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Abstract

Physically distributed sensors, communication networks, pre-
processing algorithms and other reasons can delay or
disorder the arrival of the information, provided by a set of
sensors, to the fusion centre which is in charge of estimating
the state of a system. In real-time control systems, the out-of-
sequence data cannot delay the process of estimating the
state of the system with the already received data and so the
algorithms of the fusion centre need to handle this type of
data properly.
In this paper we present two new algorithms for solving the
out-of-sequence data problem for the case of linear and
nonlinear dynamic control systems and compare them with
other algorithms which exist in the literature. The algorithm
for the linear case is equivalent to others but more general,
while the nonlinear one is a new solution of the problem.

1. INTRODUCTION

The state of a complex control system is estimated by its
fusion subsystem with the information provided by one or
several sensors. The time and order of arrival of the data to
the fusion centre depends on many factors including the
positions of the sensors, the communication network used to
send the information to the fusion centre, the time used to
pre-process the measurements and extract its information
useful for the fusion centre, and the priority of the different
tasks of the complete system. The most difficult scenario
occurs when the delays and the sequence of arrival of all the
information are not fixed, constituting the named Out-Of-
Sequence Problem (OOSP) [1].

In the case of sequential fusion algorithms, such as the
Kalman filter (KF) and the Information filter (IF), there are
three naïve solutions to solve the OOSP. The first consists on
rejecting the delayed information. This is only valid when
spurious measurements arrived delayed and the lost of
information implies an increment of the uncertainty of the
system state [2]. The second is waiting for all the information
relevant to the current state before estimating it [3]. For real
control systems this approach is not optimal when the delays
are significant, because the control loop should be closed
with the system state estimated with all the information
available so far. And the third consists in storing the estimates
of the state, the control signals, and the sensor data for all the
time instants and whenever a new measurement arrives

restarts the sequential fusion process from the timestamp
associated with it. This solution lets the fusion centre obtain
the same estimate as when the same sensorial data is received
without delays at the expenses of incrementing the
computational cost and memory needs of the fusion
algorithms. To minimize these problems, several algorithms
have been developed in the last years for different types of
linear ([1], [4]-[9]) and nonlinear ([10], [11]) dynamic
systems.

In this paper two new algorithms are presented. The first
one, IFAsyn (IF for Asynchronous data), can be used to
estimate the state of a linear dynamic control system with
additive gaussian noise when the data arrive delayed or out-
of-sequence to the fusion centre, and it is equivalent to the IF
(and so, to the KF) when the same data is provided to those
algorithms without any delays. It is also equivalent to some of
the algorithms presented in the literature but it can be used in
more general situations. The second, EIFAsyn (Extended IF
for Asynchronous data) is a novelty solution inside the
Extended Information Filter (EIF) and Extended Kalman
Filter (EKF) framework, and it is working successfully in a
complex control system for autonomous mobile robot [12].

The paper is organized as follows. Section 2 presents the
OOSP for linear control system, the algorithm developed to
solve the problem, and a comparison of it with other existing
algorithms. Section 3 shows the OOSP for a general control
system with linear and non linear equations and the algorithm
proposed to solve it. Finally, some of the conclusions are
drawn in section 4.

2. ESTIMATING THE STATE OF LINEAR CONTROL SYSTEM
WITHOUT-OF-SEQUENCEMEASUREMENTS

A. Problem Statement

The behaviour of a linear control system which has n sensors
which are providing data related linearly with the state of the
system is modelled by the following equations:

t t 1 t 1 t 1 t 1− − − −= + +x F x u υ

, , , 1 :s t s t t s t with s n= + =z H x ν
where tx and ,s tz represent respectively the state of the
system and the measurement of the s sensor at time t, t 1−u the
control signal applied during the time period from t-1 to t,
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t 1−F and ,s tH the transition and measurement matrixes, and

t 1−υ and ,s tν additive white noise with zero mean and
covariances t 1−Q and ,s tR respectively.

The objective of the fusion centre is to estimate the current
system state and covariance ( |ˆ t tx , |t tP ) given the original state
and covariance ( 0x , 0P ), the series of model parameters and
control signals , ,{ , , , , | 1 : , 1 : }k 1 t 1 s k s k k 1 s n k t− − − = =F Q H R u ,
and all the data , ,{ | 1 : , 1 : , }s k a s n k t a t⊂ ⊂ ≤ξ measured by
sensor s at time k which has arrived at the fusion centre at
time a, and which is already available ( a t≤ ).

When all the data arrive to the fusion centre without any
delay (a=k), the current state estimate and covariance
( |ˆ t tx , |t tP ) can be obtained optimally using sequentially the
prediction and assimilation steps of the KF, which only make
use of the previous state estimate and covariance
( |ˆ t 1 t 1− −x , |t 1 t 1− −P ), the current time model parameters and
control signals ,, ,{ , , , | 1 : }t 1 t 1 s t s t t 1 s n− − − =F Q H R u , and all
the current data , ,{ | 1 : }s t t s n⊂ξ . An equivalent approach is
the IF which operates in the information space instead of the
state space used in KF, and so it estimates the information
state and its covariance ( |ˆ t ty , |t tI ). Each working space
simplifies the operation of one of the two steps, what makes
advantageous to make each step in the correct space (with the
expression shown in Table 1), after doing the needed
projections ( 1

| | |ˆ ˆj l j l j l
−=y P x , 1

| |j l j l
−=I P ) to change of working

space.
TABLE 1: KF PREDICTION (P) STEP AND IF ASSIMILATON (A) STEP

P | | | |ˆ ˆ , T
t t 1 t 1 t 1 t 1 t 1 t t 1 t 1 t 1 t 1 t 1 t 1+− − − − − − − − − − −= + =x F x u P F P F Q

A

1 1
, , , , , , , , ,

, ,ˆ ˆ

,

,

T T
s t s t s t s t t s t s t s t s t

S S

t | t t | t 1 s t t | t t | t 1 s t
s=1 s=1

− −

− −

= =

= + = +∑ ∑

i H R I H R H

y y i Y Y I

ζ

When some data arrive delayed to the fusion centre (a>k)
the KF and IF can not incorporate it into the state of the
system and so new algorithms need to be developed. Those
algorithms will be optimal in the same sense as the KF and IF
are, when the results of the new algorithms with out-of-
sequence data will be the same as the result of the KF and IF
with the same data without delays.

B. IFAsyn: An algorithm for the OOSP based on the IF

Our first algorithm is based on a junction tree (JT) algorithm
[13], which is an exact inference algorithm for Bayesian
Networks (BNs). We select it because it has two properties
that make it a direct solution for our OOSP. On one hand, its
behaviour is equivalent to the IF when only the operations
associated with the prediction and assimilations steps are
applied to the JT that models our system behaviour ([14],
[15]). On the other, as an exact inference algorithm, the order
in which the data is introduced in the nodes of the JT doesn’t

change the final results. After a deep analysis of the
operations performed by the selected algorithm in our system
JT we determine the minimal subset of operations needed for
solving our OOSP and how they are related with the IF [12].

The result of that analysis is IFAsyn, which is based on the
separation (highlighted in Figure 1) that exists in the IF
assimilation step between the information state that stores all
the sensorial information previous to t ( ˆ t | t 1−y , t | t 1−Y ) and the
sensorial information (already projected onto the information

space) of instant t ( ,

S

s t
s=1
∑ i , ,

S

s t
s=1
∑I ).

Sensorial
information

(projected onto
the information

space) at t.

Information state
with all data
previous to t.

Information state
with all the data
up to t , which
have already

arrived.

,

,

ˆ ˆ
S

t | t t | t -1 s t
s=1

S

t | t t | t -1 s t
s=1

=

=

+

+

∑

∑

y y i

Y Y I

Fig. 1: Separation that exists in the assimilation step of the IF between the
current sensorial information at t and all the previous one.

To exploit this separation, IFAsyn stores for each step time
j five variables, two for the information state with all the data
previous to j ( ˆ j | j 1−y , j | j 1−Y ), two for accumulating the
sensorial information of instant j already received by the
fusion centre and already projected to the information space
( ji , jI ), and one for storing the control signal applied at that
step time ( j 1−u ). Additionally, it also stores for the current
state t its estimated values ( ˆ t | tx , t | tP ). To minimize the
memory requirements we could only store the variables that
belong to a time window with the maximum expected delay.

With those five variables per time step, IFAsyn performs
two steps as IF, with the expression presented in Table 2. In
this table, we have included the projection operation needed
to change the working space, and identified them between
brackets after the symbol ⊥ . Additionally, inside the loop of
the assimilation step (A), three other subgroups of operations
(projecting/accumulating measurements (I), prediction (P)
and assimilation (A)) are also identifiable.

The prediction step (P) is performed cyclically when the
time from t-1 to t has elapsed. It has the same operations as
the KF prediction step plus the initialization of variables ji ,

jI , ˆ j | j 1−y and j | j 1−Y .

The assimilation step (A) is carried out asynchronously, as
soon as a new piece of data ( , ,s k tζ ) which has been measured
by sensor s at time k is received by the fusion centre (whose
current time is t). This step is more complex and consists on
two different parts. In the first, the measurement is projected
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into the information space ( ,s ki , ,s kI ), added to the variables
which accumulate all the sensorial information already
projected with the same timestamp k ( ki , kI ), and assimilated
to the information state up to time k ( ˆ k | ky , k| kY ). The second
is a loop of: predictions (P) that re-propagate all the previous
information (including the new piece of data) to the next time
step j, and assimilations (A) of the just predicted information
with the sensorial information with a bigger timestamp than k
which was already projected onto the information space and
accumulated. Finally, the current estimated system state is
obtained via a final projection.

TABLE 2: IFASYN PREDICTION (P) AND ASSIMILATON (A) STEPS, WITH THE

PROJECTIONS ( ⊥ ) BETWEEN THE STATE AND INFORMATION SPACES

P

| | | |

1 1
| | | | |

ˆ ˆ ,

ˆ ˆ( , )

,

T
t t 1 t 1 t 1 t 1 t 1 t t 1 t 1 t 1 t 1 t 1 t 1

t t 1 t t 1 t t 1 t t 1 t t 1

t t

+− − − − − − − − − − −

− −
− − − − −

= =

= + =

⊥ = =

i I

x F x u P F P F Q

y P x Y P
0 0

A

1 1
, , , , , , , , ,

, ,

1 1
| | | | |

| |

ˆ ˆ

[ ,

, ]
[ , ]

for j=k+1:t
ˆ ˆ[ , ]

ˆ ˆ  [

T T
s k s k s k s k t s k s k s k s k

k k s k k k s k

k | k k | k 1 k k | k k | k 1 k

j 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1

j j 1 j 1 j 1 j 1 j

I

A

P

− −

− −

− −
− − − − − − − − − −

− − − − −

= =

= = +

= + = +

+

⊥ = =

= +

i H R I H R H

i i i I I I

y y i Y Y I

ζ

x Y y P Y

x F x u | |

1 1
| | | | |

1 1

1 1
| | | | |

ˆ ˆ

, ]

ˆ ˆ[ , ]
[ , ]

end
ˆ ˆ[ , ]

T
1 j j 1 j 1 j 1 j 1 j 1 j 1

j j 1 j j 1 j j 1 j j 1 j j 1

j | j j | j j j | j j | j j

t t t t t t t t t t

A

+− − − − − −

− −
− − − − −

− −

− −

= + = +

=

⊥ = =

⊥ = =

y y i Y Y I

P F P F Q

y P x Y P

x Y y P Y

The order of the operations of the assimilation step makes
IFAsyn obtain the same results as IF and KF when the out-of-
sequence measurements received by IFAsyn are provided to
IF or KF without delays. So, IFAsyn is a generalization of
those algorithms and an optimal solution for the OOSP.

C. IFAsyn vs. other algorithms for the OOSP

The third naïve solution proposed in the introduction restarts
the fusion process from the timestamp k of the new
measurement , ,s k tζ received by the fusion centre. It needs to
store for each step time j the measurements received by the
algorithm up to time t { }, , | 1: ,s j a s n a t⊂ ≤ζ , the information

state ( ˆ j | j 1−y , j | j 1−Y ) and the control signal ( j 1−u ). IFAsyn
stores five variables ( ˆ j | j 1−y , j | j 1−Y , ji , jI , j 1−u ) for each time
step, and so it reduces the memory needs of the naïve solution
when the total space used to store the measurements
{ }, , | 1: ,s j a s n a t⊂ ≤ζ is bigger than the space needed to store
the accumulated sensorial information already projected onto
the information space ( ji , jI ). The computational reduction
in IFAsyn is due to the fact that the sensorial information has
already been projected onto the information space and
accumulated for all the measurements received, while the
naïve approach will need to re-perform those tasks whenever
new delayed data arrives to the fusion centre.

The comparison of IFAsyn with other recent algorithms for
the OOSP ([1], [5]-[9]) is presented in Table 3, where the first
column identifies each analysed algorithm by the paper where
is presented (and an identification name in the cases where
there is more than one algorithm in the same paper). The
second shows its underlying algorithm, the third a short
description of the supporting idea used to develop it, the forth
if the algorithm makes the assumption of having a model with
an invertible transition matrix F (assumption valid for the
discrete system obtained discretizing a continuous system),
the fifth if the formulation presented in the paper includes the
control signal (and so if it can be used for control dynamic
systems without being modified), the sixth if it is already
designed for a system with multiple sensors providing
measurements with different rates and delays, the seventh if
the algorithms are equivalent to the IF and KF (when those
algorithms receive the same data without delays), and the
eighth the variables stored for a time window of size W.

TABLE 3: IFASYN VS. OTHER ALGORITHMS FOR THE OOSP.

Algorithm Based on Supporting idea 1−F tu N sensors Optimum Stored info (time window size =W)

IFAsyn IF Separation in IF assimilation step √ √ √ ˆ j| j -1y , j| j -1Y , ji , jI and ju with j=t-W:t

[1] KF State retrodiction √ √ Last W innovations or measurements

[6] KF State retrodiction √ ˆ t| t r−x and t| t r−P with r=W+1:0

[4] KF State retrodiction √ jK with j=t-W:t

[8]-AI KF Precalculating variables W sets = { }ˆ ˆ, , , , ,j | j j | j k | j k | j j jx P x P T W

[8]-AII KF Precalculating variables √ W sets = { }*ˆ , , ,j | j j | j j jx P M M�

[5] IF Minimizing variables √ √ √ √ ˆ j| jy , j| jY and ju with  j=t-W:t

[9]-AI KF Minimizing variables √ ˆ j| jx , j| jP with j=t-W:t

[9]-AII KF Minimizing variables j| jP with j=t-W:t

[7] KF Augmented state variables √ Augmented X and augmented P
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It is important to highlight the fact that the only algorithms
which can already handle in an optimum way the data
provided by multiple sensors with different delays are IFAsyn
and [5]. They are also the only two algorithms that use IF as
their supporting algorithm. Both properties are directed
related by the fact that the IF assimilation step expressions
are the same for the monosensorial (n=1) and multisensorial
(n>1) case, while the KF assimilation step expressions are
different for both cases and so generalising a monosensorial
version of a KF-based algorithm for the multisensorial case
with measurements with different delays can not be made
straightforward.

The computational complexity of the different algorithm is
not compared in the table, because the differences in their
supporting ideas make that comparison difficult without
implementing them. However, it is close to the algorithms of
the minimising variables group and quite similar to the one
presented in [5]. IFAsyn has a lower computational cost than
[5] and doesn’t assume that F is invertible, but it needs more
memory. However, the use of the extra-memory gives
IFAsyn another advantage over [5]: it makes it numerically
more accurate.

3. ESTIMATING THE STATE OFGENERIC CONTROL
SYSTEMS WITHOUT-OF-SEQUENCEMEASUREMENTS

A. Problem Statement

The behaviour of a generic control system which has n
sensors providing data related with the state of the system is
modelled by the following equations:

( , , )t t 1 t 1 t 1f t 1− − −= − +x x u υ

, ,( , ) 1 :s t s t s th t with s n= + =z x ν
where tx , ,s tz , t 1−u , t 1−υ , ,s tν , t 1−Q and ,s tR have the same
meaning as in the section 2.A, and ( )f ⋅ and ( )sh ⋅ are the
functions used to model the transition and the measurements.
In the general case, each function can be either linear
( ( , , )t 1 t 1 t 1 t 1 t 1f t 1− − − − −− = +x u F x u , ,( , )s t s t th t =x H x ) or
non-linear, and so the problem can turn out being completely
linear, completely non-linear, or a mixture of both cases.

The objective of the fusion centre is the same as in the
linear case, with the unique difference that the sequence of
model parameters and control signal is now defined by

, ,,{ ( ), , ( ), | 1 : , 1 : }t 1 s s k k 1f h s n k t− −⋅ ⋅ = =Q R u .

When there are no delays in the arrival of data ( , ,s k aζ ,
a=k), the estimate of the system state and its covariance
( |ˆ t tx , |t tP ) can be obtained approximately by the EKF and
EIF (suboptimal extensions of the KF and IF for the non-
linear case) and other algorithms. EKF and EIF have the same
two steps as their basic versions with new expressions that
take into account the non linearities of the system, and which
are presented, in their simpler working space, in Table 4.

TABLE 4: EKF PREDICTION (P) STEP AND EIF ASSIMILATON (A) STEP

P

|

| |

| |

ˆ( ) ( , , )

ˆ( , , )ˆ
t 1 t 1 t 1 t 1

t t 1 t 1 t 1 t 1

T
t t 1 t 1 t 1 t 1 t 1 t 1

f t

t

1
f 1

− − − −

− − − −

+− − − − − −

= −

= −

=

xF J x

x

u
x u

P F P F Q

A

,

C
, , , , ,

1 C 1
, , , , , , , , ,

, ,

ˆ( ) ( , )

ˆ ˆ( ( , ))

ˆ ˆ

,

,

s t s t | t 1

s t t s t t s t t | t 1 s t | t 1

T T
s t s t s t s t t s t s t s t s t

S S

t | t t | t 1 s t t | t t | t 1 s t
s=1 s=1

t

t

h

h
−

− −

− −

− −

=

+

= =

= + = +

= −

∑ ∑

xH J x

H x x

i H R I H R H

y y i Y Y I

ζ ζ

ζ

When some data , ,s k aζ arrive delayed to the fusion centre
(a>k) the EKF and EIF can not incorporate it into the state of
the system and so new algorithms need to be developed.
Building them over the EKF and EIF will make them already
approximated solutions to the OOSP general problem.

B. EIFAsyn: an algorithm for OOSP based on the EIF

EIFAsyn is developed over IFAsyn taking into account the
differences which exist between the expressions of Table 1
and Table 4, for each of the basic steps.

The expressions of the prediction step of the KF and EKF
are not significantly different: the main change is the new
operation of the EKF that obtains the transaction matrix t 1−F .
More over, in IFAsyn the KF prediction operations are
performed from scratch (all the expression are used)
whenever they are needed in the prediction (P) and
assimilation (A.P) steps. So, substituting in IFAsyn the KF
prediction operations by the EKF prediction ones will make
directly the new algorithm suitable for general systems with a
non-linear transition model and linear measurement ones.

The discrepancies of the assimilaton expressions of the IF
and EIF are more important. On one hand, the number of
operations is not only incremented to obtain the measurement
matrix ,s tH but also to correct the measurement ( , ,s t tζ ) with
the discrepancy that exists between the linearized
measurement model ( , ˆs t t | t 1−H x ) and the non-linear one

( ˆ( , )s t | t 1 th −x ). The corrected measurement ( , ,
C
s t tζ ) is then

projected onto the information space and so, for the non-
linear case, the projected measurement variables ( ,s ti , ,s tI )
depend on the value of ˆ t | t 1−x .

Due to that dependency, substituting the operations of the
IF assimilation step by the EIF assimilation ones in IFAsyn
and accumulating the projected measurement variables
( ,s ki , ,s kI ) in the total projected measurement ones ( ki , kI )
will return an approximate solution to the OOSP, different to
the one obtained by EKF or EIF when they use the same data
without delays. The reason for that is that in the loop of the
association (A) step of IFAsyn there is a prediction (P) which
updates the values of ˆ j | j 1−x in each iteration, what would
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modify the values of ,s ji and ,s jI for the nonlinear sensors if
those values were recalculated inside the loop instead of
being accumulated first, outside the loop, in the total
projected measurement ones ( ji , jI ).

To obtain the same solution as the EKF and EIF when the
data is provided to those algorithms without delays the
measurements ( , ,s j aζ ) of the non-linear sensors of the systems

need to be stored and corrected ( , ,
C
s j aζ ), projected onto the

information space ( ,s ji , ,s jI ) and assimilated directly to the
variables ˆ j | jy and j | jY inside the loop.

TABLE 5: EIFASYN PREDICTION (P) AND ASSIMILATION (A) STEPS, WITH THE

PROJECTIONS ( ⊥ ) BETWEEN THE STATE AND INFORMATION SPACES

P

|

| |

| |

1 1
| | | | |

ˆ( ) ( , , )

ˆ ˆ( , , )

ˆ ˆ[ , ]

, , ,

t 1 t 1 t 1 t 1

t t 1 t 1 t 1 t 1

T
t t 1 t 1 t 1 t 1 t 1 t 1

t t 1 t t 1 t t 1 t t 1 t t 1

rec rec
t t t t

f t 1

f t 1
− − − −

− − − −

+− − − − − −

− −
− − − − −

=

= = = =

−

= −

=

⊥ = =

xF J x

i I i I

u

x x u

P F P F Q

y P x Y P

0 0 0 0

A

1

,
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, , , , ,

1 C 1
, , , , , , , , ,
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ˆ ˆ( ( , ))

ˆ ˆ[ ]

 [

 ,

if (s ) ,

else

k | k 1 k | k 1 k | k 1

s k s k | k 1
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T T
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I t

k

h

h

−
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−
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=

−

= =

= = +

⊥ =

= +

∉ +

xH J x

H x x

i H R I H R H

i i i I I I

x Y y

ζ ζ

ζ

rec

, , , ,

1 1
| | | | |

|

ˆ ˆ

ˆ( ) ( , , )

, , store ]

[ , ]

for j=k+1:t
ˆ ˆ[ , ]

  [
ˆ

rec rec rec rec
k k s k k k s k s k t

rec rec
k | k k | k 1 k k k | k k | k 1 k k

j 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1 j 1

j 1 j 1 j 1 j 1f j
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P 1
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= + = + +

=

+ =
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⊥ = =
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F J x

i I ζ

x Y y P Y
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| | | | |
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, , , , ,
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j j 1 j j 1 j j 1 j j 1 j j 1
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j j

s j s j | j 1
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j

k
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1 1
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end]
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end
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rec rec T rec rec T
j j s j s j s j a j j s j s j s j
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j | j j | j j j j | j j | j j j
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i i H R I I H R H

y y i i Y Y I I

ζ

x Y y P Y

However, if the changes of the value of ˆ j | j 1−x that occur
during the prediction (P) part of the assimilation (A) step of

IFAsyn doesn’t modify significantly the values of , ,
C
s j aζ and

,s jH for the non-linear sensor measurements whose values
were already assimilated, recalculating all those variables will
increase the computational load of the fusion centre without
making it obtain a significantly different solution. More over,
the EKF and EIF are already approximated solutions to the
problem and so pursuing the objective of obtaining exactly
the values that they get with the same data without delays will
not make our algorithm an optimal solution to the OOSP.
Nevertheless, there can be cases where that values need to be
recalculated, and so our algorithm supports that option.

With all these observations, we have developed EIFAsyn,
whose expressions are presented in Table 5, for the general
OOSP. It uses the variable rec to define the set of non-linear
sensors whose values need to be recalculated. Additionally to
the storage variables of IFAsyn ( ˆ j | j 1−y , j | j 1−Y , ji , jI , j 1−u ),
EIFAsyn must store the measurements , ,s k aζ of the non-linear
sensors belonging to rec. The variables ji and jI are used to
accumulate the projected information of the linear sensors
and of the non-linear ones whose projected measurements
don’t need to be recalculated, while the variables rec

ji and
rec
jI , which are also stored in the algorithm presented in Table

5, store the values of the sensors whose projected
measurements will be recalculated. The use of rec

ji and rec
jI is

optional, but it makes the version of EIFAsyn presented in the
table not to have to recalculate the projected measurement for
the timestamp k of the measurement , ,s k tζ which has triggered
the assimilation step. For the linear sensors of the system,
which obviously don’t belong to rec, it is not necessary to
calculate ( ) ( )sh ⋅xJ or C

, ,s k tζ , and when the system has a linear
transition model ( ) ( )f ⋅xJ is not used.

As the number of non-linear sensors of the system whose
projected measurements need to be recalculated increases,
EIFAsyn gets closer to the third naïve solution presented in
the introduction for OOSP, being equivalent solutions when
all the sensors of the system are non-linear and need to have
their projected measurements recalculated.

EIFAsyn is not directly comparable with other solutions
for non-linear systems presented in the literature ([10]-[11]),
because those algorithms are not based in the EIF or EKF.

It is important to highlight that the performance EIFAsyn
strongly depends on which non-linear sensors need to
recalculate their values when older measurements of any
sensor arrive at the fusion centre, and so this decision must be
taken with care after analysing (via the expressions or with
simulations) how small changes in ˆ t | t 1−x affect to the values

of , ,
C
s t tζ and ,s jH .

An example of how that decision influences in the result of
the algorithm is presented in Table 6 and Figure 2. The table
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shows the equations of the system and sensors. The figure
shows the discrepancies obtained for two executions of
EIFAsyn when the non-linear sensors belonged to rec and
when they don’t. They are due to the strong non-linearities of
S3, which were introduced after series of simulations with
other S3 with weaker non-linearities where the discrepancies
were not significant.

TABLE 6: NON LINEAR SYSTEM (T) WITH 3 SENSORS (S1, S2 AND S3)

T
(NL)
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1

1

( ) ( ) ( ) ( )
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Fig. 2: Estimated state of the system modelled in Table 5 by EIFAsyn
considering that the non-linear sensors belong to rec or don’t belong to it.

4. CONCLUSIONS

We have presented two new algorithms for the OOSP,
IFAsyn for pure linear systems and EIFAsyn for systems with
linear and-or non-linear expressions.

IFAsyn is equivalent to other algorithms found in the
literature, although an analysis of Table 3 shows that it is
more general for dynamic control systems. On one hand it
doesn’t make any assumption about the invertibility of F. On
the other, its formulation already includes the control signal
(which the majority doesn’t have) and the possibility of
having multiple sensors providing data with different delays.

EIFAsyn is a new solution to the problem for non-linear
systems, which is equivalent to the EIF when all the non-
linear sensors of the system recalculate the projections of
their measurements and an approximation to the EIF when
some of them don’t do it.
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