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Abstract 

The control of magnetic anisotropy has been the driving force for the development of 

magnetic applications in a wide range of technological fields from sensing to spintronics. In recent 

years, the possibility of tailoring the magnetic properties goes together with a need for new 3D 

materials to expand the applications to a new generation of devices. In this work, we show the 

possibility of designing the magnetic anisotropy of three-dimensional magnetic nanowire networks 

just by modifying the geometry of the structure or by composition. We also show that this is 

possible when the magnetic properties of the structure are governed by the magnetostatic 

anisotropy. The present approach can guide the systematic tuning of the magnetic easy axis and 

coercivity in the desired direction at the nanoscale. Importantly, this can be achieved on 

virtually any magnetic material, alloy or multilayers that can be prepared inside porous alumina. 

Our results are promising for engineering novel magnetic devices that exploit tailored magnetic 

anisotropy using metamaterials concept. 
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I. INTRODUCTION 

The main properties of the magnetic materials and the most important ones in terms of 

applications - coercivity, saturation field, domain wall structure, magnetization dynamics... - 

are basically controlled by the magnetic anisotropy1. In fact, tailoring the anisotropy has 

been the driving force of technical and applied magnetism for ages: from the synthesis of 

magnetoresistive materials for sensing,2 to the use of rare-earth elements (with strong 

magnetocrystalline anisotropy) for the synthesis of strong permanent magnets3. When 

reducing the dimensions, magnetostatic energy (governed by the nanomaterials shape 

and their saturation magnetization) plays a key role in the global magnetic anisotropy 

energy4. In this sense, nanowires are an excellent playground to understand the material 

properties since they have a defined magnetization easy axis along the wire axis, 

determined by magnetostatic (also shape) anisotropy. Recent works have shown exciting 

magnetic properties of nanowires by controlling the magnetostatic effects: different 

protected states in the domain wall configuration5-7, control in the magnetization 

processes8, 9, magnetic ratchet effects10, etc. In fact, nanowires have been proposed as 

building blocks of future magnetic logic devices11 and 3D storage devices like the race-

track memories12, 13. 

There is an additional issue for the use of nanowires in practical applications, which 

is how to manage the nanowires themselves. High-aspect-ratio magnetic nanowire arrays 

are normally produced by template-assisted deposition14. When dissolving the template to 

work directly with the nanowires, the whole structure collapses into a bunch of individual 

nanowires without support, which makes possible to study or use them individually15,16 but 

makes their handling and integration into devices quite complex. Therefore, a further step 

in the research of magnetic nanowires is to produce structures of interconnected wires at 

the nanoscale, as proposed for example in the first patent of the race-track memory by 

IBM17 but never fabricated. Three-dimensional magnetic nanostructures, in fact, can pave 

the way towards the emergence of new physics and the development of new devices for their 

exploitation in numerous applications18. 

In this work, we present a way to solve all the previous drawbacks, under a singular 

approach for future novel applications: Three-dimensional (3D) magnetic nano-networks. 
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These 3D interconnected magnetic networks combine the advantages of tailoring as 

desired the magnetic properties at the nanoscale, plus the fact that the 3D linkage 

network can be handled with tweezers in the same way that it can be done with bulk 

material, after alumina scaffold removal19, 20. In other words, when the structure is made 

of a magnetic material, a free-standing 3D magnetic nano-network is obtained with this 

process, consisting of an array of vertical nanowires connected periodically each certain 

distance, Z, via transversal nano-connections (like a nano 3D scaffold). This distance Z 

can be tailored as desired. Therefore, intuitively these kinds of structures could combine 

the properties of nanowires and films to a certain extent for a single structure of a given 

material. Moreover, we expect that the shape anisotropy will play an important role in 

the magnetic behaviour, and taking into account that the fabrication method allows great 

control over the resulting structure, this should be one of the main features of these 3D 

magnetic nano-networks. 

The fabrication method of such 3D interlinked nanostructures is based on porous 

alumina membranes filled via electrochemical deposition, which constitutes a low-cost 

method, higly tunable, with no need of vacuum or atmosphere controlled environment 

and easily scalable to the industry. Other methods of obtaining 3D nanostructures are 

ion-track-etched polymeric membranes, however by this technique certain parameters 

cannot be controlled, such as the exact number and position of interconnections 

between nanowires21, two-photon lithography22 or Focused Electron Beam Induced 

Deposition (FEBID)23 (which are comparably much more expensive and time-

consuming). Nevertheless, these methods have the advantage of being able to produce 

more complex 3D structures of virtually any magnetic material. A review of different 

fabrication techniques of 3D magnetic nanostructures can be found in reference 24. It is 

worth noting that in the case of 3D interconnected nanowires fabricated in ion-track 

etched membranes, the structure itself is quite different from ours, mainly because the 

angles formed between the connecting nanowires cannot be, as in our case, parallel and 

perpendicular to the nanowire axis, and that results in a completely different magnetic 

behaviour.  However, in terms of simplicity, reproducibility and cost, the anodization 

method is better suited for our study than others. 
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The versatility of these 3D alumina membranes has been already proven in other fields, 

where the precise control over the alumina structure allows to finely tune their intrinsic 

optical properties, for instance, the optical response of the metamaterial could be fixed 

to a certain wavelength thus acting as highly sensitive colourimetric sensors25. Similarly, 

the properties of the filling material would be modified. This is the case of a work 

performed in our group by Resende et al., in which these 3D aluminas were used as 

templates to produce metamaterials based on polymeric 3D Bragg refractors with a 

well-controlled optical response26. Now, we will translate that same control and 

tunability over the magnetic response of a magnetic material (having control over the 

geometry of the structure, the magnetic properties of the metamaterial can be easily 

controlled and tuned to tailor the desired needs). In this work, the properties of such 3D 

nano-networks produced from magnetic materials will be studied and considering the 

geometry influence on the magnetism, one could envisage that these structures could be a 

tool to finely control the magnetic anisotropy of a given material. And also, the easiness 

in their implementation inside actual micro and nano-devices to take advantage of their 

modified properties is another benefit of such 3D magnetic nano-networks. 

II. RESULTS AND DISCUSSION 

A. Ni and Co 3D interconnected nano-networks 

As it is explained in detail in the experimental section, 3D Ni and Co nano-networks with 

different Z distances between the transversal connections have been fabricated for this 

work, with Z = 240 nm, and 570 nm, along with the samples consisting of 1D nanowires 

(Z = ∞) for comparison. Figure 1 shows the Scanning Electron Microscope (SEM) 

images of 3D nano-networks of interconnected Ni nanowires (NWs). More detailed SEM 

images of these 3D nanowire networks for all Z distances can be found in the 

supporting information (See Figure S1).A
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Figure 1. Different images of the fabrication process of a 3D magnetic nano-

network: a) to c) present both lateral view SEM images and schematics drawings of a) 

the 3D alumina matrix b) the alumina matrix filled with Ni, replicating the empty part 

of the structure, and c) the 3D Ni nano-network once the alumina matrix has been 

dissolved. The insets show a close up view of the transversal nanochanels through the 

alumina template and their anti-replica when it is filled, the local tranverse nano-

interconnections. The upper inset image in c) presents an optical photo of this free-

standing 3D Ni nanowire network hold with a pair of tweezers after alumina matrix 

removal. The coordinate axis show the different directions along which an external 

magnetic field is applied during the experiments, in plane (IP) and out of plane (OOP). 

 

X-Ray Diffraction (XRD) analysis was performed in all samples in order to determine 

their crystalline structure and preferential orientation (See Supporting Information, 

Figure S2.a). From these measurements, we can conclude that all the 3D Ni nano-

networks were grown with face-centred cubic (fcc) crystalline structure with a clear 
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S polycrystalline structure. XRD diffraction patterns of Co structures showed a hexagonal 

closed packed (hcp) polycrystalline structure (shown in Figure S2.b of the Supporting 

Information). In these spectra, a mean diffraction peak at 2θ = 41.53◦ associated with 

(100) plane and the second order peak (200) at 2θ = 90.33◦ are observed. Also, a strong 

(110) peak appears at 2θ = 75.77◦. Therefore, in these samples, the hcp c-axis and, hence, 

the magneto-crystalline easy axis, is perpendicular to the vertical direction of the 

nanowires, lying in random orientation but within the plane of the sample. This crystalline 

structure and orientation were found in Co nano-networks for all Z distances in this work. 

Also, Ni1-xCox alloys with different ratios but the same Z inter-distance have been 

prepared in this study to observe not only the effect of Z but the effect of composition in 

the magnetic properties of this 3D networks. All the magnetic measurements that will 

be shown in this work have been performed with the 3D nano-networks inside the 

alumina matrix. As the samples are polycrystalline we can assume that the 

magnetocrystalline and magnetoelastic anisotropies terms of magnetic energy average 

to zero, all the magnetic properties should be governed by the magnetostatic energy, 

which is proportional to MS
2 and strongly depends on the structure shape. If other 

magnetic components were to influence the preferential easy or hard magnetization 

axis, apart from the one marked by shape anisotropy, this should be found in the 

magnetic characterization. Therefore, we proceed with a detailed characterization of the 

angular dependence of magnetic properties - via the measurements of static hysteresis 

loops - as a function of geometry and composition. In this work, we defined the out-of-

plane (OOP) direction as that along the length of the nanowires and the in-plane (IP) 

direction as the perpendicular one, that is, parallel to the transversal nano-connections 

and to the surface of the sample (Figure 1.a). 
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Figure 2. Hysteresis loops measured with the magnetic field applied in different 

directions along the plane (IP direction) of a) Ni and b) Co nano-network. The insets 

show an enlargement of the central part of the hysteresis loops. The drawing in the 

center represents a schematic top view of a 3D nano-network, corresponding to the xy 

plane (IP direction) along which the magnetic field was applied during measurements. 

First, we investigate the magnetic properties of the different planes forming the 3D 

nano-network. For this, hysteresis loops were measured with a magnetic field applied in-

plane (IP) to the sample surface, in different IP directions for both nickel (Figure 2.a) and 

cobalt (Figure 2.b) 3D nano-networks.  As can be seen in both figures, the hysteresis loops 

measured in different directions are the same within the experimental error. The 

enlargement of the central part of the hysteresis loops shown in the insets of the figure 

shows that there are also no differences in the low field region. Both Ni and Co 

networks do not show any magnetic anisotropy in the plane. This is somehow expected 

from the geometry of the nano-networks. Although they are composed by locally ordered 

hexagonal structures and therefore, there are non-equivalent directions in the plane 

giving rise to certain anisotropy, the macroscopic samples are composed by randomly 

distributed oriented regions, also called domains. For this reason, the possible IP magnetic 

anisotropy contributions average to zero when measuring the macroscopic behaviour of 

the whole structure. Taking this result into account, in the following we will focus our 

discussion in analyzing the differences in the magnetic properties measured IP and 

OOP, assuming that IP means any direction parallel to the plane of the sample and 

perpendicular to the nanowires and OOP the direction parallel to the NW axis and 

perpendicular to the sample surface. 
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Figure 3. Hysteresis loops measured in 3D Ni Nano-networks being a) Z = 240 nm 

and         b) Z = 570 nm, and c) 1D Ni nanowires (Z = ∞). In Co, being d) Z = 240 nm 

and e) Z = 570 nm for 3D Co nano-networks, and f) Z = ∞ for 1D nanowires for 3D Co 

nano-networks. The central drawings present an squetch of the sample configuration for 

each case.The IP and OOP axis show the different directions along which an external 

magnetic field is applied during the experiments.  

In Figure 3 we show the hysteresis loops measured in Co and Ni 1D nanowires arrays 

and nano-networks for two different Z distances. Let us first focus on the behaviour of 3D 

Ni networks, starting by Figure 3.a. In this case, coercivity is almost zero in the IP direction, 

pointing out to a magnetization process mainly based on rotation of magnetization, 

characteristics of a hard magnetization axis. On the other hand, coercivity is larger in the 
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OOP direction (parallel to the wire axis),  most likely related to nucleation and propagation 

of the domain walls along the different directions of the structure, typical behaviour of an 

easy axis.27As the distance between planes is increased (Figure 3.b), the anisotropy 

increases in the IP direction. This sample becomes almost isotropic. Finally, when 

increasing further the distance to the infinite, which corresponds to a 1D nanowire array 

(Figure 3.c), there is an inversion in the direction of the easy axis of magnetization and the 

OOP direction becomes now the easy axis of the system. This change in the magnetic 

anisotropy of the sample can be explained using micromagnetic simulations using the 

OOMMF code, see Supporting Information (Figure S4.b to S4.f). When the distance 

between planes is small, there is a clear difference between the IP and OOP directions. The 

easy axis is situated IP whereas the OOP direction (parallel to the NWs axis) is a hard 

magnetization direction. This behaviour is the opposite than the one observed in the 

more conventional 1D array of Ni nanowires, where the easy axis is always placed along 

the nanowire axis, providing the nanowires are not very close. In other words, for the 

smallest Z distance, the easy and hard axis are reversed when compared to conventional 

1D Ni nanowire arrays. When the distance between planes increases, the system tends 

to the behaviour of the 1D nanowire arrays, with an easy axis in the OOP direction. In 

between, both contributions compensate, and the system becomes isotropic. 

As it happened in the case of Ni, for 3D Co nano-networks (Figures 3.d, and 3.e) the 

magnetization easy axis also change progressively from an IP easy axis to an OOP easy 

magnetization direction when increasing the Z distance. The reversal of the magnetization 

is much more pronounced in the case of 3D Cobalt nano-networks, where all the 

experimental hysteresis loops show a complete reversal compared to that of Co 1D 

nanowire arrays (Z =∞, Figure 3.f). This is explained taking into account that the 

saturation magnetization of Co is three times larger than the one of Ni. Considering that 

magnetostatic anisotropy scales with M2, the contribution of shape anisotropy, for the same 

geometry, is almost one order of magnitude larger in Co than in Ni, making more 

difficult for the magnetization to align perpendicular to the planes. The XRD patterns 

showed a texture in these samples, with the c-axis of the hcp structure parallel to the in-

plane direction (Figure S2.b). So, an additional contribution from the 
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magnetocrystalline anisotropy is also present. Nevertheless, the complete reversal in 

anisotropy is shown by magnetic simulations in the supporting information (Figure S4.g 

and S4.h). Micromagnetic simulations showed a switch in the magnetization occurring 

at a rather large Z value of 3000 nm. In any case, although being more difficult to 

switch anisotropy in the case of Co, we can conclude that it is also possible. And, that 

the final orientation of the easy axis is mainly controlled by shape, as in the case of Ni.  

 

B. CoxNi1-x 3D interconnected nano-networks  

 
As there is a clear relationship between the magnetization processes and the 

geometry (when changing the inter-distance Z of the 3D interconnected nano-networks 

of Ni and Co), one can describe the behaviour using the following equation that takes 

into account the shape anisotropy (Kshape): 

𝐾����� =  �
� 𝜇�𝑁𝑀�

�  (equation 1) 

, where N is the demagnetizing factor, that depends only on the shape of the studied 

sample, µ0 is the vacuum permeability and Ms is the saturation magnetization of the 

sample. 

Considering the clear link between the shape anisotropy and the saturation 

magnetization, it is interesting to study the behaviour when keeping constant the 

morphology, but changing the saturation magnetization. For that, we have grown 3D 

CoNi interconnected networks changing the Co/Ni ratio of the alloy in the same 3D 

AAO template (with Z of 570 nm). In principle, these alloys will have a linear change in 

the saturation magnetization from the value of Co to the one of Ni. 

Hysteresis loops measured for all samples in the IP direction are shown in Figure 

4.a. Apart from small differences, due mainly to small misalignment of the sample in 

the magnetometer, the magnetic behaviour of the samples is the same. The hysteresis 

loops have been normalized for comparison. However, when measuring in the OOP 

direction (4.b) a clear difference in the saturation field is observed. The saturation 

magnetization increases with the Co content in the alloy. When increasing saturation 
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magnetization, the anisotropy, which is governed by shape anisotropy, increases, 

making necessary a larger field to fully saturate the structure. 

 
 

Figure 4. Hysteresis loops measured for different CoxNi1-x nano-networks with the 

applied field in the (a) IP and (b) OOP directions. (c) Anisotropy energy, calculated by 

numerical integration from the measured first magnetization curves as a function of 

(0MS)2. 

 

Anisotropy energy can be calculated by integrating the first magnetization curves, 

measured after demagnetizing the samples in an oscillating magnetic field and then, 

increasing the magnetic field in the OOP direction upon saturation. Assuming that shape 

anisotropy is the main contribution to the total anisotropy energy, from equation 1, a 

dependence on (0MS)2 is expected. The calculated values of anisotropy energy have 

been plotted as a function of (0MS)2 in Figure 4.c, where Ms has been estimated from the 

composition and the values of saturation magnetization of Co and Ni.  Although more 

energy terms should be considered for a better fitting, there is an almost linear 

relationship between both magnitudes, showing the shape anisotropy is the most 

important contribution to the total anisotropy energy of these 3D structures, making 

possible a full control of the anisotropy just by choosing the appropriate composition for 

the same Z inter-distance. Nevertheless, it is important to remark that this 

approximation is valid for thin nanowires, where axial configuration of magnetization is 

expected. For thicker wires, different configuration of magnetic domains, with 

orthoradial components, would appear, introducing new contributions of the total 

anisotropy energy28.  
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This control of the magnetization processes by changing the composition is 

particularly interesting since recently, it has been shown that changes in composition 

can lead to full control of magnetization processes in nanowires10,29. Even more, the 

introduction of local changes in composition in nanowires, in which the magnetization 

processes are fully controlled by magnetostatic interactions, introduces topologically 

protected magnetic structures, very interesting from both, the theoretical and the 

application point of view5.  

The possibility of controlling magnetic anisotropy in 3D structures paves the way for 

the introduction of these new structures in 3D devices, opening new opportunities for 

the development of 3D memories, portable magnetic tags, 3D oscillators, etc. In 

addition, the tunability of our structures, where the magnetization can be finely 

controlled with composition and by tailoring the interconnection distance, is rather easy 

to implement. All these without forgetting that is possible to have the 3D interconnected 

nanowire networks free-standing (without collapsing) and that can be easily handled 

with tweezers like in a bulk material. Which produce a very interesting material with 

additional advantages and with the possibility to be applied in macroscopic devices. 

 

 

III. CONCLUSIONS 

In conclusion, we have grown magnetic 3D nanowire interconnected networks, which 

spacing and composition can be designed to obtain the desired magnetic anisotropy and 

coercivity. The 3D nanowire network can be described as vertical nanowires interconnected 

by transversal nanowires connecting each nanowire with its closest neighbours. The 

interconnections can be spaced along the nanowire length at will. We have demonstrated, 

that for a given material, we can tune the magnetic properties just by tunning the 

interconnection distances of the 3D network. Therefore, we can conclude that we have 

developed a scalable method for fabricating magnetic tunable interconnected 3D 

nanowire networks, with tunable magnetic properties that can be easily integrated into 
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devices thanks to their self-sustained free-standing structure for a wide variety of 

applications. 

 

IV. EXPERIMENTAL SECTION 

The three-dimensional (3D) structures were fabricated via template-assisted 

electrochemical deposition. The templates used were anodic aluminium oxide (AAO) 

produced following the technique described in reference19, which consists of a two-steps 

anodization process in sulfuric acid, a first one to define the order of the nanopores and 

a second one with a pulsed voltage applied in order to alternate between a mild and a hard 

anodization along the growth of the length of the pores. Then, the etching of those AAOs 

in phosphoric acid has different rates for the mild and hard anodized regions and, with 

careful control over the fabrication parameters, a three-dimensional AAO (3D-AAO) 

interconnected structure can be produced. This structure consists of nanotubes of around 

50 nm in diameter nanowires separated 65 nm between them and interconnected by 

transversal nanochannels of around 40 nm in height and 30 nm in diameter. These 

connecting nanochannels are formed in the areas of hard anodization, and thus the 

distance between consecutive planes of connecting nanotubes can be finely tuned by 

changing the pulses in the second anodization step. In such a way, 3D-AAOs with 

different separation between the planes were fabricated with periodic pulses of three 

different durations (180 s and 540 s) in order to have different separations between the 

planes of transversal nano-connections (around 240 nm and 570 nm, respectively). 1D 

AAOs of the same pore diameter (50 nm) were also prepared to fabricate the 1D 

nanowire arrays for comparison. 
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Figure 5. Schematic illustration of the 3D AAO membrane structure as fabricated 

(top-left), when evaporating a gold layer (top-right), after filling of the membrane with 

the magnetic material via electrochemical deposition (bottom-left) and once the alumina 

template is dissolved and the 3D magnetic nano-network is left alone (bottom-right 

image).. Z refers to the distance between the transversal channels. 

These 3D-AAO templates, once the remaining alumina was dissolved, were 

evaporated with a layer of chromium (5 nm) and gold (150 nm thickness) in one side, and 

used as working electrodes for a three-electrode electrochemical deposition (with an 

Autolab potentiostat), with Ag/AgCl (saturated KCl) reference electrode and a platinum 

mesh as counter electrode. The electrochemical baths used were 0.75 M NiSO4 · 6H2O, 

0.02 M NiCl2 · 6H2O, 0.4 M H3BO3 and 0.016 M of saccharine for nickel deposition, 

0.1 M CoSO4 · 7H2O, and 0.4 M H3BO3 for cobalt deposition. To grow CoxNi1-x alloys, 

both electrolytes were mixed in different ratios to obtain different compositions in the 

alloy. In all cases, cyclic voltammetry was performed and then the optimal potential vs 

Ag/AgCl reference electrode was chosen, resulting of −0.9 V vs Ag/AgCl at 45◦C in the 

case of nickel and -0.8 V vs Ag/AgCl at room temperature for cobalt. The actual 

parameters of the deposit had to be finely tuned in order to obtain a homogeneous 

growth front with a high filling ratio. This was achieved through pulsed depositions with 

A
cc

ep
te

d 
A

rti
cl

e

Figure 5.

A
cc

ep
te

d 
A

rti
cl

e

Figure 5. Schematic illustration of the 3D AAO membrane structure as fabricated 

A
cc

ep
te

d 
A

rti
cl

e

Schematic illustration of the 3D AAO membrane structure as fabricated 

left), when evaporating a gold layer (top

A
cc

ep
te

d 
A

rti
cl

e

left), when evaporating a gold layer (top

the magnetic material via electrochemical deposition (bottom

A
cc

ep
te

d 
A

rti
cl

e

the magnetic material via electrochemical deposition (bottom

e is dissolved and the 3D magnetic nano

A
cc

ep
te

d 
A

rti
cl

e

e is dissolved and the 3D magnetic nano

refers to the distance between the transversal channels.

A
cc

ep
te

d 
A

rti
cl

e

refers to the distance between the transversal channels.

These 3D

A
cc

ep
te

d 
A

rti
cl

e

These 3D-

A
cc

ep
te

d 
A

rti
cl

e

-AAO templates, once the remaining alumina was dissolved, were 

A
cc

ep
te

d 
A

rti
cl

e

AAO templates, once the remaining alumina was dissolved, were 

evaporated with a

A
cc

ep
te

d 
A

rti
cl

e

evaporated with a layer

A
cc

ep
te

d 
A

rti
cl

e

layer of

A
cc

ep
te

d 
A

rti
cl

e

of

working electrodes

A
cc

ep
te

d 
A

rti
cl

e

working electrodes

potentiostat), with

A
cc

ep
te

d 
A

rti
cl

e

potentiostat), with

counter

A
cc

ep
te

d 
A

rti
cl

e

counter electrode. The electrochemical baths used 

A
cc

ep
te

d 
A

rti
cl

e

electrode. The electrochemical baths used 

0.02 M NiCl

A
cc

ep
te

d 
A

rti
cl

e

0.02 M NiCl2

A
cc

ep
te

d 
A

rti
cl

e

2 ·

A
cc

ep
te

d 
A

rti
cl

e

·6H

A
cc

ep
te

d 
A

rti
cl

e

6H2

A
cc

ep
te

d 
A

rti
cl

e

2O, 0.4 M 

A
cc

ep
te

d 
A

rti
cl

e

O, 0.4 M 

CoSO A
cc

ep
te

d 
A

rti
cl

e

CoSO4 A
cc

ep
te

d 
A

rti
cl

e

4 · A
cc

ep
te

d 
A

rti
cl

e

· 7H A
cc

ep
te

d 
A

rti
cl

e

7H2 A
cc

ep
te

d 
A

rti
cl

e

2O, and 0.4 M A
cc

ep
te

d 
A

rti
cl

e

O, and 0.4 M 

both electrolytes were mixed in differentA
cc

ep
te

d 
A

rti
cl

e

both electrolytes were mixed in different

cases, A
cc

ep
te

d 
A

rti
cl

e

cases, cyclicA
cc

ep
te

d 
A

rti
cl

e

cyclicA
cc

ep
te

d 
A

rti
cl

e
A

cc
ep

te
d 

A
rti

cl
e



This article is protected by copyright. All rights reserved 

pulses alternating between the desired applied potential for 1 second and time off of 0.1 

seconds (with no current applied). In such a way, both 3D cobalt and nickel nano-

networks were grown with the 2 different Z distances between the transversal nano-

connections. A schematic illustration of the empty 3D AAO membrane and of the final 

3D magnetic nano-network is presented in Figure 5, where the inter-pore distance 

between transversal nano-connections is defined as Z. 1D Ni and Co nanowires were 

grown under the same conditions described above.  

All the deposited nanostructures were studied under a scanning electron microscope 

(SEM) (Verios 460 from FEI) to verify that the connecting nanotubes were also filled 

and that we effectively had replicated the 3D-AAO structure, as it was shown in Figure 1 

and Figure S1. Also, their structure was analyzed via X-Ray Diffraction spectra (XRD 

Philips X’Pert four circles diffractometer). 

A 7304 LakeShore vibrating sample magnetometer (VSM) allowed us to study the 

magnetic behaviour of the 3D structures at room temperature. Magnetic hysteresis loops 

were measured using a magnetic field of up to 10000 Oe (1 T). The samples were rotated 

in the field to measure the magnetization processes with the applied field parallel to the 

plane (IP— x-axis) and along the wires, i.e. out of plane (OOP — z-axis). The magnetic 

behaviour of the 3D nano-networks has been simulated using the Object Oriented 

MicroMagnetic Framework (OOMMF) code30. We have simulated the magnetization 

processes as a function of the geometry of the structure, which we have simplified to an 

array of nanowires with perpendicular planes (see Supporting information, Figure S3). 

Although different numbers of wires and planes have been simulated, the results were 

analogous, and all the reported results in this work correspond to structures made by 

seven nanowires and three planes. The separation between planes (Z) has been 

modulated from 10 nm to 500 nm in the case of nickel and up to 3000 nm in the case of 

cobalt. The size of the discretization grid was chosen to be 4 nm and no thermal effect 

was included in the simulations. 
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Captions 

FIG. 1. Shows different images of the fabrication process of a 3D magnetic nano-network: a) to 
c) present SEM images of a lateral view of a) the 3D alumina matrix b) the alumina matrix 
filled with Ni, replicating the empty part of the structure, and c) the 3D Ni nano-network once 
the alumina matrix has been dissolved. Inset image presents an optical photo of this free-
standing 3D Ni nano-network hold with a pair of tweezers without the alumina matrix. 

FIG. 2. Hysteresis loops measured with the magnetic field applied in different directions along 
the plane (IP direction) of a) Ni and b) Co nano-network. 

FIG. 3. Hysteresis loops measured in Ni nano-networks being a) 1D nanowires, b) Z = 570 nm, 
and c) Z = 240 nm and in Co nano-networks, being d) 1D nanowires, e) Z = 570 nm and f) Z = 
240 nm. 

FIG. 4 Hysteresis loops measured for different CoxNi1-x nano-networks with applied field in 
the (a) IP and (b) OOP directions. (c) evolutions of the anisotropy as a function of the Co 
content. 

FIG. 5. Schematic illustration of the 3D AAO membrane structure as fabricated (top-left), when 
evaporating a gold layer (top-right), after filling of the membrane with the magnetic material via 
electrochemical deposition (bottom-left) and once the alumina template is dissolved and the 3D 
magnetic nano-network is left alone (bottom-right image). Z refers to the distance between the 
transversal channels. 
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3D interconnected magnetic nano-networks are grown with tailored anisotropy by controlling their geometry or 
their composition. In these nano-structures the magnetic properties are governed by the magnetostatic 
anisotropy, enabling to tune the magnetic easy axis and coercivity in the desired direction through a simple and 
low-cost fabrication method based on tridimensional porous alumina membranes filled with magnetic materials 
by electrodeposition. 
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