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Abstract

This paper presents an approach to the local stereo correspondence problem. The primitives or features used are groups
of collinear connected edge points called segments. Each segment has several associated attributes or properties. We have
verified that the differences of the attributes for the true matches cluster in a cloud around a center. Then for each current
pair of primitives we compute a distance between the difference of its attributes and the cluster center. The correspondence is
established in the basis of the minimum distance criterion (similarity constraint). We have designed an image understanding
system to learn the best representative cluster center. For such purpose a new learning method is derived from the Fuzzy c-
Means (FcM) algorithm where the dispersion of the true samples in the cluster is taken into account through the Mahalanobis
distance. This is the main contribution of this paper. A better performance of the proposed local stereo-matching learning
method is illustrated with a comparative analysis between classical local methods without learning. (©) 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The number of research efforts of the computer vi-
sion community have been directed towards the study
of the three-dimensional (3-D) structure of objects
using machine analysis of images [10, 38]. Analysis
of video images in stereo has become an important
passive method for extracting the 3-D structure of a
scene.

The basic principle involved in the recovery of
depth using passive imaging is triangulation. In
stereopsis, triangulation must be achieved with the
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help of existing environmental lighting alone. Hence,
a correspondence needs to be established between
features from two images that correspond to some
physical feature in space. Then, if the position of
the centers of projection, the effective focal length,
the orientation of the optical axis and the sampling
interval of each camera are known, the depth can be
established using triangulation [14].

The process of stereo analysis consists of the fol-
lowing steps: image acquisition, camera modeling,
feature acquisition, image matching and depth deter-
mination. The key step is that of image matching,
namely, the process of identifying the correspond-
ing points in two images that are cast by the same
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physical point in 3-D space. This paper is devoted
solely to this problem.

The stereo correspondence problem can be defined
in terms of finding pairs of true matches that satisfy
three competing constraints: similarity, smoothness
and uniqueness [34, 35]. Generally a former local
matching process is associated with the similarity con-
straint where a minimum difference attribute (proper-
ties of features) criterion is applied, the results are later
used by a global matching process where the smooth-
ness constraint is imposed. A good choice of the lo-
cal matching strategy is the key to good results in the
global matching process.

This paper presents an approach to the local ste-
reopsis correspondence problem developing a learn-
ing strategy (see [11, 16, 25, 32]) derived from a
fuzzy clustering method (see [19, 20, 49, 54]). As
the learning strategy is only concerned with the lo-
cal stereo correspondence no global contraints (e.g.,
smoothness [34, 35], minimum differential disparity
[36], coherence principle [43] or figural continuity [41,
441]) are applied, although they could improve the final
results.

Two sorts ot techniques have been broadly used for
stereo matching [24, 36, 37]; area-based and feature-
based. Area-based stereo techniques use correlation
between brightness (intensity) patterns in the local
neighborhood of a pixel in one image with brightness
patterns in the local neighborhood in the other image
[2, 13, 46, 53], where the number of pairs of features
to be considered becomes high, while feature-based
methods use sets of pixels with similar attributes nor-
mally either pixels belonging to edges [12, 15, 21, 22,
30, 31, 33-35, 41, 44, 46] or the corresponding edges
themselves [1, 8, 9, 17, 23, 36, 39, 40]. As shown in
[38], these latter methods lead only to a sparse depth
map, leaving the rest of the surface to be reconstructed
by interpolation; but they are faster than area-based
methods, because there are many fewer points (fea-
tures) to be considered.

There are intrinsic and extrinsic factors affecting the
stereovision matching system:

(a) Extrinsic, in a practical stereo vision system,
the left and right images are obtained at different po-
sitions/angles. The matching is made difficult, in part,
by changes in the images of corresponding points due
to different perspective view points. The amount of
change is dependent on the stereo angle.

(b) Intrinsic, the stereovision system is equipped
with two different physical cameras (i.e. with different
components), which are always placed at the same
relative position (left and right). A systematic noise
appears for each one.

Due to the above mentioned factors, the correspond-
ing features in both images may display different val-
ues. A correspondence is established between features
when such differences in feature values are assumed to
be small, but the differences are sometimes too large
to be considered, and matching is then rejected on
this assumption. This may lead to incorrect matches.
Thus, it is very important to find features in both
images which are unique or independent of possible
variation of the images [52]. Our experiment has been
carried out in an artificial environment where the edge
segments are abundant. Such features have been stud-
ied in terms of reliability [6, 24] and robustness [52]
and as mentioned before, they have also been used in
previous stereovision matching works. This fact justi-
fies our choice of features, although they may be too
local. Four average attribute values (module and di-
rection gradient, variance and Laplace) are computed
for each edge-segment as we will see later. Generally,
the methods that use edge-segments as features com-
pute an average gradient vector or its equivalent [1,
23, 27, 36]. We have added the Laplacian and vari-
ance because the stereo correspondence is safer.

The extrinsic factors have been broadly considered
in the literature. This paper deals with both kinds of
factors but it is mainly concerned with the intrinsic
factors because we have verified their significance and,
as a result, a research line has been opened including
learning strategies. Hence, works [8, 9, 39] have been
produced and both supervised and unsupervised learn-
ing methods implemented. Despite the fact that they
show good results, they do not reach full performance
for which reason new learning strategies are still
being researched.

In stereovision matching we are only concerned
with true matches, namely, pairs of features from left
and right images that correspond to the same physical
reality in the 3-D scene. In a hypothetical ideal sys-
tem, the differences in attribute values should be null,
but in a real system, and due to the above mentioned
extrinsic and intrinsic factors, such differences are at
least lightly off the null value (as we have verified in
[8, 9, 39]) and this no null value is the goal to learn,
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which is the center around the true correspondences
should tend to cluster in one cloud.

All that really happens in such stereovision systems
can be summarized as follows:

(a) physical cameras are placed at different posi-
tions and also they are built-in with different physical
components, so they display different values in grey
levels.

(b) The difference vectors for the true matches tend
to cluster around a center.

Hence and according to the above conclusions, we
will attempt to design and optimize our stereo match-
ing system as per the following requirements:

(a) the features must be extracted and their attribute
values computed;

(b) only true matches are of interest since the false
ones do not contribute to the 3-D scene reconstruction;

(¢) a clustering method is to be selected to deal with
the true correspondences;

(d) a learning strategy must be implemented in
order to detect the center around the true matches
cluster;

(e) a similarity measure between such a center and
a current pair of features must be computed and the
current pair classified as a true or false match;

(f) the dispersion of the samples in the cluster must
be taken into account.

The main contribution of this paper is concerned
with the clustering method and the learning strat-
egy (i.e. a pattern classification technique applied to
stereovision matching). We have chosen a Fuzzy c-
Means (FcM) algorithm because it is a member of
a family of algorithms for clustering data points [19,
20, 49, 54], as we need cluster attribute difference
vectors for true matches, and because with certain
amount of manipulation it can be fitted to carry out a
learning process. Only true matches are of interest to
us, hence a unique cluster and a supervised learning
setting is considered.

This paper is organized as follows: in Section 2
an image understanding system with three basic com-
ponents (image analysis system, supervised learning
system and stereo-matching system) is designed. Also
the image analysis system is explained. In Section 3,
the FcM algorithm is fitted to carry out the super-
vised learning strategy applied to stereovision match-
ing, where only the cluster of true correspondences
is taken into account. The current stereo matching

system is explained in Section 4. To show the ef-
fectiveness of the proposed method, a comparative
analysis is performed in Section 5 against a classical
method where no learning is involved. We have devel-
oped other similar learning strategies applied to stereo-
vision [8, 9, 39] with satisfactory global results, hence
confirming the suggested method. Finally, in Section
6, the conclusion is presented.

2. The image understanding system

The image understanding system, with a parallel
optical axis geometry, consists of three basic com-
ponents. Following the diagram shown in Fig. 1,
these components are [48]: an image analysis sys-
tem, a supervised learning system and a current
stereo-matching system. The function of the image
analysis system is to extract information (features
and attributes) from the scene and to make this infor-
mation available to the supervised learning process
during the training process or to the stereo-matching
process during the current stereo image process. The
image analysis system is also responsible for carrying
out an initial selection of pairs of feature, supplying
either of the other two systems with only those pairs
that fulfill two conditions: the absolute value in the
difference in the direction of the gradient is below
a specific threshold and the overlap rate surpasses
a certain value, that will be specified later. For the
two involved segments the overlap rate is defined
as the proportion expressed as a percentage between
the intersection length and the longest length when
one segment slides over another in a direction par-
allel to the epipolar line (note that no calibration is
required).

The supervised learning process has to learn a
mean difference measurement vector (cluster center)
representative of all true correspondences and the dis-
persion of the true samples in the cluster (covariance
matrix) when a number of labeled samples (pairs of
true matches) from an environment are given to it
and then processed.

The current stereo-matching system has to match
the features from a new pair of stereo-images comput-
ing a distance between the current measurement dif-
ference vector for the new pair and the learned cluster
center, so that the correspondences can be established.
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Fig. 1. The image understanding system.

As aresult, the method here developed increases the
number of correct matches as compared to the clas-
sical methods that, as a similarity measurement, use
a minimum criterion distance, computing the mini-
mum difference attribute value, generally through the
Euclidean distance.

2.1. Feature and attribute extraction

As mentioned before, we believe that the feature-
based stereo systems have strong advantages over
area based correlation systems. However, detection of
such boundaries is a complex time consuming scene
analysis task. The contour edges in both images are
extracted using the Laplacian of Gaussian filter in
accordance with the zero-crossing criterion [18]. For
each zero-crossing in a given image, its gradient
vector, Laplacian and variance are computed from
the gray levels of a central pixel and its eight im-
mediate neighbors. The gradient vector (magnitude
and direction) is computed as in [28], the Laplacian
as in [29] and the variance as in [26]. To find the
gradient magnitude of the central pixel, we compare
the gray level differences from the four pairs of op-
posite pixels in the 8-neighbourhood and the largest
difference is taken as the gradient magnitude. The
gradient direction of the central pixel is the direction
out of the eight principal directions whose opposite
pixels yield the largest gray level difference and also
points in the direction which the pixel gray level is
increasing. We use a chain-code and we assign eight
digits to represent the eight principal directions, such
digits are integer numbers from 1 to 8. This approach
allows the normalization of the gradient direction, so
its values fall in the same range as the remainder of
the attribute values. In order to avoid noise problems

in edge-detection that can lead to later mismatches in
realistic images, the following two global consistent
methods are used: (a) the edges are obtained by join-
ing adjacent zero-crossings following the algorithm
of [47]; it is allowed a margin of deviation of +20%
in gradient magnitude and of +45° in gradient direc-
tion; (b) each detected contour is approximated by
a series of piecewise linear line segments as in [37].
Finally, for every segment, an average value of the
four attributes is obtained from all computed values
of its zero-crossings. All average attribute values are
normalized in the same range. Each segment is iden-
tified with its initial and final pixel coordinates, its
length and its label.

Therefore, each pair of features has associated two
4-dimensional vectors x; and x;, where the compo-
nents are the attribute values and the sub-indices | and
r denote features belonging to the left and right im-
ages, respectively.

Thus a four-dimensional difference measurement
vector x is also obtained from the above x; and x; vec-
tors, where its components, x = {xp, X4, X1, Xy}, are
now the corresponding original component differences
for module and direction gradient, Laplacian and vari-
ance, respectively. Such an x vector will be the input
for both the involved processes: training and stereo
matching.

3. Learning derived from the Fuzzy c-Means
algorithm

According to the above definitions, the difference
measurement vector for an ideal true match should be
the null vector as the corresponding attributes for each
edge segment should be identical. If we consider the
ideal true correspondences as a class, the null vector is
its best representative mean attribute difference vector.
Obviously, the above consideration is only feasible in
an ideal world because the computed attributes for the
corresponding features have a certain variability as the
left and right images are obtained at different positions
and both cameras are physically different, and thus
even the corresponding features in both images may
display different attribute values.

But, when we are working in the real world, the
representative mean attribute difference vector for
the true correspondences will differ from the ideal
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null vector. The goal is to compute the best real rep-
resentative mean attribute difference vector, named
Z (cluster center) for the true correspondences and
a measure of dispersion of the samples around z
(covariance matrix C), so that during the stereo
matching process a distance between z and the asso-
ciated x difference measurement vector for a given
pair of features can be established in order to decide
if such pair is a true or false correspondence accord-
ing to a minimum criterion distance. Really, all that
we are trying to do is to learn the best representative
vector for all true sterco pairs of features. Therefore
a learning process is involved, where a number of
labeled samples will be supplied in order to learn z
and C during the corresponding training process.

The training process is designed as a supervised
learning strategy using a fuzzy c-means algorithm
[19, 20, 49, 54] as it includes both: (a) a clustering
method and (b) a learning law; the first one allows us
to consider the true correspondences as a cloud clus-
tered around the cluster center vector z and the second
one to learn this center.

In order to deal with the dispersion and consis-
tency of the samples in the cluster a probability
density function can be associated, without loss of
generality a Gaussian one, with two parameters to be
estimated: (a) the representative mean difference vec-
tor, that agrees with z and (b) the covariance matrix
C. Hence, the squared Mahalanobis distance, given
by Eq. (1), is chosen as a metric [11, 32],

dv = (x —2)'C(x - 2), (1

where t stands for the transpose.

To develop our proposed method, we present a brief
review of the fuzzy clustering problem. Following
[19,20,49 or 54] a objective function of the form given
by Egs. (2) and (3) below is minimized

W Z) =3 > widy @)
i=1 j=1
subject to

c
Zw,»j:l, 1<l<n,
j=1

(3)

wi; =0,

where n is the number of samples to be clustered;
¢ is the number of clusters, 1<c<mn, m is a scalar,
m>1; d;j = ||x; — z;|| the Euclidean distance be-
tween samples x; and the center z; (other distances
could be used [7, 43], however the Euclidean distance
appears to be used more often), X = {x, x2, ..., x,} €
R® is a finite set of samples, z; € R’, 1<j<c are
the cluster centers. The w;; factor is the membership
grade of pattern i with cluster j, W= {w;;} an n x ¢
matrix and Z = [z1, 22, ..., Zc] an s X ¢ matrix. In
order to minimize the objective function (2), the
cluster center and membership grades are chosen so
that high memberships occur for samples close to the
corresponding cluster center. The number m is called
the exponent weight [50, 51, 54]. The higher the
value of m used, the less those samples whose mem-
berships are low contribute to the objective function.
Consequently, such samples tend to be ignored in de-
termining the cluster centers and membership grades
[51]. Bezdek [4] proposed the FcM algorithms to
solve the above mathematical program which can also
be found with an exhaustive treatement in [19, 20,
53, 54].

Our stereo-matching problem is similar to a fuzzy
clustering problem, because we have two clusters
associated with the true and false matches. Hence,
the stereo matching problem could be solved by
using the FcM algorithm. This algorithm computes
the center for each cluster based on the membership
grades of the samples with the cluster. As we are
only concerned with the true matches, our method is
exclusively restricted to the cluster associated with
the true correspondences. This requires an amount of
manipulation from the original FcM algorithm (ex-
plained below). The following is a statement of the
proposed algorithm:

Initialization
Select a set of n true matches (labeled samples),
X= {xl, X2, ..., x,,}ER“.

Choose a scalar ¢ > 0 and also the initial center
z and the covariance matrix C; if training has not
been performed previously set z to 0 and set C to the
identity matrix (1) otherwise set both data items to the
last computed and stored values. Also set &k = 1 and
fix m.

Step 1: For each sample x; compute at the iteration
k the membership grade w; of such sample with the
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cluster of true matches as follows:

1

MO = T e

(4)
where d;(k) is the Mahalanobis distance between the
sample x; and z. Therefore, w; is considered a neigh-
bourhood function through d;(k), w; € (0, 1].

Step 2: Compute z(k + 1) using the formula

> i Wi (k)x;
Yo wi(k)

Step 3: If ||z(k) — z(k + 1)|| <& or a number K of
iterations has been reached, stop. Otherwise set k =
k + 1 and go to Step 1.

Step 4: From i =1 to n compute the covariance
matrix C according to Eq. (6)

2k+1)= )

C@i+ 1) = C(@i) +wil(xi — 2)'(x; — 2) — C(i)]. (6)
End

At the end of Section 5 and after experimentation a
discussion over the thresholds ¢ and K involved in the
stopping condition is provided. Also, a cluster validity
analysis, according to [50, 51], is performed to choose
the exact value for the exponential weight m.

The differences between our algorithm and the orig-
inal FcM algorithm are summarized as follows:

(a) Initialization: We set the cluster center to a
known value, the FcM chooses cluster centers arbi-
trarily [20, 54].

(b) Step 1: The cluster associated to true matches is
of unique interest to us. Hence, to compute the mem-
bership grades through Eq. (4), we take into account
the Mahalanobis distance as a neighbourhood mea-
sure between the samples x; and the cluster center z.
The original FcM considers several clusters of interest
and computes each membership grade w;; of pattern i
with cluster j, (see Egs. (2) and (3) for notation) as
follows and according to [20]

1

(k) = =2 .
) > (di(k)/di(k))y? m=1

(7)

(c) Step 2: We only compute the cluster center of in-
terest through Eq. (5), and the original FcM computes
several cluster centers according to Eq. (8), where the

w;; are taken into account,

Z?:lwff(k)xi
> wij (k)

(d) Step 3: The number of iterations is intro-
duced as an additional stopping condition because the
convergence of the original FcM algorithm is not
completely guaranteed (see e.g. [3, 45]). This fact is
supported by the experimental computed results and
it is justified by a satisfactory effectiveness from the
proposed application view point.

(e) Step 4: We introduce this additional step in our
method in relation to the original FcM. The covariance
matrix in Eq. (6) is estimated according to a maximum
likelihood method (see [8, 9, 11, 39]). This is possible
because it is assumed that an underlying probability
density function is associated with the true matches in
the cluster, and, without loss of generality, a Gaussian
one. Eq. (6) is a learning law where the learning rate
is replaced by the corresponding membership grades
(neighbourhood function) following a self-organizing
neural network criterion [16, 25]. So, the contribution
of a sample with a high membership grade for updat-
ing C is very important and vice versa. The compu-
tation of C allows us to use the Mahalanobis distance
(instead of the Euclidean distance), so that the disper-
sion of the samples in the cluster is taken into account.

Zi(k+1)= (8)

4. The current stereo matching process

When a new and current pair of features is pro-
cessed by the current stereo matching system with its
associated x attribute difference vector, the squared
Mahalanobis distance between x and the last learned
center vector z is computed (where C is also the last
computed covariance matrix). In that way, the disper-
sion of the samples in the cluster of true matches is
once again taken into account. Hence, a minimum cri-
terion distance is used to classify the current pair of
features as a true or false correspondence.

Note that classical stereo matching techniques also
use a minimum criterion distance where the Euclidean
distance appears to be used more often, computing the
corresponding distance between the x attribute differ-
ence vector and the null vector. This fact implies that
no previous knowledge of the environment is taken
into account in contrast to our proposed method where
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a certain knowledge of the environment is obtained
during a previous training process.

5. Experimental validation, comparative analysis
and performance evaluation

In order to assess the validity and performance
of the proposed method, experimental studies are
designed after which, based on similarity criteria, a
comparative analysis is performed with classical lo-
cal stereo matching techniques [22, 36]. It will be
seen that, when there is a learning process involved,
the computed results are better than those in which
no learning is considered, as could be expected. The
images are 512 x 512 pixels in size with 256 gray
levels.

5.1. Design of a test strategy

The objective is to prove the validity and gener-
alization of the method by varying environmental
conditions in two ways: by using new images with dif-
ferent features (different objects) and by changing the
illumination. With this aim in mind, 8 pairs of stereo-
images captured with natural illumination, are used as
initial samples. Figs. 2—4 show three representative
left images. Furthermore, three sets of stereo-pairs,
which are different from each other and from the sam-
ples, are used and will constitute the inputs for the
test: SP1, SP2 and SP3 with 6, 6 and 10 stereo-images,
respectively, represented by the stereo-pairs given in
Figs. 5—7. The set SP1 is captured with natural illumi-
nation (the same as the initial stereo-image samples)
and the sets SP2 and SP3 with artificial illumination.

The test process tries to prove the effectiveness of
learning as training increases. The test consists of four
steps. An initial training is carried out (Step 0) with the
initial samples. The three sets of stereo-pairs, SP1, SP2
and SP3 are then matched at different stages (Steps
1-3) and the true matches, selected by the system, are
used in new and subsequent training processes. The
set of stereo-pairs SP3 is matched twice (Steps 1 and
3) in order to prove how the degree of learning affects
the corresponding results.

Step 0: The system is trained using the samples
under the supervision of the human expert using the
8 pairs of initial stereo-images samples and setting Fig. 4. Left original training image (computers).
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Fig. 5. (a) SP1: original left stereo image, (b) SP1: original right stereo image, (c) SP1: labeled segments left image and (d) SP1: labeled

segments right image.

the parameters vector (z, C) to (0, 1), after which the
following updated parameter vector is computed:

7z ={0.226, —0.051, 0.461, 0.578};

0983 —0.017 0.012 0.009
C— —-0.017 0955 —0.010 0.003
0.012 —-0.010 1.147 —-0.014
0.009 —0.003 —-0.014 1.199

The changes in the covariance matrix C throughout
the 4 steps are not statistically significant, in which
case it suffices to give C for Step 0.

Step 1: The system processes two sets of stereo-
pairs SP1 and SP3. Only the samples classified as
true matches from set SP1 are used for a new train-

ing process because set SP3 will again be processed
later in Step 3, so that no interference derived from
its own processing arise. The updated mean represen-
tative vector is the following:

z = {0.318, —0.093, 0.678, 0.697} .

Step 2: The system processes the set SP2. The pro-
cessing conditions are similar to those of set SP3 in
Step 1, however, here the true matches are incorpo-
rated into the training process so that the new recal-
culated mean representative vector is,

z = {0.405, —0.122, 0.698, 0.911}.

Step 3: The system once again processes the set of
stereo-pairs SP3. It is already partially familiar with
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Fig. 6. (a) SP2: original left stereo image, (b) SP2: original right stereo image, (c) SP2: labeled segments left image and (d) SP2: labeled

segments right image.

the environment of this set of stereo-pairs because of
the incorporation of matches from stereo-pair SP2 with
similar illumination. The mean representative vector
is finally,

z = {0.495, —0.143, 0.865, 0.988}.

To compare the effectiveness of the methods, the Kim
and Aggarwal [22] (KA) and Medioni and Nevatia
[36] (MN) local matching techniques are selected. In
KA, given two potential pixels for matching, a prob-
ability is computed through two weighting functions.
One is based on the directional difference according to
16 fixed patterns, and the other is based on the differ-
ence in the gradients of gray-level intensity. That is to

say, the method employs two attributes and computes
two differences for each pair of pixels, with which the
aforementioned probability is obtained.

dowi=1; 0<w<l, 9

where av denotes the corresponding attribute value
for each feature, w; is the associated weight for each
attribute and » is the number of attributes used. In
the KA method, » is 2 and the weights are fixed at
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Fig. 7. (a) SP3: original left stereo image, (b) SP3: original right stereo image, (c) SP3: labeled segments left image, and (d) SP3: labeled

segments right image.

a value of 0.5. In the MN method, the local stereo-
correspondence is established between edge segments
by defining a boolean function indicating whether two
segments are potential matches if they overlap and
have similar contrast and orientation, where with an
amount of arrangement these last two could both be
identified with our magnitude and direction gradient
differences.

The KA and MN methods measure differences be-
tween attribute values and for comparison purposes
they can be replaced by the Euclidean distance, as
it computes the same measurement. Therefore, the
comparison can be established with the Mahalanobis
distance proposed in our method.

5.2. Comparative analysis

Table 1 records all computed results for the stereo-
pair representative of set SP1. There are four columns:
the first one indicates the assigned order number (on)
for each pair of features appearing in the second col-
umn ( pair), where the * symbol denotes a true match
as tested under a human expert criterion; in the third
column the Mahalanobis distance, dy(x,z) is com-
puted, as required by our proposed learning method
(environment known); in the fourth column the
Euclidean distance is computed, dg(x,0) represent-
ing to the herein called classical methods (KA, MN)
without learning (environment unknown).
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Of all the possible combinations of pairs of matches
formed by segments of left and right images, only
39 of them are considered, as the remainder do not
meet the initial restriction which states that the value
of the difference in the direction of the gradient must
be less than £45° and the overlap rate greater than
75%. These matches are directly classified as False by
the system and designated as missing. The choice of
such thresholds is supported by the following technical
points of view:

(a) Each image plane has defined a local co-ordi-
nate system where the x-axes coincide, the y-axes are
parallel and the optical axes and epipolar lines are also
parallel.

(b) We are using only near-vertical edges for
matching (the near-horizontal edges do not contribute
to the computation of the disparity, which is the next
step in any stereovision-matching system). From
the above geometric constraints, the direction for
two edges representing the same three-dimensional
edge should be identical and the y-axis co-ordinate
for the end-points in both edges should also be
identical.

(c) During pre-processing and edge-detection,
noise or errors could appear. For this reason, the
thresholds are introduced so that a margin of error is
tolerated. The corresponding values were arrived at
through experimentation.

Of the 39 pairs considered, there are unambiguous
and ambiguous ones, depending on whether a given
left image segment corresponds to one and only one,
or several right segments, respectively. In any case, the
decision about the correct match is made by choosing
the result of smaller value for each one of the methods
(in the unambiguous case, there is only one) as long
as it does not surpass the previous fixed threshold, set
to 10 in this paper.

According to results from Table 1, the following
conclusions may be inferred:

(a) The proposed method, hereinafter referred to
as L (Learning) displays a greater number of True
matches () than the classical local techniques, KA
or MN, hereinafter designated as NL (No Learning),
coinciding with relative minimum distance values.

(b) The range of values for L is greater than that
for NL, making for better decisions when ambiguities
arise. Table 2(a) shows the average (u) and the stan-
dard deviation (o) for both methods L and NL, in the

Table 1

Matching results from the stereo-pair representative of the set SP1,
on: order number for the 39 pairs of considered features; pair:
pairs of labeled features (I,r) from left and right images, where *
symbol means a true match: dy(x, z),dg(x,0): computed results
for the Mahalanobis distance (learning) and Euclidean distance
(without learning), respectively

on pair dm(x,2) dg(x, 0)
1 *(1,1) 12.02 9.81
2 2,2) 7.21 7.92
3 *(2,3) 6.54 8.10
4 (2,6) 10.70 18.14
5 2,8) 61.20 23.21
6 (2,14) 9.86 15.17
7 *(3,2) 4.31 8.64
8 3,3) 7.22 7.21
9 3,8) 79.82 60.17

10 3,9) 8.62 7.23

11 (3,10) 8.91 7.61

12 (3,14) 7.25 8.92

13 *7,7) 3.24 8.22

14 (7,19) 6.39 8.32

15 8,2) 4.11 17.22

16 (8,3) 5.35 16.32

17 *(8,6) 1.26 8.51

18 (8,8) 25.21 17.21

19 8,9) 5.22 10.12

20 (8,12) 10.12 8.14

21 *9,11) 2.01 5.82

22 (10,6) 4.10 9.05

23 *(10,12) 2.61 9.15

24 (11,2) 4.61 7.55

25 (11,3) 5.92 7.41

26 *(11,9) 1.11 7.36

27 (11,10) 4.61 8.65

28 *(13,14) 3.42 5.45

29 (13,16) 5.21 5.32

30 (14,14) 3.21 7.01

31 *(14,16) 3.91 7.21

32 (15,15) 5.62 4.90

33 *(15,17) 245 2.89

34 (16,6) 16.23 12.12

35 (16,12) 19.22 11.10

36 (16,20) 9.15 10.21

37 (17,18) 21.13 15.18

38 *(18,20) 3.15 4.11

39 *(23,27) 1.21 7.15

difference between the value of the true match, follow-
ing the criteria of the human expert, and that closest
to it. Therefore, a lower failure probability is obtained
with L. This is a direct consequence of the fact that
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Table 2

Results for stereo-pair representative of the set SP1: (a) average
(1) and standard deviation (¢) for L and NL of the difference
between the value of the true match, following the criteria of the
human expert, and that closest to it for ambiguities and (b) final
decisions from stereo-matching process

(a) L NL (b) L NL
" —2.18 —0.16 Success 12 9
a 1.48 0.72 Failures 3 6

the training images and the stereo images of set SP1
are all captured with natural illumination.

(c¢) The Success and Failure results of about 15
decisions made are shown in Table 2(b).

(d) The results obtained for the stereo-pair repre-
sentative of set SP2 in Step 2 are not shown explic-
itly, because they are similar to the results of the
stereo-pair representative of set SP3 in the Step 1 (see
Table 3), both under the same conditions of illumina-
tion (artificial). The system makes 19 decisions with
16 successes and 3 failures with the stereo-pair repre-
sentative of set SP2.

(e) Table 3 shows results for the stereo-pair repre-
sentative of set SP3 with the same symbols and cri-
teria as those explained for Table 1, also computing
the Mahalanobis and Euclidean distances; although
two values, identified with the numbers 1 and 3, are
obtained for the Mahalanobis distance according to
the processing for such stereo-pair in Steps 1 and 3,
respectively.

According to results from Table 3, the following
conclusions may be inferred:

(f) Table 4(a) shows the average (u) and the stan-
dard deviation (¢) with the same criteria as Table
2(a), for the case of ambiguity. The average (u) for
L1 and L3 (results from our proposed learning method
in Steps 1 and 3) displays values smaller than for NL
(classical method without learning) making for better
decisions when ambiguities arise. In general, the L1
results are worse that those of L3 since a greater train-
ing has been performed. For computing the L1 results,
no training samples with artificial illumination were
used, while for computing the L3 results, 11.9% of
training samples proceeding from images with artifi-
cial illumination (the same as the stereo-pair set SP3)
were used.

Table 3

Matching results from stereo-pair representative of SP3; on: order
number for the 35 pairs of features; pair: pairs of labeled features
(I,r) from left and right images respectively, where * symbol
means a true match; dy(x,z), dg(x,0): computed results for the
Mahalanobis distance (learning) and Euclidean distance (without
learning), respectively, where (1) and (3) means results computed
according with test strategies in Steps 1 and 3, respectively

on pair dg(x,0) dmi(x,z) dms(x,2)
1 *(1,1) 2.50 2.10 1.87
2 24 3.08 3.07 2.96
3 *(3,2) 1.58 1.42 1.10
4 (3,6) 3.40 3.38 3.50
5 *(4,3) 2.04 2.05 1.52
6 (4,5 11.14 12.02 13.70
7 (5,1) 80.12 80.50 81.01
8 (5,2) 6.76 7.50 7.73
9 *(5,6) 3.32 3.29 3.25
10 (6,3) 12.70 12.91 13.00
11 *(6,5) 4.01 3.83 3.12
12 *(7,8) 2.30 2.33 2.15
13 (8,9) 38.26 38.20 38.20
14 (10,3) 13.47 13.48 13.55
15 (11,2) 79.63 79.40 79.38
16 (11,6) 80.06 80.91 84.03
17 *(12,11) 0.51 0.49 0.42
18 (12,15) 7.45 8.29 8.28
19 *(13,12) 28.55 27.64 25.02
20 *(14,13) 3.50 3.45 3.33
21 *(17,16) 8.86 8.63 8.52
2 (18,11) 6.11 6.10 6.07
23 *(18,15) 7.89 6.98 5.15
24 *(21,19) 432 437 3.72
25 (22,19) 2.06 2.19 2.20
26 *(22,20) 2.55 2.11 2.00
27 *(23,21) 4.08 421 3.92
28 (23,23) 12.65 13.41 13.55
29 *(24,22) 15.78 13.26 9.13
30 (25,21) 1.19 215 2.80
31 *(25,23) 2.03 1.81 1.72
32 (26,21) 332 4.15 5.47
33 (26,23) 5.44 5.20 4.52
34 *(26,24) 2.35 2.16 2.11
35 *(27,25) 3.91 3.66 3.02

(g) The Success and Failure results of about 22
decisions taken are shown in Table 4(b).

(h) Considering all tested stereo-pairs, we con-
clude that the average percentages of successes for
the NL, L1 and L3 strategies are 77.6%, 86.7% and
95.8%, respectively.
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Table 4

Results for stereo-pair representative of the set SP3: (a) average
(1) and standard deviation (¢) for L and NL of the difference
between the value of the true match, following the criteria of the
human expert, and that closest to it for ambiguities. Indices 1 and
3 refer to results in the respective steps. (b) Final decisions from
stereo-matching process

(a) L3 L1 NL (b) L3 L1 NL

uw =510 —437 -=-3.67
o 4.39 4.25 431

Success 21 19 17
Failures 1 3 5

b/ S

\ ]

0.5 .
. L L L L L ! L

34 36 38 4 42 44 46 48 5 i

Fig. 8. Validity measure V] for the different values of m along the
interval [3.5,5.2].

In the above experiments the required thresholds
to control the stopping condition have been fixed as
follows: ¢ = 0.01, K = 10, they were arrived at
through experimentation and following a heuristic
methodology. We have also tested a large range of
values for the exponential weight m in the interval
(1, 54], but we have verified that the best results,
in terms of successes, are obtained exactly when m
takes values inside of the interval [3.5,5.2]. Indeed,
taking values of m out of this interval the percentage
of successes for the L1 and L3 strategies is always
under 80% and 88% respectively, whereas the per-
centage of successes inside of the mentioned interval
for the L1 and L3 strategies always surpasses these
values. Then, to choose the exact value for m in the
interval [3.5,5.2] we use a function which computes
a number to measure the quality of the clustering
associated with the true matches. A measure of this
type is used in general by [50, 51] and it is called a

validity functional. The quality of the clustering is in-
dicated by how closely the samples x; are associated
to the cluster center z, therefore, a measure of quality
can be obtained from the membership grades which
measure the level of association or classification (Eq.
(4)). If the value of a membership grade for a given
sample is large (low value for the Mahalanobis dis-
tance) then that sample is identified as being a true
match (note that the true matches are represented by
the cluster center). So, it is desirable to summarize
the information contained in the memberships by a
single number which indicates how well the sample
is classified as a true match. This is done by defining
the following validity expression,

l n
V:fE . 10
ni:l'u (10)

where n is the number of samples classified as true
matches and g is the corresponding membership value
for the sample i. In our experiments n was 837 during
the four steps of the test. From Eq. (10), the validity
measure is the membership average value for all sam-
ples representing true matches. Fig. 8 shows the valid-
ity measure ¥, for the different values of m along the
interval [3.5, 5.2]. We can see that the maximum value
of V' is obtained when m is 4.2. We choose this value
for m in our experiments. We have also verified that
this value is valid for the four steps in our test strategy.

6. Concluding remarks

We have verified that, due to the different physical
cameras and that the left and right images are obtained
at different angles, the features in both images may
display different values. The true matches obtained
by our stereo matching system cluster around a mean
attribute difference center vector z in a cloud. This vec-
tor differs, at least lightly, from the ideal attribute dif-
ference vector z = 0. In order to deal with the cluster
of true matches and to discover which is its best repre-
sentative mean difference vector z, a learning strategy
is derived from the FcM algorithms where the disper-
sion of the samples in the cluster is taken into account
through the squared Mahalanobis distance. The above
is the main contribution of this paper to the stereo
matching methods.
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When such a mean attribute difference vector z is
learned and made available, the squared Mahalanobis
distance between such vector and the associated x
attribute difference vector for a current stereo pair
of features, given as input, is computed. Once again
the dispersion of the samples is considered through
the squared Mahalanobis distance. This computed dis-
tance allows us to select the incoming current pair of
features as a true or false correspondence according
to a minimum criterion distance, so that if its value is
smaller than a fixed threshold, set to 10 in this paper,
the stereo pair is classified as a true correspondence
and vice versa. If it is greater than such threshold, the
stereo pair is classified as a false correspondence.

A comparative analysis is performed against
classical stereo matching methods where no learning
is considered. Computed values show that although
the proposed local method of learning results in some
incorrect matches, it is better than the classical local
stereo matching methods where no learning is in-
volved. We have also verified that the representative
difference vector for the true matches moves away
from the null vector as the training goes up (greater
knowledge of the environment). Such behaviour is
neither substantially affected by the nature of the
different objects, nor by illumination conditions, and
explains the better results when the knowledge of the
environment increases. This fact leads us to consider
that the intrinsic factors are decisive in the system
behaviour.

The mismatches could be solved by considering
global matching constraints or taking a maximum
value of the accepted disparity. The latter has not
been applied deliberately since we have objects
in the stereo-images with a high disparity range
(see Fig. 5(a) and (b)) that could violate such a
constraint.

The method requires an exponential weight m and
two parameters to control the stopping condition (&
and K). The parameter K is introduced because the
convergence of the original FcM algorithm is not guar-
anteed. A decision-making threshold needs to be fixed
for the distances involved. Although that is a limita-
tion, we have verified that they can be fixed in a sat-
isfactory manner after experimentation.

Finally, the method we propose has the natural lim-
itations derived from the training process requiring a
data base support and a certain number of training

samples, where it is a difficult task to fix the ideal
number and it is still undefined for our system.
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