping P : I → Lin{en} = c0, P (x) := (P2(en)(x))n∈N is a
bounded linear projection of I onto c0. Since I is an inner ideal of E, then
for each x ∈ E and n ∈ N, we have P2(en)(x) = {en, {en, x, en}, en} ∈ I and
hence (P2(en)(x))n = (P2(en)P2(en)(x))n ∈ c0. Therefore, P : E → c0 is a
well-defined contractive projection of E onto c0. �

The case E = `∞ tells us that we can not just remove the condition that
E does not contain `1 in the above theorem.

The following announced corollary follows now immediately.

Corollary 2.9. Let E and F be two JB*-triples non containing `1 and
satisfying the DPP. Then E⊗̂πF contains a complemented subspace isomor-
phic to c0⊗̂πc0. As a consequence, E⊗̂πF contains a complemented subspace
isomorphic to c0(`n2 ).

Proof. We just need to observe that reflexive Banach spaces never have DPP.
The last statement follows now from [9], where it is proved that c0⊗̂πc0
contains a complemented copy of c0(`n2 ). �

3. The alternative Dunford-Pettis property on tensor
products

In this section we find sufficient conditions to assure that the projective
tensor product of two Banach spaces does not have DP1. These conditions
will completely determine those C∗-algebras whose projective tensor product
satisfies DP1. They also solve the same problem for many, but not all, cases
of JB∗-triples.

We develop first some necessary tools.
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Let X1, X2, Y1, Y2 be real Banach spaces. Every bounded linear operator
T from X1 ⊕`∞ X2 to Y1 ⊕`1 Y2, can be written as a matrix

T =
(
T1 T2

T3 T4

)
,

where T1 : X1 → Y1, T2 : X2 → Y1, T3 : X1 → Y2, and T4 : X2 → Y2 are
bounded linear operators.

Lemma 3.1. Let X1, X2, Y1, Y2 be Banach spaces. The law

T =
(
T1 T2

T3 T4

)
7→ P (T ) =

(
T1 0
0 T4

)
,

defines a contractive linear projection on L(X1⊕`∞X2, Y
∗
1 ⊕`1Y ∗2 ). Moreover,

‖P (T )‖ = ‖T1‖+ ‖T4‖.

Proof. Suppose first that X1, X2, Y1 and Y2 are real Banach spaces. Let
T ∈ L(X1 ⊕`∞ X2, Y

∗
1 ⊕`1 Y ∗2 ).

‖T‖ = sup
‖xi‖≤1

‖T (x1, x2)‖ = sup
xi∈BXi

sup
ϕi∈BY ∗

i

| (ϕ1 + ϕ2)T (x1 + x2) |

= sup
xi∈BXi

sup
ϕi∈BY ∗

i

|ϕ1T1(x1) + ϕ1T2(x2) + ϕ2T3(x1) + ϕ2T4(x2)|

= sup
xi∈BXi

sup
ϕi∈BY ∗

i

|ϕ1T1(x1) + ϕ1T2(x2)|+ |ϕ2T3(x1) + ϕ2T4(x2)|

= sup
xi∈BXi

,ϕi∈BY ∗
i

max{ |ϕ1T1(x1) + ϕ1T2(x2)|+ |ϕ2T3(x1) + ϕ2T4(x2)| ,

|ϕ1T1(x1)− ϕ1T2(x2)|+ |ϕ2T3(x1)− ϕ2T4(x2)| }
= sup

xi∈BXi
,ϕi∈BY ∗

i

max{ |ϕ1T1(x1) + ϕ1T2(x2) + ϕ2T3(x1) + ϕ2T4(x2)| ,

|ϕ1T1(x1) + ϕ1T2(x2)− ϕ2T3(x1)− ϕ2T4(x2)| , |ϕ1T1(x1)− ϕ1T2(x2)

+ϕ2T3(x1)− ϕ2T4(x2)|, |ϕ1T1(x1)− ϕ1T2(x2)− ϕ2T3(x1) + ϕ2T4(x2)| }
= sup

xi∈BXi
,ϕi∈BY ∗

i

max{ |ϕ1T1(x1) + ϕ2T4(x2)|+ |ϕ1T2(x2) + ϕ2T3(x1)|

, |ϕ1T1(x1)− ϕ2T4(x2)|+ |ϕ1T2(x2)− ϕ2T3(x1)|}
≥ sup

xi∈BXi
,ϕi∈BY ∗

i

max{ |ϕ1T1(x1) + ϕ2T4(x2)| , |ϕ1T1(x1)− ϕ2T4(x2)| }

= sup
xi∈BXi

,ϕi∈BY ∗
i

|ϕ1T1(x1)|+ |ϕ2T4(x2)| = ‖T1‖+ ‖T4‖ = ‖T1 + T4‖.

When X1, X2, Y1 and Y2 are complex Banach spaces we can apply the
formula

max
θ∈[0,2π]

{|ei θa+ b|, |ei θa− b|} = |a|+ |b|,

(a, b ∈ C,) instead of |a| + |b| = max{|a + b|, |a − b|}, (a, b ∈ R,) to get the
statement in the complex case. �
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We need the following proposition, which might be useful also in different
settings.

Proposition 3.2. Let X1, X2, Y1 and Y2 be Banach spaces. Then(
X1⊗̂πY1

)
⊕`∞

(
X2⊗̂πY2

)
is complemented in

(
X1 ⊕`∞ X2

)
⊗̂π

(
Y1 ⊕`∞ Y2

)
.

Proof. Let p1 and p2 denote the contractive projections of X1 ⊕`∞ X2 and
Y1⊕`∞ Y2 onto X1 and Y1, respectively, and let q1 = 1− p1 and q2 = 1− p2.
By [12, Proposition 3.9] we conclude that the mapping Π = p1⊗p2 + q1⊗ q2
is a bounded linear projection on

(
X1 ⊕`∞ X2

)
⊗̂π

(
Y1 ⊕`∞ Y2

)
, ‖Π‖ ≤ 2

and

‖Π(α)‖ = ‖p1 ⊗ p2(α) + q1 ⊗ q2(α)‖ ≥ max{‖p1 ⊗ p2(α)‖, ‖q1 ⊗ q2(α)‖}.
We claim that, in fact

‖Π(α)‖ = ‖p1 ⊗ p2(α) + q1 ⊗ q2(α)‖ = max{‖p1 ⊗ p2(α)‖, ‖q1 ⊗ q2(α)‖}.
Indeed, let us denote α1 = p1 ⊗ p2(α) and α2 = q1 ⊗ q2(α).

‖α1 + α2‖ = sup
T∈BL(X1⊕∞X2,Y ∗1 ⊕

1Y ∗2 )

|T (α1) + T (α2)|

= sup
1≥‖T‖≥‖T1‖+‖T4‖

|T1(α1) + T4(α2)| ≤ sup
1≥‖T1‖+‖T4‖

|T1(α1)|+ |T4(α2)|

= max{‖α1‖, ‖α2‖}.
�

Let X be a Banach space. We say that two elements x, y ∈ X are M-
orthogonal if and only if ‖λx+ µy‖ = max{‖λx‖, ‖µy‖}, for all λ, µ ∈ K.

Corollary 3.3. Let X and Y be Banach spaces. Let x1, x2 ∈ X and y1, y2 ∈
Y be such that x1 is M-orthogonal to x2 and y1 is M-orthogonal to y2. Then,
if ‖.‖π denotes the projective tensor norm in X⊗̂πY, we have ‖x1⊗y1 +x2⊗
y2‖π = max{‖x1 ⊗ y1‖π, ‖x2 ⊗ y2‖π}.

Proof. Let A,B be Banach spaces. Following the notation in [12], in this
proof the projective tensor norm of an element α ∈ A⊗̂πB will also be
denoted by π(α;A,B). From [12, 3.2.(5)], we conclude that

(2) π(α;X,Y ) = inf
{
π(α;M,N) : α ∈M ⊗N ;M ⊂ X and

N ⊂ Y finite dimensional

}
.

Let M (respectively, N) denote the linear span of x1 and x2 (respectively,
y1 and y2). Clearly, M = Kx1⊕∞ Kx2 and N = Ky1⊕∞ Ky2. ¿From (2) we
have

‖x1⊗y1+x2⊗y2‖π = π(x1⊗y1+x2⊗y2;X,Y ) ≤ π(x1⊗y1+x2⊗y2;M,N).

Now Proposition 3.2 gives that

π(x1 ⊗ y1 + x2 ⊗ y2;M,N) = max{π(x1 ⊗ y1;M,N), π(x2 ⊗ y2;M,N)}
= max{‖x1 ⊗ y1‖π, ‖x2 ⊗ y2‖π},



DP1 ON TENSOR PRODUCTS 11

showing that

‖x1 ⊗ y1 + x2 ⊗ y2‖π ≤ max{‖x1 ⊗ y1‖π, ‖x2 ⊗ y2‖π}.

To see the reverse inequality, suppose that max{‖x1⊗y1‖π, ‖x2⊗y2‖π} =
‖x1⊗y1‖π. Let ϕ be the norm-one functional in M∗ given by ϕ(λx1+µx2) =
λ‖x1‖, and let φ ∈ X∗ a Hahn-Banach extension of ϕ. For every ε > 0
we can take a norm-one functional ψ ∈ Y ∗ such that ψ(y1) > ‖y1‖ − ε.
Let T ∈ L(X,Y ∗) be the norm-one linear operator defined by T (x)(y) :=
φ⊗ ψ(x⊗ y) = φ(x) ψ(y). The it follows that

‖x1 ⊗ y1 + x2 ⊗ y2‖π ≥ |T (x1 ⊗ y1 + x2 ⊗ y2)| = ‖x1‖ (‖y1‖ − ε) ,

which gives the desired inequality. �

Remark 3.4. In C[0, 1] we can always find a norm one operator
q : C[0, 1] −→ `2 and a sequence, (yn), in the unit sphere of C[0, 1] such
that q(yn) = 1√

2
en, where (en)n ⊂ `2 is the canonical basis. One way to

do this is the following: we consider λ to be the Lebesgue measure on [0, 1].
The law

〈f, g〉 =
∫ 1

0
fgdλ, f, g ∈ C[0, 1],

defines a positive sesquilinear form on C[0, 1] with prehilbertian norm de-
noted by ‖ · ‖λ. Then the completion Hλ of (C[0, 1], ‖ · ‖λ) is a Hilbert space
with respect to the norm ‖.‖λ. The natural inclusion
q : (C[0, 1], ‖ ·‖∞) −→ Hλ is clearly a norm one linear operator and defining
yn(t) := sin(2πnt) (t ∈ [0, 1], n ∈ N) we get the desired statement.

We prove now the main result of the paper.

Theorem 3.5. Let E,F be two Banach spaces such that E contains an
isometric copy of c0 and F contains and isometric copy of C[0, 1]. Then
E⊗̂πF does not have DP1.

Proof. We first observe that C[0, 1] contains C
([

0, 1
4

]
∪
[

3
4 , 1
])

= C
[
0, 1

4

]
⊕∞

C
[

3
4 , 1
]

isometrically and 1-complemented, with the inclusion

i : C
([

0,
1
4

]
∪
[
3
4
, 1
])

−→ C[0, 1]

given by

i(f, g)(t) =



f(t) if t ∈
[
0, 1

4

]
0 if t = 1

2

g(t) if t ∈
[

3
4 , 1
]

linear in
(

1
4 ,

1
2

)
and

(
1
2 ,

3
4

)



12 ANTONIO M. PERALTA AND IGNACIO VILLANUEVA

and the natural proyection

π : C[0, 1] −→ C

([
0,

1
4

]
∪
[
3
4
, 1
])

given by the restriction, that is,

π(f)(t) = f(t).

We consider the function 11 : [0, 1
4 ] −→ K of constant value 1, and we

define y0 = i(11) ∈ C[0, 1]. Reasoning as in Remark 3.4 we can also consider
a sequence (zn)n ⊂ C

[
3
4 , 1
]

of norm one functions and a mapping

p : C
[
3
4
, 1
]
−→ `2

such that p(zn) = 1√
2
en. For every n ∈ N, we define yn = i(zn). Then ‖yn‖ =

1 for every n ∈ N. It follows from the definitions that, for every n ∈ N, y0

is M-orthogonal to yn. We can also consider the operator q : C[0, 1] −→ `2
which naturally extends p, that is, q = p ◦π2, where π2 : C[0, 1] −→ C

[
3
4 , 1
]

is again the projection induced by the restriction.
We consider now the sequence (en ⊗ yn)n≥1 ⊂ E⊗̂πF . Clearly

‖en ⊗ yn‖E⊗̂πF = ‖en‖‖yn‖ = 1.

Considering c0 as c0(N∪{0}), we consider the vector e0⊗y0 ∈ E⊗̂πF , which
also has norm 1.

An application of Corollary 3.3 shows that

‖en ⊗ yn + e0 ⊗ y0‖E⊗̂πF = 1.

It follows from Grothendieck’s theorem that q : C[0, 1] −→ `2 is 2-
summing. Therefore, [13, Theorem 4.15] allows us to extend q to an op-
erator q̃ : F −→ `2. We consider now a sequence (x∗n) ∈ E∗ biorthogonal to
the c0-basis (en) ⊂ E and we define the operator

θ : E⊗̂πF −→ `2

by
θ(a⊗ b) = (x∗n(a)q̃(b)n)n≥1

It is not difficult to see that θ is well defined and continuous (the easiest
way is to consider θ as a bilinear operator on E × F ).

We consider now the sequence (θ∗(en))n ⊂ (E⊗̂πF )∗, where (en)n ⊂ `2
denotes now the canonical basis of `2. Clearly (θ∗(en))n weakly converges
to 0.

Finally, noticing that
θ(e0 ⊗ y0) = 0

(both because x∗n(e0) = 0 for every n ≥ 1 and because q̃(y0) = q(y0) =
p(π2)(y0) = p(0) = 0) we have

θ∗(en)(en ⊗ yn + e0 ⊗ y0) = θ∗(en)(en ⊗ yn) + θ∗(en)(e0 ⊗ y0) =
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= θ(en ⊗ yn)n + θ(e0 ⊗ y0)n =
1√
2

+ 0 6→ 0.

�

Next we specialize the last result for the case of JB∗-triples.

Corollary 3.6. Let E,F be JB∗-triples such that E is not reflexive and F
contains `1. Then E⊗̂πF does not have DP1.

Proof. By the remarks preceding Corollary 2.4, we know that E contains an
isometric copy of c0.

Moreover, it is known that a JB*-triple F contains a subspace isomorphic
to `1 if and only there exists a norm-one element x ∈ F such that the triple
spectrum of x is not countable [5, Theorem 3.4]. Therefore, we may assume
that there exists a norm-one element x ∈ F such that Sx is not countable.
We recall that 1 ∈ Sx is a locally compact subset of (0, 1], Sx∪{0} is compact
and the JB*-subtriple of F generated by x is triple isomorphic (and hence
isometric) to C0(Sx) (the Banach space of all complex-valued continuous
functions on Sx vanishing at 0).

It is clear that C0(Sx) is also a JB*-subtriple of C(Sx ∪ {0}). Since Sx is
not countable, it follows, again from [5, Theorem 3.4], that C0(Sx) and hence
C(Sx ∪ {0}) contains a subspace isomorphic to `1. From [23] we conclude
that Sx ∪ {0} is non scattered and thus there exists a continuous surjection
σ : Sx ∪ {0} → [0, 1] (compare [24, 8.5.4]).

The mapping Φ : C([0, 1]) → C(Sx ∪ {0}) defined by Φ(f)(t) := f(σ(t))
is an isometric linear JB*-triple embedding of C([0, 1]) into C(Sx ∪ {0}).
If we denote σ(0) = a ∈ [0, 1] and C0([0, 1]\{a}) the Banach space of all
complex-valued continuous functions on [0, 1]\{a} vanishing at a, it follows
that T |C0([0,1]\{a}) is an isometric linear triple embedding of C0([0, 1]\{a})
into C0(Sx∪{0}). Since C0([0, a)) or C0((a, 1]) is triple isomorphic (an hence
isometric) to C0((0, 1]) we may always assume that there exists a isometric
linear JB*-triple embedding of C0((0, 1]) into C0(Sx ∪ {0}) and hence into
F . Therefore, we may assume, without lost of generality, that C0((0, 1]) is
a JB*-subtriple of F .

The result follows now from our previous theorem. �

We have already commented that every infinite dimensional C*-algebra
is not reflexive, in fact, both properties are equivalent. In [7] it is shown
that the DPP and the DP1 are equivalent in every C*-algebra. Combining
the above comments with Theorem 3.6 and [3, Corollary 2.5] we get the
following.

Corollary 3.7. Let A and B be infinite dimensional C*-álgebras. Then the
following are equivalent:

(a) A⊗̂πB satisfies the DP1;
(b) A and B satisfy the DPP and do not contain `1;
(c) A⊗̂πB satisfies the DPP;
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Corollary 3.8. Let K1 and K2 be infinite compact Hausdorff spaces. Then
the following are equivalent:

(a) C(K1)⊗̂πC(K2) satisfies the DP1;
(b) C(K1) and C(K2) satisfy the DPP and do not contain `1;
(c) C(K1)⊗̂πC(K2) satisfies the DPP; �

Problem 3.9. In order to determine when the projective tensor product of
two JB∗-triples satisfies DP1, we need to know whether E⊗̂πF has DP1,
when only one of them is reflexive. In particular, we do not know whether
c0⊗̂π`2 or C[0, 1]⊗̂π`2 have DP1. In both cases we have DPP in one of the
factors and the Kadec-Klee Property in the other one.
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Relatively weakly open sets in closed balls of Banach spaces, and real JB∗-triples of
finite rank, Math. Ann. 330, 45-58 (2004).

[3] Becerra Guerrero, J. and Peralta, A. M., The Dunford-Pettis and the Kadec-Klee
properties on tensor products of JB*-triples, to appear in Math. Z.

[4] Bombal, F. and Villanueva, I., On the Dunford-Pettis property of the tensor product
of C(K) spaces, Proc. Amer. Math. Soc. 129, no. 5, 1359-1363 (2001).

[5] Bunce, L. J. and Chu, Ch.-H., Dual spaces of JB*-triples and the Radon-Nikodým
property, Math. Z. 208, no. 2, 327-334 (1991).

[6] Bunce, L. J. and Chu, Ch.-H., Compact operations, multipliers and Radon-Nikodým
property in JB∗-triples, Pacific J. Math. 153, no. 2, 249-265 (1992).

[7] Bunce, L. J. and Peralta, A. M., The alternative Dunford-Pettis property in C∗-
algebras and von Neumann preduals, Proc. Amer. Math. Soc. 131, No. 4, 1251-1255
(2002).
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