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ABSTRACT

Given that landfills are depletable and replaceable resources, the right approach, when
dealing with Tandfill management, is that of designing an optimal sequence of landfills rather
than every single landfill separately. In this paper we use Optimal Control models, with
mixed elements of both continuous ard discrete time problems, o determine an optimal
sequence of landfills, as regarding their capacity and lifetime. The resulting optimization
problems involve dividing a time horizon of planning into subintervals the length of which
has to be decided. In each of the subintervals some costs, the amount of which depends on
the value of the decision variables, have to be borne. The obtained results are useful for
other economic problems such as private an public investments, constmption decisions on
durable goods, etc.
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1 Introduction

The aim of this paper is to analyse how the optimal capacity and the swithching time of a sequence of
landfills has to be decided, considering both the construction and management costs.

As noted in Ready and Ready (1995), landfills are depletable and replaceable resources. Unlike other
natural resources, whose depletion is irreversible, once a landfill is full it can be replaced at some cost, by
constructing a new one. The new landfill will also be depleted and so on. As a consequence, the capacity
ol a landfill should not be decided from a static point of view, just by considering the costs associated
with the present landfiil, but also the costs linked to the following ones. Therefore, instead of optimaily
designing a landfill, the appropriate approach is that of designing an optimat sequence of landfills. In
Ready and Ready (1995), Huhtala (1997} and Gaudet, Moreaux and Salant {1998) the sequential aspect
of landfills is recognized. However, in these papers, the capacity is a given and therefore the problem of
obtaining the optimal capacity is not considered. In Huhtala (1997) the substitution of a landfll by a
new one is studied and the capacity of the new landfill is a decision variable; however the capacity of the
first landfll is given and moreover, the decision capacity is not studied in depth.

The higher is the capacity of the Jandfill to be constructed, the ligher is the construction cost. If
the objective of the planner is just to minimise the present building costs for this landfill, the cbvicus
solution is to construct a landfll with the smallest capacity. The consequence will be a short lifetime
of the constructed capacity and the construction of a new landfill will have to be undertaken very scon.
There is a conflict between present and future costs and sc we are faced with a fypical economic dynamic
problem, where the present and future decisions are not independent, but have to be joiatly taken.
Specifically, the planning time horizen has to be divided into several subintervals the length of which has
to be decided, and in each of the subintervais some costs, the amount of which depends on the values
given to the decision variables, are realiged. In this paper, the described problem is formalized and the
solution is discussed under different assumptions. The models we state are Optimal Control problems,
with mixed elements of both continuous and discrete time problems. Fhe obtained 1esults are aseful
for other economic problems such as private and public investments, consumption decisions on durable
goods, ete.

The rest of the paper has the following structure: In section 2 the basic problem, under the assump-

- tion: of constant waste peneration, is stated and its main characteristics are discussed. In section 3 a
" metieralization is studied, assuming that the instant generation of waste follows a given evolution through
time: T séctiot 4 the joint problem of optimal capacity of landfills and the optimat landfilled and recycled
- arount, of waste ig- dnelysed The paper finishes with the conelusions {section 5) and the proof of the
ma.hhematlca.l resul(',s inan appendlx (sectlon 6)

:_-2 Problem:wmh Constant Generatlon of Waste

A soc1al p]anner has to take the fol[owmg actions in order to manage, with the smallest possible cost,
the waste produced in a time horizon of length

t. At instant £ = 0, to construct a landfill, with arbitrary capacity Yh, with a set up cost which
depends on ¥y, according to the increasing, convex and C¥ cost function ¢ (o).

2. While the first landfill is being used, he has to pay the instantaneons waste management cost, given
by the linear function hg (Q (£)} = ¢ (£), where by is the unit management cost, busically Tepresenting
the coilection, transportation and processing costs of one unit of waste, and (@ (¢) is the amount of waste,
produced at instant #, which we assume is exogenous. In this section, we assume that @ (i;)
Lonstant ‘This assumptwn is relaxed in sectmn 3.

by the condition ,‘;) t)dt == Yy, the planner has to cluse it and to construct a new one

place, with capacity Y7, whmh will last untit time To given by ] Iy Q)@ =Y. . :
4, Between T) and Ty, he has also to pay the management costs of the waste prociuced in:
These costs are given by the functien A (@ {#)} = &, @ (t), where the unit cost 4;6;, iTi; pener;
from ey, due to the different transport costs, land types, ete.
And 50 on, until the lasé landgll, dencted by K — 1, being & a decision vzmabl

constructed at T} with a capacity ¥; Jasts until T,y ), implicitly defined by the equation ﬁi Q) dE =
and the instantaneous management costs associated with such a landfill are given by hy Q&) =d; Q

From a mathematical point of view, the described problem {P) has a particular structure which
incorporatoes some continuous time and some discrete time elements. On the one hand, the time variable
% is continuous, waste is generated in continnous time and the management costs h; (Q {t)) are preduced
in continuocus time. The variables T;, which refer to time can take any real value, as corresponds to a
continucus time optimal control model. On the other hand, the construction costs happen at a finite
number of times, as happens ja discrete time optimal control problems.

Neovertheless, assuming that the capacities of all landfills are depleted under the solution, the problem
can be expressed as one in discrete time, in the following way: given the assumption @ {t) = @, we obtain

¥
=2 .. T,=T BT = T = T 1+Y" L

,» so that, the planner has to find a number of

landfills &, and a saquence of capacities {¥5,Y1,..., Yic_:}, in order to minimise the function

K-1 K1 g, K-1 T
Netown+ Y [ [ R (Q () dt] =3 e [C (¥ + f e~ Mg Qdt| (P
=0 =y [T i=0 )
subject to the following constraints
n = 0,Tk=r,
Y .
T = Tﬁra: i=0,12,.. K-1, (1
Y < %<Y,

where ¥ and ¥ represent the minimum and maximum capacity constraings and § is the discount rate.
Nate that (P} ean be regarded as a discrete time optimal control problem, where the *discrete time” is
not given by the chronological time &, but by the different landfills ¢ = 0,1,..., K — 1, and (1) is the
state equation.

This problem is conceptually similar to that of exploiting a sequence of deposits of & natural resource,
as stucied ir Herfindaht (1967), Hartwick {1978), Weitzman {1976} or Hartwick, Kemp and Long (1986),
where the role of extraction cost is played by the mapagement costs in our problem. Anyway, there
are two important difference: first, in our case, the rhythm of depletion of the landfill, analogous to the
rhythm of naturel resource extraction, can not be decided because it is given by the exogenous generation
of waste. Second, the initial landfill capacity (analogeus to the initial resource stock) is not given in our
problem, as in naturzl resource extraction models, but it is a decision variable.

The classic result by Herfindahl (1967) for various natural resource deposits, which states that the
extraction has to be dosie in an increasing order of marginal extraction costs, apply here. Fn our case,
if there is no other difference among landfill places, it is optimal to deplete the landslls in an increasing
order of their marginal management costs!,

Because K is a decision variable, (P) is a free time horizon problem. The easiest way to solve it consists
of finding the solution for all possible values of K, and choosing that which provides the minimum total
cost. Specifically, K can take any integer value such that K € {Kmin, Kinin + L, o) Ko — 3, Knax s
where

TR P AP "
- — is an integer,
Kmin = }é Y H I(max = Inf (ﬂ) .
Int (—}—— + 1) otherwise, ¥

L Lt ws assume Ehat. thoe selution of the problem (P} is asequence of capaciti

(¥} = {}';],Yl_ LT CITE P
whote nfr,_ > heqq- The discmted cost of the solution {l"} cn be reduced just by changing the order of the lisdfills &y

k+1




- additional

Int (£) denoting the integer part of £. Henceforth, Ky — K +1 discrete time optimal control problems
have to be solved, Lot Ok bo the optimal discounted cost which can be obtained constructing K landfills.
The optirsal value of K is given by K = argmin Cx.

{i=1,.,K}

Now, let us regard the solution for each possible value of K. The most interesting case, as for
its economie interpretation, is the one where the minimum and maximum capacity constraints are not
binding. For that reason, in what follows we concentrate on the interior solutions. The capacities of an
optimal sequence of K landfills, in an interior solution, have to meet what we call the Optimal Capacity
Cuondition, which is stated in the following proposition:

Froposition 1 Given an arbidrary value of K, in an interior solution of problem (P}, for two arbitrary
conseculive landfills, k and k + 1, the following Optimal Capecity Condition holds:

€ (Vy) = ™8[O (Yra) + 5O (Yora) + Oy |
2
= 5Tt —Ti) {C" (Y1) + %C(Yk-}—'l) +A¢’;.-} ; E=01,.. K~2

where Ay, = ¢y, — iy, &5 the wnit management cost increment from landfill k to landfill k + 1m

Proof: sce section fig

Condition (2} is a nonlinear first order difference equation which represents the relation between the
optimal capacity of two consecutive landfiils, & and k+1. In order to economically interpret this condition,
think of a situation in which Ag; = 0 V& and § =0, that is, the unit cost of management is identical for
all the landfills and there is no time discount, so that all the costs have the same weight in the objective
function. Then (2) takes the form

C' () = C' (Yas1)s (3

which can be taken as 2 non-arbitrage condition: if & (¥3) < (=) &’ {Vi41), total cost could be reduced by
reducing ¥y (Yi41) and increasing Yy (Y2}, Condition (3} establishes the impossibiity of reducing total
cost by transferring some capacity from one landfill fo another one. With a strictly positive discount
. tate and different. unit management costs, the relevant equation is (2}, which is still a non- arbitrage
: condltlon but now t,]le margma,l effect of transferring capacity from one landfill to another has two
onents the delay {or advance) of the future construction costs and the difference between
ithe managemen% co:,ts borne ‘on. one oy, other landfill. The greater is the expected transportation cost

: increment, for, thie next landfll; Aqik ; the greater is the value of the right hand side of (2). In order to
;- inaintain the! equahty, the left hand side, that is, the marginal construction cost of ¥;, has to be greater

" too, - Assummg thiat O is a convex function, and therefore (¥ {¥7.) is increasing with Yk, it follows that

the greater is Agy, the greater s the optimal capacity of landfill 5. This conclusion is reasonable from
an_ economie point of view: if future landfills are subject to large management costs increments, it is
optimal to increase the capacity of the present landfill in order to extend its lifetime and to delay future
management costs associated with the next landfilis.

2.1 Example

Let us assume that the building cost function has the following cuadratic form:

C(Y):a+bY+%Y2, abe> 0.

and the unit management eost increases at a rate ¢ , from landfifl £ to landfill i + 1, adcording to the
following equation: L Lo

gy = {1+ )y

The numerical solution is obtained, using the Matlab eptimization toolbox for the fo lowizg parametpr
values:

a=100000, =50, by =1

h=1, 5_’:5000, e=101 .
=05, ¥=3323, =002 &
2 = 100,

from which, we know that Kupin = 1 and Kjhax = 15. The solution is shown in figure 2.1

1.2 3 4 5 6 7 8
fandfill nurrber

Figure 2,1, Solution for exampie 2.1

As shown in the labels, in this solution, landfill capacities are slightly increasing.

We now perform sensitivity analysis to describe the effects of changes in parameter values. Figure
2.2 shows the effects of parameters a, b, ¢, §, Q@ and T on the opblma.l number of landfills, K*, and the
average capacity of landfills in the So].lltlon, that is, ¥ = L '21:0 ¥}, which can be used to mea,sure the
level of the sequence Ya,Yi,... Y1,

Note the econcinic meaning of these results: increasing parameter a, which measures fixed construction
costs, makes it optimal to build fewer landfills with a bigger capacity, The opposite occurs when increasing
the variable building cost parameters b and c: it is optimal to build more landfills with a smaller capacity.
Increasing the rate of discount & leads to zn increase in the weight given in the objective function to short
term costs versus long term costs, As a consequence, it is better to build more landfifls with smaller
capacity to delay costs.

Changing parameters a, b, ¢ or § does not change the overall quantity of waste produced throughout
the planning period, given hy 7(}, so that, in the solution, although the individual capacities ¥; change,
the sum of capacities 3_; ¥; does not. Increasing Q or T, enlarges the overall waste generated in the
period [0, 7] and, hence, makes a bigger total capacity necessary. Note that "small® increases of T or
Q. lead to inereases in the average individual capacity and keep K* unchanged, up to a point that the
increase of 77 is large encugh to make building a new landfill profitable, allowing a decrease in average
capacity. As a result, K, as a function of @ and 7, has a stair shape and ¥, a5 a function of @ and ,
hag a sawtooth shape.
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Tigure 2.2a. Effect of parameters on K* and ¥
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Figure 2.2b. Effect of parameters on K* and ¥

As for parameter ¢, its effect is shown in figures 2.3 and 2.4. First, note that £ does not affect the
whole quantity of waste 7¢}, and so, varying ¢ does not change the sum of capacities, although it does
imply a change in particular capacities. Inereasing ¢ makes the difference in unit munagement costs
Iarger from landfill to landfill. As a consequence, as & increases, the optimal solution implies a sequence
of more sharply decreasing capacities, that is, the capacity of the initial landfills is bigger and bigger and
the capacity of the latter landfills is smaller and smaller (as shown in figure 2.3).

When the increase in £ is big encugh, it is optimal to decrease the number of landflls K* to save




management costs. (as shown in figure 2.4},

Capaclry

Figure 2.3. Solution for different values of .

12.00

11.00 4
10.00
9.00
3.00
7.00
6.00

5.00 e T - -
030 045 Q.80 0.75 0.90 t.05

€

Figure 2.4, Optimal value of K* for different values of .

3 A Variable Quantity of Waste

In this section, we explore an extension to the basic case, assuming that the planner expects that the
quantity of landfilled waste will not be constant along the planming horizon. This belief may come from
several circumstances, such as o foresight for economie growth or technological change, that will imply a
change of production and consumption patterns, some forthcoming environmental regulation concerning
packaging, recycling promotion, ete.

Let (£} be the amount of waste generated by the population at time £, and assume that sach amount
evolves according to the following differential equation:

Q8) = G(Q (2,1, (8)

b

where the concrete expression of function G {t) depends on the expectations about the future evolu-
tion of waste. The problem is to that te find a number of landfills A and a sequence of capacities

f¥u. Y1 . ¥xo1} which minimize the discounted addition of management amd construction costs given
by

K-1 .

3 [e*”xcw) + ] e"s‘qﬁiQ(t)dt}

i=0 1

subject to the constraints

Qb = G@em., {6)
f:“Q(t)dt = Y, i=0,1,2,... K ~1
' Ty = 0,Tx=r,Q(0) = Go,

where (Jo is known and represents the inséantaneous generation of waste at time £ = 0.

Problem (6), like the one studied in section 2, contains some continuous time and some discrete time
elements. The evolution of €} (t} and the constraint of landfill ¢ capacity are formulated in continuous
time?, but the objective function does not have the typical form of an optimal contral problem in
continuous time, becanse it consists of a sum, as accurs in diserete time Optimal Control problerus. Next,
a form of approaching the problem(6), employing usual dynamic opsimization techiniques is proposed. The
method has the following steps: i

1. Soive the differential equation @ (t) = & (Q (2) ,#), with initial condition ¢} () = (g, obtaining the
expression for J (£] as a function of time.

Tizy

2. Substitute the expression obtained in step 1. in the equation ¥; = fT G {t)dt and solve this

definite integral, as a function of the limit values of integration T3, Thyq. The result can be written as
Yi=F{T,,Tiy1).

where function F (T}, Ty ) measures the total amount of waste generated between any two times T} and
Tip1- On the other hand, the total landfilf i discounted maragement cost is given by

Tig1
MC (T, Tiyy) = f e ¥p.Q (1) de
3. From here on, there are two possibilities:
3.1. Substitute ¥; = F (T}, 7i4;) in the objective function. The resulting problem is that of finding
the seruence of construction times {17, T4, ..., T~ } which minimizes

-1 K-—1
STHTTn) = Y {e O (F (T, i) + MC (T4, 1)} n
i=0 =0

with the initia} condition To = 0 and the final condition Tk = +.

Taking 2 =0,1,2,..., K — L as the time index, (7} is a discrete time Calculus of Variations problem,
heing T; the state variable, and z:i;l H (T;,Ti4a) the objective function. Let us observe that, due to
the different periods length, the term e %7 can not be interpreted as a discount, but as a part of the
objective function. In order to solve this problem, the Euler cquation® has to he applied:

Ho (T3 T} + Hy (Tigr, Tiga) = 0,

p N T N . . B
Ty Oprimad Controf theory, the constraints of the type fT¢ L de = ¥, wre cadled soperitnetric constraints,
#Sue, for example, Stockey  and Locas (1489),




where Hj represents the partial derivative of H with respect to its j—th argument. According to the
definition of H given in (7}, the Euler becomes

0 = e CF (T, Tigd)) Fa (B, Tipa) + M (T3, Tiga)
e T CNF (Tigs, Tegn)) By (Tigr, Togn) — 85T O P (T, Tin)} + MOy (Topy Togoj

3.2, If'it js possible to selve V; = F (T}, iy ) for Thyy, an expression like Tiyy = © /T, ¥:) is oblained.
giving the exhaustion time of a capacity-Y;- and-initial-time T} landfill and, by construction, $, @, = 0,
the later the landfill i begins to be used (time T}) and the greater its capacity {Y}) is, the later it is
exhausted {time T}..;). Using @, we have a discrete time optimal contrel model, being T; the state variable
and ¥; the controt variable. A solution to the problem is a sequence of capacities {¥5,Y1,. Yy} and
the associated scquence of switching times {T5,Ty,..., T} whick minimise the cbjective functional

K-l
I =3 {e TOM) + MC (T, 3 (T, Vi)
i=0
subject to the state equation 7}y = ® (73, Yi), the initial condition Ty = 0 and the final condition
Ty = v. Let us define the Lagrangian function
K—1
L= Z e O + MO (T, ® (1Y) + A B (0,¥0) — Tyl 4+ Aoy [B (Tweor, Yies) — 7.
i=0
A measuring the total discounted cost reduction that happens when lendfill ¢ lifetime is marginally

prolenged, so that it can be called the (opposite of) "shadow price of time”, referring to the lifetime of
landfill 4. The first order conditions are

g_j‘f = —Ee O] + MO+ MCy®s — Mg+ A®y (T Y) =0, i=1,2,... K~1 (8

i

35, = e NG (V) + MCaa + 38y (T, Y1) =0, i=0,1,,..K -1, 9

Y .

= 0T = @G Y, i=D1. K1 (10)
i

with Ty = 0 and T% = 7. From (9) we abtain that the costate variable A; is negative

T Y) + MCay
&y (T3, 1)

A= <0 Yi

and the evolution of this shadow price follows a difference equation, obtained from {8):

A1+ 5&761“'0(}’;) e MCy — MCagy

A &, (T, V)

Condition (9) is the Optimal Capacity Condition for landfill { and it states the equality between the
marginal cost and the marginal profit of increasing the capacity of laadfill ¢, The marginal cost is given
by e~T:¥ (¥}, that is, the (discounted) derivative of the building cost. The marginal profit is the "valuc
of time gained”, that is, the discounted seving produced by using landfill ¢ for more time. This saving
is obtained by multiplying ®2, the marginal increase of the landfill ¢ Lfetime due to an increment in

Yi, (that is, 6(3)"; ! by A; (that increment shadow price).
i

3.1 Example

Assume that the construction cost function is quadratic:

CY)=a+bY +2¥?

10

and the instantaneous generation of waste follows the differential equation

Q) = (8, an
o 7t
with the initial condition ¢ (0} = Qo. From 11, we have gigti = @, 5o that, waste generation increases

or decreases at a constant rate equal to a. The concrete value of a depends on the expectations about
the future evolution of the waste. If the sole reason for the expected incremenl of the waste is econornic
growth, a proxy variable for & may be the GNP or the Indnstrial Production growth rate. Solving
equakion {11) we obiain

Q () = Qoe™*,

therefore, the relation between Y3, T, and Tyy, is given by the squation

Tipr
= ./r.- (Qoe™*) dt = % [eaTi — ] (12)

Assume, moreover, that waste management cost is identical for all the landfills, in such a way that this
compenent can be taken as a constant and, the preblem solved taking into account just the construction
costs. Substituting {12) in the objective function, the problem can be formulated as the following Calculus
of Variations problem, with initiat condition Ty = 0 and the final condition Ty = 7:

K—1

. . Q . o Qo «ny?
iy 2 e o et —eom) 4 S et eeny ]}

=0

Another possibility for approaching this problem consists of solving the equation (12) for Tiyq, ob-
taining the following optimal control problem in discrete time:

-1
(%,eril.i.r,lyx_,} g {e_m [“ + 0¥ 4 gYE] }

subject to the state equation

1 o )
Tip1= = log (@Y; +€“T') , {13}

the initial condition T = 0 and the final condition Ty = 7.
Figure 3.1 shows the solution to the problem with the following parameter values:

e = 50000, §=10.04, Kin =1,
b= 1, QD =30, Koax = 15,
¢ = 0.4, 7 =G0, a = 0.021.

11
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building of landfills is performed taking into account the existence of & different technology aside from
landfilling, so that optimal landfli capacity and management technologies are jointly decided. Recycling
is selected as the alternative technelogy because it is being the object of a great and inereasing interest
nowaslays for its cconomic and environmental advantages (see, for example, Weinstein and Zeckhauser
{1974), Highfill and MeAsey (1997) or Huhtala (1994, 1997, 1889)).

Assume a constant instantanecus waste quantity @ {t) = @ is generated. From the total amonnt, a
portion R (#) is recycled and the rest ¥V (¢) is landfilled. The following mass balazice condition nmst hold:

V(B+RE) =9, Vi {14)

Disposing of any quantity of waste in landfill 2 has a unit cost of o;, and the cost of Teeyeling and
amount R{t) is given by r; (R (£)), where r; is a C® function holding >0, rf = 0f. The recycling
cost functions are supposed to be increasing and convex to represent the different technical recycling
complexity attached to different materials. For example, glass is more easily recyclable than paper, and
paper more than plastic. In practice, it is reasonable to recycle first those materials which are technically
easier {and hence, cheaper) to recycle. As a bigger amount of waste is to be recycled, more complex
materials are affected and the attached cost increases faster and faster,

A landfill of capacity Y; built at time T3, will be depleted at Ty ;, given hy

Tipa
f Vet = Y.

Let ¥; () denote the available capacity of landfill § at instant £. Assuming that tandfill 1 is not available
unti}! T;, the building moment, and that landfill capacity is always depleted, the time evelution of ¥; (t)
is piven by

. 0 teT
Yi{t) = Vi{ty=—Q+R({) T<t<Ty:, i=01,... (1s)
0 t> T,

with the boundary conditions ¥; {T:) = ¥; and ¥; (i) = 0, where Y; is a decision variable. Botween T}
and Tiyr, Y7 {t) decreases as waste is disposed of and is totally exhansted at Ty .

Given that the total number of landfills K is a decision variable, K ax — Knin + ! optimal control
problems have to be sclved, one for each pessible value of K, and that value providing the least cost is
sefected. The minimum and maximum feasible values for K are given by

Y

Koin=1,  Kuyax = Int (IQ.) )

The maximum number of landfills K. (which is the relevant number when no waste is recycled,
¥ (t) = @ ¥, and all landfills are minimum capacity, ¥y = ¥1 = --- = Yy,,__1 =Y, has the same
expression as in section 2, Nevertheless, the minimum number of landfills is determined in a different
way. Let us suppose (rather realistically} that the constraint R{t} < @ is never binding, because of the
high marginal cost of recycling the whole amount of waste, in such a way that a positive amount of waste
is landfilied at every instant £, and henceforth, at least one landfill is necessary. But nothing prevente the
landfilled amount from being small enough for one single landfill to meet the requirements of the whole
period {0, 7]. As a consequence, K, = 1. For each possible vatue of K, the social planner faces the
following dynamic optimization problem:

! Tis1
i ~5Ti 0 (1, =5t [ () )
(TR R IO A ; [e c¥) + /T e {e (@~ R{) + i (R{E))} e

Mueome chtained fom veeyeled produsts trading is not axplicitely taken inta aceount in the model. This shorteoming

way he overcowe by inferpreting 7 as recyeliug cost minns recyeling income.
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suhject to
Ty = 0, Ty=rT,
i) = —l@-RE)| T2t Ty,
Yi(T) = ¥
YilTag = 0,
Y = ¥igy,
0 < R{)<@,

wlhiere (14) lias be used to omit the variable ¥ (£).

This problem fits in the category of multiple-stage optimal control problems, whose solution can be
tound by applying the results of Tomiyama {1985) and Tomiyama and Rossana (1989}, The main idea
implies managing the whole problem as made of a sequence of K optimal control problems, each related
L a time interval |3, T544), for i = 0,1,... and solving them backwards, as shown below:

1. First, solve the sub-problem rclated to landfill K — I, deciding the capacity Yx ¢ and the recycling
path [R(8)], _ , taking Tk and 7 as given, to minimize

J{Trog} = e ¥ Q¥ ) + [TT & fog 1 Q= R{EY + ric—y (R(1)} dt

subject to

Ye () =—[Q~R(@F)] Tki<t<r,
Vi 1(Ti—1} = Y,

Yies (1) =0,_

Y<¥Ye, 2V,

0z Rt =Q

Once the solution is obtained, given by ¥ _; and [R* ()]3,. _, it is substituted in the objective
function, and we define the value function as

I (Tw—1) = J(Tk-1).

min
er—l.[ﬂ(t”;-h-_l

2. The next step is to sabve the sub-problem related to landfill X - 2, taking Ty _3 as given and Ti_,

as a decision variable, that is, deciding ¥k g, Ti_; and [R (t)}%;_'_ which minimizes

Tie—1
J(Tr—g) = e 720 (Yiroa) + f e ox 2 [Q — R{E 4 rica (R{E) et + T (Tie_1).

[

subject io

Y2} =—[Q - R(#)] Tix-2 <t<Tgoy,
Vg (Tr—2) = Y g,

V2 (Toe—1) = 0,

Y €Yo <Y,

0<RE<Q.

3. The value function J~ (Tk -z}, obtained in step 2, is used to solve the prablem related to landfll
K 3, and so on, up to landfill k = 0, delimited by ¢ € [0, T} ).

*Both papers deal with two-stage problems, but the axtension of their resalts to problencss with wore B Two stages i
straighrforward,
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For each & = 0,1,2,...,K — 1, we have a contimuous time optimal control problem with a state
variable, ¥ (1}, and a contrel variable, R (t), taking T as given and Thy.( 25 a decision variable, except
for the ease k = K —1, inwhich Tk = 7 is also given. For the k— % interval, [T, Ty ), the current-value
Hamniltonian is defined as

My = e [Q — R +re (R () + T (1) {Q - R{t)] £ € [Te, Tigr}
and the Lagrangian is given by
Ly = {Q— R+ (REN+ V(D@ - RN+ &R () 16 [ThTop).

Ty (t: (with —®, (£} < 0) being the costate variable related to the available capacity of landfill k at
instant #, representing the cffect on the objective function, of a marginal increase in ¥x (£} £, is the
Kulin-Tucker multiplier associated with the non-negativity constraint of R (z).

Tle first order conditions for each control problem, & = 0,1.... are
L (R —Te(t) —ce >0 (with” =" if R(t) > 0)
2 By (t) = 59 (1)

b

o {Yﬂgﬁ U (Tey+An+py =0

3 A [V—Yk]=0; Y —¥]=0 te Ty, Tit1),
M A =0 iy <0

6T _ a

- By A {Ten) =

T AT

.

I (T

A and g, being the multipliers attached to maximum and minimum admissible capacity constraints for
landEll k, and Hy () denoting  lim H; {#). Thesc conditions can be interpreted as follows:
Sk

Eruation 1 is the first order maximization condition of i subject to R (¢) > G, that is, %‘Eﬁi =0,

which insures that total cost cannot be reduced by increasing or decreasing the recycled amount. 1
the marginal cost of recycling is greater than that of landfilling, that is to say, condition 1 lolds with
strict inequality, in the solution, no waste is recycled, R{t} = 0. In the case of ar interior solution with
R{t) > 0, the optimal quantity of recycled waste is determined according o

T AR () = er + W, (16}

which states that, for all landfilis, and at every time, the marginal cost of recyeling, given by v}, (R (2)),
mmst equal the marginal cost of landfilling, given by the unit cost ¢ plus the shadow price of available
capacity, in landfill .

Condition 2 determines the optimal time evolution of the costate variable ¥y, that is to say, i (t) =
5y (£ + g;-f:((t)) For tandfill capacity being a depletable resource, condition 2 is the classical Hotelling
rule, which states that the shadow price of such resource grows at a rate that equals the temporal discount
rate §, Taking this result, and the fact that ¢y, is constant for each fandfill, into account, we find that the
right side of (16) is constantly increasing during the usefu} life of landfill k. Accordingly, to maintain the
equaslity, the left side must also be increasing, Given the assumption § > 0, we conclude that, during
the useful life of a given landfll, the recycled amcunt increases with time.

Equations 3, 3, 3" and 4 are the transversality conditions of the problem®, which deserve some
comments, Conditions 3, 3 and 3” are the transversality conditions for the initial state, ¥, which is a
decision variable with maximum and minimum thresheld values. I no threshold conditions are binding,
the optimal capacity of landfill k is determined by condition 3 alone, which takes the form

C (V) = T, (T). {17}

Eguation (17) is the Optimal Capacity Condition for landBll k, and it states the equality between
marginal cost of ¥z, given by the increase in building cost, and its marginal gain, given by the shadow

iSue Hesteness {1966) for a gencral freatinent of trangversality conditions,
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price of the available landfll capacity at time Ty, W, (T3}, that measures the effect of increasing Y on
the total discounted costs from Ty on, coupling the saving in the management costs attached to landfll &
and the discounted cost saving that may be obtained by delaying the building times of future landéiils’.
Equation 4 is the transversality condition for the optimal value of Tyyy, when a scrap value function
exists that, from the viewpoint of period [Tk, Try:], i J* (Trgr). For & = K — 1, this equation is replaced
by the final condition Tg = 7. The left side of equation 4 represents the warginal cost of enlarging
the useful life of landfill k, which is Hy evaluated at Ty and propetly discounted. The right side of 4
represents the marginal gain obtained from enlarging the useful life, which is the effect of an increase in
Tii1 on the scrap function J* {Ti4q) and, by definition of J* (Thyy),

. 8 s s
T (Ten) = g el
9 Terr o N e
ST {]_M e il - B W] (R (zmdr}‘

where Y%, | and R* (¢} represent the optimal value of Yy and R ().
Fellowing Caputo and Wilen {1995} we know that

a Ty
[z [ e e [Q - R@] +ri (R} dt p = —e Dty (TH ).
2 S Thsr
where Hy 4y (T:ﬁrl) = lim Hiq {£). Using this result, and given that
Tk
g — 8Tk —5T; * —8T i 8Yk’ 1
e B (Y = —de [S3T0db' +e by (yr + ,
6Tk+1 [ ( li’l)] ( k+1) ( k'i‘]) ant-I-l

condition 4 can be expressed as

oY
i {Ti) = 6 (Y00) = O (%01) et + s (Z)

that is to say, at Tpyq a jump happens from the value of the k — ¢k Hamiltonian to the (k + 1} — th one.
This conctusion is also obtained in Hartwick, Kemp and Long (1986}, in the context of the exploitation
of many deposits of an exhaustible resource, with the peculiarity that, in Hartwick et. al’s paper, the
juinp is always the same size because all the deposits have the same initial capacity, while in this paper

[e=o™n1C (¥, 1], depends on the capacity of land8ill & + 1, Y}, which

the jump size, given b
is aJdeciI::ion v-(iiable. ’ s
4,1 Example
Assume that building costs are given by the linear funetion

C(Y)=a+iY
and the recycling cosl;s, which are identical for all the landfills, have the form

v (B} =m(Ry)=-- =d - [RE)],

d being a parameter, and no maximum or minimum capacity constraints for any landfill. To solve the
problem, we need to obtain the solution for each possible value of K, and select that providing the least

TWe say "the saving thal ay be abfained” and nok "the saving that is obtained” Lueanse, in this problens, amonnt of
waste dimpurl is a decision vackable ad it s not sure, @ préort, thab a higher value of Y implics a0 delay of filure Ladfils,
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value of the objective function. We analyse the K = 2 case, whose attached optimization problem is the
following:

T
[ + bYo) +f e LolQ — RO +d (RO} at
0

min
{Yo. ¥y B(1). T}

+e T fa b + /T e {er [ - R+ d (RO e

subject 1o

Yo=-Q+R({) 0LtETh,
Vi =—Q+R() T gtgT,
Wil=Y, Nn{@=h

() =Y(r)=0

R{H)=Q
The first step is to solve the sub-problem attached to landfill 1, that is,
in e 7 o+ Y] ]T -t R +d[R(O]
Join T oL+ [ 5 (a1 - Rw) - alr o)) (:8)

subject to

h=-@Q+R{) Tisigr,

iy =1, ¥(r)=0,
taking 7\ and 7 as given. The attached current value Hamiltonian is
Hi=¢ Q- RE)+[RE] + T ()@ - R

As shown in the appendix, the solntion to this problem is

W= [Q - -;—jz] {1~ Ty) + EZT_ [l _ E-S(.——'r,)]

* . _a _ 2 [Lse=Ty _ s(r—T0}
v o= | ,2.cg}(" 8+ ggg [T ] g (a9
Ty (1) = b

-y B P sy
B (t)y= ag -+ g

from which, we obtain
ST = a0+ f e {q [Q~ R ()] +d[R (t}]z} dt,

Tl

which only depends on parameters of the problem and the variable Ty. Afterwards, it is necessary ta
solve the problem corresponding to landfill & = 0, which is the following:

Ty 2
L min ok bY]+ fo e feo1Q — R+ AR e J; (1)

subject to

Yo = ~Q+ R(£) 0<t<Ty,
=Y, Y(M)=0,
R{t)=Q
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the current value Hamiltonian being
Ho=a(Q— R +d[RE] + ¥ ()@ - R,

whose solution, as shown in the appendix, is given by

o b ST,
yu*s{qf— T+ — [1 - &)

2d 2ds
x o b 5t 8T
ww=le-gl@-argg [ Ly o g £20)
@y (L) = be™ ,

(&

R*{t)mﬁ-rﬁe“

Finally, we need to find the optimal value of T3, which is obtained from the transversality condition
— * i . a}”l‘ rpat
HQ(T] ) =8C(¥") - C'{¥] )ma—ﬁ+H1 (N

that, using {19) and (20}, becomes

2
. ‘o b s ‘g ﬁ §T) 5T, G _ i 5T}
L“{Q_ﬁ_ﬁe ]"‘d[EE“dee MR S ¥ Rk v i
H{T7)
- i Y P by gtem) all b o)
= ‘”{““’([ ~ a0 =T s 1= ) s [o- ] - e
c(yy) ,%}L
oy b +8)7* +b
+c3 [Q——(led )]+d[(612d )] +le——(C12d }]
Hi{TH)

or, simplitying,

4dcal) — 68 — 2ephe’T — 82eMT 4 44QbetT
= ddab +4dBEQ (r — 1))} —2ebb (T — 1)) = B2 + 2 {21)
—202eH T _ 9pef(TT) & 8ab) — degh + dder  — .

To itlustrate the results, let us show the solution for the following parameters value®:

o= 10, c =3, Q=20
b=10.38, d=4, =30, (22)
cp = 2, §=0.04,
wlich is given by
T = 15,
Yy = 204.2,
Y = 2923, (23)
1 1 0.04¢
* = =4 —™ <i<i
R*(t) 4+10e 0<£i<i5,
3,1 seam
* = = <t <30,
B (t) g + T 1<t <
“By the bisection method, the numerical valne 7 that solves {21) i obtained, aud om Ty and the paminoter vabies,

the aptimal value of Yo and ¥y is obtained using (19) and (20).
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In figure number 4.1 the optimal shape of R(t) is shown. Now sensibility analysis experiments are
performed by chauging one parameter each time and holding the rost at the henchmark vaiues given at
1223 In figures 4.1 the effect of different parameters on optimal values of ¥y and ¥; are shown.

@55
03
n4s

0d

o 3 1 g Frii] 5 0

Figure 4.1 Solution for R (£}

For "low” values of it is optimal to build two landfills with capacities Yy and ¥3*, while from a
certain threshold value g, the fixed cost attached to the building of a landfili is so high that it s not
optimal to build twe, but only one with encugh capacity to dispose of all the waste generated throughout
the period [0, 7}, From that threshold value of a, we have ¥}* = (.

The higher the value of parameter b, which represents the marginal cost of each landfll built capacity,
the lower the optimal value for ¥y and Y;, and hence, the total landfilled amount of waste. For the
sclufion to be still feasible, total recycled waste throughout {0, 7} must increase as b increases.

The higher the value of parameter ¢p, measuring the unit disposal cost of the first landfill, the lower
the optimal value of Yy and the higher the value of Y.

As for parameter ¢;, when it is below a certain threshold value, small increments do not affect the
optimal value Yo and produce a stight decrease in Y7 {the scale of the plot do not allow the latter cffect
to be perceived visually). So that, the solution does not change in the interval {0, Ty}, while recycling is
mare inteusively used, and landfiling less, in the interval {77, 7]. When ¢ exceeds a certain value, the
second landfill ceases to be profitable, and it becomes optimal to build a single landfill for all the waste
generated throughout [0, 7].

Encreasing parameter d makes recycling more expensive as compared with landfilling, and it leads to
an increase in both landfills capacity in order to allow more waste landfilling and less recycling.

Beesuse of the Jinearity of building costs, and given 3 > ep, for very tow values of § there is no reason
t0 nse two landfills, bearing twice the fixed cost g, but it is beiter to build a single landfifl. So, for low
values of &, we find Y7 = 0. For "medium” values of §, ¥ and ¥}* approximately have the values given in
(23}, with Y} slightly decreasing and ¥ slightly increasing (in a range that can not be visually perceived
with the plot scale}. Finally, for a certain threshold value of &, 2 negative (positive) leap happens for Yp
(¥1).

The instantaneous waste generation, represented by Q affects the optimal values of ¥y and ¥} in a
linear and positive way.

The time horizon variable 7 has a two-piece effect: for low values of 7, it is optima} to build a single
landfili, and hence, Y7 = 0. For "small” + increments, the optimal value of ¥ increases and that of
¥y stays at zero. For a high enough 7 increment, a Jeap happens in the solution: building two landfills
becomes optimal, so that Yp sharply decreases and Y7 switches from zero to a strictly positive value.
From that point, further 7 increments leads to increase in both landfills’ capacity.
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5 Conclusions and Future Research

The optimal capacity of landfills, which is a rather relevant economic decision and is usualiy taken as
given in most economic articles, has been studied in the present paper within a dynamic framework, The
basic dynamic nature of the problem has been pointed cut and several specific cases have been explorecl.
To deal with this ratter, a class of optimal control problems, sharing some continucus time and some
discrete time features, have been stated and solved. The mathematical structure of those problems
could alse be useful to model some other economic situations, such as investment decisions or durable
consumption gonds decisions.

Given that landfills are depletable and replaceable resources, their capacity and useful life should not
be individually (landfill by landfill} decided, but the whole sequence of necessary landfills would rather
he jointly designed. If the only difference ameng the various places available for the building of landflls
is the attached unit. waste management cost, then it is optimal to make use of such places beginning from
the lowest cost one and following in the order of increasing unit cost.

In an interior sclution, the optimal capacity of a certain landfill k is determined according to the
so-called Optimal Capacity Condition, which states the equality between such capacity marginal cost and
marginal gain. The marginal cost is given by the building cost plus the management cost attached to
landfill &, while the marginal gain comes from all the discounted cost saving attached to future landfills
that can be achieved by increasing the capacity of landfill k. Optimal capacity depends positively on the
expected future waste management cost increment from the present landfili to the following one, in such a
way that the more management costs incresse, the more decrcasing the sequence of capacities decreases.

if instant waste generation is not constant, but follows a certain time evolution, a sclution method is
suggested, based on discretizing the continuous time problem by summing up the generated amount of
waste between two consecutive (endogenously determined) landfill switching times, This strategy allows
us to avoid the temporal nature of the switching time variable, that becomes a state variable of the
problem. The time-variable role is played by the landfill index (k =0,1,..., K - 1}.

Selecting management technologies and buitding landfills are related decisions. When both decisions
are jointly considered, a multiple-stage optimal control results, whose solution requires the use of dynamic
continucus time techniques {Pontryagin Maximum Principle) for every landfill sub-problem and discrete
time procedure (Dynamic Programming) to manage the whole probleni.

Under the assumptions made for the landfilling and recycling problem, the recycled amount of waste
is time increasing within every landfill’s useful life.

The fellowing are seme plausible Tuture research lines:

¢ Enriching the optimal capacity problem, relaxing assumptions and adding new elements such as

- Considering the possibility of stochastic future generation: of waste

— Exploring other waste treatment techralogies, such as incineration or composting.

» Joint study of optimal capacity and optimal location of landfills.

6 Appendix: Mathematical Conditions

6.1 Proof of Proposition 1

For each of the possible values of K, the corresponding control problern can be solved either by dynamic
programming, as illustrated in the case K = 2, or by the Lagrange method”. As the state equatior is
very simple, 1t is possible to worle in the follewing way, for a generic value of K. Applying recurrently
the formula T4 = T3 + %, and assuming that all the landfills’ capacity get exhausted under the optimal
solution, we obtain

i1

1
ﬂ:azyj, i=1,2,.... K -1 (24;
=0

"See Chow [1997) for a compnrison of both methuds,

Ou the other hand, solving the integral of the objective function of {P) and using the equation (24),
wa have

T,
=T O srom)] @R ek
/T. e =Ty Qdt = =] [1 e }_ Y a],

and therefore the problem (P) consists of finding the sequence of capacities 1¥a, Y7, .., Y _3} which
minimise

C(Yo) + i [1 - e"‘s%} + E e B CY) + Qb (1 _ (,_*5%)
'5 i=1 5
subject to the overall capacity constraing
Yo+Mi+ - +Ve 1=7Q. (25)

The Lagrangean of this problem is
Sl - . : K—1

i=1 i=1

Leing A the Lagrange multiplier attached to the constraint (25).
The first order conditions for Yy, ¥3,..., ¥Yr_1 are

R = . i _s¥i
COR R DILR {c(vm Sy w)] Y

BT {g* (¥i) +¢k5_6%] -
N Y b [C(Yi) + 2 (1- e“'s’ﬁ)] =% k=12 K2
and

3

G [G’ (Vi) o+ bye_qe™® 0 ] =

jointly with (25}
Equating the first order equations for two consecutive arbitrary landfills, b and k+1,{(k=1.2, .. K-
3%} we obtain

_AA [y ) 6 —ayicly Qi ia
BT :[c (¥i) + dye ‘*]——_E A I C‘(Y,-)—a—T(l—ue u)]
i=kH1
At v [ gt 6 ) s ¢ s
= e BTy [C (Yeq1) + dppae 5%] - Z e"w Xz [C(Yl)*%{é‘ (176 JQ)} .

i=k42
Multiplying both sides by e Zi20 ¥, adding § /1, e G BT {C(Y,-H % (1-e%)) w0
both sides and rearranging, we obtain (2).

W The intennedinte axpressions for & = 0 and k = K — 2 ave stightly ditterenl, but it is easy ta show thal cquation (2}
alse hokls Tor these twoe eases.
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6.2 Solution of Example 4.1

As Ty is given, e~%T" is constant and minimizing the objective function (18) is the same as minimizing
-
e 4+ BY3) + f e T [y (Q - R{) + AR ()} at
T

which, making the variable change w = — T3, may be expressed as

=T
[o 4 bY3] + f e % {cl @~ R +d[R {w)]z} dw
0
and the problem constraints become
Vi(w) = —Q+Rw),

=, hi-N)=0

R zQ
with T} and 7 given. The current value Hamiltonian is defined as
He =@ — R +dR @I + 0 (W) [Q ~ R()]-
The necessary first order conditions (Pontryagin Maximum Principle) are the following:

My

W = —e +2dR{w)— ¥ {&) =0, (26)
By W) = 601(w), (27
Viw) = —-Q+R{w). {28)

Selving equation (27), we have ¥y (w} = ¥y (0) €% and, substituting in (26) and rearranging, we have

Riw)=— a 110 e

9
2d 2d 29)

Substituting (29) in (28) and solving the resulting differential equation, whose general solution for ¥,

- oy (D)
Vi) =[5 = Qu "1 le™ 4 4,
A being a constant. Using the initial condition ¥;(0) = Y7 and rearranging we obtain the value of

A=Y — @210‘?(60} , so that the solution for ¥ (&) becomes

Lh@

948 [ o 1] (30}

C1
Y (w) =¥+ 54 Q
and, using the final condition Y7 { — T3} = U and rearranging, provides the following expression for ¥;:

- fo-glo-m+ 2 o). a

From the ¥, optimality coadition, the following value of ¥, (0} is obtained:

O (V1) = b =¥, (6) 132)
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and substituting (31) and {32) in (30} the following final expression for Y) (w} is obtained:

Y, (wj = [Qf%]( T1)+2a,5 [1—35(7-“] + [T—Q]u+ % = 1)

2dé
and the solution for ¥; {w) and R (w) is given by

¥ {w) = be"“a
b
Riw) = %+QBSH

Undoing the variable chenge w = ¢ — 17, the expressions in (19) are obtainerd.
The current value Hamiltonian of the sub-problem linked to landfill 0 is defined as

Ho=co[Q — R(E)] + d[R)] + Vo (£}[Q ~ R()}.

TFhe Pontryagin Maximum Principle conditions are

% = g+ 2R — Tg(t) = 0, 33)
Bol) = 8%al0), (34)
Yolt) = —Q+R(). {35)

Salving, equation (34), we have Ty (£} = Tp (0) e and, substituting in (33) and rearranging, we obtain

ﬂn Iy

0 = ;
R{t)= 53 + 22 (36)
Using (36) ir (35) and solving the resulting differential equation the following general solution for ¥;

is obtained:

= _ Ty ({J) &5t
fo(0) = [22 - Q) e+~ e + 4,
A being a constant. Using the boundary condition ¥g {0) = 2,;,!(,?)
iz obtained, so that the solution for ¥} (£) becomes
- o o (0} 5 ’
Yol =Y+ [~ Q]+ g 1] (7

and, using the final condition Yy (T3) = 0 and rearranging, the follewing expression is obtained for ¥y

[« Tg (0
o= [0 G m T -em), (38)

From the ¥, optimality condition, we obtain the value for Tg (0,
(Vo) = b=y (1) {39
and using (38} and (39} in (37) and rearranging, we have the following final expression for ¥y (2):

+0
* 5%

and the solution for ¥ () and R {t) is obtained by substituting (39) in {34) and (36).

Y =lo- 2] @-

[Em — T ]
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