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The problem of the soliton motion in the case of a nonzero reflection coefficient is solved exactly
within the framework of the inverse scattering method. A general method is given for obtaining the
asymptotic expressions of the soliton angle variables. As illustrative examples of our procedure, we
consider the Korteweg-de Vries equation and its higher analogs, the nonlinear Schrédinger equation,

and the sine-Gordon equation.

I. INTRODUCTION

In a recent work! we proposed a method for determin-
ing the asymptotic positions of the solitons for the case of
nonzero reflection coefficient. This procedure which is
based on some general properties of the inverse scattering
method (ISM) has, however, two limitations. First, it
makes use of the expressions of boost generators in terms
of scattering data. Although these expressions are avail-
able for several of the most relevant completely integrable
systems, and not only in the classical context® but also in
the quantum one,’ there is not yet a proof of their ex-
istence for general models solvable by the ISM. On the
other hand, the method of Ref. 1 does not apply to find-
ing the asymptotic expressions of the internal variables of
the solitons. The present paper aims to show how these
difficulties may be overcome through the asymptotic
analysis of integral equations of Gel’fand-Levitan-
Marchenko (GLM) type. In this way we provide here a
general method for finding the parameters which charac-
terize the asymptotic trajectories of the solitons arising in
the nonlinear models solvable by the ISM. Thus, for these

models our results prove that the classical S matrix
describing the interaction of a soliton with both the other

solitons and the radiation component can be explicitly
found.

The asymptotic solution of GLM equations is a diffi-
cult mathematical problem which has been considered by
numerous authors*~? and from several different points of
view. A particularly important progress has been
achieved for the solitonless case, but only a few results are
known for the general case in which both solitons and ra-
diation component are present. In this paper our analysis
is based on the observation that in the ISM the time-
dependent GLM equation has a peculiar structure which
allows us to define a spectrum of velocities associated
with the scattering data. It is worth mentioning that for
several relevant models? this spectrum may also be found
through the interpretation of the normal modes in terms
of particles and linear fields associated with the Galilei
and Poincaré groups. The importance of this spectrum of
velocities lies in the fact that it determines the form of the
GLM equation in the asymptotic limits z—>+ . As a
consequence, given a solution of an equation solvable by
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the ISM, we are able to find the scattering data corre-

sponding to the parts of the solution which as t—+

propagate on intervals of the form [xo-+(vo*0)t, +'c0).

Then, by means of a simple argument, without using
boost generators, we deduce the explicit expressions of the

soliton variables as t—+ 0.

The basic aspects of our analysis are discussed in detail
in Sec. II. It deals with the Korteweg-de Vries (KdV)
equation and its higher analogs, which can be integrated
through the scattering data provided by the Schrodinger
spectral problem. We then show how the same scheme
can be directly extended to characterize the soliton motion
for the nonlinear Schrodinger (NLS) equation and the
sine-Gordon (SG) equation in Secs. IIT and IV, respective-

ly.

II. KORTEWEG-DE VRIES EQUATION
AND ITS HIGHER ANALOGS

We begin with a brief discussion of the ISM associated
with the Schrédinger spectral problem on the line,’

[ —0xx +u(x)1f (k,x)=k*f(k,x) ,

flk,x)—e™ x—+t o,

(2.1a)
(2.1b)

where u(x)—0 as |x | - . The Jost solution f(k,x)
exists for all k in the upper-half plane Imk >0 and deter-
mines two scattering-data functions a(k) and b(k)
through the asymptotic condition

Flk,x)—a(ke®™ —b*(k)e ™ x—— o, kKER . (22)

The function a (k), which will be referred to as the transi-
tion coefficient of u (x), admits an analytic continuation
to the upper-half plane and can be expressed in the form

i e In[1—|r(g) Z]dq

qg—k—i0

Nk —k,

a(k)=]]

€X
i k=l P 27 e

(2.3)

Here, r(k)=b(k)/a(k) is the reflection coefficient and
the numbers k,, the zeros of a(k), are purely imaginary.
The asymptotic behavior of f(k,x) as x——o0 is
described by (2.2) and two further relations
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—ik,x

Flky,x)—bye " x> o, (2.4)

flk,x)—a(k)e™, x—— o0,

Imk >0, a(k)s20. (2.5)

The numbers b, associated with the zeros of a (k) will be
called the transition constants of u (x).

In order to characterize the potential, the relevant set of
scattering data turns out to be

S={k,=in,,cn,r(k)}, cp=[ibyal(k,)]™". (2.6)

Thus, if we define the function
Q=23 e+ L [7 pkpeioar, @)
T —
n

and solve the GLM equation
B(x,p)+Qx +3)+ [.” Qx +y +2)B(x,2)dz=0

(2.8)

then the potential u (x) is given by u (x)= —09,B(x,0). In
particular, if we take a set of scattering data
S={k;=in,c,r(k)=0} with only one k, and a zero re-
flection coefficient, the corresponding potential is the soli-
ton

Ui (x)=—2n%sech?[y(x —q)],
(2.9)
1 C1 1
=—In—=——In|b,]| .
9= 5, "2 2y |1 |
The ISM associated with the Schrodinger spectral prob-
lem applies to an infinite family of evolution equations of
the form'©

M
d,u=3yR, R= 3 anR, .

m=1

(2.10)

Here, the a,,’s are arbitrary real numbers and the func-
tions R,, are determined by means of the recursion rela-
tion

ame-H:(_"lt'axxx"'uax"‘%ux)Rm’ R1=—;u < @11

- In particular, for R =8R, we get the KdV equation

Up = —Ugyx +OUU, . (2.12)

By means of the ISM one finds that for solutions of Eq.
(2.10) the evolution law of the scattering data is
ky(8)=ky, cy(t)=cpe nnt
. (2.13)
r(t,k):r(k)e —2iw(k)t ,

where

S+ (vg;t) = {ky,c, (2): £ (v, —v0) > 0;0( £ [0, (k) —vo Dr(2,k)} .
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amk2m—1 .
! (2.14)

Consequently, the function (2.7) which characterizes the
GLM equation evolves in time according to

2ik, (x —v,t)
Q(t,x)=22cne n v,
n

Mk

M
1 — 1
p=—% > Amk,™ 7% olk)=—3
m=1 m

5 7 rledte—otbrlgg (2.15)
e — o0

This expression suggests-a natural spectrum of velocities

associated with the scattering data. Indeed, the terms in

the sum propagate with velocities v, and the group veloci-

ty of the Fourier modes in the integral term is given by

vg(k)=a(k) . 2.16)

The relevance of this spectrum of velocities can be under-
stood through the asymptotic analysis of the GLM equa-
tion. The essential point is to notice that because of the
form of Eq. (2.8), the value of the potential u(z,x) at a
given point x, depends only on the restriction of Q(z,x) to
the interval [x(,+ « ). Consequently, in order to deter-
mine wu(t,x) on a moving interval of the form
[xg+(vg+0)t,+ o0 ) as t— + o0, the only relevant contri-
butions to Q(#,x) arise from those scattering data which
propagate with velocity greater than vy. This implies that
the corresponding GLM equation is characterized by the
following expression for Q(t,x) (see Appendices A and
B):

Q4 (woit,x)=2 3, 0(v, —vp—0)e, ()"
n

1 e ;
T [ ok —vo)r(n ke, (2.17)

where 0 denotes the step function. Likewise, if we want
to determine wu(t,x) on intervals of the form
[xo+(vg—0)t,+ ) as t—— o0, wWe have to solve the
GLM equation with an asymptotic expression for Q(t,x)
of the form

Q_(U0§t,x)=22 0[——(Un _U0+0)]cn(t)e2ikox

1 © .
+— [ 0(=o (k) —vo]Dr (1,k)e*™ .

(2.18)

The solutions u 4(¢,x) of the GLM equation correspond-
ing to ()4 represent the contributions to u(z,x) arising
from those normal modes of (2.10) which propagate with
velocity v such that +(v —vy)>0. Furthermore, the
forms of Q4 as given by (2.17) and (2.18) mean that in
terms of scattering data, u 4 (¢,x) are described by (see Ap-
pendix A)

(2.19)

Observe that as a consequence of (2.3) and (2.19) the transition coefficients of u 4 (z,x) are



32 EFFECT OF THE RADIATION COMPONENT ON SOLITON MOTION - 1461

k
a+(vo;k)= H !

exp
n k —k:

21

where the product extends to those n’s such that
i(v,, - U()) >0.

Let us analyze now the soliton motion arising in the
long-time asymptotic behavior of a given solution u (¢,x)
of (2.10). For the reflectionless case [r(k)=0] it is well
known'® that as t— + oo the solution decomposes into N
solitons which move with the velocities v, defined in
(2.14). Moreover, one fmds that as t— + « the asymptot-
ic trajectories gj*(1)= q, +u;t of the solitons satisfy!°

+ 1 4] —Mn

gi =—In ~*+—— (+(v,—v )ln _—

"o 2 Ty ,E, n m+nn
(2.21)

However, in the general case the solution u (#,x) gives rise
not only to N solitons with velocities v, but also to a
dispersive wave train associated with the degrees of free-
dom provided by the reflection coefficient. We are now
,going to see how our asymptotic analysis of the GLM
equation allows us to characterize the effect of the disper-
sive wave train on the soliton motion. To this end let us
consider the /th soliton with velocity v; and let u 4 (¢,x) be
the parts of the solution u(z,x) which propagate to the
right of the soliton as z— + . According to our above
considerations, we have that u . (¢,x) are described by the
sets of scattering data Sy (v;;¢). In the same way, it is
natural to assume that

S+ (opt) =8+ ;) U {kpye(0)

are the sets of scattering data corresponding to the parts
#+(t,x) of u(t,x) which result from the addition of the
Ith soliton to u4(z,x). Indeed, the sets S (v;;¢) represent
the normal modes which propagate with velocity v such
that +(v —v;)>0. Let @4+ (k) and b (1) be the transition
coefficients and the /th transition constants of @, (#,x),
respectively. Then, from (2.3) and (2.6) it is clear that

7o ()=~ =5 k) (2.22)
ay _k—k,’"aivl’ s .
bE(t)=Lic/(t)a+ (k)]

=2n[c)(Da s (v;k)] 7! (2.23)

Consider now the operation of continuing the Jost solu-
tion f(k;,x) from + oo to the left of the regions occupied
by the potentials #+(z,x). From the definition (2.4) of the
transition constants, after this operation f(k;,x) will
reduce to b7 7(t)exp( —zk,x) On the other hand, the same
‘result must be obtained if we first continue f(k;,x) from
+ oo to the right of the Ith soliton through the potentials
u +(t,x), and then we continue the resulting function to
the left of the soliton. From (2.4) and (2.5) we may
describe the two steps of the latter process in the form

—kny i e In[1—|r(g)|?%]
[ 0t Iug(@—vol) g —k—io %

(2.20)

ik;x

f(k,;x )—»ai(vl;k, Je

—ikyx

—a . (v;k)bi(1)e , (2.24)

where bj () are the transition constants corresponding to.
the I/th soliton as t— =+ «. It then follows that

biE()=b F()a+(v;k)]™!
=2’7],[Cl(t)a-{_,2(1)1;161)]—1 (2.25)
and so, taking into account that
+ 1 +
i(t)=———1I1 i ,
qi (1) 217In|b1(t)l
we find
+ 1 4] 1
gi = —In—+—In|ai(v;k;) (2.26)
T 2y Ty |aslosk)|
Hence, by using (2.20) we get
+ 1 171_77"
g =—hh—+— Y 0(+(v, —v;))In | ———
2n, 2”’11 Ul ,é] ! N +Nn
1 ©
—5- J ., 0wk —v)
_ 2
o Ill= [P 7] gy (2.27)

k2 +m,?

The integral term in Eq. (2.27) shows clearly the effect of
the dispersive wave train on the soliton trajectories. Ac-
cording to (2.27) the shift in position experienced by the
Ith soliton due to the presence of both the other solitons
and the dispersive wave train is given by

+ - 1 M — Ny
q —q; =— sgn(v, —v;)In | ————
! ! ! ;Ez e N1+Nn
1 ® In[1—|r(k) ]
= k)—
. f_wsgn[vg( )—v;] PR
(2.28)

For the case of the KdV equation v,(k)=— 12k? and
vy =4m,% so that Vg (k) —uy is strictly negatxve As a conse-
quence one may find!! that (2.27) and (2.28) correspond to
the results obtained by Ablowitz and Kodama.®

III. NONLINEAR SCHRODINGER EQUATION

We shall now apply the method of the last section to
the nonlinear Schrodinger (NLS) equation

i¢t=*¢xx_2|1/j|2¢ ’

which can be solved by means of the ISM associated with

(3.1)
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the Zakharov-Shabat spectral problem'?

1 0 vix) k|f(k 0 3.2

io30, + ) 0 | Sflk,x)= (3.2a)
0| .

flkx)— |, e® x4 . (3.2b)

We may define scattering data for (3.2) which are com-
pletely similar to the ones used in the Schrodinger spectral
problem. They are introduced through the relations

e—th ,

flk,x)—al(k)

0] . 1
1’e"""%—b*(k) lo

X —>— 00, kER ; (3.3)

Nk —k, © In[1+ |r(q)|?]
a(k)—nI;I1 i 27r e gk —i0 d
b(k) .
r(k)_a(k) ;0 (3.4)
1 —ik, x
fk,,x)—b, 0 e ", x—>—ow ; (3.5)
0] .
flk,x)—al(k) 1 etk
X——o0, Imk>0, a(k)40. (3.6)

The potential ¢¥(x) in the Zakharov-Shabat spectral prob-
lem may be reconstructed from the set of scattering data

S={k,=&,+inn,cp,r(k)}, c,=[ibyalk,)]"", (3.7)

by solving a system of integral equations of GLM type of
the form

By(x,p)—0*(x +9)— [[7 O*(x +y +2)B} (x,2)dz =0

(3.8a)

)+ 7 Qx +y +2)B(x,2)dz =0 (3.8b)

Y(x)=—iB,(x,0), (3.8¢)
where

(3.9)

0x)=23 cue™ + = [ etk .

In particular, the soliton of the NLS equation can be writ-
ten as

Ysol(x)=—2n exp[i(¢—2&x ) ]sech[2n(x —q)] ,
(3.10)

1
g=———In|b,|, ¢=argh,,

27
with
S={k\=&+in, c;=29b,"", r(k)=0]}

being its associated set of scattering data.
By means of the Lax-pair technique it is straightfor-
ward to find that under the NLS flow the scattering data

evolve in time according to

o 2
k,(t)=k,, c,,(t)=c,,e4'k" t,

(3.11)
r(t,k)=r (k)4

Hence, the time evolution of the function (3.9) is given by

22c,,

i(k,x +2k, t)

T (3.12)
' —
Observe that the modulus of the sth term in the sum
propagates with velocity v, = —4¢,, while the group velo-
city of the Fourier modes in the integral term is
vg(k)=—4k. It must be noticed that, as in the
Schrodinger spectral problem, because of the form of the
GLM equations (3.8) the value of ¥(z,x) at a given point
xo depends only on the restriction of Q(z,x) on the inter-
val [ Xy + o ); therefore, we may perform the same asymp-
totic analysis as in Sec. II. The result is that as t—+ o
the transition constants [see (3.5)] corresponding to the /th
soliton of the NLS field are given by
bif(=2mle)(Da s wik)] 7" (3.13)
Here, the functions a4 are the transition coefficients cor-
responding to the parts of the NLS field which propagate
to the right of the /th soliton as t— + o. Thus, taking

into account (3.10), it follows that the asymptotic expres-
sions for the angle variables of the solitons are

s 1 al ki —k,
j =%—In +- 6(+(v, —v;))In
9 2 29 oy ,E, ! k —k
1 ©
5= 7 oo~ D)
In[1+ |r(k)|?]
X dk (3.14a)
(k —&)*+n/?
ki—k,
¢?=—argc,—2Ee(i(v,,—vl))arg ! -
nsl k]-—-kn
LT oty —vD)
s - 0
(k—&;)In[1 rik)|?
DIl [P (5 14
(k—&)*+n

IV. SINE-GORDON EQUATION

The analysis of the soliton motion for the sine-Gordon
equation

¢tt - ¢xx + Sin¢ =0

may be carried out by following the same scheme as in
Secs. II and III. For this model, the auxiliary spectral
problem is provided by'?

4.1)

X (4.2a)

Ja,+A+L1B_k Jf(k,x)=0
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1 1 By means of the resolution of a system of integral equa-
flk,x)—e(k,x)= ; lexp i k ~Tex ¥ | tions of GLM type given by
Xodew, @20 Bl +Qx+p)+ [T 0x +y +2)B)(x,2)dz
where ‘ : + fow Qy(x +y +2)By(x,2)dz=0, (4.9a)
0 —1 il 0 dxtd 168, (x.p)— O ) ® 0
J= 1 o |’ A=Z be+b, 0 , 206,y)—={h(x +y _fo 2ox +y +2)B,(x,z)dz
(4.3) ® '
1 o 0 +f0 Qs(x +y +2)B,(x,z)dz=0, (4.9b)
B=+ _is | -
610 e ¢(x)=—iIn{[1+8iB,(x,0)][1—8iB,(x,0)]"'} , (4.9¢)

The scattering data may be defined in the same fashion as
for the Schrodinger and Zakharov-Shabat spectral prob-
lems. Thus, we have the relations

where

- 1
Q;(x)=23 k,' e, 2i |k, —
Fk,x)—a(k)e(k,x)+b*(k)e* (k,x) , i % R e T
X—>—ow, KER ; (44 1 ® 1
L =iy (k |k ——— |x |dk
N ok k ; o In(ls | ria)]2 +7rf_wk r(k)exp |2i |k T dk ,
n + q )
ati)= 11 e |5 [ = 5 —da |
n=1 —Rn q J=1,2,3 . (4.10)
riky= 2K

a (k) ;o 49 A particular property of the spectral problem (4.2) is that
the zeros k, of a(k), as well as the transition constants

I 1 by, t be located ically relati th
. —ilk. — , X — o0 n» turn out to be located symmetrically re atlve'to €
Sk x)—>bn l——l Xp | | 16k, * T imaginary axis. Owing to this fact, there are two kinds of
solitons, namely, kinks
(4.6)

Flkx)—a(ke(k,x), x— o0, Imk>0, a(k)=0 . $i(x)=4tan""{exp[ LeoshBlx —q)]}

(4.7) S:zk1=%e—ﬁ+iﬂ'/z’ 01:2|k1 Ibl_17 r(k)EO} ,
In terms of scattering data the SG field is determined
from the set (4.11)

_ i g - -
S={ky=te Pt o r(k)}, cy=libya(k,)]™" . g =—(coshp)~'In|b, | ,
(4.8) and breathers

|

B in(¢ —x sinhf3)

4t . 0 sin(¢ —x sin

ép(x) an~  |tan cos[sinf coshB(x —q)] |’

S={k =—ki=4e~PH0c — _c =2Imk,b,~',r(k)=0} , | o

g=—(sinfcoshB)~'In | b, |, @=—2arg(—ib,).

Under the evolution law generated by the SG equation the zeros k, of a (k) are independent of time, while

kb

2 16k

c,(t)=c,exp ky + t|, rit,k)=r(k)exp |2i

t} . (4.13)

1
16k,
Thus, by inserting these expressions into Eq. (4.10) for Q;(x), it follows that the spectrum of velocities associated with
the scattering data is given by

_1-16]k,|? 1—16k>

- o (k)= 116K (4.14)
1416 ky |27 50 14 16K2

n

At this point and owing again to the form of the GLM equations, one may perform the same procedure for characteriz-
ing the soliton trajectories as in the above sections. Consequently, taking into account (4.11) and (4.12), it follows that
for both kinks and breathers we have
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+ . 1 ler] k;—k,
= (sin®;coshf3;) In—+4+2» 6(£(v, —v;))n
qi jcoshf3; 2 Imk, él I PRE:
o 2
a4 [ O(i(vg(k)—vl))ln[]': ’k(k|)2 Lk, (4.15)
e — K

where for kinks the value 6,

(p, =2arg(—ic;)+4 >, 0(+(v, —v;))arg

K, —k,
kj—ky

=1/2 is assumed. In addition, it is found that the breathers satisfy

nl
(k —Rek)In[1+ | r(k)|?
+= f +(vg (k) — |’k [k |2| g (4.16)
Rl
[
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APPENDIX A

In this appendix we outline an asymptotic analysis of
integral equations of GLM type which justifies most of
the arguments used in the present paper. Although we
will consider only the Schrodinger spectral problem, the
strategy used applies easily to other cases. The starting
point is the fact that the GLM equation (2.8) is equivalent
to the following integral equation for the Jost solution
(2.1):

z(k+k )x
flk,x)=e" —z? KTk, —c, flky,x)
l(k+q)x
2m f_w mr(q)f(q,x)dq, (A1)

in which the variable x plays the role of a parameter. For
a fixed value of x, the unknowns in (A1) are the function
f(k,x) (k€R ) and the numbers f(k,,x) (n=1,...,N).
Given a solution u(t,x) of Eq. (2.10) its corresponding
Jost solution f(t,k,x) will satisfy Eq. (Al) with the
scattering data (2.13). Let us consider the asymptotic
solution of (A1) on the lines x =x¢+(vy+0)t as t— + oo.
We look for a solution of the form

Flt,k,x)=a(k)e™ —p(—k)e ik +2elklt = peR ;
(A2)

Ftky,x)=alky)e™ ™, v, <vo ; (A3)

f(t,k,,,x)zgne_ik"x+2ik"u"t, Uy > Vg - (A4)

On the basis of the properties of the Schrodinger spectral
problem, we also assume that

~%

a*(k)=a(—k), b (k)=b(—k),

—a(—gq

r(g)b*(q) 1 ®
—d _ A—al—q)
f—w q+k+10

277'1 fvoo qg+k+i0 21ri

=a(k)—1+ 3 6(v

—Uo—o [a

and that @(k) admits an analytic continuation to the
upper-half plane. Inserting (A2)—(A4) into (A1) and us-
ing the relation®

up(q)t

f__w m g(g)dg— —2mi6( —¢(

—k))

Xeup( kit (

t—>+w, KER , (A6)

we get that for real k Eq. (A1) reduces to the following
pair of equations:

bycy
k +k,

—vy—0)

a(k)=1—i 3 6,

_ Ly @b (g)
27i Y —w q+k+i0
B(k)=0(vy (k) —vo)r(K)a(k) . (A8)

For k =k, such that v; <V, Eq. (A1) takes the form (A7)
with k =k;; while for those k; such that v > vy, Eq. (A1)
is equivalent to

(A7)

bycy
k;+k,

277'1 f~ q+k

Now, it is not difficult to check that these equations are
satisfied if we take [see Eq. (2.20)]

alk)=a_ (vg;k),
b(k)=0(v,(k) k)a i (vg;k),
b, =licyd 4 (vo;k,)] 7" .

1—i 3 0(v, —vp—0)

dq 0. (A9)

—vg)r( (A10)

In particular, observe that from (A5) and (A10) one
deduces

alg)~'—1

2771 f—w q+k +10dq

2 )k, +k)]‘1, Imk >0 . (A11)
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The form of the asymptotic solution (A2)—(A4) deter-
mined by (A10) shows that as z— + o the restriction of
u(t,x) on a moving interval [xg+(vo+0)t,+ ) is
described by the set of scattering data S (vg;¢) of Eq.
(2.19). The analysis of the t— — o limit may be per-
formed in a completely analogous way.

APPENDIX B

The functions © which characterize the integral equa-
tions of GLM type have a common structure: a finite
sum of contributions arising from the discrete scattering
data, and an integral term which is the Fourier transform
of the reflection coefficient. This property together with
the evolution law of the scattering data is used in the
present paper to state certain asymptotic expressions Q4
for )} as t— =+ «. In this appendix we provide a precise
formulation of the way in which Q reduces to Q. asymp-
totically. Thus, we will show that under mild conditions,
for all € >0 it is verified that

© k) . B
G(t,x)= Ove —uv.(k _ 8k o ilkx—alk)]
(2,x) f_w (0o — vy ))i[x—ug(k)t]ake dk
_ g(k;) o ilx—otky ]
j X—Uot
g(k) gk, (e

|

. to . 24, _
lim fx0+(voie)t|Q(t,x)—Qi(vo,t,x)| dx=0, (Bl)

t—>*tow

where x, and vy are arbitrary numbers. That is to say,
the L? norm of Q—Q. on intervals of the form
[xo+(vg*e€)t, + o) vanishes as t—+ .

It is easy to see that the contributions of the discrete
scattering data to Q—Q4 have L? norms on
[xo+(vote€)t, + ) which tend to zero exponentially as
t—* . Thus, in order to prove (A1) we will consider
only the integral term of 2 —Q.. In the case of Q—Q
that term is of the form

Gtx)= [~ 0vg—vy(k))g(k)e! = =oRigk | (B2)
where the function g(k), which represents the reflection
coefficient, vanishes asymptotically as |k | —>ow. We
first prove that there exists a constant C, independent of ¢
verifying

| tG(t,x)| <Cy, for x > (vo+e€)t . (B3)

To this end we perform the following integration by parts,

ei[kx—a)(k)t]dk . (B4)

+i [T 0wy —vg(k))

x —v()t " [x —vg(k)t]?

where k; denotes the points for which v,(k;)=v,. Now, from (B4) it follows that for all x > (vy+€)t

161 < 3~ (gl | + [ 6o —gten L
j 0

18000+ g |

dk .

This proves (B3). The next step is to show that there exists a constant C, independent of ¢ such that

| xG (t,x) | < C,, for x > (vy+e€)t .

The proof is based on the following integration by parts:

xGx)=—i [~ 0vg—vy(k)g(kle ~*R13, e *dk

=_izg(kj)ei[ij—w(kj)t]+i f_°° e(vo_vg(k))g*(k)ei[kx—a)(k)t)]dk
j o

+t [ 000 —vg(h))g vy (K)e U= —okrgy

Observe that provided g(k)vg(k) vanishes asymptotically,
the coefficient of ¢ in (B6) is an integral of the form (B2),
so from (B3) there exists a constant C; such that for all
x > (vp+€)t we have

| xG(tx)| < 3 |glk;) |

J
+ [ 6wo—vg (k) | k) | dk+C
(B7)

(B5)
(B6)
T
and therefore (B5) holds. Clearly (BS) implies that
lim [~ | G(t,x)|%dx =0, (B8)

t—+ o0 ¥ Xo+(vgt+eEN

which is what we wanted to demonstrate. This proves the
t— + oo part of (B1); the proof of the t— — o part may
be carried out in the same manner.
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