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Abstract. We show that the presence of a temporal electromagnetic field on cosmological
scales generates an effective cosmological constant which can account for the accelerated
expansion of the universe. Primordial electromagnetic quantum fluctuations produced during
electroweak scale inflation could naturally explain the presence of this field and also the
measured value of the dark energy density. The behavior of the electromagnetic field on
cosmological scales is found to differ from the well studied short-distance behavior and, in
fact, the presence of a non-vanishing cosmological constant could be signalling the breakdown
of gauge invariance on cosmological scales. The theory is compatible with all the local gravity
tests, and is free from classical or quantum instabilities. Thus we see that, not only the true
nature of dark energy can be established without resorting to new physics, but also the
value of the cosmological constant finds a natural explanation in the context of standard
inflationary cosmology. This mechanism could be discriminated from a true cosmological
constant by upcoming observations of CMB anisotropies and large scale structure.
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1 Introduction

The nature of dark energy, which is believed to be responsible for the present phase of accel-
erated expansion of the universe [1–4], still remains unknown. Despite its phenomenological
success, the simplest description in terms of a cosmological constant (ΛCDM model) suffers
from an important naturalness problem, since the measured value of Λ, corresponding to
ρΛ ∼ ρM ∼ (2 × 10−3 eV)4, finds no natural explanation in the context of known physics.
Moreover, the fact that today matter and dark energy have comparable contributions to the
energy density, turns out to be difficult to understand if dark energy is a true cosmological
constant. Thus, the energy density of a cosmological constant remains constant throughout
the history of the universe, whereas those of the rest of components (matter or radiation)
grow as we go back in time. Then the question arises as to whether it is a coincidence (or not)
that they have comparable values today when they have differed by many orders of magni-
tude in the past. Notice also that if Λ is a fundamental constant of nature, its scale (around
10−3 eV) is more than 30 orders of magnitude smaller than the natural scale of gravitation,
G = M−2

P with MP ∼ 1019 GeV. On the other hand, if Λ is just an effective parametrization
of dark energy, still a proper understanding of the underlying physics would be needed in
order to explain the measured value.

Alternative models have been proposed in which dark energy is a dynamical component
rather than a cosmological constant. Such models are usually based on new physics, either
in the form of new cosmological fields or modifications of Einstein’s gravity [5–9]. However,
they are generically plagued by classical or quantum instabilities, fine tuning problems or
inconsistencies with local gravity constraints.

In this paper we explore the possibility of understanding dark energy from the standard
electromagnetic field, without the need of introducing new physics (previous works on models
of dark energy based on vector fields can be found in [10–17]). We will show that the behavior
of electromagnetic fields on very large (super-Hubble) scales differs from the well studied
short-distance (sub-Hubble) behavior. Thus, on super-Hubble scales, the time component
of the electromagnetic field grows linearly in time in the matter and radiation eras, giving
rise to a cosmological constant contribution in the electromagnetic energy-momentum tensor
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(the potential gravitational effects of longitudinal electromagnetic fields were considered in
a different context in [18]). At late times this contribution becomes dominant giving rise to
the accelerated phase. As a possible generating mechanism, we calculate the spectrum of
super-Hubble electromagnetic modes produced during inflation from quantum fluctuations
and find that the correct value of the dark energy density can be naturally obtained in the
case in which inflation took place at the electroweak scale.

2 Cosmological electromagnetic fields

We start by writing the electromagnetic action including a gauge-fixing term in the presence
of gravity:

S =

∫

d4x
√−g

[

− 1

16πG
R − 1

4
FµνFµν +

λ

2
(∇µAµ)2

]

(2.1)

The gauge-fixing term is required in order to define a consistent quantum theory for the
electromagnetic field [19], and we will see that it plays a fundamental role on large scales.
Still this action preserves a residual gauge symmetry Aµ → Aµ + ∂µφ with �φ = 0.

Einstein’s and electromagnetic equations derived from this action can be written as:

Rµν − 1

2
Rgµν = 8πG

(

Tµν + TA
µν

)

(2.2)

∇νF
µν + λ∇µ∇νA

ν = 0 (2.3)

where Tµν is the energy-momentum tensor for matter and radiation and TA
µν is the energy-

momentum tensor of the electromagnetic field. Notice that since we will be using the covariant
Gupta-Bleuler formalism, we do not a priori impose the Lorenz condition. The effect of the
high conductivity of the universe in the matter and radiation eras will be discussed below.

We shall first focus on the simplest case of a homogeneous electromagnetic field (zero
mode) in a flat Robertson-Walker background, whose metric is given by:

ds2 = dt2 − a(t)2δijdxidxj (2.4)

In this space-time, equations (2.3) read:

Ä0 + 3HȦ0 + 3ḢA0 = 0 (2.5)

~̈A + H ~̇A = 0 (2.6)

with H = ȧ/a the Hubble parameter.
Notice that (2.5) implies that the gauge-fixing term exactly behaves as a cosmological

constant throughout the history of the universe, irrespective of the background evolution.
Indeed, for homogeneous fields we have:

d

dt
(∇µAµ) =

d

dt
(Ȧ0 + 3HA0) = 0 (2.7)

We can solve (2.5) and (2.6) during the radiation and matter dominated epochs when
the Hubble parameter is given by H = p/t with p = 1/2 for radiation and p = 2/3 for matter.
In such a case the solutions for (2.6) are:

A0(t) = A+
0 t + A−

0 t−3p (2.8)

~A(t) = ~A+t1−p + ~A− (2.9)
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where A±
0 and ~A± are constants of integration. Hence, the growing mode of the temporal com-

ponent does not depend on the epoch being always proportional to the cosmic time t, whereas
the growing mode of the spatial component evolves as t1/2 during radiation and as t1/3 during
matter, i.e. at late times the temporal component will dominate over the spatial ones.

On the other hand, the (0 0) component of Einstein’s equations adopts the follow-
ing form:

H2 =
8πG

3





∑

α=R,M

ρα + ρA0
+ ρ ~A



 (2.10)

where R,M stands for radiation and matter respectively and:

ρA0
= λ

(

9

2
H2A2

0 + 3HA0Ȧ0 +
1

2
Ȧ2

0

)

(2.11)

ρ ~A =
1

2a2
( ~̇A)2 (2.12)

Notice that we need λ > 0 in order to have positive energy density for A0. Besides, when
inserting the solutions (2.8) and (2.9) into these expressions we obtain that ρA0

= ρ0
A0

,
ρ ~A

= ρ0
~A
a−4 and ∇µAµ = const as commented before. Thus, the field behaves as a cosmo-

logical constant throughout the evolution of the universe since its temporal component gives
rise to a constant energy density whereas the energy density corresponding to ~A always de-
cays as radiation. Moreover, this fact prevents the generation of a non-negligible anisotropy
which could spoil the highly isotropic CMB radiation (see [20] for a more general discussion).
Finally, when the universe is dominated by the cosmological constant arising from the gauge-
fixing term, both the Hubble parameter and A0 become constant leading therefore to a future
de Sitter universe. Let us emphasize that according to (2.7), ρA0

always contributes as a cos-
mological constant. As the observed fraction of energy density associated to a cosmological
constant today is ΩΛ ≃ 0.7, we obtain that the field value today must be A0(t0) ≃ 0.3MP .

The effects of the high electric conductivity σ can be introduced using the magneto-
hydrodynamical approximation and including on the r.h.s. of Maxwell’s equations the cor-
responding current term, which is given by Jµ − Jνuνuµ = σFµνuν with uµ the velocity
associated to the comoving observers. Notice that the strict neutrality of the plasma, which
is consistent with a vanishing electric field, implies Jµuµ = 0, and finally, the current can
be written as: Jµ = (0, σ(∂0Ai − ∂iA0)). Notice that electric neutrality also implies that
conductivity does not affect the evolution of A0(t). The infinite conductivity limit simply
eliminates the growing mode of ~A(t) in (2.9). The inhomogeneous case, corresponding to
k 6= 0 modes, will be discussed in next section.

We still need to understand which are the appropriate initial conditions leading to the
present value of A0. In order to avoid the cosmic coincidence problem, such initial conditions
should have been set in a natural way in the early universe. In a very interesting work [21], it
was suggested that the present value of the dark energy density could be related to physics at
the electroweak scale since ρΛ ∼ (M2

EW/MP )4, where MEW ∼ 103 GeV. This relation offers
a hint on the possible mechanism generating the initial amplitude of the electromagnetic
fluctuations. Indeed, we see that if such amplitude is set by the size of the Hubble horizon at
the electroweak era, i.e. A0(tEW)2 ∼ H2

EW, then the correct scale for the dark energy density
is obtained. Thus, using the Friedmann equation, we find H2

EW ∼ M4
EW/M2

P , but according
to (2.11), ρA0

∼ H2A2
0 ∼ const., so that ρA0

∼ H4
EW ∼ (M2

EW/MP )4 as commented before.
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A possible implementation of this mechanism can take place during inflation. Notice
that the typical scale of the dispersion of quantum field fluctuations on super-Hubble scales
generated in an inflationary period is precisely set by the almost constant Hubble parameter
during such period HI , i.e. 〈A2

0〉 ∼ H2
I [22]. The correct dark energy density can then be

naturally obtained if initial conditions for the electromagnetic fluctuations are set during an
inflationary epoch at the scale MI ∼ MEW. Let us make these arguments more precise.

3 Quantum fluctuations during inflation

We shall look at the electromagnetic perturbations generated during inflation in order to
determine its primordial power spectrum. In this case it is more convenient to use conformal
time η defined by means of dt = adη and to introduce the conformal components of the field
Aµ = (aA0, ~A). Besides we shall focus on a single Fourier mode of the vector field with wave

vector ~k and decompose the field in temporal, transverse and longitudinal components with
respect to ~k. In this frame, equations (2.3) read:

A′′
0k −

[

k2

λ
− 2H′ + 4H2

]

A0k − 2ik

[

1 + λ

2λ
A′

‖k −HA‖k

]

= 0 (3.1)

~A′′
⊥k + k2 ~A⊥k = aσ ~A′

⊥k

A′′
‖k − k2λA‖k − 2ikλ

[

1 + λ

2λ
A′

0k + HA0k

]

= aσ(A′
‖k − ikA0k)

with ′ ≡ d
dη and H = aH is the Hubble parameter in conformal time. He have included

for completeness the current term on the right-hand side as commented before. Notice that
once again the electric neutrality of the universe implies that the evolution equation for the
temporal component is not modified. During inflation the electric conductivity of the universe
is negligible and this term can be safely neglected so that in the following we shall set σ = 0.

It is easy to see from equations (3.1) that the transverse modes are just plane waves
irrespective of the expansion rate. On the other hand, the components A0k and A‖k are
coupled to each other even in the absence of gravity. This is due to the fact that we are
working with arbitrary λ and not using the simple Feynman gauge λ = −1.

Let us first consider quantization in Minkowski space-time, with H = H′ = 0. The
decomposition in Fourier modes can be written as follows:

A0 =

∫

d3~k

2k0(2π)3

[(

−i
1 + λ

1 − λ
(a0 + a‖)kη + a0

)

e−ikx

+

(

i
1 + λ

1 − λ
(a+

0 + a+
‖
)kη + a+

0

)

eikx

]

A‖ =

∫

d3~k

2k0(2π)3

[(

i
1 + λ

1 − λ
(a0 + a‖)kη + a‖

)

e−ikx

+

(

−i
1 + λ

1 − λ
(a+

0 + a+
‖ )kη + a+

‖

)

eikx

]

(3.2)

with k0 = |~k| = k. Now, in order to have the canonical commutation rules
[Aµ(t, ~x),Πν(t, ~y)] = iδν

µδ(3)(~x−~y), the creation and annihilation operators appearing in (3.2)
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should satisfy:

[

a0(~k),a+
0 (~k′)

]

=
1 − λ

λ
k0(2π)3δ(3)(~k − ~k′)

[

a‖(~k),a+
‖ (~k′)

]

= − 1 − λ

λ
k0(2π)3δ(3)(~k − ~k′) (3.3)

For simplicity in the following we will take λ = 1/3 so that we use canonically normalized
operators with positive sign for the temporal component. Notice that this is just the opposite
situation to the usual Feynman gauge. In fact, λ = 1/3 and λ = −1 are the only two
possible choices with canonical normalizations. As is well-known [19], in order to recover
Maxwell’s theory, we need to eliminate the negative norm states by defining the corresponding
restricted Hilbert space. Following the standard Gupta-Bleuler formalism, the physical states
|φ〉 will be those annihilated by the combination a0 + a‖, that is: (a0(~k) + a‖(~k))|φ〉 = 0.
In Minkowski space-time, only transverse degrees of freedom contribute to the expectation
value of the energy density in the physical states and 〈φ|T00|φ〉 > 0 since the contributions
from longitudinal and temporal modes cancel each other. Thus, as expected, the theory is
free from ghosts. Notice that in Minkowski space-time, we also get 〈φ|∂µAµ|φ〉 = 0.

Now we can proceed to the quantization in the inflationary epoch. In order to present
the calculational method explicitly, we assume an exact de Sitter phase. The general quasi-
de Sitter results will be given below. Thus in de-Sitter: a = −1/(Hη) and H = −1/η with
η < 0. The classical solutions of the corresponding equations are a bit more complicated,
although it is still possible to obtain analytic expressions:

A0k = C1kηe−ikη +
C2

kη

[

1

2
(1 + ikη)e−ikη − k2η2eikηE1(2ikη)

]

A‖k = iC1(1 + ikη)e−ikη − iC2

[

3

2
e−ikη + (1 − ikη)eikηE1(2ikη)

]

(3.4)

where E1(x) =
∫ ∞
1 e−tx/tdt is the exponential integral function. Note that the mode C1

can be gauged away by means of a residual gauge transformation. The sub-Hubble limit
(|kη| ≫ 1) of these solutions reads:

A0k = (C1kη + iC2) e−ikη

A‖k = (−C1kη − iC2) e−ikη (3.5)

The choice of adiabatic vacuum [23] is made by matching these solutions with those obtained
in the Minkowski case (3.2) (up to sub-leading terms in the sub-Hubble limit). To do this,
we choose the modes C1 and C2 in the following way:

C1 → − i

k0

(

a0 + a‖

)

C2 → − i

2k0
a0 (3.6)

On the other hand, on super-Hubble scales (|kη| ≪ 1) we have:

A0k =
1

2
C2(kη)−1

A‖k = iC1 − iC2

(

3

2
− γ − ln(2ikη)

)

(3.7)
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with γ the Euler’s constant. We see that A0k ∝ a, which means that A0k = a−1A0k is
(almost) constant during inflation, once the mode leaves the horizon. In the case of quasi-de
Sitter slow-roll inflation, the Hubble parameter reads H = −1/((1− ε)η), where the slow-roll
parameter is defined as ε = 1/(16πG)(V ′/V )2 ≪ 1, with V the inflaton potential. Following
the same steps as before, we obtain the power spectrum for A0 on super-Hubble scales:

PA0
(k) ≡ k3

2π2
〈|A0k|2〉 =

H2
I

16π2

[

k

aHI

]nA0

(3.8)

which is almost scale-invariant (as in the scalar field case) since for the electromagnetic
spectral index we obtain nA0

= −4ε. In a similar way it is possible to obtain the primordial
power spectrum of longitudinal modes on super-Hubble scales:

PA‖
(k) =

k2

16π2ε2

[

k

aHI

]−4ε

(3.9)

If we now compare the power spectra for the conformal fields A0 and A‖ we find that:

PA‖
(k)

PA0
(k)

=
1

ε2

(

k

aHI

)2

(3.10)

which is negligible on super-Hubble scales, and allows us to safely ignore the longitudinal
modes on such scales after inflation.

Notice that since ε > 0, PA0
(k) is a red-tilted spectrum which means that the contri-

bution to 〈A2
0〉 from long wavelenghts dominates over small scales. In particular, provided

inflation lasted for a sufficiently large number of e-folds, this allows to decompose the fluctua-
tions field at any given time into a large homogeneous contribution (with scales k < H) and a
small inhomogeneous perturbation (k > H), and therefore we can use standard perturbation
theory around the homogeneous background. Thus, for the homogeneous part we get:

〈A2
0〉hom =

∫ k∗

kmin

dk

k
PA0

(k) ≃ H2
I

e−nA0
Ñ

16π2|nA0
| (3.11)

where k∗ . H0, Ñ = Ntot − N0 and kmin = e−ÑH0 is set by the Hubble horizon at the
beginning of inflation [24]. Here Ntot is the total number of e-folds of inflation which should
not be confused with N0 which is the number of e-folds since the time when the scale H−1

0 left
the horizon. Typical values for N0 are around 50, whereas generically there is no upper limit
to Ntot. Thus as expected, up to tilt corrections, HI sets the scale for the field dispersion.

Once the fluctuations generated during inflation enter the radiation dominated era, it
would be in principle possible that the high conductivity of the universe could modify their
evolution, spoiling the growing behavior of super-Hubble models found in (2.8). However
since conductivity does not affect the temporal equation, the A0 modes are not modified
on super-Hubble scales. In figure 1 we show the evolution of super-Hubble temporal and
longitudinal modes, both for vanishing and infinite conductivity. We see that the evolution
exactly corresponds to A0k ∝ η3 as expected from (2.8) in the radiation era, even in the
infinite conductivity case. We see that A‖k is sub-dominant compared to A0k, until the
modes re-enter the Hubble radius for |kη| ≃ 1. The result is not sensitive to the change
of initial conditions. Thus, the only effect of the high conductivity is the damping of the
electric field,(which is consistent with the strict neutrality of the plasma). In particular,
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Figure 1. Evolution of A0k and A‖k on super-Hubble scales in the radiation era. Continuous
(dotted) blue lines correspond to A0k for infinite (vanishing) conductivity (no difference in the plot).
Continuous (dotted) red lines correspond to A‖k for infinite (vanishing) conductivity.

this implies A′
‖k = ikA0k, which corresponds to the field evolution shown in figure 1. Let us

emphasize that the vanishing of the electric field does not imply the vanishing of the temporal
component A0k.

In fact, it is straightforward to show that the value of ∇µAµ giving rise to the effective
cosmological constant is not affected by the presence of conductivity. Indeed, Maxwell’s
equations in the presence of conserved currents read:

∇νF
µν + λ∇µ∇νA

ν = Jµ (3.12)

Taking the four-divergence of the equation we get:

�(∇µAµ) = 0 (3.13)

where we have used current conservation ∇µJµ = 0. Thus, we see that the field ∇µAµ evolves
as a free scalar field, and it is therefore constant on super-Hubble scales, independently of
the presence of external currents.

4 Gauge invariance on cosmological scales

A remarkable consequence of the covariant quantization formalism in the context of inflation-
ary cosmology (which had not been considered previously) is the breaking of gauge invariance
on cosmological scales. Indeed, in this formalism, the classical energy-momentum tensor de-
pends on the gauge-fixing term. However, in Minkowski space-time, when one takes the
expectation value of this object in a physical state (that belonging to the restricted Hilbert

– 7 –
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space) the gauge dependence disappears because the contributions from the temporal and
longitudinal degrees of freedom cancel each other. This is so just because in Minkowski
space-time, in the restricted Hilbert space, the amplitudes of temporal and longitudinal
mode solutions are exactly the same (see [19]). However when considering the quantization
in an expanding universe important differences arise. At short distances, i.e. for sub-Hubble
modes, it is easy to see from (3.5) that the same cancellation takes place, as it should be, and
the theory is exactly the same as in Minkowski space-time. Therefore the energy density does
not depend on the gauge-fixing term. Nevertheless, when the modes become super-Hubble,
it can be seen from (3.7), that the amplitude of the temporal modes grows in time faster
than that of the longitudinal ones. This spoils the mentioned cancellation and a net energy
density results from the λ term.

Notice that in the covariant formalism the four polarizations are always present. In
Minkowski space-time (or for sub-Hubble modes) only two of them contribute to the en-
ergy density, however on cosmological scales also the temporal one can have observational
consequences. As A0 is also a propagating degree of freedom, the gauge-fixing term can be
seen in the Gupta-Bleuler formalism as a kinetic term for it, and therefore the coefficient
λ can be fixed by the standard normalization of the creation and annihilation operators.
This effect could not be studied in other (non-covariant) formalisms, such as Coulomb gauge
quantization, since only transverse polarizations would be present in that case.

To summarize, the presence of the background cosmological electromagnetic field breaks
U(1)EM symmetry on large scales while preserving local (small-scales) invariance. This is
analogous to the situation with Lorentz symmetry, where the presence of matter or radiation
in the Universe breaks global Lorentz invariance, but respecting local transformations. In
other words, the presence of a non-vanishing cosmological constant could be signalling the
breakdown of gauge invariance on cosmological scales. Let us emphasize that this effect
is a consequence of the quantization of electromagnetic theory in the covariant formalism
and, as discussed above, it does not modify any of the physical predictions of Maxwell’s
theory for laboratory experiments or astrophysical observations. As a matter of fact, the
electromagnetic interaction has not been tested on distance scales larger than 1.3 AU [25].

5 Perturbations and consistency

Despite the fact that the background evolution in the present case is the same as in ΛCDM,
the evolution of metric perturbations could be different, thus offering an observational
way of discriminating between the two models. With this purpose, we have calculated the
evolution of metric, matter density and electromagnetic perturbations in the longitudinal
gauge with δg00 = 2a2Φ, δg0i = a2Si, δgij = a2(2Ψδij − hij), δ = δρM/ρM and taking
Aµ = Ahom

µ (η) + δAµ, where as commented before the main contribution to Ahom
µ (η)

comes from the temporal component. The propagation speeds of scalar, vector and tensor
perturbations are found to be real and equal to the speed of light, so that the theory is
classically stable. We have also checked that the theory does not contain ghosts and it is
therefore stable at the quantum level. On the other hand, using the explicit expressions
in [26] for the vector-tensor theory of gravity corresponding to the action in (2.1), it is
possible to see that all the parametrized post-Newtonian (PPN) parameters agree with those
of General Relativity, i.e. the theory is compatible with all the local gravity constraints for
any value of the homogeneous background electromagnetic field.

– 8 –
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Figure 2. Evolution of Φk with k = 3H0, corresponding to the maximum contribution to the ISW
effect. Upper(lower) panel with vanishing(infinite) conductivity. Continuous blue line for ΛCDM,
dashed red for Ñ |nA0

| =12 (upper panel) 18 (lower panel) and dotted green for large Ñ |nA0
|.

Figure 3. Evolution of the matter density contrast δk with k = 10H0 and infinite conductivity
(vanishing conductivity shows no difference with respect to ΛCDM). Plotted curves correspond to the
same models as in the lower panel of figure2.

In figures 2–3 we plot the evolution of scalar perturbations, satisfying Φk = Ψk in this
theory, and matter density contrast δk, in both, vanishing and infinite conductivity limits. We
find that the only relevant deviations with respect to ΛCDM appear on large scales k ∼ H0

and that they depend on the primordial spectrum of electromagnetic fluctuations. However,
for Ñ |nA0

| & 12, the results on the CMB temperature power spectrum and evolution of den-
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sity perturbation are compatible with observations. Taking MI ∼ TRH ∼ 102 GeV in this case,
with TRH the reheating temperature, we obtain the correct value of the dark energy density
today. In addition, the different evolution of Φk with respect to the ΛCDM model gives rise
to a possible discriminating contribution to the late-time integrated Sachs-Wolfe effect [27].

The presence of large scale electric fields generated by inhomogeneities in the A0 field
opens also the possibility for the generation of large scale currents which in turn could
contribute to the presence of magnetic fields with large coherence scales. This could shed
light on the problem of explaining the origin of cosmological magnetic fields. Work is in
progress in this direction.

6 Conclusions and discussion

We have shown that the present phase of accelerated expansion of the universe can be ex-
plained by the presence of a cosmological electromagnetic field generated during inflation.
This result not only offers a solution to the problem of establishing the true nature of dark
energy, but also explains the value of the cosmological constant without resorting to new
physics. In this scenario the fact that matter and dark energy densities coincide today is
just a consequence of inflation taking place at the electroweak scale. Such a relatively low
inflation scale implies also that no cosmological gravity wave background is expected to be
measurable in future CMB polarization observations.

Notice also that any vector-tensor theory (not necessarily electromagnetism) whose
low-energy effective action is given by (2.1) and in which the vector field only interacts
gravitationally with the rest of particles would provide a natural model for dark energy. In
fact all the previous models trying to account for the cosmic acceleration are plagued by
classical or quantum instabilities, fine tuning problems or inconsistencies with Solar System
experiments. However, in this work we present, for the first time, an explanation to the
cosmic acceleration with none of the aforementioned problems.

Acknowledgments

We would like to thank J.D. Barrow, J.A.R. Cembranos and C. Tamarit for useful comments
and suggestions. This work has been supported by DGICYT (Spain) project numbers FPA
2004-02602 and FPA 2005-02327, UCM-Santander PR34/07-15875, CAM/UCM 910309 and
MEC grant BES-2006-12059.

References

[1] Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and
Λ from 42 high-redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133]
[SPIRES].

[2] Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from
supernovae for an accelerating universe and a cosmological constant,
Astron. J. 116 (1998) 1009 [astro-ph/9805201] [SPIRES]; BV RI light curves for 22 type Ia
supernovae, Astron. J. 117 (1999) 707 [astro-ph/9810291] [SPIRES].

[3] WMAP collaboration, D.N. Spergel et al. First-year Wilkinson Microwave Anisotropy Probe
(WMAP) observations: determination of cosmological parameters,
Astrophys. J. Suppl. 148 (2003) 175 [astro-ph/0302209] [SPIRES];

– 10 –

http://dx.doi.org/10.1086/307221
http://xxx.lanl.gov/abs/astro-ph/9812133
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=ASTRO-PH/9812133
http://dx.doi.org/10.1086/300499
http://xxx.lanl.gov/abs/astro-ph/9805201
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=ASTRO-PH/9805201
http://dx.doi.org/10.1086/300738
http://xxx.lanl.gov/abs/astro-ph/9810291
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=ASTRO-PH/9810291
http://dx.doi.org/10.1086/377226
http://xxx.lanl.gov/abs/astro-ph/0302209
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=ASTRO-PH/0302209


J
C
A
P
0
3
(
2
0
0
9
)
0
1
6

WMAP collaboration, D.N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP)
three year results: implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377
[astro-ph/0603449] [SPIRES].

[4] SDSS collaboration, M. Tegmark et al., Cosmological parameters from SDSS and WMAP,
Phys. Rev. D 69 (2004) 103501 [astro-ph/0310723] [SPIRES].

[5] C. Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys. B 302 (1988) 668
[SPIRES].

[6] R.R. Caldwell, R. Dave and P.J. Steinhardt, Cosmological imprint of an energy component with
general equation-of-state, Phys. Rev. Lett. 80 (1998) 1582 [astro-ph/9708069] [SPIRES].

[7] C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-Inflation,
Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [SPIRES].

[8] S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Is cosmic speed-up due to new
gravitational physics?, Phys. Rev. D 70 (2004) 043528 [astro-ph/0306438] [SPIRES].

[9] G.R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space,
Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [SPIRES].

[10] V.V. Kiselev, Vector field as a quintessence partner, Class. Quant. Grav. 21 (2004) 3323
[gr-qc/0402095] [SPIRES].

[11] C. Armendariz-Picon, Could dark energy be vector-like?, JCAP 07 (2004) 007
[astro-ph/0405267] [SPIRES].

[12] C.G. Boehmer and T. Harko, Dark energy as a massive vector field,
Eur. Phys. J. C 50 (2007) 423 [gr-qc/0701029] [SPIRES].

[13] M. Novello, S.E. Perez Bergliaffa and J. Salim, Nonlinear electrodynamics and the acceleration
of the universe, Phys. Rev. D 69 (2004) 127301 [astro-ph/0312093] [SPIRES].

[14] T.S. Koivisto and D.F. Mota, Vector field models of inflation and dark energy,
JCAP 08 (2008) 021 [arXiv:0805.4229] [SPIRES].

[15] H.S. Zhao, Coincidences of dark energy with dark matter: clues for a simple alternative?,
Astrophys. J. 671 (2007) L1 [arXiv:0710.3616] [SPIRES].
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