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ABSTRACT
We explore the possibility that matter bulk flows could generate the required vorticity in the electron–proton–photon plasma
to source cosmic magnetic fields through the Harrison mechanism. We analyse the coupled set of perturbed Maxwell and
Boltzmann equations for a plasma in which the matter and radiation components exhibit relative bulk motions at the background
level. These background bulk motions induce a relative velocity between the matter and cosmic microwave background rest
frames at the present time, i.e. a bulk flow, with an amplitude β. We find that, to first order in cosmological perturbations, bulk
flows with velocities compatible with current Planck limits (β < 8.5 × 10−4 at 95 per cent CL) could generate magnetic fields
with an amplitude 10−21 G on 10 kpc comoving scales at the time of completed galaxy formation that could be sufficient to seed
a galactic dynamo mechanism.
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1 IN T RO D U C T I O N

The origin of the magnetic fields with strengths in the range of theμG
found in galaxies and permeating the intergalactic medium in clusters
is a long-standing question in astrophysics and cosmology (Widrow
2002). Even more puzzling is the presence of magnetic fields in
voids with strengths 3 × 10−16 G as those detected in Neronov &
Vovk (2010). The evolution of primordially generated magnetic fields
from the early Universe to the onset of structure formation seems to
be well understood (Banerjee & Jedamzik 2004; Durrer & Neronov
2013; Subramanian 2016), and there are compelling astrophysical
mechanisms, i.e. dynamos, that can amplify a pre-existing magnetic
field several orders of magnitude (Davis, Lilley & Tornkvist 1999;
Widrow 2002). However, a definite mechanism that can produce the
primordial seed fields is still lacking.

There are different proposed solutions, which can be classi-
fied as cosmological or astrophysical, addressing the origin of
the primordial fields. In the cosmological mechanisms, magnetic
fields are generated in the early Universe, typically during in-
flation (Turner & Widrow 1988; Maroto 2001) or in the elec-
troweak (Vachaspati 1991) or quantum chromodynamics (QCD)
(Quashnock, Loeb & Spergel 1989) phase transitions. On the other
hand, in astrophysical mechanisms, magnetic fields are generated
by motions in the plasma during galaxy formation. In general,
the amplitude of the seeds generated by these mechanisms is
too small to explain the observed fields even with dynamo am-
plification. Depending on the dynamo amplification rate, a seed
field with a strength in the range 10−23−10−16 G at galaxy for-
mation and coherent on comoving scales of 10 kpc is required to
reach the amplitude of the detected galactic fields Davis et al.
(1999).
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Among the astrophysical proposals, a particularly appealing one is
the so-called Harrison mechanism. In his pioneering work (Harrison
1970), Harrison realized that vorticity in the photon–baryon plasma
would lead to the production of electromagnetic fields. The main
obstacle (Rees 1987) for the Harrison mechanism to work is to
achieve vortical motions in the fluid. Within �CDM, to first order in
perturbation theory, vorticity and vector modes decay so, even if they
are initially large, only small magnetic fields can be generated (Ichiki,
Takahashi & Sugiyama 2012). Different routes have been explored to
overcome this difficulty. It is possible to source vector modes, e.g. via
topological defects, but it was shown in Hollenstein et al. (2008) that
if vorticity is transferred only by gravitational interactions, it does not
lead to production of magnetic fields. On the other hand, vorticity and
magnetic fields are indeed generated to second order in perturbation
theory in standard �CDM (Takahashi et al. 2005; Fenu, Pitrou &
Maartens 2011; Saga et al. 2015), but are consequently very small.

Recently, it has been shown that vorticity in the photon–baryon
plasma can also be produced if bulks flows of matter with respect to
radiation are present (Cembranos, Maroto & Villarrubia-Rojo 2019).
In such a case, first-order scalar metric perturbations induce non-
decaying vortical motions in the different plasma components.

The existence of large-scale bulk flows in excess of �CDM
predictions has been a matter of debate in recent years. While some
papers claim to find evidence of unusually large flows (Kashlinsky
et al. 2009; Atrio-Barandela et al. 2015), most of the works find
results consistent with �CDM (Planck Collaboration XIII 2014;
Scrimgeour et al. 2016). In particular, the largest scale limits to date
on the amplitude of the bulk flow has been set by Planck collaboration
XIII (2014) from measurements of the kinetic Sunyaev–Zeldovich
effect in clusters and is given by β < 8.5 × 10−4 at 95 per cent CL
on 2 Gpc scales.

In this work, we find that even a small background bulk velocity,
compatible with the Planck limit, is able to generate vorticity to
source magnetic fields above the dynamo threshold through the
Harrison mechanism.
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2 PLASMA SYSTEM

Let us assume a homogeneous plasma system composed of photons,
protons, and electrons with background bulk velocities βγ , βp, and
βe, respectively. As shown in Cembranos et al. (2019), to first order
in β it is always possible to find a centre of mass frame in which
the metric takes the Robertson–Walker (RW) form. Thus, including
scalar perturbations in the Newtonian gauge the metric reads

ds2 = a2(τ ){−(1 + 2ψ) dτ 2 + (1 − 2φ) dx2}, (1)

and the perturbed fluid velocities can be written as vs = βs + δvs

with s = γ , e, p. In the following, we will work to first order in
bulk velocities and first order in scalar metric perturbations, ignoring
the contribution of vector and tensor modes, which, as shown in
(Cembranos et al. 2019), would appear as O

(
β2

)
corrections.

The behaviour of the electron–proton–photon plasma is described
by a set of coupled Boltzmann equations, which, in a locally inertial
frame (dt ≡ a(1 + ψ)dτ ), reads (Cembranos et al. 2019)

Dfγ

dt
= Cγ e[fγ ] + Cγ p[fγ ], (2a)

Dfe

dt
= Ceγ [fe] + Cep[fe], (2b)

Dfp

dt
= Cpγ [fp] + Cpe[fp], (2c)

where the collision terms take into account both Thomson scattering
and the Coulomb interaction between electrons and protons. The
evolution of the momentum of the fluids can be followed performing
the appropiate integrals over the phase-space distributions. Express-
ing the results in conformal time τ , integrating over the comoving
momentum qi, and defining

DQi
s

dτ
≡ 2a−4

∫
d3q

(2π)3
qi Dfs

dτ
, s = γ, e, p. (3)

we have

DQi
γ

dτ
= Ci

γ e + Ci
γ p, (4a)

DQi
e

dτ
= Ci

eγ + Ci
ep, (4b)

DQi
p

dτ
= Ci

pγ + Ci
pe. (4c)

Additionally, from momentum conservation in Coulomb and Thom-
son scattering we have Ci

s1s2
= −Ci

s2s1
. The electron coupling due to

Thomson scattering is (Cembranos et al. 2019)

Ci
γ e = 4

3
ργ aneσT

(
�βi

γ e + �vi
γ e + βi

γ δne − βi
eδγ

− 3

4
βe jπ

ij
γ + �βi

γ eψ

)
, (5)

where δne = δne/ne is the perturbation of the number of free electrons
and πij

γ is the photon shear tensor. The corresponding Thomson
coupling between protons and photons can be obtained with the
substitution e → p and σ T → (me/mp)2σ T. The coupling due to
Coulomb scattering takes a similar form (Fenu et al. 2011)

Ci
ep = −e2anpneηC

(
�βi

ep + �vi
ep + �βi

epδne

− βi
e�nep + �βi

epψ
)
, (6)

where ηC is the electrical resistivity and we have defined, for two
species a and b, the following quantities:

�nab ≡ δna
− δnb

, �βi
ab ≡ βi

a − βi
b, �vi

ab ≡ δvi
a − δvi

b. (7)

The left-hand side of the Boltzmann equation (3) can be splitted into
the usual geodesic evolution plus a term taking into account the pres-
ence of macroscopic electromagnetic fields. We define the electric
and magnetic components of the electromagnetic strength Fμν in the
perturbed RW metric as Ei = (1 + φ)Fi0 and Bi = 1

2 εijkFjk . These
fields affect the motion of charged particles through the Lorentz
force, which takes the standard form(

dqi

dτ

)
EM

= e

(
Ei + εijk

qj

ε
Bk

)
. (8)

where ε ≡
√

m2a2 + q2 is the comoving energy. Notice that, in the
absence of bulk flows, scalar perturbations cannot generate magnetic
fields to first order in perturbation theory. Therefore, in our scenario,
Bi can only arise as a cross-product of β i with perturbations. The
electric field, on the other hand, can be splitted into a homogeneous
piece of O(β) and a perturbation, E i = E i

(β) + δE i . Adding the
electromagnetic force to equation (4b), the evolution of the velocity
of the electrons is

mene

{
(∂τ + α + H)

(
βi

e + δvi
e

) + (
βi

eδ
j

k + βj
e δi

k

)
∂j δv

k
e

+∂iψ − 4βi
eφ̇ + e

mea
(1 + δne )E i

}
= Ci

eγ + Ci
ep. (9)

The first line contains, in addition to the usual Hubble dilution term,
a coefficient α = ∂τ (a3ne)/(a3ne) representing a possible variation
in the comoving number of free electrons at the background level,
e.g. due to recombination, and the effective shear stress induced by
the bulk motion of the fluid π ij ∼ β iδvj. The second line contains
the effect of metric perturbations, both the standard one and the
correction induced by the presence of cosmological bulk flows
(Cembranos et al. 2019). The metric contribution is irrelevant for the
Harrison mechanism, but it will be important to study the evolution of
the photon–baryon plasma vorticity. Finally, the last term takes into
account the electromagnetic effects. A similar result can be found
for protons after changing the relevant subscripts and the electric
charge e → −e. Subtracting the equations for electrons and protons,
we obtain an expression for the velocity difference:

(∂τ + α + H)
(
�βi

ep + �vi
ep

)
+ (

βi
eθe + βj

e ∂j δv
i
e − (e ↔ p)

)

−4�βi
epφ̇ + e

mea

(
E i

(β) + δE i + δneE i
(β)

) = 1

mene

(
Ci

eγ + Ci
ep

)
,

(10)

where we have used the fact that mp � me. Next, we show how
this expression, combined with the Maxwell equations, gives rise to
magnetic fields.

3 TIME-SCALES

Following Fenu et al. (2011), we define the time-scales relevant for
the system (10), assuming a matter-dominated universe.

(i) Electrical resistivity.

η ≡ ηC

a
� 10πe2√me

aT 3/2
� 10−9 s

(
1 + z

103

)−1/2

. (11)

(ii) Coulomb time-scale.

τC ≡ me

ae2neηC
� 2 × 104 s

xe

(
1 + z

103

)−1/2

. (12)

(iii) Thomson time-scale.

τT ≡ me

aσTργ

� 5 × 1011 s

(
1 + z

103

)−3

. (13)
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Figure 1. Ratios of the relevant scales of the problem, with respect to the
dominant one: the electrical resistivity η. During the period of interest, the
next scale in the hierarchy is the Coulomb time-scale. Early enough in time,
Thomson scattering becomes more efficient than Coulomb scattering.

There are other time-scales in the problem such as the cosmolog-
ical ones, H−1 and k−1 � 1014 s (Mpc−1 k−1), and the time-scale of
recombination α = ẋe/xe. The ratio of these scales with respect to η

is represented in Fig. 1.
There is a very strong hierarchy of scales, with η 
 τC 


τT,H−1, α−1. In the next section, we will use this fact to find an
approximate solution of the system.

4 PRO DUCTION MECHANISM

The main physical mechanisms at work can be nicely illustrated
analysing the behaviour of the bulk velocities. The relevance of the
previous time-scales will be made explicit if we write the equations in
terms of ei

(β), where E i
(β) = e a5/2neτC ei

(β). At the background level,
the leading O(β) piece of equation (10), plus the relevant Maxwell
equation, yields

�β̇i
ep +

(
1

τc
+ α + H

)
�βi

ep + 1

a1/2η
ei

(β) = T i
β , (14a)

ėi
(β) − a1/2

τc
�βi

ep = 0, (14b)

where the Thomson dragging term is T i
β ≡ 4

3τT
�βi

γ e. The result is
a very simple dynamical system where, as discussed in the previous
section, the strong hierarchy of scales present in the problem
allows us to simplify the analysis keeping only the leading O(η)
behaviour. The homogeneous part of this system (without the source)
corresponds to the usual electron–proton plasma (without photons).
If the system is placed out of the equilibrium �βi

ep = ei
(β) = 0

configuration, an electric field is created in response, acting
as a restoring force. The homogeneous solutions oscillate with
characteristic frequency ω � 1/

√
η τC and are damped with a

damping coefficient � � 1/2τC. The presence of photons modifies
this picture. Due to the large mass difference, mp � me, the Thomson
coupling of photons to electrons is much more effective than to
protons, producing a differential dragging and introducing the source
T i

β . The particular solution of the system (14) can be found to be

�βi
ep = η τC Ṫ i

β + O(η2), (15a)

ei
(β) = a1/2 η T i

β + O(η2). (15b)

This is the essence of the Harrison mechanism: the Thomson
dragging of the photons produces an electric field proportional to
the photon–baryon velocity difference. Notice that a homogeneous
electric field is generated, pointing in the bulk flow direction and
with a small amplitude E(β) � 10−30 G(1 + z)2, according to the
current Planck limits for β. The same kind of analysis can be carried
out to prove that �nep,�vi

ep = O(η τC) and from (10) we get the
leading-order result

δE i = a

ene
Ci

eγ − δneE i
(β) + O(η) . (16)

In Fourier space, we decompose the velocity and the electromagnetic
fields into vortical and longitudinal components as

δvs = χs(β̂ − (β̂ · k̂) k̂) − i

k
θs k̂, (17a)

E = E⊥(β̂ − (β̂ · k̂) k̂) + E‖ k̂, (17b)

B = iB(β̂ ∧ k̂). (17c)

From the Maxwell equations, including perturbations, we have

Ḃ = −k δE⊥ + kφ E⊥
(β). (18)

Plugging in the expression obtained for the electric field (equation
16) and written in terms of the physical magnetic field B ≡ a−2B,
which can be obtained projecting with the tetrad of a locally inertial
observer (Durrer & Neronov 2013), equation (18) reads

d

dτ

(
a2B

) = −4a2kσTργ

3e

(
�χγ e + βe

(
δne − δγ − 1

2
σγ

)

+�βγ e(ψ − φ)
)
. (19)

This is the final equation governing the production of magnetic
fields. It generalizes the Harrison mechanism to the case in which
there are bulk flows in the plasma. It is also analogous to the one
obtained in previous studies of production of magnetic fields in
second-order cosmological perturbation theory (Fenu et al. 2011;
Saga et al. 2015). Details on the evolution of the cosmological bulk
flows β, and the vorticity produced by these flows can be found in
Cembranos et al. (2019).

5 EVO L U T I O N A N D R E S U LT S

The magnetic field power spectrum is defined by

〈Bi(z, k)B∗
j (z, k′)〉 = (2π)3δ(k − k′)(β̂ ∧ k̂)i(β̂ ∧ k̂)jPB (z, k),

(20)

as

PB (z, k) = |TB (z, k)|2 2π2

k3
PR(k), (21)

where PR(k) is the usual nearly scale-invariant primordial curvature
power spectrum and TB(z, k) is the magnetic field transfer function
computed using (19). In Figs 2 and 3, the comoving magnetic field
(1 + z)−2|TB |P1/2

R is plotted as a function of redshift and scale,
respectively.

There are two points worth emphasizing. On the one hand, the
magnetic power spectrum on small and large scales has a power-law
behaviour
√

k3PB (z < 100, k) ∝
{

k1.2 , k � 0.1 Mpc−1,

k2.8 , k 
 0.1 Mpc−1,
(22)
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Figure 2. Comoving magnetic field as a function of the scale for different
redshifts. Notice that the z = 0 and z = 10 curves overlap. Even though
there is an important production immediately after decoupling, afterwards
the comoving magnetic field is constant at all scales and it is not affected by
reionization.

Figure 3. Comoving magnetic field as a function of the redshift for different
scales. The magnetic field presents some features inherited from the acoustic
oscillations before decoupling. The main production takes place during and
immediately after decoupling. Once the photon–baryon plasma is decoupled,
the comoving magnetic field is constant.

so that the magnetic field is steeply rising as k1.2 on small scales,
until the turbulence scale kicks in. On the other hand, the comoving
magnetic field is continuously produced, with an important boost at
recombination and remaining essentially constant for z < 100.

Following Fenu et al. (2011), we also define the magnetic field
smoothed over a comoving scale L as

B2
L(z) = 1

2π2

∫ ∞

0
dk k2PB (z, k) exp

(
−k2L2

2

)
. (23)

The magnetic field BL at the time of galaxy formation zgf = 10
is depicted in Fig. 4. The numerical computation of the transfer
function becomes harder for smaller scales, and some of the usual
approximations in cosmic microwave background calculations can-
not be trusted for scales k > 10 Mpc−1 (Blas, Lesgourgues & Tram

Figure 4. Physical magnetic field smoothed over a given scale L. It is
evaluated at a redshift z = 10, where the dynamo mechanism should begin
to operate Widrow (2002). Since the comoving field is constant at late times,
the results can be easily rescaled to any redshift.

2011). Therefore, we only compute the spectrum up to scales k =
9 Mpc−1. Again, the field BL can be well approximated as a power
law at small and large scales

BL(z < 100) ∝
{

L−1.2 , L > 100 Mpc ,

L−2.8 , L < 2 Mpc .
(24)

For intermediate scales, as can be appreciated from Figs 2 and 3, the
acoustic oscillations of the plasma imprint a complex pattern in the
magnetic field spectrum prior to decoupling. This region of acoustic
oscillations roughly corresponds to the scales 2 Mpc < L < 100 Mpc
in the smoothed magnetic field in Fig. 4. For small scales, we obtain
the following approximate result

|BL(z < 100)| � 5.7 × 10−24 G

(
L

Mpc

)−1.2

×
(

1 + z

11

)2 (
β

8.5 × 10−4

)
, (25)

for L < 1 Mpc, where β is the relative bulk velocity between photons
and baryons. These results show that although the field seems too
weak to directly account for the intergalactic magnetic fields or
magnetic fields in voids, the mechanism proposed provides a seed
field large enough to potentially explain the galactic magnetic fields,
after a suitable dynamo amplification.
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