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Abstract

A number of depolarization metrics is applied to a series of reported Mueller matrices. It is shown the depolarization
scalar metric Q(M) provides consistent results with the reported scalar metrics like the depolarization index and the
degree of polarization. It is shown Q(M) provides additional information about the internal nature of the Mueller
matrices, specifically when the upper limit, 3, is reached. It is also shown the depolarization index and the Q(M) metric
are only necessary but not sufficient conditions for the physical realizability of Mueller matrices. Finally, Q(M) is

proven to be consistent in all cases studied here.
© 2009 Elsevier GmbH. All rights reserved.
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1. Introduction

The concept of depolarization and the metrics to
measure it have deserved a lot of interest over the last
years [1—13]. In this work, the term depolarization refers
to the loss in the degree of polarization after an incident
polarized beam of light emerges from an optical system.
The depolarization index (0<DI(M)<1) has been
defined as a single scalar metric associated to the
Mueller matrix representing the depolarization of light
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associated to the linear response of an optical system
[1-3]; it can be calculated directly from the Mueller
matrix. The degree of polarization [10-13] is a measure
of the percent of polarization associated to a beam of
light (0< DoP<1); it is measured directly from the beam
of light under consideration, but it can be calculated
also from a given Mueller matrix by considering, in
addition, an incident Stokes vector. The degree of
polarization and other derived metrics have been studied
for a broad kind of systems and links with the
diattenuation and the polarizance vectors have been
analyzed [4]. The physical interpretation associated to
the bounding limits for both metrics, DI(M) and
DoP(M,S), are the following: 0 corresponds to a totally
depolarizing system, 1 to a non-depolarizing system, and
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intermediate values correspond to a partially depolariz-
ing system. A recently reported metric, named Q(M),
has bounds associated which allows to identify a
Mueller matrix as totally depolarizing, partially depo-
larizing, non-depolarizing diattenuating, and non-depo-
larizing non-diattenuating, respectively [7,8].

A number of depolarization metrics is applied to a
series of reported Mueller matrices. It is shown the
depolarization scalar metric Q(M) provides consistent
results with the reported scalar metrics like the
depolarization index and the degree of polarization. It
is shown Q(M) provides additional information about
the internal nature of the Mueller matrices, specifically
when the upper limit, 3, is reached. It is also shown the
depolarization index and the Q(M) metric are only
necessary but not sufficient conditions for the physical
realizability of Mueller matrices. The overpolarization
condition is the physical condition a Mueller matrix
must fulfill in order to be physically consistent. Finally,
QO(M) is proven to be consistent in all cases studied here.

2. Basic relations

The linear response of an optical system to an incident
Stokes vector can be expressed in terms of intensities,
through the relation
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where M is called the Mueller matrix of the system,
represented as a 4 x 4 matrix of real elements, and S is
the Stokes vector. S represents the polarization state of
light, defined in terms of the orthogonal components of
the electric field vector (E,, E;) as
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where a =inc or scatt. Angular brackets represent
temporal averages and * indicates complex conjugation,
i = —1 is the complex number. The upper (lower) sign

in the right hand side of 5§ corresponds to a description

of polarization states as looking to the source (propaga-
tion direction). The normalized Stokes vectors can also
be written in terms of the azimuthal (0<y <) and the
ellipticity (—(n/4) < x<(n/4)) angles of the polarization
ellipse of the wave, respectively [12,13]

1
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S = (s0) (2b)

where (sg) represents the intensity associated to the
Stokes parameters; usually, it is fixed to the unity value.
An interesting characteristic associated to an optical
system is its capability to depolarize light, which is
measured by using some of the following depolarization
scalar metrics. The depolarization index DI(M) and its
physical realizable limits are defined by [1,2]:

3
0<DI(M) = {Zm moo} /fm00<1 (3)
k=0

DI(M) is directly related to the Mueller matrix elements
only. The degree of polarization, DoP(M,S), and its
physical realizable limits have been defined by [10-13]
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DoP(M,S) is related with both, the Mueller matrix
elements of the system under study and the incident
Stokes vector. The diattenuation, D(M), and the
polarizance parameters, P(M), are defined by [4]
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and
0<P(M) = \/m3, + m}, + mi,/mp <1, (6)
respectively.

The Q(M) metric and its physical realizable bounds
are defined as [7,8]
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where Q(M) =0 for a totally depolarizing optical
system; 0< Q(M)< 1 for a partially depolarizing optical
system; if 1<Q(M)<3 and 0<DI(M)<1 the system
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partially depolarizes also, but if DI(M) = 1, it is a non-
depolarizing diattenuating optical system; and Q(M) =
3 for a non-depolarizing non-diattenuating optical
system, respectively [7,8].

A necessary and sufficient scalar condition for a
Mueller matrix to be derivable from a Jones matrix has
been reported to be given by the Gil-Bernabeu theorem
[1,2,9]

Tr(M™ M) = 4m,,. (8)

In a recently reported work, Gil has shown Eq. (8) is
valid for any deterministic system [9]. We will take this
result as valid in the rest of this work.

Following the development of Brosseau [13] and using
the function,
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the overpolarization condition is given as [13]:
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For the case of a specific given Mueller matrix, a usual
procedure is just to scan for all the possible incident
Stokes vectors whose outputs can be associated to
physically realizable Stokes vectors (overpolarization
condition) [13]. That condition can be plotted in three-
dimensions as a function of the incident state of
polarization parametrized by the angles 0<y <=
(azimuth) and —(n/4)<y<(n/4) (ellipticity) of the
polarization ellipse of the wave, respectively [13]. In
practice, the experimentalists that use the ideal polari-
meter arrangement usually deal with any of the six basic
polarization states to determine the Mueller matrix of a
given optical system [14,15]. The ideal polarimeter
arrangement employs classical optical elements like
linear polarizers and %—Wave retardation plates for the
generation and the analysis of the polarization states,
respectively. That kind of experimental setup is handled
manually. The six basic polarization states are the linear
polarization parallel (p), perpendicular (s), to +45° (+)
and to —45° (—) respect to the incidence plane,
respectively, and the circular right-(r) and left-handed
(1) polarization, respectively. The results obtained in this
work are presented by using tables and graphics in the
next Section. We have obtained the degree of polariza-
tion for each Mueller matrix by using each of the six
basic polarization incident states considered here and its
maximum value also, in addition to the single scalar

polarization metrics DI(M), P(M), D(M) and Q(M).

3. Results

The Table 1 contains the results obtained by applying
Egs. (3) and (7) to the general Mueller matrices
associated to ideal polarizers and ideal wave-retarders
(see Appendix A [16]).

According to Eq. (3) all the matrices, except
M. My, M, are non-depolarizing Mueller matrices,
M, is a totally depolarizing matrix, and M, , M, are
partial depolarizing systems. On the other hand, the
O(M) metric, Eq. (7), establishes that M,, My, My, M,
are non-depolarizing and non-diattenuating Mueller
matrices; M, M;, M; are non-depolarizing Mueller
matrices and depending on the maximum and minimum
values assigned to the transmittances ¢ and r, respec-
tively, they can be more or less diattenuating. Observe
that Q(M) is sensible to the internal nature of the
Mueller matrices associated to these optical systems.
The results obtained in Table 1 are trivial; however, we
have considered them as a way to verify the consistency
of the Q(M) metric and some advantage with respect to
the depolarization index, Eq. (3).

Table 2 shows the results obtained from the applica-
tion of Egs. (3)—(7), the Gil-Bernabeu theorem, Eq. (8),
and the overpolarization condition, Eq. (10), to different
published Mueller matrices (see Appendix B). According
to the Q(M) depolarization scalar metric, all of these
matrices have values inside 0<Q(M)<1. This means
they are associated to partially depolarizing optical
systems. Note this interpretation is consistent with the
results provided by expressions (3)—(6), (8), (10),
presented in Table 2. The value of DoP,y, is the
maximum value obtained when Eq. (10) is applied to all

Table 1. Single scalar metrics for matrices associated to ideal
optical elements (polarizers and wave-retarders).

DI(M) o(M)
M, Non-polarizing element 1 3
M, Absorber 1 3
M, Ideal depolarizer 0 0
M, Non-uniform depolarizer \/m @+ b+ 2

3

M, Uniform depolarizer o 302
M, Linear retarder, fast axis 0, 1 3
retardance o
M, Circular retarder, retardance 6 1 3
M, Linear diattenuator, axis 0, 1 1+ 2
Int. transmittances ¢, r (s
M; Circular diattenuator, Int. 1 1+ q?j]f;z
transmittances ¢, r
M, Linear diattenuator and 1 1+ qg‘fr ;

rétarder, fast axis 0°, Int.
transmittances (g, r), and
retardance o

The Mueller matrices were taken from Appendix A [16].
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Table 2. Single scalar metrics for the Mueller matrices considered in Appendix B.
M1 M2 M3 M4 M5 M6 M7 M3 M9 M10

DoP, 0.5119 0.5123 0.4976 0.2104 0.3250 0.748 0.740 0.273 0.269 0.9976
DoP; 0.7053 0.7060 0.6519 0.2041 0.3222 0.796 0.785 0.257 0.265 0.9950
DoP4s 0.4593 0.4585 0.4413 0.2224 0.3275 0.526 0.439 0.273 0.273 0.0100
DoP_ys 0.4028 0.4022 0.5256 0.2233 0.3283 0.426 0.552 0.209 0.227 0.0096
DoP, 0.4416 0.4533 0.4223 0.1275 0.2734 0.416 0.336 0.603 0.605 0.0040
DoP, 0.5095 0.5243 0.4774 0.1349 0.2778 0.339 0.394 0.480 0.479 0.0069
P(M) 0.0145 0.0026 0.0851 0.0085 0.0105 0.121 0.074 0.047 0.069 0.0015
D(M) 0.1846 0.1903 0.0397 0.0231 0.0270 0.134 0.000 0.046 0.000 0.0022
DI(M) 0.5144 0.5152 0.5017 0.1917 0.3103 0.569 0.564 0.373 0.375 0.5753
o(M) 0.7348 0.7334 0.7524 0.1097 0.2879 0.936 0.955 0.416 0.423 0.9928
DoP 0.7050 0.7130 0.6592 0.2240 0.3340 0.828 0.793 0.612 0.605 1.0000
Tr(M™ M) /4m, 0.448 0.449 0.438 0.2776 0.3222 0.493 0.488 0.354 0.355 0.4982

Note that 0<Q(M) <1 for all of them, which mean they depolarize light partially.

the incident Stokes vectors taken from the Poincaré
sphere. In this case, all the matrices M1—M10 are
physically consistent.

All the numbers reported in this work have been
calculated by considering the approximation at which
the Mueller matrices were originally reported.

In Table 3a are shown the results when Egs. (3)—(8),
(10) are applied to the Mueller matrices considered in
Appendix C. Note that 1< QO(M)<3 and 0<DI(M)< 1
for all of them, which mean they depolarize light
partially. In this case, Q(M)=1. This result is
consistent with the remaining scalar metrics, Egs.
(3)-(6), the Gil-Bernabeu theorem, Eq. (8), and the
overpolarization condition, Eq. (10). Note all of them
are physically consistent Mueller matrices.

In Table 3b are shown results when Egs. (3)—(8), (10)
are applied to the Mueller matrices considered in
Appendix D. Note that 1< Q(M)<3 and 0<DI(M)< 1
for all of them, which mean they depolarize light partially.
This result is consistent with the remaining scalar metrics.

Observe that M14—M16, M 18, M21, M?22 have asso-
ciated physically consistent values for the depolarization
index, Eq. (3), the diattenuation and the polarizance
parameters, Eqs. (5) and (6), the Q(M) metric, Eq. (7),
and the Gil-Bernabeu theorem, Eq. (8); however, there
exist some incident Stokes vectors that generate an
unphysical output degree of polarization (DoPyz>1).
The remaining matrices, M 17, M 19, M20, fulfill all the
physical conditions considered here.

When Egs. (3)—(8) and (10) are applied to the Mueller
matrices shown in the Appendix E, Table 4 is obtained.
All of these matrices have values 1<Q(M)<3 and
DI(M) = 1. According to the metric Q(M), they are
associated to non-depolarizing diattenuating optical
systems (note they have a non zero diattenuation
parameter). According to the depolarization index, Eq.
(3), all of them are associated to non-depolarizing

systems, but this metric does not adds additional
information about the internal nature of the matrices
studied. Matrices M23, M24, M26, M30—M32 and
slightly M25 are physically consistent, according to the
overpolarization condition, Eq. (10). Matrices
M?27—M29 are not physically consistent, following
Eq. (10). The Gil-Bernabeu theorem states that all the
matrices, with exception to M?25, M27, M28, are asso-
ciated to non-depolarizing optical systems and can be
derived from a Jones matrix (they are Mueller—Jones
matrices). Observe that the depolarization index, the
O(M) metric and the Gil-Bernabeu theorem are only
necessary but no sufficient conditions for the physical
realizability of Mueller matrices.

Table 5 shows values of the single scalar metrics for
the Mueller matrices considered in Appendix F. Note
that Q(M) ~ 3 for all of them, which mean they are
associated to non-depolarizing non-diattenuating sys-
tems. This conclusion is consistent with the depolariza-
tion index, Eq. (3), the diattenuation and the
polarizance parameters, Eqs. (5) and (6), and they are
physically realizable, according to the overpolarization
condition, Eq. (10). Finally, all of them are Mueller—
Jones matrices associated to non-diattenuating Jones
matrices, following the Gil-Bernabeu theorem, Eq. (8).
In other words, matrices M33—M37 are pure Mueller
matrices [9].

Table 6 shows the Mueller matrices with Q(M)>3
(see Appendix G). According to this metric, matrices
M38—M41 are not physically consistent. The same
conclusion is confirmed by using the depolarization
index and the degree of polarization. Note that these
Mueller matrices have physical diattenuation and
polarizance parameters within their validity range. This
means these parameters are only necessary but not
sufficient conditions for the physical consistency of
Mueller matrices.
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Table 3. (a) Mueller matrices with 1<Q(M)<3 and 0<DI(M)<1, Q(M) = 1. (b) Mueller matrices with 1<Q(M)<3 and

0<DI(M)<1.
M11 M12 M13

(a)
DoP, 1.00 1.00 1.0000
DoP; 1.00 1.00 1.0000
DoP 45 0.03 0.06 0.0956
DoP_y4s 0.03 0.06 0.0956
DoP, 0.03 0.06 0.0956
DoP; 0.03 0.06 0.0956
P(M) 0.03 0.06 0.0956
D(M) 0.03 0.06 0.0956
DI(M) 0.57 0.57 0.5826
O(M) 1.00 1.00 1.0000
Do Py 1.00 1.00 1.0000
Tr(MTM)/4méO 0.50 0.50 0.5046

M14 M15 M16 M17 M18 M19 M?20 M21 M?22
(b)
DoP, 0.7252 0.6339 1.0130 0.7312 0.955 0.8044 0.7501 0.974 0.985
DoPy 0.7738 0.8039 0.9801 0.7104 1.002 0.7307 0.6891 0.968 0.968
DoP 45 0.8405 0.8044 0.9583 0.7027 0.957 0.9386 0.8819 0.945 0.961
DoP_y4s 0.8308 0.7307 1.0109 0.7611 0.980 0.8609 0.8043 1.046 1.008
DoP, 0.9320 0.9386 1.0055 0.6581 1.006 0.7892 0.7537 0.934 0.993
DoP,; 0.9197 0.8609 0.9870 0.5737 0.998 0.6979 0.6718 0.941 0.955
P(M) 0.0885 0.1867 0.0103 0.0576 0.007 0.1867 0.1816 0.048 0.026
D(M) 0.0901 0.1804 0.0303 0.0583 0.032 0.1804 0.1791 0.064 0.000
DI(M) 0.8426 0.8080 0.9923 0.6913 0.983 0.8080 0.7703 0.968 0.968
o(M) 2.1049 1.8654 2.9505 1.4254 2.896 1.8654 1.6939 2.796 2.814
DoP gy 1.1278 1.1035 1.0409 0.7728 1.012 0.9882 0.9030 1.084 1.072
Tr(MTM)/4m30 0.7825 0.7397 0.9885 0.6084 0.975 0.7397 0.6951 0.952 0.953
Partially depolarizing optical systems.
Table 4. Mueller matrices with 1< Q(M)<3 and DI(M) = 1.

M23 M?24 M?25 M?26 M27 M28 M?29 M30 M31 M32
DoP, 0.999 1.00 1.0003 1.00 1.000 0.999 1.000 1.000 1.000 0.999
DoPy 1.000 1.00 1.0003 1.00 1.000 0.999 1.000 1.000 1.000 0.999
DoP 45 1.000 1.00 1.0003 1.00 1.000 0.997 0.999 0.999 1.001 1.000
DoP_ys 1.000 1.00 1.0003 1.00 1.000 1.003 0.999 0.999 1.001 1.000
DoP, 0.877 1.00 1.0000 1.00 0.999 1.000 0.999 1.000 1.000 1.000
DoP; 0.929 1.00 1.0000 1.00 0.999 1.000 0.999 1.000 1.000 1.000
P(M) 0.067 0.28 0.2801 0.10 0.238 0.238 0.134 0.046 0.067 0.064
D(M) 0.067 0.28 0.2800 0.10 0.238 0.238 0.134 0.046 0.067 0.064
DI(M) 1.000 1.00 1.0002 1.00 1.001 1.001 1.000 1.000 1.000 1.000
o(M) 2.981 2.70 2.7101 2.97 2.794 2.794 2.929 2.991 2.986 2.983
DoP 1.000 1.00 1.0003 1.00 1.008 1.417 1.144 1.000 1.001 1.000
Tr(MTM)/4m%O 1.000 1.00 1.0003 1.00 1.002 1.002 1.000 1.000 1.001 1.000

Non-depolarizing diattenuating optical systems.

Figs. 1-4 show the graphics of the overpolarization
condition, Eq. (10), for the matrices considered in Table
6. Note that there exist several incident Stokes vectors
that originate a non-physically consistent output for the
Mueller matrices M38—M41 (DoP > 1).

4. Conclusions

Several depolarization metrics has been applied to a
large series of reported Mueller matrices in order to
show that the depolarization scalar metric Q(M)
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Table 5. Mueller matrices with Q(M) ~ 3.
M33 M34 M35 M36 M37

DoP, 1.000  1.000  1.000  0.999  0.999
DoPq 1.000  1.000  1.000  0.999  0.999
DoP.ys 0.999  0.999  0.999 1.000  1.000
DoP_ys 0.999  0.999  0.999 1.000  1.000
DoP, 0.999  1.000 1.000 0999  0.999
DoP; 0.999  1.000 1.000 0.999  0.999
P(M) 0.000  0.000  0.000 0.000 0.000
D(M) 0.000  0.000  0.000 0.000 0.000
DI(M) 0.999  1.000 1.000 0.999  1.000
o(M) 2999  3.000 3.000 2999 2999
DoP 1.000  1.000  1.000 1.000 1.000
Tr(MTM)/4m§0 0.999  1.000 1.000 0.999  1.000
Non-depolarizing non-diattenuating optical systems.

Table 6. Mueller matrices with Q(M)> 3.

M38 M39 M40 M41

DoP, 1.027 1.5326 1.022 0.979
DoPy 1.026 1.3980 1.022 0.999
DoP 45 1.022 0.9796 1.018 1.000
DoP_ys 1.038 0.9923 1.024 1.201
DoP, 1.167 0.9540 1.016 0.999
DoP; 0.919 0.9335 1.016 0.994
P(M) 0.026 0.1000 0.005 0.046
D(M) 0.133 0.1000 0.006 0.057
DI(M) 1.031 1.1542 1.020 1.028
o(M) 3.115 3.9472 3.122 3.158
DoP 1.173 1.7524 1.027 1.212
Tr(MTM)/4m3, 1.047 1.2492 1.030 1.042

Non-physically consistent Mueller matrices.
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O(M) metric and the Gil-Bernabeu theorem are only
necessary but not sufficient conditions for the physical
realizability of Mueller matrices. The overpolarization
condition is the physical condition a Mueller matrix
must fulfill in order to be physically consistent. Finally,
in all the cases studied here, Q(M) has proven to be
consistent.
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Appendix A. Form of the Mueller matrices as taken from [16]:

1 0 0 0 o 0 0 0
01 00 0 00
Ma: b Mb— a
0 01 0 0 0 o« O
0 0 01 0 0 0 «o
1 0 0 0 1 0 00
0 000 0 a 00
M(?z B Md_
0 0 0O 0 0 b O
0 0 0O 0 0 0 ¢
1 0 00 1 0 0 0
0 o 0 0 110 coso sind 0
M, = 5 Mq:_ . ;
0 0 o« O " 2|0 —sind cosd 0
0 0 0 «o 0 0 0 1
q+r 0 0 q—r
1 0 2/qr 0 0
M= ;
21 0 0 247 0
q—r 0 0 q+r
1 0 0 0
110 cos220 + sin® 20 cos & sin 260 cos 20(1 — cos §) —sin 26 sin &
My =~
172 0 sin 20 cos 20(1 —cos 8)  sin®20 + cos2260 cos & cos 20 sin I
10 sin 26 sin ¢ —cos 20 sin ¢ cos
M q+r (¢ — r)cos 20 (g — r)sin 20 0
1 (g —r)cos 20 (q+r)cos220~|—2\/§75in220 (g +r—2/qr)sin 20 cos 20 0
M, ==
"2 (g—r)sin 20 (g +r—2,/qr)sin 20 cos 20 (q + r)sin’ 20 + 2. /grcos® 20 0
i 0 0 0 2./qr
q+r qg-—r 0 0
1la—r q+r 0 0
M=~
72100 0 2. /qr cos 6 2./qrsin 6
0 0 —2,/qrsin é 2,/qr cos d
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Appendix B. Mueller matrices employed to
calculate Table 2. Matrices M1, M2 were taken
from [17], M3 from [18], M4, M5 from [19],
M6—M9 from [20], and M10 from [21]

[ 1.0000  0.1631 —0.0322  0.0802
0.0083 0.4038 0.2555 —0.2158
ME=1 00026 04297 —0.1376 02016
| —0.0116 0.0597 —0.3175 —0.3690
1.0000 0.1633 —0.0655 0.0725
0.0018 0.4042 02324 —0.2324
M2= 100019 04302 —0.1745 02624
0.0003 0.0598 —0.3149 —0.3170
[ 0.0262  0.0169  0.0246
—0.0711  0.5573  —0.0001 —0.0789
M3=1 00380 —0.171 04708 0.0457
| —0.0260 0.0185 —0.0728 04318
[1.0000 0.0227  —0.0031 —0.0028]
0.0077  0.2066 —0.0038 —0.0096
MA= 100000 —00121 —02225 —0.0024 ]
0.0035  0.0118  —0.0082 —0.1306 |
[1.0000  0.0269 —0.0021 —0.0018]
0.0101 03236 —0.0087 —0.0023
M= 100008 —0.0024 —0.3276  0.0009
100026 0.0023  —0.0029 —0.2754 |
[ 1 —0.115 —0.066 0.023 ]
—0.111 0759  —0.061 —0.001
MO=1 0018 0151 —0435 —0.139|
| —0.046  0.006  0.128 —0.334 |
1 0 0 0
—0.028 0756 —0.072  0.021
MT=1 0062 —0072 0488 —0.014]
| —0.03 0021 —0.014 0358 |
[ 1 —0.009 —0.021 —0.041]
—0.002 0256 —0.029 —0.003
ME=1 004 0045 0235 0032
| 0041 0.024 0017 0538 |

1 0 0 0
—0.001 0.258 0.01 0.009
MY =
0.028 0.01 0241 —0.015
0.064 0.009 —0.015 0.541
1 —0.0013 —0.0015 —0.0010
0.00 0.9963  —0.0083 —0.0005
M10 =
—0.0007  0.0068 —0.0049 0.0029
0.0013  0.0033 —0.0013 —0.0046

Appendix C. Mueller matrices used to calculate
Table 3a. Matrices M11 — M13 were taken
from |22]

(090 003 0 0
0.03 090 0 O
Mll - 5
0 0 0 0
L0 0 0 0
[0.80 0.05 0 O]
0.05 0.80 0 O
M12: B
0 0 00
L0 0 0 0
[0.7215 0.069 0 0
0.069 0.7215 0 0
M13 =
0 0 0 0
0 0 0 0

Appendix D. Mueller matrices employed to
calculate Table 3b. Matrices M14, M 15 were
taken from [22], M 16, M 17 from [18], M18
from page 576 of [12], M 19, M 20 from [23], and
M21, M22 from |20]

[ 0.8886 —0.0131  0.0055 0.0786 ]
—0.0115 0.5762 —0.2820 —0.1668
M4 =
0.0048 —0.2809  0.6825 0.0026
| 00775 —0.1672  0.0012  0.8061 |
[ 0.7599 —0.0623  0.0295 0.1185 T
—0.0573 0.4687 —0.1811 —0.1863
M15 == s
0.0384 —0.1714 0.5394  0.0282
| 0.1240 —0.2168 —0.0120  0.6608 |
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1 —0.0118  0.0279  0.0001
0.0045 0.9956  0.0013  0.0350
M16 =
0.0012  0.0341 0.9838  0.0083
10.0092  0.0178  —0.0002 0.9956 |
1 —0.0146 0.0509  0.0243 7
0.0004 0.7163  0.0268 —0.0250
M17 == s
0.0078 —0.0544 0.7277 0.0104
1 0.0571  0.0010  0.0035 0.6163 |
[0.998 0.026 0.019 —0.002
0.002 0976 —0.030 0.009
MI18 =
0.007 0.033 0.966 —0.002
1 0.002 —0.004 —0.002 1.0
[ 0.7599  0.0295 0.1185 —0.0623]
0.0384  0.5394  0.0282 —0.1714
M19 - s
0.1240  —-0.012  0.6608 0.2168
| —0.0573  —0.1811 —0.1863  0.4687 |
[ 0.7599  0.0257  0.1206 —0.0576]
0.0372  0.5285  0.0001  —0.0496
M20 == s
0.1208 —0.0001 0.6184  0.1920
| —0.0554 —0.0572 —0.1794 0.4822 |
[ 1.000 0.026 0.044 —0.039
0.029 0962 —-0.144 —-0.047
M?21 = )
0.002 0.126 0.975 0.026
| —0.039 0.019 0.115  0.936
1 0 0 0
0.008 0976 —0.01 —0.021
M22 =
—-0.023 —-0.01 0982 0.073
| —0.009 —0.022 0.073  0.941

Appendix E. Mueller matrices employed to
calculate Table 4. Matrices M23, M27—M32
were taken from [20], M24, M25 were taken
from [12], pages 171 and 172, respectively, and
M?26 from [19]

M?23 =

—0.06
—0.031
—0.001

—0.06
0.856
0.266
0.442

—0.031
0.284
0.475

—0.831

0.0
—0.43
0.837
0.331

M?24 =

M?25 =

M?26 =

M27 =

M28 =

M29 =

M30 =

M31 =

M32 =

R. Espinosa-Luna et al. / Optik 121 (2010) 1058—1068

[0.50 0.14 0 0

014 050 0 0

0 0 048 0
L0 0 0 048
[0.500000 0.024311 0.137873  0.000000
0.024360 0.480725 0.003578  0.000000
0.137900 0.003270 0.499521  0.000000
| 0.000000 0.000000 0.000000 0.480000
[0.19 002 0 0

002 0.19 0 0

0 0 —019 o0 |
00 0 —0.19
1 009 —0.093 —0.2

0.155 0874 0.119 —0.435
—0.179 0.303 0.487  0.804
| 0.029 0310 —0.837 0.383
T 009 —0.09 —02 ]
0.09 0975 —0.004 —0.009
—0.093 —0.004 0976  0.009 |
| 02 —0.009 0.009 0992 |
1 —0.115 —0.066 0.023
—0.115 0998  0.004 —0.001
0066  0.004 0993 —0.001|
| 0023 —0.001 —0.001 0.991 |
T 1 —0.009 —0.021 —0.041T
—0.009  0.999 0 0

—0.021 0 0.999 0o |
| —0.041 0 0 1]
1 =006 —0.031 0

—0.06 1 0.001 0

—0.031  0.001 1 0o |
0 0 0 0998
! 0.026  0.044 —0.039
0.026 0998  0.001 —0.001
0.044  0.001 0999 —0.001
| —0.039 —0.001 —0.001  0.999
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Appendix F. Mueller matrices used to calculate
Table 5. Matrices M33—M37 were taken from
[20]

1 0 0 0
0 0985 —0.184 0
M33 = s
0 —-0.175 -0.924 -0.312
10 0.057 0306 —0.95
1 0 0 0 ]
0 0988 —0.152 —-0.022
M34 =
0 0.151 0986 —0.067
[0 0032 0063 0998 |
(1 0 0 0
0 0857 0.283 —0.431
M35 - s
0 0.265 0475 0.839
|10 0443 —-0.833 0.332 |
1 0 0 0
0 0.892 0.130 —0.432
M36 =
0 032 0492 0.809
10 0318 —0.861 0398 |
1 0 0 0 ]
0 099 -0.138 —0.027
M37 =
0 0.136 099 —0.048
10 0.033  0.044 0.998 |

Appendix G. Mueller matrices employed to
calculate Table 6. Matrices M 38, M40 were
taken from [12], page 175 and 174, respectively,
M39 from [22], and M41 from [24]

1
—0.024
0.008

—0.009
0.8488

—0.0503
0.0294
0.0617

M38 =

M39 =

0019  0.021 —0.130
—0.731 —0.726  0.005
0.673 —0.688 —0.351
0259 —0.247 0.965
—0.0503 0.0294  0.0617
0.8304  0.0913 —0.0920
0913  0.8277 0 ’
—0.0920 0 0.7947

[0.978 0 0.003 0.005
0 1 —0.007 0.006
M40 =
0 0.007 0999 —0.007
_0.005 —0.003 —-0.002 0.994
[ 0.946 0.019 0.048 —0.016
—0.024 —-0.848 0.322 0.314
M4l =
0.003 —-0.261 0.087 —0.885
i 0.037 —-0.293 —-0.981 -0.071
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