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Induction by IL-1b and Fibronectin and Contribution to
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Current description of osteoarthritis includes the involvement of synovial inflammation. Studies
contributing to understanding the mechanisms of cross-talk and feedback among the joint tissues could
be relevant to the development of therapies that block disease progression. During osteoarthritis,
synovial fibroblasts exposed to anomalous mechanical forces and an inflammatory microenvironment
release factors such as a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)
metalloproteinases that mediate tissue damage and perpetuate inflammation. We therefore studied the
production of ADAMTS by synovial fibroblasts and their contribution to cartilage degradation. Moreover,
we analyzed the implication of two mediators present in the osteoarthritis joint, IL-1b as proin-
flammatory cytokine, and 45-kDa fibronectin fragments as products of matrix degradation. We reported
that synovial fibroblasts constitutively express and release ADAMTS 4, 5, 7, and 12. Despite the
contribution of both mediators to the stimulation of Runx2 and Wnt/b-catenin signaling pathways, as
well as to ADAMTS expression, promoting the degradation of aggrecan and cartilage oligomeric matrix
protein from cartilage, fibronectin fragments rather than IL-1b played the major pathological role in
osteoarthritis, contributing to the maintenance of the disease. Moreover, higher levels of ADAMTS 4 and
7 and a specific regulation of ADAMTS-12 were observed in osteoarthritis, suggesting them as new
potential therapeutic targets. Therefore, synovial fibroblasts provide the biochemical tools to the
chronicity and destruction of the osteoarthritic joints. (Am J Pathol 2016, -: 1e13; http://
dx.doi.org/10.1016/j.ajpath.2016.05.017)
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Osteoarthritis (OA), one of the leading causes of substantial
physical and psychological disability worldwide, is a com-
plex disease with a prevalence of >70% in the population
>55 years.1,2 Current description of OA includes not only the
remodeling of articular cartilage and adjacent bone, but also
the involvement of synovial inflammation, which is charac-
terized by thickening of synovium or, indirectly, by joint
effusion. Synovial membrane inflammation and proliferation
stigative Pathology. Published by Elsevier Inc. All rights reserved.
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in OA joints trigger the production of cytokines and pro-
teinases that damage connective tissues, including the carti-
lage.3,4 In this sense, research on inhibitory mediators of
synovial activation could identify ways to avoid the pro-
gressive cartilage degradation and functional impairment.
The role of synovial fibroblasts (SFs) as active drivers of joint
destruction in rheumatoid arthritis is well established,5 but
their behavior in healthy subjects and OA patients is poorly
understood. It has been described that OA-SF exposed to
anomalous mechanical forces and to an inflammatory
microenvironment, release factors such as a disintegrin and
metalloproteinase with thrombospondin motifs (ADAMTS),
that mediate tissue damage and perpetuate inflamma-
tion.2,6e9 Therefore, studies contributing to a better under-
standing of the cross-talk and feed-back mechanisms among
the joint tissues could be relevant to the development of new
therapies able to block disease progression.

Our aim was to elucidate the role of SF in the cartilage
joint degradation in OA patients through the production of
ADAMTS and to characterize these metalloproteinases in
HD-SF. We have mapped the expression and function of
aggrecanases ADAMTS 4 and 5, which degrade aggrecan,
one of the main components of the cartilage extracellular
matrix (ECM) that facilitates cartilage to resist compres-
sion.10 We have also characterized ADAMTS 7 and 12,
involved in destruction of cartilage oligomeric matrix pro-
tein (COMP), a noncollagenous component of the cartilage
ECM that contributes to its assembly and to the cartilage
integrity.11 Moreover, we studied the physiopathological
effect of two mediators present in OA joint microenviron-
ment: the catabolic cytokine IL-1b and the 45-kDa fibro-
nectin fragments (Fn-fs) as products of cartilage ECM
degradation.12e15 This study is the first to report the
expression and release of ADAMTS 7 and 12 by SF from
HD and OA patients, both constitutively and after IL-1b or
Fn-fs stimulation. Besides, the capacity of SF to attach and
degrade the cartilage ECM, generating glycosaminoglycans
(GAGs) and releasing COMP, is also described. Finally, we
study the activation of Runx2 and b-catenin, two signaling
pathways related to ADAMTS expression.16e18 Our study
reports that SF activated by mediators present in the joint,
such as a proinflammatory cytokines and Fn-fs, release
ADAMTS, which contribute to the maintenance of cartilage
destruction in osteoarthritic patients.

Materials and Methods

Patients and Synovial Fibroblast Cultures

Synovial tissue was obtained from 20 active OA patients (16
women and 4 men) aged between 48 and 87 years, at the
time of knee prosthetic replacement surgery. Patients had
advanced disease and were diagnosed with primary OA,
excluding trauma, inflammatory disease, and other structural
causes of secondary OA. Control samples from HD were
obtained from four patients (two women and two men) aged
2
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between 35 and 72 years, at the time of knee arthroscopic
evaluation. These patients were diagnosed with meniscop-
athy caused by trauma to the knee or sports injury,
excluding inflammatory and rheumatic diseases. The study
was performed according to the recommendations of the
Declaration of Helsinki and approved by the Clinical
Research Ethics Committee of the Hospital La Princesa
(Madrid, Spain). All biopsy samples were obtained after
subjects gave informed consent.
SF cultures were established by explant growth of synovial

biopsies, cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with 25 mmol/L QHEPES and 4.5 g/L glucose,
completed with 10% heat-inactivated fetal bovine serum
(Lonza Ibérica S.A.U., Barcelona, Spain), 1% L-glutamine,
and 1% antibiotic-antimycotic (Invitrogen, Carlsbad, CA) at
37�C and 5% CO2. After three passages, residual contami-
nation by macrophages was avoided, previously assessed by
flow cytometry analysis of SF with a purity of 95%.19

Monocultures of SF were used for experiments until pas-
sage 8. Despite the use of cells at varying passage numbers, all
comparisons within a same experimentation were made on SF
at an identical passage number and at 80% to 90% confluence.
For treatments, HD- and OA-SF were cultured in serum-

free DMEM with 1% L-glutamine and 1% antibiotic-
antimycotic, in the absence (untreated) or presence of the
following agents: 10 ng/mL IL-1b (ImmunoTools Q) or 10
nmol/L Fn-fs 45 kDa (Sigma-Aldrich, St Louis, MO).

RNA Extraction and Quantitative RT-PCR Qfor ADAMTS
Gene Expression

SFs were seeded in 100-mm petri dishes (3 � 105cells per
dish) and cultured in the absence or presence of 10 ng/mL IL-
1b or 10 nmol/L Fn-fs 45 kDa for 24 hours. Total RNA was
obtained using TriReagent (Sigma-Aldrich). Two microgram
of RNA was reverse transcribed using a High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA). Semiquantitative real-time PCR analysis
was performed using a TaqMan Gene Expression Master
Mix with manufactured-predesigned primers and probes
for b-actin (NM001101.3), ADAMTS-4 (NM005099.4),
ADAMTS-5 (NM007038.3), ADAMTS-7 (NM014272.3),
and ADAMTS-12 (NM030955.2) (Applied Biosystems). We
normalized the target gene expression to the housekeeping
gene, b-actin (2�DCt). For relative quantification, results were
presented as the relative expression with respect to the un-
treated condition using the formula 2�DDCt, as previously
described.19

Quantification of ADAMTS in Culture Supernatants

SFs were seeded in 6-well plates (6� 104 cells per well) and
cultured in the absence or presence of 10 ng/mL IL-1b or 10
nmol/L Fn-fs 45 kDa, for 24 hours. Levels of ADAMTSwere
measured in the culture supernatants using commercial
enzyme-linked immunosorbent assay (ELISA) kits for
ajp.amjpathol.org - The American Journal of Pathology
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ADAMTS 4 and 5 (Cloud-Clone Corp., Houston, TX), and
for ADAMTS 7 and 12 (MyBioSource, San Diego, CA).

Aggrecanase Activity Assay

SFs were seeded in 100-mm petri dishes (3 � 105 cells per
dish) and cultured in the absence or presence of 10 ng/mL
IL-1b or 10 nmol/L Fn-fs 45 kDa, for 24 hours. Aggreca-
nase activity was measured in the SF culture supernatants
using a Sensitive Aggrecanase Activity ELISA Kit (MD
Bioproducts, Zürich, Switzerland), according to the manu-
facturer’s instructions. Briefly, this assay consists of two
modules. In the Aggrecanase Module, a modified inter-
globular domain (aggrecan-IGD-s) is digested with aggre-
canases, and its proteolytic cleavage releases an aggrecan
peptide (ARGSVIL-peptide-s), which is then quantified
with antibodies in the ELISA Module.

Immunocytochemistry

SFs were seeded on glass coverslips (2.5 � 104 cells per
glass), fixed with paraformaldehyde, and permeabilized with
Tween-20 in phosphate-buffered saline. Cells were blocked
with phosphate-buffered saline containing donkey serum
and incubated with rabbit polyclonal anti-human antibodies
for ADAMTS 4, 5, 7, or 12 (Sigma-Aldrich). After washing,
cells were incubated with AlexaFluor 488 donkey anti-rabbit
IgG antibody (Invitrogen). Coverslips were counterstained
with Hoechst. Background fluorescence was reduced with
Sudan Black in ethanol. Negative controls were performed
in the absence of primary antibodies (data not shown).
Fluorescence was examined using an Olympus BX51
microscope with DP72 camera model (objective 40�).

Runx2 Assay

SFs were seeded in 150-mm petri dishes (8 � 105 cells per
dish). A Nuclear Extract Kit (Active Motif, Rixensart,
Belgium) was used for nuclear extracts preparation, and the
protein content was measured with a QuantiPro BCA Assay
Kit (Sigma-Aldrich). Cytoplasmic extracts obtained were
stored at �80�C for later use in the Western blots. Nuclear
extracts (12 mg per well) were added to a 96-well plate, and
Runx2 activity was measured using a TransAM AML-3/
Runx2 kit (Active Motif). Time course of Runx2 activation
after incubation with 10 ng/mL IL-1b or 10 nmol/L Fn-fs 45
kDa was studied (data not shown), and the experiments were
performed at 60 or 30 minutes of treatment, respectively.

b-Catenin Assay

To detect b-catenin levels, a b-catenin (Total) and a (Phos-
pho) InstantOne ELISA kits were used (eBioscience, San
Diego, CA) with SF cellular lysates. Briefly, SFs seeded in
100-mm petri dishes (3 � 105 cells per dish) were scraped
into phosphate-buffered saline, centrifuged, and resuspended
The American Journal of Pathology - ajp.amjpathol.org
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in the Cell Lysis Buffer Mix (eBioscience). Protein content
was measured by QuantiPro BCA Assay Kit. Levels of
b-catenin in the cellular lysates were measured after 60 mi-
nutes of treatment with 10 ng/mL IL-1b or 10 nmol/L Fn-fs
45 kDa.

Western Blots

For the detection of ADAMTS, SFs were seeded in 100-mm
dishes and cultured to confluence. Culture supernatants were
collected. For protein purification and concentration, Amicon
Ultra 0.5 mL centrifugal filters (Merck Millipore, Darmstadt,
Germany) were used. For Runx2 and b-catenin, the cyto-
plasmic extracts previously obtained were used, and protein
content was measured by QuantiPro BCA Assay Kit. Cyto-
plasmic extracts (15 mg/well) and culture supernatants were
subjected to SDS-PAGE and blotted on a polyvinylidene
difluoride membrane (Bio-Rad Laboratories, France Q).

Membranes were blocked with Tris-buffered saline con-
taining bovine serum albumin and Tween-20, and incubated
withmousemonoclonal anti-humanADAMTS-4,ADAMTS-
5 (R&D Systems), Runx2, or b-catenin (Santa Cruz Biotech-
nology) antibodies, or rabbit polyclonal anti-human
ADAMTS-7 or ADAMTS-12 antibodies (Abcam, UK Q).
Appropriate horseradish peroxidaseeconjugated secondary
antibodies were applied and detected byWestern blot Luminol
Reagent (Santa Cruz Biotechnology). For Runx2 and b-
catenin, we used b-actin as a loading control. Protein bands
were scanned and quantified with the Bio-Rad Quantity One
program.

Blockade Experiments

For blockade experiments, HD- and OA-SF were seeded in
100-mm dishes (3 Q.105 cells per dish) and cultured in serum-
free DMEM with 1% L-glutamine and 1% antibiotic-
antimycotic, in the absence or presence of 10 mmol/L of
MEK inhibitor, PD98059, consequently implicated in the
inhibition of ERK-MAPK; 10 mmol/L of p38-MAPK in-
hibitor, SB203580 (Calbiochem, EMD Biosciences, San
Diego, CA), or 200 ng/mL of Wnt inhibitor, DDK-1 (R&D
Systems) for 1 hour. These treatments were followed by
stimulation with 10 ng/mL IL-1b or 10 nmol/L Fn-fs 45
kDa, for 24 hours. Total RNA was obtained, and quantita-
tive RT-PCR for ADAMTS 4 and 5 was performed as
previously described Q.

GAGs and COMP Assays in Cartilage-SF Co-Cultures

Release of GAG and COMP from cartilage was measured in
culture supernatants from wells containing co-cultures of SF
over cartilage explants.20 OA human cartilages were ob-
tained from three patients undergoing total hip arthroplasty
from Hospital del Mar (Barcelona, Spain). Fixed diameter
(6 mm) and height (2 mm) sections were collected from
cartilage areas without macroscopic signs of OA. Samples
3
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were frozen at �80�C and stored until testing. One explant
per well was attached to a 24-well plate. HD- or OA-SF
were added drop-wise on top of the cartilage surface
(2 � 104 SF per explant). After 3 hours of incubation, wells
were filled with DMEM in the absence or presence of 10 ng/
mL IL-1b or 10 nmol/L Fn-fs 45 kDa, and cultures were
continued for 14 days. Culture supernatants were collected
for detection of GAG and COMP, using a Blyscan Sulfated
Glycosaminoglycan Assay (Biocolor Ltd County Antrim,
Ireland, UK), and a Quantikine Human COMP Immuno-
assay (R&D Systems, Abingdon, OX, UK), respectively.
Frozen sections were prepared using a cryostat and stained
with Alcian blue and Callejas’s tricromic. Sections were
observed using an Olympus BX51 microscope with DP72
camera model (objective 20�).

Statistical Analysis

Data were analyzed using the GraphPad Prism software
version 6. Data were subjected to normality test (Kolmo-
górov-Smirnov test) and equal variance test (F-test). Statisti-
cal differences between sample groups were assessed using
Student’s two-tailed t-test or unpaired t-test with Welch’s
correction, in case of groups with different variances.
P < 0.05 was considered statistically significant. Results are
presented as the means � SEM.

Results

SFs Express and Release ADAMTS 4, 5, 7, and 12 in HD
and OA Patients

We explored the constitutive expression of ADAMTS in HD-
and OA-SF by quantitative RT-PCR (Figure 1). Patterns of
constitutive ADAMTS gene expression were similar in un-
treated HD- and OA-SF. ADAMTS-5 was the most expressed
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0.01

0.02

0.03

0.04

0.05

0.06

† †††

ADAMTS
-4

ADAMTS
-5

ADAMTS
-7

ADAMTS
-1

2

HD
OA

Tr
an
sc
rip
ta
bu
nd
an
ce

(a
rb
rit
ar
y
un
its
)

Figure 1 mRNA expression of ADAMTS in HD- and OA-SF. ADAMTS 4, 5,
7, and 12 mRNA expression was measured in untreated HD- and OA-FLS by
quantitative RT-PCR and normalized to b-actin using the formula 2�DCt

(described in Materials and Methods). Data are presented as means � SEM
of triplicate determinations. n Z 4 (HD); n Z 11 (OA). yP < 0.05,
yyyP < 0.001 HD versus OA.
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followed by ADAMTS 4, 7, and 12. ADAMTS-5 transcripts
were nearly 50-fold higher than ADAMTS-12. Comparing
HD- and OA-SF, ADAMTS 4 and 7 transcripts were twofold
and fourfold higher in OA- than in HD-SF, respectively.
However, ADAMTS 5 and 12 mRNA levels were similar.
ADAMTS protein expression was confirmed by immu-

nocytochemistry. Untreated HD- and OA-SF displayed
similar morphology and both showed cytoplasmic immu-
nostaining for ADAMTS 4, 5, 7, and 12 (Figure 2). No
staining was observed in isotype controls (data not shown).
p
ri
n
t
&
w
e
b
4
C
=
F
P
O

Figure 2 Immunocytochemistry of ADAMTS in HD- and OA-SF. Protein
expression of ADAMTS-4 (A and B), ADAMTS-5 (C and D), ADAMTS-7 (E and
F), and ADAMTS-12 (G and H) in untreated HD- and OA-FLS was analyzed by
immunofluorescence staining (green). Nuclei were counterstained with
Hoeschst (blue). Immunostaining of the SF from one HD (A, C, E, and G)
and one OA (B, D, F, and H) patient; representative of three independent
experiments. Fluorescence was examined on an Olympus BX51 microscope
with DP72 camera mode (objective, 40�). Scale bars Z 50 mm (AeH).
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ADAMTS were also evaluated in untreated SF culture
supernatants by Western blot (Figure 3). We confirmed that
all ADAMTS are released to the medium byHD- and OA-SF.
Western blots for ADAMTS 4 and 5 (Figure 3, A and B)
revealed bands corresponding to the active forms (between
48 and 74 kDa), and additional bands with a higher molecular
weight. ADAMTS-7 and ADAMTS-12 Western blots
(Figure 3, C and D) showed bands with the predicted mo-
lecular weight of the enzymes (between 114 and 201 kDa),
and additional smaller bands.

IL-1b and 45-kDa Fn-fs Enhance the Expression of
ADAMTS-4 and ADAMTS-5 in SF

Because SF has been suggested to represent an important
source of aggrecanases within the joint mediating cartilage
destruction,10 we next studied the effect of IL-1b and Fn-fs
on their production. IL-1b and Fn-fs increased the transcript
and protein of ADAMTS-4 in HD- and OA-SF compared
with the untreated cells (Figure 4, A and B). A significant
C ADAMTS-7

MW HD OA

201 kDa

114 kDa

74 kDa

48 kDa

34 kDa

D

A ADAMTS-4

HD OAMW

201 kDa

114 kDa

74 kDa

48 kDa

34 kDa

B

Figure 3 Western blot of ADAMTS in HD- and OA-SF. Presence of ADAMTS-4
Western blot in untreated HD- and OA-SF culture supernatants. Molecular weight (
(AeD, HD and OA).
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increase in ADAMTS-5 transcript and protein was detected
in OA-SF for both stimuli, whereas in HD stimulation was
only observed in the protein after treatment with IL-1b
(Figure 4, C and D). Altogether, these results show that
IL-1b increased ADAMTS 4 and 5 in HD- and OA-SF,
whereas Fn-fs showed more specific effects in OA, result-
ing in a significant augment of ADAMTS-4 in both, and in a
restricted stimulation of ADAMTS-5 production in OA-SF.

Aggrecanase Activity in SF and GAGs Release in
Cartilage-SF Co-Cultures

ADAMTS 4 and 5 cleave aggrecan within the interglobular
domain at the Glu-373 and Ala-374 bond.21,22 Thus, we
assessed the ability of ADAMTS 4 and 5 produced by
cultured SF to this cleavage by measuring aggrecanase
activation and the ARGSVL-peptide-s released in culture
supernatants by means of ELISA.

Both the constitutive aggrecanase activity (Figure 4E) and
the derived peptide (data not shown) were significantly
ADAMTS-12

HD OAMW

201 kDa

114 kDa

74 kDa

48 kDa

34 kDa
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201 kDa
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(A), ADAMTS-5 (B), ADAMTS-7 (C), and ADAMTS-12 (D) was detected by
MW) markers on the polyvinylidene difluoride membrane are shown. n Q22Z 3
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Figure 4 Induction Q23of ADAMTS 4 and 5 by IL-1b or 45-kDa Fn-fs in HD- and OA-SF. A and C: mRNA expression of ADAMTS 4 and 5 after treatment with IL-1b
or 45-kDa Fn-fs for 24 hours was measured by quantitative RT-PCR, normalized to b-actin, and presented as the relative quantification with respect to the
untreated cells using the formula 2�DDCt (described in Materials and Methods). Values are presented from triplicate determinations. B and D: Presence of
ADAMTS 4 and 5 after treatment with IL-1b or 45-kDa Fn-fs for 24 hours was determined by enzyme-linked immunosorbent assay (ELISA) in culture super-
natants. Concentrations were calculated on the basis of the standard curve provided. Values are presented as the percentage of untreated cells (duplicate
determinations). E and F: Aggrecanase activity in culture supernatants was measured by an Aggrecanase Activity ELISA kit, in untreated cells (E), and after
treatment with IL-1b or 45-kDa Fn-fs for 24 hours, presented as the percentage of untreated cells (F). Values are from duplicate determinations. G and H:
Representative histological sections of a cartilage explant (asterisks Q24) in co-culture with OA-SF (arrow; G) and without SF (H). Alcian blue and Callejas’s
tricromic staining (objective, 20�). I: Glycosaminoglycans (GAGs) in cartilage-SF co-culture supernatants after treatment with IL-1b or 45-kDa Fn-fs for 14
days were detected by a Blyscan Sulfated glycosaminoglycan assay. Values are from duplicate determinations. Dashed lines represent the untreated condition.
Data are presented as means � SEM (AeF and I). n Z 4 (AeF, HD); n Z 7 (AeD, OA); n Z 5 (E and F, OA); n Z 3 (I, HD and OA). *P < 0.05, **P < 0.01,
and ***P < 0.001 treatment versus untreated; yP < 0.05 HD versus OA. Q25
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greater in OA- compared to HD-SF. Fn-fs significantly
increased aggrecanase activity (Figure 4F) and the derived
peptide (data not shown) exclusively in OA-SF, whereas
IL-1b did not induce any change. Interestingly, these results
correlated with the Fn-fs induction of ADAMTS 4 and 5 in
OA-SF.

The aggrecanase activity yields the generation of GAGs
from the aggrecan in cartilage ECM. Hence, we next studied
the potential capacity of SF to degrade cartilage by
measuring GAG release in supernatants from cartilage-SF
co-cultures. After 14 days of in vitro co-cultures, a mono-
layer of SF was observed exclusively on the cartilage sur-
face (Figure 4G). The effects of IL-1b and Fn-fs after 14
days of treatment were evaluated. The constitutive release of
GAGs to the medium was significantly greater in OA-SF
compared to HD-SF. IL-1b induced no change in GAGs
6
FLA 5.4.0 DTD � AJPA2391_pro
levels, whereas Fn-fs enhanced significantly the release of
GAGs in both HD- and OA-SF (Figure 4I Q).

Runx2 and b-Catenin Activation in SF

Because Runx2 transcription factor and Wnt/b-catenin
signaling are involved in aggrecanase gene expression,16e18

and also seem to be implicated in the OA pathology,23,24 we
decided to examine whether IL-1b or Fn-fs could alter the
ADAMTS 4 and 5 expressions by the modulation of these
factors.
Indeed, we found that both IL-1b and Fn-fs significantly

induced nuclear activation of Runx2 in HD and OA-SF
(Figure 5A), consistent with its reduction in the cytoplasm
after the stimulation with both mediators (Figure 5C).
Nonetheless, the data were consistent with a role for Runx2
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Activation of Runx2 and b-catenin by IL-1b or 45-kDa Fn-fs in HD- and OA-SF. A: Runx2 activation was measured in nuclear extracts after 60
minutes of treatment with IL-1b or 30 minutes of treatment with 45-kDa Fn-fs, using a TransAM AML-3/Runx2 kit. Values are presented from duplicate
determinations. B: b-Catenin was detected in cellular lysates after 24 hours of treatment after 60 minutes of treatment Q26with IL-1b or 45-kDa Fn-fs, by enzyme-
linked immunosorbent assay. Values are presented from duplicate determinations. C and D: Representative images of three independent experiments of the
Western blots for Runx2 (C) and b-catenin (D) in cytoplasmic extracts. Protein bands were scanned and quantified with the Bio-Rad Quantity one program and
presented. Values are presented as the ratio of mean value intensity normalized to b-actin of three independent experiments. Data are presented as means �
SEM (AeD). nZ 4 (A, HD and OA, and B, HD); nZ 5 (B, OA); nZ 3 (C and D, HD and OA). *P < 0.05 treatment versus untreated; yyyP < 0.001 HD versus OA.
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in ADAMTS4 transcription because the transcript abun-
dance with IL-1b, on both HD and OA, was approximately
twofold greater than in untreated controls. Furthermore,
treatment with Fn-fs stimulated ADAMTS4 expression was
approximately 2.5-fold in OA cells and approximately 1.3-
fold in HD cells. In contrast to ADAMTS-4, ADAMTS-5
expression showed no stimulation of HD-SF by either IL-1b
or Fn-fs, but approximately a 1.6-fold increase by both
IL-1b and Fn-fs in OA.

In the cytoplasm, b-catenin is regulated by interaction
with a multiprotein complex that phosphorylates it to be
degraded by proteasomes. On activation of Wnt signaling,
non-phosphorylated b-catenin is transported to the nucleus,
where it couples with the complex T-cell factor/lymphoid-
enhancing factor to initiate the transcription of ADAMTS 4
and 5 genes.25 We measured both b-catenin forms in
cellular lysates of SF, where levels of phosphorylated b-
catenin were undetectable by ELISA (data not shown).
Thus, we measured the total b-catenin that mainly repre-
sented the active form.
The American Journal of Pathology - ajp.amjpathol.org
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The b-catenin content of whole cell lysates was approx-
imately 1.5-fold higher for untreated OA-SF than untreated
HD. Moreover, b-catenin levels increased to approximately
twofold after treatment with either IL-1b or Fn-fs exclu-
sively in OA (Figure 5B), which correlated with the
reduction observed in cytosplasmic extracts by Western blot
(Figure 5D).

To better elucidate the implication of Runx2 and b-cat-
enin in the aggrecanases expression, we performed blockade
experiments using inhibitors of two MAPK, ERK, and p38-
MAPK, implicated in the activation of Runx2, PD98059,
and SB203580, respectively. We also used an inhibitor of
Wnt/b-catenin signaling, DDK-1. We showed that PD98059
significantly inhibited mRNA expression of ADAMTS-4
before treatment with IL-1b or Fn-fs, in HD- and OA-SF
(Figure 6A). Moreover, PD98059 inhibited the expression
of ADAMTS-5 in OA-SF after both stimuli, whereas in HD
this inhibition was observed only before stimulation with
IL-1b (Figure 6B). On the other hand, SB203580 is
involved in the decrease of ADAMTS-4 mRNA expression
7
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Figure 6 Blockade of Runx2 and Wnt/b-catenin signaling. mRNA expression of ADAMTS 4 (A and C) and 5 (B and D) was measured by quantitative RT-PCR,
normalized to b-actin using the formula 2�DCt, and presented as the percentage of stimulated cells, after 1 hour of treatment with inhibitors of two mitogen-
activated protein kinases (MAPKs) implicated in the activation of Runx2, PD98059, a specific inhibitor of MEK Q27, responsible for the activation of ERK-MAPK, and
an inhibitor of p38-MAPK, SB203580 (A and B), or an inhibitor of Wnt signaling, DDK-1 (C and D), followed by treatment with IL-1b or 45-kDa Fn-fs for 24
hours. Values are presented as means � SEM of triplicate determinations (AeD). n Z 3 (AeD, Q28HD and OA Q29). *P < 0.05, **P < 0.01, and ***P < 0.001
inhibition versus stimulation.
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stimulated by Fn-fs in both, HD- and OA-SF (Figure 6A).
Regarding ADAMTS-5, SB203580 significantly inhibited
its expression only in OA-SF, after both stimuli (Figure 6B).
Moreover, the Wnt/b-catenin inhibitor DKK-1 significantly
inhibited the expression of both, ADAMTS 4 and 5, before
treatment with IL-1b or Fn-fs, exclusively in OA-SF
(Figure 6, C and D).

Induction of ADAMTS-7 and ADAMTS-12 by IL-1b or
45-kDa Fn-fs in SF, and COMP Production in
Cartilage-SF Co-Cultures

We further studied the effects of IL-1b and Fn-fs on the
ADAMTS involved in the degradation of COMP.
8
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ADAMTS 7 and 12 share a C-terminal COMP/GEP-binding
TSP domain. Their effects in OA are because of the asso-
ciation of this domain with COMP and its subsequent
degradation.26 Significant increases in ADAMTS-7 tran-
script and protein were detected after IL-1b and Fn-fs
stimulation (Figure 7, A and B). Regarding ADAMTS-12,
we observed an increase of mRNA and protein induced
by both stimuli exclusively in OA-SF (Figure 7, C and D).
The release of COMP and its degradative fragments was

measured in the culture supernatants after 14 days of treat-
ment with IL-1b and Fn-fs (Figure 7E). The constitutive
release of COMP was significantly greater in OA-SF than in
HD. Moreover, significant increases were detected after
IL-1b and Fn-fs stimulation.
ajp.amjpathol.org - The American Journal of Pathology

992

of � 19 July 2016 � 7:55 pm � EO: AJP15_0719

http://ajp.amjpathol.org


A C

E

0.0

0.5

1.0

1.5

2.0

2.5

Fn-fs

*

*
**

***

A
D
A
M
TS
-7

re
la
t iv
e
t r
an
sc
ri
pt
ab
u n
d a
nc
e

0

1

2

3

4

5

Fn-fs

**

***

A
D
A M

TS
- 1
2

re
la
tiv
e
tr
an
sc
r ip
t a
bu
n d
an
ce

0

50

100

150

200

250

HD OA HD OAHD OA

IL-1β IL-1β IL-1β

IL-1β IL-1β

Fn-fs

***
**

*

**

A
D
A
M
TS
-7
pr
ot
ei
n
ab
un
da
nc
e

(%
of
u n
tr
ea
te
d
ce
lls
)

0.0

2.5

5.0

7.5

10.0

12.5

HD OA

Fn-fsUntreated

†

*

* *

**

C
O
M
P
( μ
g/
m
L)

0

50

100

150

HD OA

Fn-fs

*
*

A
D
A
M
TS
-1
2
pr
ot
e i
n
ab
u n
da
n c
e

( %
of
u n
tr
ea
te
d
ce
l ls
)

B

D

Figure 7 Induction Q30of ADAMTS 7 and 12 by Fn-fs and IL-1b in HD- and OA-SF. A and C: mRNA expression of ADAMTS 7 and 12 after treatment with IL-1b or
45-kDa Fn-fs for 24 hours was measured by quantitative RT-PCR, normalized to b-actin, and presented as the relative quantification with respect to the
untreated cells using the formula 2�DDCt (described in Materials and Methods). Values are presented from triplicate determinations. B and D: Presence of
ADAMTS 7 and 12 treatment with IL-1b or 45-kDa Fn-fs for 24 hours was determined by enzyme-linked immunosorbent assay in culture supernatants. Values
are presented as the percentage of untreated cells (duplicate determinations). E: Cartilage oligomeric matrix protein (COMP) in cartilage-SF co-culture su-
pernatants after treatment with IL-1b or 45-kDa Fn-fs for 14 days was detected by a Quantikine human COMP immunoassay. Values are presented from
triplicate determinations. Dashed lines represent the untreated condition. Data are given as means � SEM (AeE). nZ 4 (AeD, HD); nZ 7 (AeD, OA); nZ 3
(E, HD and OA). *P < 0.05, **P < 0.01, and ***P < 0.001 treatment versus untreated; yP < 0.05 HD versus OA.
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Discussion

ADAMTS metalloproteinases play key roles in cartilage
homeostasis and in the pathogenesis of OA, where the
disruption of this balance, in favor of proteolysis, leads to a
pathological cartilage destruction.3 ADAMTS 4, 5, 7, and
12 have been implicated in the breakdown of cartilage in
OA,27,28 ADAMTS 4 and 5 degrading aggrecan, and
ADAMTS 7 and 12 degrading COMP. Although their
functions are well understood in cartilage, few studies have
addressed the contribution of SF to their expression and
release.

We showed that ADAMTS-5 was the most expressed in
both HD- and OA-SF. Although ADAMTS4 gene expression
was higher in OA than in HD, ADAMTS-5 mRNA
expression was similar in both. Despite the fact that the
levels of ADAMTS-5 are higher, differences in the
ADAMTS-4 expression between HD and OA-SF seem to
indicate its involvement in the OA pathology. However,
lower levels of ADAMTS 4 and 5 have been reported in OA
cartilage and synovium compared with non-OA tissues.29

Nevertheless, this discrepancy could be explained by the
fact that whole synovium was used in their experiments. In
addition, discordant data in the constitutive mRNA
The American Journal of Pathology - ajp.amjpathol.org
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expression of ADAMTS 4 and 5 in non-OA and OA
cartilage have been described,10 likely because of the
different stages of the disease.

The complexity of ADAMTS regulation, by both pre-
transcriptional and post-transcriptional mechanisms, which
ultimately determine the levels of secreted enzymes, has
been reported.10 In this study, we demonstrated that both
HD- and OA-SF release aggrecanases. Western blot analysis
of ADAMTS 4 and 5 in SF culture supernatants revealed the
presence of the active forms of both enzymes, between 48
and 74 kDa, similar to those reported in OA synovial
fluids.30 We also observed a major band between 74 and
114 kDa, which has been described as the ADAMTS-4
proenzyme, in cartilage from OA patients,28 as well as in
SF.9 Regarding ADAMTS-5, other authors have also re-
ported a 70-kDa form of ADAMTS-5 in cartilage, as well as
in SF from OA patients,9,28 that could represent different
degradation fragments.

We reported that the aggrecanase activity and GAGs
release are constitutively greater in OA than in HD. By
contrast, no differences in the expression of aggrecanases
between non-OA and OA synovium have been reported,9,31

with no data about their activity. Our results showed that
IL-1b increased ADAMTS 4 and 5, with no impact in the
9
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aggrecanase activity or GAGs production. Because the
protein abundance of ADAMTS-4 is apparently influenced
by the transcript, in both HD and OA, whereas the protein
abundance of ADAMTS-5 after stimulation with IL-1b in
HD does not correlate with the transcript, it seems likely that
this ADAMTS is not the main aggrecanase. This fact cor-
roborates other studies, which indicate that ADAMTS-5
mRNA levels do not correlate with the OA progression in
chondrocytes, because of post-translational regulations.32 A
recent study reported that IL-1b induced expression of
ADAMTS-4 in SF but did not measure the activity.33 At the
functional level, our results are in agreement with previous
findings showing that ADAMTS 4 and 5 are not regulated
by this cytokine in SF.9,12,31 The role of IL-1b in OA is
controversial, and the implication of other mediators, as
cartilage ECM degradation products, seems to be more
relevant in the pathology.12 Despite that, the study of IL-1b,
as a pleiotropic proinflammatory cytokine, also contributes
to the knowledge of the mechanism involved in the disease.
In addition, because synovial inflammation intensity is
greater in OA initial stages,4 the lack of effects observed in
the aggrecanase activity after IL-1b stimulation could be
explained by the advanced disease state of our patients.
Although, after stimulation with IL-1b we observed effects
in the levels of ADAMTS 4 and 5, they were not significant
enough to promote their activity.

Articular cartilage matrix proteins are degraded in OA,
resulting in the production of fragments with proin-
flammatory properties, including those of fibronectin.34,35 In
chondrocytes, it has been described that the N-terminal Fn-
fs 45 kDa induces matrix metalloproteinases synthesis and
aggrecan degradation13,14,36; however, there are no data
about its action in other joint cells. Herein, we describe for
the first time the aggrecanases induction by Fn-fs in SF.
Consistent with these previous reports, we noticed that Fn-fs
produced a more specific effect in OA-SF, increasing
aggrecanases production and activity, as well as cartilage
degradation, evaluated by GAGs release from SF-cartilage
co-cultures. Because ADAMTS-4 was also increased by
Fn-fs in the co-cultures with HD- and OA-SF, these results
again point to its main contribution to the aggrecan degra-
dation. The integrin a5b1 is one of the main receptors
implicated in the function of fibronectin, being involved in
the cartilage proteoglycan degradation induced by the
45-kDa Fn-fs.37,38 a5b1 integrins are also expressed in RA-
SF, showing a significant increase compared with normal
SF.39 Thus, SF from OA patients would synthetize aggre-
canases after 45-kDa Fn-fs stimulation through integrins
engagement. Our data suggest that in stages of SF hyper-
plasia in OA, Fn-fs could establish a feedback loop
contributing to the maintenance of cartilage erosion.

Runx2 can be predicted to promote ADAMTS 4 and 5
transcription.16,17 A recent study implicated it in the
expression of ADAMTS 7 and 12 in OA cartilage also.24 On
the other hand, Wnt/b-catenin signaling is a potent stimu-
lator of chondrocyte matrix catabolic action triggering joint
10
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destruction, which also regulates aggrecanases expression.18

Both signaling pathways seem to play important roles in the
OA pathophysiology.40e43 We showed that IL-1b and Fn-fs
induced Runx2 in HD- and OA-SF. Moreover, ERK- and
p38-MAPK are implicated in the activation of Runx2 tran-
scription factor.44e46 Blockade experiments showed that
ERK-MAPK is involved in the expression of ADAMTS 4
and 5, stimulated by IL-1b or Fn-fs, in OA-SF. As both
stimuli also induced the activation of Runx2 and the
expression of both aggrecanases in these cells, we can
conclude that ERK-MAPK signaling through Runx2 is
involved in the expression of ADAMTS 4 and 5 in OA.
ERK-MAPK also regulates the expression of ADAMTS-4
after both stimuli in HD-SF, in correlation with the induc-
tion of ADAMTS-4 transcript and protein, as well as with
the activation of Runx2. These data suggest that IL-1b and
Fn-fs could control ADAMTS-4 transcription via ERK-
MAPK and Runx2 also in SF from HD, by contrast to
ADAMTS-5. On the other hand, p38-MAPK is only
implicated in the expression of ADAMTS-4 after Fn-fs in-
duction in HD- and OA-FLS, as well as in the induction of
ADAMTS-5 exclusively in OA-SF by both stimuli.
Of interest, we detected b-catenin induction exclusively

in OA-SF, which also correlates with the restricted inhibi-
tion of Wnt signaling in OA-SF, mediated by DKK-1 before
stimulation by both, IL-1b or 45-kDa Fn-fs, pointing to the
implication of this signaling pathway in the OA pathology.
These results are in agreement with the higher expression of
Wnt responsive genes, such as WISP1, in OA,47 which has
been associated with a profibrotic and antichondrogenic
OA-like phenotype.48 This Qinterpretation is further sup-
ported by the finding that the Wnt7a/b-catenin pathway
promotes proteasomal degradation of Sox9, thereby block-
ing expression of chondrogenic genes.49

These results could shed some light on the understanding
of how synovitis is triggered in OA, which is an issue under
exploration. The disruption of the articular cartilage matrix
is the most differencing feature in OA, and the resulting
fragments of ECM catabolism have been associated with
inflammation through the triggering of Toll-like receptor
signaling pathways. Both IL-1b and Fn-fs induced the
expression of Toll-like receptor 2 in chondrocytes.50 Thus,
in addition to integrins, Fn-fs, as an endogenous ligand of
Toll-like receptors 2 and 4, could act through its engage-
ment, given that both receptors are present in SF.48,51

Moreover, both stimuli induce the activation of MAPK
signaling, implicated in the activation of Runx2 and other
transcription factors, such as the NF-kB,13e15,46,52 which
also induce the expression of Wnt.53,54 Therefore, we can
hypothesize that IL-1b and 45-kDa Fn-fs induce aggreca-
nases expression by activation of the transcription factor
Runx2, mainly through the ERK-MAPK signaling. More-
over, these stimuli specifically induce the Wnt/b-catenin
signaling in OA-SF, with the consequent therapeutic value.
ADAMTS 7 and 12 have been detected mainly in carti-

lage, with an up-regulated expression of their transcripts in
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OA compared with HD. Regarding other joint tissues,
ADAMTS 7 and 12 mRNA expression have been previ-
ously described in whole synovium, with similar levels in
OA and HD.29 In the present study, we show, for the first
time, that isolated SF express and release ADAMTS 7 and
12. ADAMTS-7 transcripts were higher in OA- than in HD-
SF, whereas expression of ADAMTS-12 was similar in
both. The higher expression of ADAMTS-7 in OA
compared with HD also indicates the contribution of this
ADAMTS in the OA pathology.

Our results are the first to describe the presence of
ADAMTS 7 and 12 proteins in SF. Western blot of
ADAMTS-7 showed a band between 114 and 201 kDa,
similar to the active form previously described in a human
kidney cell line.55,56 Regarding ADAMTS-12, we also re-
ported a band between 114 and 201 kDa, equivalent to that
previously reported in the same human line,33 and a smaller
band between 74 and 114 kDa that could represent the
C-terminal fragment containing the TSP-1 repeats.57,58

As ADAMTS 7 and 12 are involved in the breakdown of
arthritic articular cartilage,56,59 SFs represent other source of
both metalloproteinases that would contribute to the main-
tenance of the cartilage damage. In this sense, COMP frag-
ments have been identified in cartilage, synovial fluid, and
serum from OA and rheumatoid arthritis patients. Moreover,
increased levels of COMP in synovial fluid and serum are
related to joint damage and progression in rheumatic dis-
eases.59e61 Different joint tissues, such as bone, cartilage,
synovium, and tendon, contain and express ADAMTS-7,
which colocalizes with ADAMTS-12 and COMP in the
cytoplasm of chondrocytes.62,63 Consistent with this, we
reported herein that cartilage-OA-SF co-cultures constitu-
tively release COMP to the medium at significantly higher
levels than cartilage-HD-SF co-cultures.

Tumor necrosis factor-a and IL-1b increase ADAMTS 7
and 12 mRNA in cartilage explants,64 whereas ADAMTS-12
is not induced in human fetal fibroblasts.57 We report, for the
first time in SF, that IL-1b and Fn-fs promoted significant
increases in ADAMTS-7 transcripts and protein levels, being
greater in OA- than in HD-SF. Similarly, ADAMTS-12
transcripts and protein were stimulated by IL-1b and Fn-fs
specifically in OA-SF. Interestingly, ADAMTS-12 was the
only ADAMTS studied exclusively induced in OA-SF.
Those facts are important for the development of combined
therapies on the basis of the blockade of these ADAMTS.
Emergent data indicate that ADAMTS-12 has multiple
functions in the inflammatory response,64 angiogenesis, and
apoptosis.65e67 Thus, further studies are needed to clarify
whether ADAMTS-12 is also involved in those functions
during OA development.

Our results showed that the stimulation of COMP release
by IL-1b and Fn-fs was greater in OA-SF. Because specific
antibodies against ADAMTS 7 and 12 inhibited the tumor
necrosis factor-a- or IL-1beinduced COMP degradation in
the cartilage of OA patients,68 this increased release of
COMP after IL-1b or Fn-fs treatment could be ascribed to
The American Journal of Pathology - ajp.amjpathol.org
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the increased expression of both ADAMTS. Because, by
contrast to ADAMTS-12, IL-1b and Fn-fs also induced
ADAMTS-7 in HD-SF, COMP degradation may be mainly
attributed to its action. Our data suggest that in the late
phase of OA, IL-1b and Fn-fs may contribute to the damage
of noncollagenous components of the ECM by increasing
ADAMTS 7 and 12.

Our study presents two potential limitations. The in vitro
model of cartilage-SF co-culture uses dead cartilage; thus,
whether the same results would be obtained with SF adhered
to live human OA cartilage is unknown. Besides, the me-
dium used for all cell cultures was DMEM containing high
glucose concentration. However, given that all treatments
were performed with the same medium, this condition
would not invalidate our results.

Overall, our data indicate that SF provides aggrecanases,
ADAMTS-7, and ADAMTS-12 that contribute to the chro-
nicity and destruction of OA joint. Although both IL-1b and
Fn-fs have been described as mediators of cartilage degra-
dation in OA, our findings indicate that despite the contri-
bution of both mediators, they are Fn-fs rather than IL-1b,
which plays the major pathological role, in agreement with
recent studies.12 We showed that constitutive levels of
ADAMTS-4, one of the main aggrecanases in cartilage
destruction, were higher in OA than in HD. Interestingly, the
higher levels of ADAMTS-7 in OA compared to HD, as well
as the regulation of ADAMTS-12 by IL-1b and Fn-fs
exclusively in SF from OA patients, suggest their potential
as new therapeutic targets for the treatment of the disease.
Altogether, our results point to an important contribution of
SF, providing the biochemical tools, to the chronicity and
destruction of the osteoarthritic affected joint.
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