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ABSTRACT 

Given that landfills are depletable and replaceable resources, the right approach, when 
dealing with landfill management, is that of designing an optimal sequence of landfills rather 
than every single landfill separately. In this paper we use Optimal Control models, with 
mixed elements of both continuous and discrete time problems, to determine an optimal 
sequence of landfills, as regarding their capacity and lifetime. The resulting optimization 
problems involve dividing a time horizon of planning into subintervals the length of wmch 
has to be decided. In each of the subintervals sorne costs, the amount of which depends on 
the value of the decision variables, have to be borne. The obtruned results are useful for 
other economic problems such as private an public investrnents, consumption decisions on 
durable goods, etc. 
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1 Introduction 

The aim of this paper is to analyse how the optimal eapacity and the swithehing- time of a sequence of 
landfills has to be decided, considcring both the construction allllmanagement costs. 

As noted in lieady aud R.cady (1995), landfills are deplctable aud replaceable resourees. Unlike other 
natural reSOUTces, whose depletion is irreversible, once a landfill is full it can be replaced at some cost, by 
cOIll;tructing a new one. The new landfill will also be depleted and so on. As a cOllsequence, the capacity 
01" a laudfill should not be decided from a static point of view, just by considering the costs associated 
wit.h the present land.fill, but also the costs linked to tbe following anes. Therefore, instead of optimally 
designiug a landfill, tite appropriate approach is that of designing an opUntal sequcncc of landfills. In 
Rcady and R.eady (1995), Huhtala (1997) and Gaudet, lvloreaux and Salant (Hl98) the sequential aspect 
of lalldfills ü; rccognized. However, iu tltese papers, the capacity is a giycn and tberefore the problcm of 
ohtaining the optimal capacity is not considered. In Huhtala (1997) the substitution of a landfill by a 
new olle is studied ano the capacity of the new landfill is a decision variable; howcyer the capacity of the 
first landfill is given aud moreover, the decision capacity 1S not studied in depth. 

Tile higher is tbe capacity of the landfill to be constructed, the higher is the construction costo If 
the ohjective of the planner is just to minimise the present building costs for this landfill, the obvious 
solution is to construct a landlill with the smanest capacity. The consequence will be a short lifetime 
of the constructed capacity and the construction of a IICW lalldfill wil! have to be ulldertaken very soon. 
There is a conflict between present and future costs and so we are faced with a typical economic dynamic 
problem, where the present and futmc decisions are not independent, bllt have to bc jointly takeI\. 
Specifically, the plannillg time horizon has to be divided into several sllbinteryals the length of which has 
to be decidecl, and in each of the subinterva.ls some costs, the amount of which depends on the "alues 
given to the decisioll variables, are realised. In this paper, the described problem is formalizecl and the 
solution is discllssed under different assumptions. The models we state are Optimal Control problcms, 
~"¡th mixed elernents of both continuous and diserete time problems. The obtained results are ilseful 
for other economic problems such as private and public investments, consllmption decisions on durable 
goods, etc. 

The rest of the paper has the following structure: In section 2 the basic problem, tmder the assump­
tion of constant waste generation, is stated and its main characteristics are discusscd. In section 3 a 
generalization is studied, assuming tltat the instant generation of waste follows a given evollltion through 
time. In section 4 the joint problem of optimal capacity of landfills and the optirnallandfilled and recycled 
amount of waste is analysed. The paper finishes with the condusions (section 5) and the proof of the 
mathematical results in an appendix (section 6). 

2 Problem with Constant Generation of Waste 

A social planner has to take the following actions in order to managc, with the smallest possible cost, 
the waste produced in a time horizon of length T: 

1. At instant t = 0, to oonstruct a landfill, with arbitrary capacity Yo, with a set up cost which 
depends on Yo, according to the increasing, conYeX aud C(2) cost function e (Yo). 

2. vVhile the first landfill is being used, he has to pay the instantaneous waste managernent cost, given 
by the linear function ha (Q (t)) = rPoQ (t), where <Po is the unit management cost, basically representing 
Lhe collcction, transportation and processing costs of one unit of waste, and Q (t) is the amount of waste 
produccd at instant ~, which we assllme is exogenous. In this section, we assmne that Q (t) = Q is 
constant. This assumption is relaxed in section 3. 

3. When tho capacity of the first landfill is exhausted, which happens at time TI, implicitly determined 
by the cOndition JoT , Q (t) dt = Yo, the planner has to c10se it and to construct a new one, in another 

place, with capacity YI , which willlast until time T2 given by ./2 Q (t) dt = Y¡. 
4. Between TI and T2, he has also to pay the management costs of the waste produced in this periodo 

These cost.s are givell by tite function h¡ (Q (t)) = 1>1Q (t), where the unit cost 1>1' in general, is different 
hom </lo, due to Lhe dill"erent transport costs, land types, ctc. 

And so OTI, llntil the last landfill, denoted by K -1, being K a decision variable. In general, a landfill 
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constructed at. Ti with a capacity Y; lasts until T,+I, implicitly defined by the equat.ioJ) .r.l~'+1 Q (t) di = Y;, 
and the instantaneolls managcment costs assoeiated with such a landfill are given by Ir, (Q (t)) = rPiQ. 

From a mathematical point of yiew, the described prohlem (P) has a particular strncture which 
incorporates sorne continuous t.ime and some discrete time elements. On the one hand, tbe time variable 
t is continuous, wasto is generated in continuous time aud t.he management costs h i (Q (t)) are prodllced 
in continuous time. The variables Ti, which refer to time can take any real value, as corresponds to 11 

continuous t.imc optimal control model. On the other hand, the eonstruction costs happell at a finito 
Ilumber of times, as happens in discrete time optimal control problems. 

Ncvcrt.heless, assuming that the capacities of an landfins are depleted under thc solut.ion, the problem 
tan be ;xpressed as one in discrete time, in the following way: given the assumption Q (t) = Q, we obtain 

10 y y 
TI = Q' ... ,Ti + 1 = Ti + Q,. ,T = TT( = TK _ 1 + 'Q-' , so that, the planner has t.o fiud a number of 

landfills K, and a sequence of capacities {Yo, Y¡, ... , YI( -1 }, in order to minimise the function 

suhject to the following constraints 

1, 0, T1( =T, 

1(-1 

= Le-liT. 
i={) 

Ti+~' i=O,1,2, .. ,K-l, 

r ~ Yi s: 'Y, 

(Pl 

(U 

where r and 'Y represent the minimum and maximum capacity constraints and ó is the discount rateo 
Note that (P) can be regarded as a discrete time optimal control problem, where the "diserete time" is 
not giyen by tbe chronological time t, but by the different landfills i = O,l, ... ,K -1, and (1) is the 
state equation, 

This problem is conceptually similar to that of exploiting a sequence of deposits of a uatmal resollrce, 
as st.udied in Herfindahl (1967), Hartwick (1978), Weitzman (1976) or Hartwick, Komp and Long (1986), 
whel"e the role of extractiou cost is played by the management costs in OUT problem. Anyway, tltere 
are two importallt difference: first, in our case, the rhythm of depletion of the !andfill, analogous to the 
rhythm of natural resource extraction, can not be decided because it is given by tbc exogeuous generation 
of waste. Second, the initiallandfill capacity (analogous to the initial resonrce stock) is not given in OUT 

problcm, as in natural resolltce extraction models, but it is a decision variable. 
The dassic reslllt by Herfindahl (1967) for various natural resource deposits, which states t.hat the 

extraction has to be done in an increasing order of marginal extraction costs, apply here. In OUT case, 
if t.here is no other differenee among landfill places, it is optimal to deplete the landfills in an increasing 
order of their marginal management oosts1. 

Because K is a decision variable, (P) is a free time horizon problem. The easiest way to solve it consists 
of finding the solution for all possible values of K, and choosing that which proyides the minimum total 
costo Specifically, K can take any integer value such that K E {Kmi" , Kmin + 1, .. , Km"" - 1, K

trI
",,}, 

where 

{ 

yQ 

K""" ~ (10) ¡nt 1" +1 

ifT~isaninteger, l., (Q) 
Km"" = [nt T):' . 

otherwise, . 

¡ Ld.,,~ aS"HII'" (.hut. tite sn!"t.¡,," uf th~ prublcm (P) is" ~e'lll"nee uf eal",d(.i,,~ {Y') ~ {Y;' y' y' Y:" y' } , o' ¡, .. , k "+1 k+2 

""1,,,,·(" if>k > if>k+¡· TI", discn""t,,d '·ost. uf t.j", ~olutioll {'ti'} eall he ... ,,!ucc<1jtmt hy d"'"Il,;H"; t.l", 01"<1 .... "f t.l", !,,"dlill~ k y 
k+l. 
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¡nt (~) denoting the integer part of~. Henceforth, [{max-Kmi,,+l discrete time optimal control problems 
have to he solved. Let el( be the optimal díscounted cast. which can be obtained constructing K landfills. 
'fhe optimal vlilue of K is given by K' = arg min 61(. 

{l(=l, ... ,R¡ 

Now, Jet us regard the solutíon for each possible vaIue of K. The Inost interestin¡¡; case, as for 
its ecoIlomic intcrpretation, is the one where the minimum and maximum capacity constraints are not 
hinding. For t.bat reason, in what follows we concentrate on the interior solutions. The capacities of an 
opt.imal sequence of K landfills, in an interior solution, have to meet what \Ve call tile Optimal Capacity 
Condition, which is stated in the following proposition: 

Proposition 1 Given an arbitm"'j value 01 K, in an interior so/ution oJ p1'Oblem (P), lor two arbitmT.!! 
consecutive landfills, k and k + 1, the follo1lling Optimal Capacity Condition /wIds: 

e' (Y¡J = e-'0 Yk [el (Yk+1 ) + ~e(Yk+l) + .6.(h] 

= e-6(Tk+,-Td (el (Yk+¡) + ~c (Yk+l) + .6.4>k) , k=0,1, ... ,K-2 

whcr'e .6.(h = 1>k+l - rPk is the unit management cost increment from landfill k to landlíll k + 1. 

Proof: sce section 6. 
Condition (2) is a nonlinoar first arder difference equation which represents the relation bef.ween thc 

optimal capacity of two consecut.ive landfill.s, k and k+1. In arder to economically interpret this condition, 
think of a situatioll in which .6.(h = ° Vk and 8 = 0, that ¡s, the unit cost of management is identical for 
all the landfills and there is no time discount, so t.hat. all the costs have the same weight in the objective 
function. Then (2) takes the forrn 

(3) 

which can be t.aken as a non-arbitrage condition: if e' (Yk ) < (» e' (Yk +l ), total cost could be reduced by 
redllcing Yk (Yk+l ) and increasing Yk+l (Yk). Condition (3) establishes the impossibility ofreducing total 
cost by transferring sorne capacity from one landfill to another one. \i\/ith a strietly positive discount. 
rate and different unit management costs, the relevant equation is (2), which is still a non- arbitrage 
condition, but now the marginal effect of transferring capacity from one landfill to another has two 
addit.ional components: the delay (or advance) of the future construction costs and tile difference between 
tbe management costs borne on one Of other landfilL The greater is the expected transportation cost 
increment for the next landfill, .6.if>k , the greater is the value of the right hand side of (2). In order to 
maintain the equality, the left hand side, that is, the marginal construction cost of Yk> has to be greater 
too. Assuming that e is a convex functíon, and therefore e' (Yk ) js increasing with Yk> it follows that 
the greater is .6.rfJk' the greater is the optimal capacity oí landfill k. This conclusion is reasonable from 
an economíc point of view: if future landfills are subject to large management costs increments, it ls 
optimal to lncrease the capacity of the present landfill in order to extend its lifetime and to clelay future 
management costs associated with the next landfills. 

2.1 Example 

Let us assume that the building cost function has the following cuadratic form: 

e(Y) = a+bY + ~y2, a,b,c>O. 

and the uIlit management cost increases at arate 10 , fram landfiH i to JandfiU i + 1, accorcling to the 
following equation: 

The numerieal solution is obtained, tlsing tile 1htlab optimization toolbox for the following parameter 
values: 
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(1. = 100000, 
b= 1, 
c=0.5, 
Q = 100, 

T = 50, 
Y = 50UO, 
.l:= 333.3, 

$0 = 1 
lO = 0.1 
8 = 0.02. 

from which, \vc kno\\' that Kmin = 1 and 1(",a.,< = 15. The solution is shown in figure 2.1 

i' " .. L.;: .. ~i li :, 

2 3 4 S 6 7 8 

lardill rurtEr 

Figure 2.1. Solution for example 2.1 

As shown in tho labels, in this solution, Jandfill capacities are slightly increasing. 

4 

'Ve now perform sensitivity analysis to describe the effects oí changos in parameter values. Figure 
2.2 shows the effects of parameters a, b, c, 5, Q and T on the opt.imalnumber of landfills 1(* and the 
average capacity of landfills in the solution, that is, f'- = -1< E;~~l Y;, which can be used t~ me:u,ure the 
level of the sequellce Yo,Y¡, ... ,YK - 1 • 

Note the economie meaning of these results: increasing parameter a, which measures fixed construction 
costs, makes it optirnal to bnild fewer landfills with a bigger capacity. The opposite occurs when increasing 
tlle variable building cost parameters b and e: it is optimal to build more landfills with a smaller capacity. 
Increasing the rate of discount 5leads to an increase in the weight given in the objective function to short 
term costs versus long term costs. As a consequence, it is better to build more landfills with smaller 
capacity to delay costs. 

Changing parameters a, b, e Of 8 does not change the overall quantity of waste produced throughout 
the plallning period, given by TQ, so that, in the solution, although the individual capacities Y; chango, 
the sum of capacities ¿i Yi does noto Increasing Q or T, enlarges the overall waste gellerated in the 
period [O, T] and, hence, makes a bigger total capacity necessary. Note that "smaW illcreases of T or 
Q, lead to increases in the average individual capacity and keep [{* unchanged, up to a point that the 
increase of 7Q is largo enough to make building a new landfill profitable, allowing a decrease in avera"e 
capacity. As a result, K*, as a function of Q and T, has a stair shapc and Y, as a functiOll oí Q and~, 
has a sawtooth shape. 
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Figure 2.2a. Effect of parameters on K* and Y 
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Figure 2.2b. Effect of parameters on ](* and Y 
As for parameter E, its effect is shown in figures 2.3 and 2.4. First, note that é does not affect thc 

w!iO!e quantity oí waste rQ, and so, varying é dof'-s not change the sum of capacities, a!though it does 
imply a change in particular capacities. Increasing é makes the difference in unit management costs 
larger from landfill to landfill. AB a consequenee, as E ¡nereases, the optimal solution implies a sequence 
of mOTe ~haTply decrcasing capacities, that is, the capacity of the initiallandfills is bigger and bigger and 
the capacity of thc latter landfills is smal\er and smaller (as shown in figuTe 2.3). 

'i\rhen the iucrcase in é is big enough, jt is optima! to deerease the llumber of landfills K* to save 
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management costs. ta.~ shown in figure 2.4). 

Figure 2.3. Solution for different values of E. 

12.00 

11.00 . 

10.00 . 

9.00 , 
\ K' 

8.00 , , , 
~ 7.00 

6.00 

5.00 
0.30 0.45 0.60 0.75 0.90 1.05 , 

Figure 2.4. Opdmal value of K* for different vaIues of é. 

3 A Variable Quantity of Waste 

Tn this section, \Ve explore an extension to the basic case, assuming that the planner expocts that thc 
quantity of landfilled wastc wiII not be constant aIong the pIanning horizOIl. This belicf may come from 
several drcumstances, such as a foresight for economic growth or teclmological changc, that will impIy a 
change of production and consumption patterns, sorne forthcoming environmental regulation concerning 
packaging, recyc\ing promotion, etc. 

Let Q (t) be the amount of waste generated by the population at time t, and assume that such amollnt 
evolves according to the following differential equation: 

Q(t) ~ G(Q(t},t), (5) 

8 
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whprc the concrete expression of fnnction G (t) depends OH the expectations about tile future evolu­
tlon of wnstp. Th(' problcm is to that to find a llumber of landfills ]( and a Sel!UencC of capacities 
nil Yl oo" Y"-l} which minimize the discounted addition of management anrl const.ruct.ion costs given 
hy 

subject to the constraints 

Q(t) 

fT;¡, Q(t)dt 
Jr; 

G(Q(t),t), 

y;, i=O,1,2, ... ,K--l 

To 0, TK = T, Q(O} = Qo, 

where Qo is known and represcnts thc instantaneous generation of waste al time t = U. 

(fi) 

Problem (ti), like the Qne studied in section 2, contains sorne continuotls time flnd some discrete time 
elemonts. The evolution of Q (t) and the constraint of landfill i capadty are formulated in continuous 
time2 , but the objective function does not have the typical form of an optimal control problem in 
continuous time, because it consists of a sum, as occurs in discrete time Optimal Control problems. Next, 
a form of approaching the problem(6}, employing usual dynamic optimization techniqucs is proposed. The 
method has the following steps: 

1. Solvo the diffcrcntiaL cquation Q (t) = G (Q (t). t), with initial condition Q (U) = Q01 obtaining the 
expression for Q (t) as a function of time. 

2. Substitute the expression obtained in step 1. in the equation Y; = fJ'+' Q(t}dt anel solve this 
definite integral, as a function of the limit valnes of integration Ti, T¡+l. Tho result call be writtcn as 

where fundion F (Ti, Ti+!) measurcs the total amount of waste generated betwoen an)' two times Ti and 
T i+ l. OIl the other hand, the totallandfill i discounted management cost is givcn by 

3. From here on, there are two possibilities: 
3.1. Substitute Y; = F (Ti, Ti+l ) in the objective function. The resulting probLcm is thf\t. of finding 

the sequence 01' construction times {Tl , T2 , ... , TK _1} which minimizes 

K-1 K-1 

¿ H(T"T,+,) ~ ¿ (,-"'C(F(T"TH')) + MC (T"T,+,)} (7) 
;=0 ;=0 

with the initial condition To = O and the final condition TK = T. 

Taking i = O, 1, 2, ... , J( - 1 as the time index, (7) is a discrete time Calculus of Variatíons problem, 
being Ti the state variable, and L~~l H(T¡,Ti+l) the objective function. Let us observe that, duc to 
the different periods length, the term e-6T; can not be interpreted as a discount, but. as a part of the 
objective functíon. In order to solve this problem, the Euler cquation:1 has to he applied: 

j ,,, Oprima! C"nf.r<>! tb"<>l")', ti", """straiuts "f tbc typc ¡J;'+' Q (t) dI = Y" "'" ""lb! h"l"') JIU")''';'' <"<Hlst.mints. 

"S,,,'. ru .. "'''''"pi<-, Slo"k"l' ;a,,1 L1!"a~ (1!J89). ' 
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where Hj repret;ents the partial derivative of H with respect ta its j-th argumcnt. According to tile 
definition of H given in (7), thc Euler becomes 

o = e-H'G' (F(Ti , Ti+¡)) .F2 (TioTi+d + MC2 (Ti ,Ti +1) 

+e-ÓT,+, e' (F (1i+l,Ti+2 )) .FI (Ti+ h Ti +2) - be-óT,+< C (F (T¡+lo Ti+2 )) + MCI {1i+1 Ti+ZI 

3.2. If lt ls possible to salve Y¡ = F (Ti, Ti+¡) fOl" Ti+l, an expression like T,+1 = <1> !T,·. Yi) is obtained 
giving the exhallstian time of a capacity-Y;- and-initial-time Ti landfill and, ·by constmction, <PI' <P" > O. 
the ¡ater the landfi!l i begins to be used (time T;) and the greater its capacity (Y;) is, tile later it is 
exlUlllsted (time T;+l)' Using <P, we have a discrete time optimal control model, being T, the state variable 
ami Yi the control v[)fiable. A sollltion to the problem is a seqltence of capacities {Yo, Y¡, Y"-l I and 
the associated scquencc of switching times {To, TI, ... , TK_I f wil.ich rninimise the objective functional 

K-I 

J ~ I: {,-"'C(Y,) +MC(T;,~ (T;, Y,))} 
i=O 

lJubject. t.o t-ile state eqnation Ti+1 = q' (Ti, Y;), the initial condition To 
T K = T. Let us define tile Lagrangian fundion 

/(-1 

o anel the final condition 

L = L e-6T'C(l"'i) + Jl,IC (Ti, <P (T;, 1';)) + AO [<p (O, Yo) - TI] + ... + AI(_I [<p (T/(_I, YI(-l) - T]. 

;=0 

Ai measuring the total discoWlted cost reduction that happens when landfill i lirelime is marginally 
prolongcd, so that H can be callcd the (oppositc of) "siladolV price of time" , referring to the lifetime of 
landfill i. The first order conditions are 

aL 
aT; 
DL 
ay¡ 
aL 
aA; 

e-mc' (Y;) + MCz<p2 + A;<Pz (Ti, Y;) = 0, i = O, 1, ... [{ - 1, (9) 

0-'> T;+l = <P (lj,Y;J, i = O, 1, ... , l( - 1. (lO) 

with To = o and TK = T. Prom (9) we obtain that the costatc variable Ai is negativc 

A;= 
e-6T,C' (Y;) + MC2 <Pz < O 

<P2 (lj, Y;) 

and the evolution of this shadow price follows a difference equation, obtained from (8): 

Ai_1 + 8e-6T;C(1';) - MO¡ - MC2 <Pl 

.),¡ = <PI (Ti, Y;) . 

Condition (9) is the Optimal Capacity Condition for landfill í and it states the equality between the 
marginal eost and the marginal profit of increasing the capaciLy oí landfill i. The marginal cost is given 
by e-6T,C' (1~), that is, the (discounted) derivative of the building costo The marginal profit is the "value 
of time gained", that is, the discollnted saving produced by using landfill i for more time. This saving 
i8 obtained by nmltiplying <1>2, the marginal increasc of Lhe lalldfill i lifetime due to an im;rement in 

Y;,(that is, a~~¡) by Ai (that inerement shadow price). 

3.1 Example 

A~sume that the c:onstruction cost funetion lS quadratie: 

C(Y)=a+bY+~y2 

10 

.. 

>llld tilo installt.aneous gelleratioll of waste follows the differential equation 

Q(t)~nQ(t), (ll) 

Q(t) 
",ith the initial c:ondition Q (O) = Qo. Prom 11, we have Q (t) = a, so t.hat, waste generation increases 

Ol" deereases at a constant rate equal to a. The concrete valnc oí a depends on the e.xpectat.ions about 
the futUfe cyolution of thc "\\'USte. If tile sole rea..<;on for the cxpected inefCmellt of tho waste js economic 
growth, a prox.y variable for a may be the GNP or the Industrial Prodllction grolVt.h rateo Solving 
eq¡¡ation (ll) we obt.ain 

Q (t) = Qoe();'/, 

t.hp.rf'fore, t,he relation between Y;, T; tlnd T;+I is giveu by the equation 

(12) 

Assume, moreover, that waste management cost is ideutieal for all the landfills, in sucil a wa}' tilat this 
component can be taken as a constant and, the problcm solyed taking into account just the construction 
l"usts. Subst.ituting (12) in tile objective fundion, the problem can be formlllated as the following Calculus 
of Variat.ions problem, with initial condition To = O and the final condition T¡< = T: 

Another possibility for approaching this problem consists of solving the equation (12) for Ti+l, ob­
taining tile following optimal control problem in diserete time: 

K-' 

min L {e-6T; [a+by:.+~y'2]} 
{Yo,Y" ... ,YK _,} ;=0 ' 2' 

subject to the state eqllation 

Ti+I = ±log (;0 Y; +eD;T;) , 

t.he initial condition To = O and the final eondition TI( = T, 

Figure 3.1 shows the solution to the problem with the following parameter vallles: 

a = 50000, 
b= 1, 

e = 0.4, 

ó = 0.04, 
Qo = 30, 
T = 60, 

11 

l(m;n = 1, 
l(max = 15, 
a = 0.021. 

(13) 
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Fio-ures 3.2.a. aud 3.2.b. show the e I dfill Y- \ ",K-ly; Note that the total volume of 

'" ,"ty of the un 5, = K 0i=0 ,. dtill . 
landfills J{* and the average capael . h 'D \re ¡ asibility either the numher oí ¡au 5 or 

, . d 10 J. crcase~ \Vlt Ct. o ep e, f ., . 
waste generatcd in peno ,T 1ll A' b ,'n ,he gmphics fOI smaU increments, o a" t 15 

. h Id" ase sean eseen , , f"' 
their avera~e capaclty s ou mere .' (leavi K~ unchanged), whereas, fOI large increments o a: lt 15 

optimal to merease the average capaclty . - ng 
aptimal tú increase K* (perhaps decreasmg Y). 

•. 01 o-",/.o.,<oo,so.O" Q ". 
Figure 3.2.a. Effect of o: on K* 

'"0 0_01 "-"1HJJ"O,O,.o","Oo, •• "oJn'O"," 

" . 
Figure 3.2.b. Effect of a on Y 

4 Landfilling and Recycling . . 
. t gement is that of deciding which method, or combmatlO~ 

A relevant matter, concern~g was e m~nadfilrng' incineration recyding, eOlllPosting, etc.) to use tor 
of methods. among the avmlable ores \ an Sil ti~g manageme;¡t teehnologies and building landfilhl are 
the t.reatmcnt of a given amount o was~. e:c th kc of simplicity the second dccision was a51mllled 
dcarly rehtted dccisiollS. In previous sectlOlls, or ~ sa I this secti~n a model is presented in which 
to he' made, taking the answer to the first onc as glvcn. n • , 
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jmildiní', of landfills is performed taking into account the existence of a different tcchnology aside frolll 
Inudfilling, so that optimallandfill capacity and mauagement tcchnologies are jointly dccide!!. Rpcrding 
js select.ed as thc alternative t-echnology because it is being the object of a grcat ami incrca,üng interest. 
llowmlays for its cconomic and environmcntal advantages (see, for example, V./einstein nnd Zeckhnllser 
(EJ74), Highfill and lvlcAscy (1997) or l1uhtala (1994,1997,1999)). 

Assllwe a constant instantaneous waste quantity Q{t) = Q is gcncrated. From thc total iUnonnt., n 
portion R (t) is recyded and the rest V (t) ls landfilled. The following mas.'! blllll1/ce conditioll nlllst. hold: 

V(t)+R(t)~Q, v,. (14) 

Disposing ol" an'y quantity of waste in lalldfil! i has a unit cost of Ci, and the cost of rccycling ami 
alllonnt R(t) ls given by 1"; (R (t)), where ri ls a C(2) funcHon holding 1'; > 0, 1";' > oj. The recyeling 
('o.~t functions are supposed to be increasing and convex to represcnt the different t(lchnical recyding 
complexity attached to diffcrcnt matcrials. For example, glass is more easily rccyclable tha¡¡ papcr, aud 
p"per lllnre t.han plastic. In practice, it is reasonable to recyde fjrst t.hose mal.erials which are technically 
easier (and henee, chcaper) 1.0 rccyclc. As a bigger amollllt of waste is to be recycled, more (:ornplcx 
materials are aHeded and the attached cost increases faster and faster. 

A landfill of capacity Yi built al. time Ti, will be depleted al. Ti+l, given by 

rT,+, 
J7 17 (t) dt = 1';. 

T. 

Le!. y¡ (t) denote the available capadty of landfilJ i at instant t. Assuming that landfiU i is ¡¡ot ayailable 
llntil Ti, the bttilding moment, and that landfill capacity is ahvays depleted, the time evolution of 1'; (t) 
is given by 

Y;(t)~ { V(t)~~Q+R(t) t < Ti, 
Ti ~ f. ~ Ti+l, 

t > Ti+I, 
i=O,I,. (15) 

wit.h the boundaJ'Y conditioIlS Y i (T;) = y¡ and y¡ (Ti+¡) = 0, where y¡ IS a decision variable. Bctwefln 7'; 
and T;+t, r; (t) deereases as waste is disposed of and is totally exhausted nt Ti+l. 

Given that the total number of landfills [{ is a decision variable, [{max - ]{min + 1 optimnl control 
problems have to be solved, one for each possible value of K, and that value providiug the least. (:ost is 
sele<:ted. The minimum and maximllm feasible values for K are given by 

[{'nin = 1, [{ma" = ¡nt (T~). 

The maximurn number of landfills f{rnax (which is the rclevant number when no W¡lste is recycled, 
\1 (t) = Q Vt, and aH landfills are minimum capacity, Yo = 1'1 = = Y/(",.,x- 1 =1:::.), has the same 
expression as in sedion 2. Nevertheless, the minimum number of landfills is determined in a different 
wa)'. Let liS suppose (rather realistically) that the constraint R(t):::; Q is never binding, because of the 
high marginal cost of reeycling the whole amount of waste, in such a way that a positive amount of waste 
is landfilled at every instant t, and henceforth, at least one landfiH is necessary. Bllt llothing prevents the 
landfilled amount ITom being small enough fo! one single landfill to meet the requirements of the whole 
period [O, r]. AB a consequenee, Kmin = 1. For each possible value of K, the social planner faces the 
following dynamic optimization problem: 

min E [e-6T;C(Y;) + rT;+1 e-M {Ci IQ - R(t)] + ri (R(t))} dt] 
{lO,.I'" .. ,YK_.).IR(t)!J." i",O .Ir, 

!¡",",JIlIl: "lota;,,,,,1 f,u", rcey<:]!"lpru!llld,; l.rad;ltg j¡; ,wt, ""I'lidtd.v t»k"tl l"t." ;lC'·"''''1. iu lit" 111<><1<01. TltiH "!Hjft<'''lHi,,~ 
"n", lo" ""<"ITO"'" loy iut"rl'rct.iul\" r, "" ,.ccydiu['; "Oot miulls l"c"~',,1iu~ 1"""IIW. 
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sllhjcct to 

'To O, T K =T, 

l', (ti -[Q-R(t)1 Ti:St:STi+I, 

Y,(T,) Y;, 

}i (Ti+d o, 
L S y; :S Y, 
o s R(t)sQ, 

wltero:: (14) has be used ta amit the variable V (t). 
This prohlem fits in tile category of multiple-stage aptimal control problelllS, whose solllt.ion can be 

founrl by applying the results ofTomiyama (1985) and Tomiyama and Rossana (1989)5. The main idea 
implies lIlunnging the whole problem as made of a sequence 01" K optimal control problems, each rc!ated 
to u time intervaIITi,T¡+¡), for i = O, 1,. and solving them baehvurds, as shown bclow: 

1. First, solve the sub-problem rc!atcd to landfill K - 1, deciding the capacity YK -1 and the recyding 
path [R (il];'K_" taking TK _ 1 and T as given, to minimize 

1:iubject to 

YK_¡{t) = - [Q - R(t)] TK_1:S t:S T, 

YJ( -1 (TK _¡) = Yf(-¡' 
YJ(-l (T) = 0, 
:r:::s YK - 1 :S Y, 
O S R(t) S Q. 

Once the solution itl obtained, given by Y¡(-l and [RO (t)];'"_, , it is substituted in the objective 
fnlletion, and we define the value funetion as 

2. Tile next step is to solve the sub-problem related to landfill J( - 2, taking TK _ 2 as given and TK _ 1 

as a dedsion variable, that is, decidingYK_2 , TK _ 1 and [R(t)]~;=: whleh minimizes 

subject to 

YK_2(t)=-[Q-R(il] TK _ 2 :St:STK_1> 

YK _ 2 {TK _ 2 ) = YK - 2 , 

YK _ 2 (TK_d = O, 
Y:SYK-z:SY, 
O S R(t) <; Q. 

a. The value function r (TK _ Z), obtained in step 2, is used to salve the problem related to landfill 
K - :3, and so Oll, up to landfill k = O, delimited by t E [O, TI)' 

"I)ol,h 1'''1'''1"'' ,ka] with tw"_sta!\,, proM",,,", ha" U", "xteasi"" uf t.]",;r r"",lIs tu pro!>I",,,s \Vilh lUOl'<' t,h"" 1 "'u ~1.a,,'$ i~ 
~ln.i!\htf",w"r<] 
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------_._._----------_ .. __ ... _------------------------------

For C'aeh k = 0,1,2, ... ,K ~ 1, we have a continuous time optimal control problem with a ,;tate 
variable, Yk (t), and a control variable, R(t), takillg Tk as given and Tk+l as a decision variable, exccpt 
for the case k = J( -1, in which TK = T is also given. For the k- lit interval, !Tk • Tk + 1). the cnrrent-valuc 
Hamiltonian is c1efincd as 

'H, ~ c, [Q - R (t)1 + ", (R (t)) + ",(t) IQ - R(t)] 

alld tbe Lagrangian is given by 

L, ~ c,[Q - R(t)1 +t-,(R(t)) + w, (t) [Q - R(t)1 + (,R(t) 

Wk (t (with -Wk (t) :S O) being the eostate variable related tú the m'ailable eapacity uf lr'llldfill k at 
instant. t, rcpresenting the cffect on the objective function, of a margina! inerease tll Yi (t). t. k is the 
Kullll-Tueker mult.iplier assodated wit-h the non-negativity constraint of R(t). 

The first order conditions for eaeh control problem, k = 0, 1,. are 

Ak and f1k being thc multipliers attached to maximum and minimum admissible capacit.".. cotll:itraintl:i for 
landfilL k, and 1ik (Tk+1) denoting Ii~ 1ik (t). Thesc eonditions can be intcrpreted as follows: 

t-->Tk+, 

Eguation 1 is the first order maximization condition of 1ik subjcct to R(t) :;::: O, that is, ~~ = O, 

whieh insure.'l that total cost eannot be reduced by increa'3ing or dccreasillg tite recycled amount. If 
the marginal cost of recyding is greater than that of landfilling, that is to say, condition 1 holds with 
strict inequality, in the solution, no waste is recyded, R(t) = O. In the case of an interior soiution with 
R (t) > O. the optimal quantity of recyeled waste is determined according to 

(16) 

which states that, for aH landfiHs, and at every time, the marginal cost of recyeling, given by Tí. (R (t», 
rnU.'lt eqllul the marginal cost of landfilling, given by the unit cost ek plus thc shadow price of availablc 
capadty, in landfiU k. 

Condition 2 determines the optimat time evolution of the eostate variable Wk, that is to sa)', >Ílk (t) = 

ÓWk (t) + a8'~k((). For landfiU eapacity being a depletable resource, condition 2 is the c\3.~sical Hotelling 
1 k t 

rule, which states that the shadowprice of sueh reSOUIce grows at arate that eguals the temporal discount 
rate Ó. Taldng this result, and the fact that Ck is constant for each landfjll, into aceoullt, we find that the 
right side of (16) is constantly increasing during the usefullife of landfill k. Accordingly, to maintain the 
equality, the 1eft side must also be increasing, Given the assumption rZ > O, we condude that, during 
the usefullife of a given landfill, the recycled amount ¡nereases with time. 

Equations 3, 3', 3/1 and 4 are the transversality conditions of the problem6 , which deserve sorne 
comments. Conditions 3, 3' and 3" are the transversality conditions for the initial state, Y k , whieh is a 
dedsion variable with maximum and minimum threshold values. If no threshold conditions are binding, 
the optimal capacity of landfill k is determined by condition 3 alone, which takes the form 

(\7) 

Equation (17) is the Optimal Capadty Condition for landfill k, and it states the equality between 
marginal cost of Yk , given by the increase in building cost, and its marginal gain, given by thc shadow 
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pricc of the avnilablc lanclfill capacity at time Tk, Wk (Tk ), that measures the effect of increasing Yk OIl 

thc total r1iscounted costs fTom Tk OH, eoupling the saving in the management costs at.tnehed to landfill k 
and tho diseoullt.ed cast saving that may be ohtained by de1aying the building times of future landfills7 • 

Etl'lation 4 is the transversality condition for the optimal vahle of Tk + l , when a serap value fundion 
(~xists th.ü, from the viewpoint of period In" Tk+l], is r (Tk+1). For k = J( - L this oquation is replnccd 
by the final cunditiou T K = T. Tite left side of equation 4 l'epl'eseuÍ>; the marginaL eost of enlarging 
tlle llseful life of landfill k, which is rÍk evaluated at T k + 1 and properly diseollntcd. Thc right side of 4 
reprCSetlts the marginal gain obtained from enlarging the useful life, which is the effcct of an inerease in 
Tk .11 on tile scrap function J* (T.,+I) and, by definition of J' (Tk+¡), 

whcIe Yk'+J anrl R* (t) represent the optimnl value of Yk+J and R (t). 
Following Caputo and Wilen (1995) we know that 

where Jik+l (T;;+l) = lim Jik+J (t). Using this result, and given that 
t~T:-+, 

condition 4 can be e:xpressed as 

t,hat. is to say, at Tk +I a jump happens froro the value of the k - th Hamiltonian to the (k + 1) - th one. 
This condusion i8 also obtained in Hartwick, I{emp and Long (1986), in the eontext of the exploitation 
of many deposits of an exhaustible resouree, with the pecutiarity that, in Hart.\vick et. al.'s paper, the 
jump is always the same size beeause all the deposits have the same initial capacity, while in this papel' 

the jump size, given by ~ [e-ÓTk+1C (Yk*+l)] , depends 011 the capacity of lalldfill k + 1, Yk*+I) which 
uTk +1 

is a decision variable. 

4.1 Example 

Assume that building eosts are given by thc linear function 

C(Y) =a+bY 

and the reeyeling costs, which are identical for aU the landfills, have tite form 

"o(R,) ~" IR,) ~ ... ~ d· [Rlt)]', 

d heing a parameter, and no maximum or minimum eapacity constraints for aIty landfill. To solve the 
problem, \Ve !leed to obtain the solution fol' each possible value of K, and select tltat providing the least 

'\\", w"y "t,lw ~"yin¡; t,lml, ltl".l' he u¡'t,aill"d" "ud ""r. "thú ~;¡vj¡,,,, that, i, "bt.ai","I" Ill""'''~'', i" thi, ]>l'"bl",u, lllUmllll, uf 
"",~I,,, <1"'"1",<1 iH" ,h~:¡Hi<>u ,""¡-¡,,bh, ami il. is HOt. suro, " ¡"-¡,,,.¡, 1.1",t." hi¡;h"f y,llm· uf Y¡" ¡lllpli"H" >ld"y uf [nl.,,]'(, laudfik 
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vI1.1ne of the objective function. vVe analyse the !{ = 2 case, whosc attachecl optiInization problem ¡s the 
following: 

T. 

min [n + bYoj + r e-61 {co!Q-R(l)] +d!li'(t)12}dt. 
(Yo"l', ,R(t).T,) Jo 

+e-6T, ta + bY11 + .1r~ e-51 {CI [Q -- R (t)] + ti IR It)J2} di 

linhjecl 1.u 

Yo = -Q +R(t) O S. t S. TJ • 

YI = -Q + R(t) TI ::; t "5;T, 
Yo(O)=YQ, Yt(Tt)=YI . 

Yo (TI) = Y1 (T) = O. 
Rlt) ~ Q 

The first step i8 to solve tite sub-problem attached to landfill 1, tllat is, 

min e-8T, [a+ bY¡j + r e - 51 {CI [Q - R(t)] +d[R(t)]2} dt 
y"R{t) Ir, 

subjcct to 

TI::; t::; T, 

YJ (TI )=Y1, y; (T) = O, 

taking TI and T as given. The attaehed eurrent value Hamiltonian is 

H, ~ e, [Q - R(t)] + d[Rlt)]' + "'dt) [Q - Rlt)]. 

As shown in t.he appendix, the solution to this problem is 

• [ e,] I ) b [ '(C-""] y = Q._- T-TI +- 1-e 
I 2d 2dí 

y;~ (t) = [Q - 3.] (7 - t) + - [é(t-T,) - é(r-T, l] 
, 2d 2do 

w; (t) = bé{t-'J'j) 

R* (t) = ~ + ~e¡;{t-T,) 
2d 2d 

frorn which, \Ve obtain 

Jj (T¡) = e-6T
¡ la + bYtj + r e-M {el IQ - R* (t)] + d [R* (t)j2} dt, ir, 

1'8) 

(19) 

which only clepends on parameters of the problem and the variable TI. Afterwnrds, it is nccessary to 
solve t,he problem corresponding to landfill k = O, which is the following: 

1
r• 

min [a+bYoJ+ e-6t{co!Q-R(t)]+d[R(t)f}dt+.Jj(T¡) 
Yo"R(t),T, o 

subject to 

Yo=-Q+R(t) O::;t::;T¡, 
Yo (O) = Yo, Yo (T¡) = 0, 
R(t) SQ 
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the CUlTcnt valuc Hamiltonian being 

'110 ~ "" (Q - R(tll + d[R(t)[' + "O (t)(Q - R (/)[, 

whosc solution, ¡lS shown in the appendix, i5 gh'en by 

(20) 

Finally, wc need to lind the optimal valuc of T1 , which is obtained from the trallsyersality condition 

?-to (TI-) = 6C(Y]*) - c' (Yt) ~i: +?-t¡ (Tt) 

that, using (Hl) alld (20), bccomes 

. [Q- ~-~e~T'l +d [~+~e5Tll2 +be6T, [Q- ~ - ~éT'l 
Co 2d 2d 2d 2d 2d 2d 

1i,,(T, ) 

c(y,") 

+c, [Q-~l+d[~r +b[Q-~l 

or, simplifying, 

1i,(T'+) 

4dCoQ - cl- 2cobéT, - 62e26T, + 4dQbc61', 

4daó + 4dbóQ{r - TI) - 2c]bó(r - Ti) - 62 + 2b 
_2b2e6(T-T¡) _ 2bé(T-T,) + 8dbQ - 4C1b + 4chQ - ci. 

To illustrate the l"esults, let us show the solution for the following pararneters value~: 

a= 10, CI = 3, Q = 20, 
b= 0.8, d= 4, T= 30, 
en = 2, ó = 0.04, 

which is given by 

r; 15, 

Yo' 294.2, 

Y( 292.3, 

R' (t) ! + ~eO.04t 
4 10 

0S;t<15, 

R' (t) ~ +~é{t-¡5) 
8 10 

15S;tS;30. 

(21) 

(22) 

(23) 

'By H", hi""di"" ",d.IJod, 1.!WIIUUlC,·i",,1 va¡'", Ti l.hat NO¡""S (21) i" ,,1>t."¡u,,<I, "ud fro", TI' ""d l.¡,,' pal"all,,,t"r '·"hw:<, 
l.!", optiun'¡ vah", uf Yu "'U¡ Y¡ is ohta¡¡w'¡ usiul\· (H)) "ud (20). 
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In figme number 4.1 t-he optimal shape of R(t) is shown. Now sensibility analy:;!s 8..'Cperiments are 
performcd by changing one parameter each time and holding thc f0it at. the henchmark values given Rt 

22 In figures 4.1 the effect. of different paramctcl"s on optimal "\ralucs of"Yo anrl Yi are shown. 

o." 

'" 

II.~' 

Figure 4.1 Solution for R(t) 

For "lo"," valucs of a it is optimal to build two landfills with capacities Y¡i flnd Yt, while from a 
eertain threshold valuc a, tbe fixed cost attaehed to the building of a landfill is so high that it is nol. 
optimal to build two, hut only one with enough capacity to dispose of aU the waste gcnerated throughout 
t.he period [O, T]. From that tlrreshold value of a, we have Y1* = o. 

The higher the value oí parameter b, which represents thc marginal cosí. of each landfiU built capacity, 
tile lower the optimal value for Yo and YI , and hence, the totaL landfilled amount of waste. For the 
soJution to be still feasible, total recyded waste throughout [O, r) must increase as b increa.<;es. 

The higher the value of parameter co, measllring the unit disposal cost of the first landfill, t.he ¡ower 
the optimal valuc of Yo and the higher the value of Y1. 

As for parameter Cl, when it is below a certain threshold value, small incremellts do not affect tbe 
opt.imal value Yo and produce a slight. deerease in Y1 (the scale of t.he plot do llot. anow the latt.er cffect 
to be pcrccivcd visually). So that, the solution does not change in the intencal ¡O,TI ), while recycling is 
more intensively Ilsed, and landfilling less, in the interval {TI, T). \Vhen el exceeds a certain value, t.he 
second landfill ceases to he profitahle, and it becomes optimal to build a single landfill for al! the waste 
generated throughout [O, TJ. 

Increasing parameter d makes recycling more expensive as compared with landfilJing, and it leads to 
an inerease in both landfills capacity in order to allow more waste landfilling and les~ recycling. 

Beeause of the linearity of building costs, and given CI > Co, for ver)' low valnes of ó there i5 no reason 
ta llse two landfills, bearing twice the fixed cost a, hut it is better to build a single landfiH. So, for low 
'~illles of 5, we find yt = O. For "medium" values of ti, Yo~ and Yt approximately have the values givcn in 
(23), with Yo slightly decreasing and y] slightly increasing (in a range that can llot be visually perceived 
with the plot scalo). Finally, for a certain threshold value of D, a negative (positive) leap happens for Yo 
(Y¡). 

Tho instantaneous waste generation, represented by Q affects the optimal values of 1'ó and Y¡ in a 
linear and positive way. 

The time horizon variable T has a two-piece effect: for low valnes oí T, it is opUmal to build a single 
landfill, and hence, Y¡ = O. For "smaH" T increments, the optimal valuc of Yo increases and that of 
y] stays at zero. For a high enough r inerement, a leap happens in the solution: building two landfills 
becamos optimal, so that Yo sharply deereases and Vi switches from zcro to a strictly positive value. 
From that point, íurther T increments leads to ¡ncrease in both landfills' capacity. 
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Effect on YO Effect OH Y¡ Effect on Yo Effect on 1'1 
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Figure 4.2a. EffecL of parameters on Yo and Y1 Figure 4.2b. Effect of paramet.erll on Yo and 1'¡ 
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5 Conclusions and Future Research 

Thc optimal capacity uf landfills, which is a rathcr relevant economic decision and is lisua!!)' t.aken as 
given in most economic articles, has Leen studied in the present paper within a dynamic framework. Tite 
baslc dynamic nature of the probtem has been pointed out and several specific cases llave been explored. 
To rleal with this matter, a c1ass of optimal control problems, sharing sorne continuous time and sorne 
discretc time features, have been stated and solved. The mathematical structure of those problcms 
crHLld also be useful to model sorne other economic situations, such as investment rlccisions OI durable 
eOllsumptíon goods decisions. 

Given that landfill<¡ are deplctable and replaceable resources, thcir capacit,y amIllseflll life should Ilot 
be individuall)' (landfill by landfill) decided, bllt the whole seqllence of necessary landfills would rather 
he jointly designed. Ir the only diffcrence arnong the various placcs a\·ailable for thc building of laudfills 
is thc attached unit waste management cost, then it is optimal to make use of such places beginniug ITom 
thc lowest cost one and followiug in the order of increasing unit costo 

In an interior solution, the optimal capacity of a certain landfill k is determined aceording to the 
so-calLed Optimal Capacity Condition, which states the equality between such capacity marginal cost and 
marginal gain. The marginal cost is given by the building cost plus the management cost attached to 
landfill k, while the marginal gain comes from all the discollnted cost saving attached to flltllre landfills 
that can be achieved by increasing the capacity of landfill k. Optimal capacity depends positively on the 
expected future waste management cost incremeut froro the present landfill to the follo\Ving one, in such a 
way that the more management costs increase, the more decreasing the sequence of capacities decreasf'.E. 

If instant waste generation is not constant, but follows a certain time evolution, a solution method is 
suggested, based on discrctizing the continuous time problem by sllmming up the generated amount of 
w;\Ste between t",o consecutive (endogenously determined) landfill switching times. This strategy allows 
us to avoid the temporal nature of the switching time variable, that becomes a state variable of the 
problem. The time-variable role is played by the landfill índex (k = O, 1, ... , K - 1). 

Seleding management technologies and building landfills are related decisions. V,rhen both decisions 
are jointly considered, a multiple-stage optimal control results, whose solution requires the use of dynamic 
continuolls time techniques (Pontryagín Maximum Principie) for every lalldfill sub-problem aIld discrete 
time proccdurc (Dynamic Programming) to manage the ",hole problem. 

Under the assllmptiolls made for the landfilling and recycling prohlem, the recycled amount of waste 
is time increasing withín every landfill's usefullife. 

The foHowing are sorne plausible futuro research lines: 

Enriching the optimal capacity problem, relaxing assumptions and adding new clcments such as 

- Considering the possibility of stochastic future generation of \Vaste 

- Exploríng other waste treatment technologies, such as incineration or composting. 

.Joint study of optimal capacity and optimallocation of landfiHs. 

6 Appendix: Mathematical Conditions 

6.1 Proof of Proposition 1 

For each of the possible values of K, the correspollding control problem can be solved either by dynamic 
programming, as illustrated in the case K = 2, or by the Lagrange methodu. .fu; the statc equation is 
ver)' simple, it is possible to work in tite following way, for a generic value of K. Applying recurrently 
thc formula Ti +1 = Ti + i1, and assuming that aH the landfills' capacity get exhausted under tile optimat 
solution, we obtain 

i=1,2, .. ,](-1 (24: 

'Is"" eh",," (1!I\J7) ror" ""mpnrisnll o[ hoth lJldhuds. 
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í 
Ou the other hand, solving the integral of the objective function of (P) and Hsing the equation (24), 

\Ve ha\"c 

and therefore the problem (P) consists of finding the sequence of capacitie:; iY;',Y¡, .. ,Yf\-ll which 
minimise 

~ubjcet to the overall capacity constraint 

Yo + Y1 + ... + YK - 1 = TQ. 

Tite LagTungean of this problem is 

CIYo) + Q:o [1-'-'%'] + ~ ,-H';O;Y, [CIY;) + Qt' (1- ,-.~)]- +Q -~ YK-'] 
being .,\ the LagTange multiplier attached to the constraint (25). 

The first order conditions for Yo, YI, ... , YK - 1 are 

k=1,2 ... K-2 

.ud 

jointly with (25). 
Equating the first order equations for two consecutive arbitrary landfills, k and k+l, (k = 1 2, 

3111 ) \vo obtain 

(25) 

K-

.. . ~I:k-Iy .. Ó K-1 -~I:'-'y,[ Q"( _bK..)] IVIult.¡plylllg both sldes by eq jm" ), addlllg Q Li=k+2 e <1 .1~".J e (Y;) + 4-'- 1 - e q to 

bot-h sides and rearranging, we obtain (2). 

lIlTI,,' i"l"n""'¡hü,, "xp .. ""si",,s [ur k O "ud k = J( - 2 "T<' ~Ii!!;htly ditrel"U"I .• hllt ¡lo ¡~ "a";,' t." .,h"", t.hal. ,,,¡uuii,,n (2) 
al", hold" r",. 1.1""", two ""H"". 
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6.2 Solution of Example 4.1 

A~ 1'1 i5 giycn, e-~Tl is constant and minimizing the objective function t18) i5 the .'lame as minimiúng 

[a + bYi] + r e-6(t-Tol {el [Q - R(t)] + d[R(t.)J2} dt 
ir, 

whieh, making the variable ehange w = t - TI, may be expressed as 

anrl the problem constraints become 

Y1 (w) = -Q+R(w), 

R(t) ~ Q 

with 1'1 and í given. The current mue Hamiltonian i5 defined as 

H, ~"IQ - R(w)] +dIR(w){' + "', (w){Q - R(w){. 

The necessar}' first order eonditions (Pontryagin Maximum Principie) are the follo\Ving: 

oH, 
aR(w) 

'lh(w) 
Vi (w) 

-el + 2dR(w) - W¡ (w) = O, 

ÓWl (w), 
-Q+R(w). 

(26) 

(27) 

(28) 

Solving equation (27), \Ve have Wl (w) = Wl (O)é'" and, substituting in (26) alld rearranging, we haye 

(29) 

Substituting (29) in (28) and solving the resulting differential equation, whose general solution fOl" Y¡ 
¡, 

[e, ] Wl (O) 6w 
Y¡(w)= U- Q w+----u5e +A, 

A being a eonstant. Using the initial eondition Y¡ (O) = 11 and rearranging \Ve obtain the valne of 
W¡ (O) 

A = Y¡ - ----u5' sO that the solution for Y1 (w) becomcs 

[ e, ] "',(0) [ 'w 1 Y¡ (w) = Yi + U -Q w+ 2di"""" e -1 (30) 

and, USillg the final eondition Yi (7 - TI) = O and rearranging, provides the following expression for Yl: 

Y¡ = [Q - ~] (7" _ T¡) + W¡(O) [1 _ é{T-Td]. 
2d 2dli 

(31) 

From thc Y¡ optimality eondition, the following value of W¡ (O) is obtained: 

24 

and snbstituting (31) and (32) in (30) the following final cxpression for Y1 (w) is obtainetl: 

Yl (W) = [Q -~] (T -TI) + 2~6 [1_é(T-Tll] + [* - Q} w+ 2~ti [é'" -1] 

aud the ~ollltion for W¡ (w) and R(w) i5 giyen by 

W¡ (w) 

R(w) 

béw
, 

el b ~'" 
U + ue . 

Undoing thc variable changc w = t - TI, the expressions in (19) are obtained. 
The current value Hamiltonian of the sub-problem linked to laudfill O is defined as 

Ho ~ 'o [Q - R(t){ + dIR(t){' + "'o (t) IQ - R(t){. 

The Pontryagin 11'Iaximum PrincipIe eonditious m'e 

&110 

oR(t) 

lÍto (t) 

Yo (t) 

-eo + 2dR (t) - Wo (t) = O, 

,'''o (t) , 
-Q+R(t). 

(33) 

(34) 

(35) 

Solving equation (34), we have Wo (t) = Wo (O) éL and, sub~tituting in (33) and rearranging, \Ve obtaiu 

R( t) = ~ + wo(O) 6t 
2d 2d c . (36) 

Using (36) in (35) and solving the resultiug differential equation the following general solution for Yo 
is obtained; 

y, (t)~ [~-Q]t+ wo(O) 6t+A 
o 2d 2d8 e , 

A being a eonstant. Using the boundary condition Yo (O) = Yo and rearranging the value A = Yo - W;d~) 
is obtained, so that the solution for Yn (t) beeomes 

[ 'o ] "'0(0) [" 1 Yo(t)=Yn+ U- Q t+ 2d6 e -1 (37) 

and, using the final condition Yo (TI) = O and rearranging, the following expres5ion is obtained for Yo: 

y = [Q-~]T + wo(O) [1-éT'1 o 2d12d8 . 

From the Yo optimality condition, we obtain the value for Wo (O), 

and using (38) and (39) in (37) and rearranging, we have the following final cxpression for Yo (t): 

Yo (t) = [Q -~] (T¡ -t) + 2~ó [é t 
- eH,] 

aud the 501ution for Wo (t) and R(t) is obtained by substituting (39) in (34) and (36). 
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