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ABSTRACT

A new GLS procedure for estimating VMA models is proposed. Tis main feature is to
consider explicitly the stochastic structure of the approximation errors arising when lagged
VMA innovations are replaced with lagged residuals from a long VAR.

RESUMEN

Se propone un nuevo método lineal para la estimacién de modelos VMA. Este método tiene
como caracteristica principal, la de considerar explicitamente la estructura estocdstica de los
errores de aproximacién gue se cometen al sustituir las innovacienes def VMA por residuos
obtenidos a partir de la estimacién de un VAR de orden elevado.
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1. INTRODUCTION

Moving average terms in multivariate models complicate specification and estimation
procedures. Thus, while it is recogmized that in some simuations pure VMA or mixed
VARMA models can produce more efficient forecasts than an appropriate finite order VAR
approximation, the fact is that VAR models have dominated the empirical work.

Simplifying the task of elaborating VMA and VARMA models has been the goal of
many authors, see for instance: Hannan and Rissanen (1982), Spliid (1983) and Koreisha and
Pukkila (1989) among others. These authors have developed linear estimation procedures
with some desirable features:

i) They are easy to implement. Most of them only require a standard Ieast
squares (LS) routine.

i) They are fast. Either no iterations or just a few are needed for obtaining
accurate estimates, comparable with that of maximum likelihood (ML) methods. Further, for
the univariate case Koreisha and Pukkila (1990) have found that their generalized least
squares (GLS) procedure: (1) yields accurate estimations even when short samples are used,
(2) seldom generates non-inverfible or nen-stationary situations, and (3) performs better than
ML when a pure moving average (MA) processes is needed to fit a short sample.

ifi} Fast estimation procedures have proved to be quite effective in detecting non-
ZETO parameters.

iv)  The use of these estimates in order to initialize more efficient estimation
procedures as exact ML, reduces the number of iterations needed for convergence.

In this paper a new lincar method for estimating pure VMA models is proposed!, We
use an idea introduced by Koreisha and Pukkila (1990) in the univariate context, i.e, that
there is an approximation error when replacing, in the original VARMA model, lagged
innovations with lagged residuals from a long VAR. But instead of using their white nojse
assumption for the approximation error, we derive its exact stochastic structure, which
depends on "L", the order of the long VAR, as well as on “q", the order of the VMA model,
We show how the VMA(q+L-1) structure of the epproximation errors will induce a
VMA{2g+1) structure in the noise of the transformed model, instead of a VMA(q), as
implied by Koreisha and Pukkila*s (1990) assomption. Cur methed not only generalized those
proposed in Koreisha and Pukkila (1989} bat also that in Koreisha and Pukkila (1990) for
univatiate models.

The paper is organized as follows. Section 2 describes our proposed GLS approach
to estimating VMA processes. Section 3 presents our simulation results. Finally, Secticn 4
conchudes,

2. A NEW GLS APPROACH TO ESTIMATING VMA MODELS
Consider the-k X1 vector z, of time series following the invertible VMA process:;

z, = 0,B) a, @

kg

t=1,2, ... N, where 0(B) = I1-6B-...- 6B is a kxk finite order (q) polynomial matrix

! The extension to mixed VARMA models is in progress,

2 i

in the lag operator B, with the roots of | 8(B)l = 0 lying all cuiside the unit circle. The
kx1 vector a, is assumed to follow a white noise process with covariance matrix I,.
Two useful alternative representations of process (1) for the whole sample are:

Alternative Representation 1:
veeo(Zy) = Dyyvec(Ay) + G, pvec(A *) 2)

Alternative Representation 2:

veo(Zy) = [A) @ 1) vee(0) + vec(A,) &)
where:
Zy =12, 2y - Zdgom (4
Ay =134 o 2l G
At =gy 2 - Al 6
L o0 0 0
-0, 1 o 0 0
8, -8, I 0 0 0
6, B, B, L O 0 0 o0 @
Pan =1 o 8, 6, . 8 I 6 0 o
0 0 .6, 0,. 1L 00
0 "ﬂq -8, -8, I
0 0 0 -8, . 6 B T
8 = [0, 6, ... Bluco ®

Provided that a finite order VAR(L) is an appropriate approximation to (1), consistent
estimates of the elements in A can be obtained from residuals () in the regression;

These estimates can be used for esthmating vec(®) in (3). Using either the first
iteration of Spiiid’s (1983) method or the extension of Hannan and Rissanen (1982)
procedure, proposed by Xoreisha and Pukkila (1989), consistent estimates of parameters and
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G A . Ey,
2, a . Ay
A= t ] N-2 9
A g gy Ay, )
-6, -8, -8, -8,
0 -8 -9, -6,
0 0 -8, -0
Gy = @ a1 (10)
1] 0 -6
0 0 0 0
0 0 0 0 kb wqk)
L
7, =3 n 7t (11)
j=i
their associated standard emors can be obtained by applying LS o the model:
vee(Zy) = {07 ® L] vec(0) = vec(A,) 12
where
ﬁ{] ﬁl ﬁN—l
. i, 4 .l
o - 1 o N-2 13)
G b, . iy, —_—

Alternatively, Koreisha and Pukkila (1989) propose the Double Regression (DR)

method, as LS to the model:

a_yec(ZN) = vee(Uy) = (07 ® L] vec(0) + vec(E,) (i4)
where 7
Oy = By 0, . )y {15)
4 %

Approximate standard errors for DR estimates can be calculated with the same formula used
in calculating standard errors in (12), see Koreisha and Pukkila (1989):

Covivec(8)) = [ (U @ £ 1 (16)

Note that none of above methods fake into account the fact that an approximation
error will be committed when replacing lagged innovations a,; with lagged residuals .
Noises in transformed models (12} and (14} are implicitly assumed to be white noise
processes. We will show that approximation errors [noise in (14)] will follow a
VMA(L+q-1) structzre, implying a VMA(2q-+L) process for noise in (12).

Process (1) will have an infinite VAR representation:

Z( = Z ﬂ:[ Zlfj * at {17)
=1
LS to (11) gives:
L
ZI. - E ﬁ-j zt—] * ﬁx (18)
ol
By subtracting {17) from (18):
al'= G+ 85, ~8, =1 +¢ 9
where
L
Sll Zl: ‘l'l', Ztl
20

-
Sy = 21: i 2y

In Koreisha and Pukkila (1989}, ¢, is assamed to be zero. In Koreisha and Pukkila (1990),
€, i5 assumed to be a white noise vector .

Sy, can be expressed as:
$, = 1TR, A @1

it 1-1,4-(g+L)

where
2y




Note that:

r-¢-6.. -6 0 00.. 0 0 0 ..0 30
01 -, 8, 6, 0 0 .. 0 0 0 ¢ =0 Yk if m=k V] &)
In that case ¢, = 0 and a, = 0.
R = I -8 G0 0 0 @3 In general, finite samples estimation errors will make weights ; to differ from
¢ 0 ! 4 their LS estimates, and therefore they will induce in ¢, the VMA(L+g-1) structure (28).
I -4 -6, 8
9-1 q
Lo s Taking into account (28), process (1) becomes:
¢ .. 0 0 00.. -6 -6 : .0 2= =00, 80, -~ Bt 1)
60 0 .. 0 0 00.. 1 -8 - . -6 N : oA Yy WA, -~ Y Ap
where
A
8, : (=9, B~ =y B =(-0,B~... -6 BYWB+... ¥ BIT) (32)
A =] - 24
Cli-rl) . @ Representation 2 for (31) is:
) vee(Z) = (07 ® 1) vec(©) + vec(H
81 | guaeyxyy N ¥ ¥ 33
vec(Hy) = D, vec(Ay) + G, vec(A™?)
o
§ = s1 a - \bﬂ a , + sl (25) with
1 1 % 2 Y42 e ¢L+q ag_{lﬁq)
Hy =[mmomy )
where wm 39
” A” = [a~2q4L41 a(] ](kxlqﬂ.)
I Ra =1 1}.’:1 ‘!’;l e ‘ﬁ.lﬂ] ]{kxk([_ﬂm (26)
Model (33) snggests the feasible GLS estimator fi o).
From (1) S, can be expressed as: odel (33) suggests the feasible ator for vec(0)
3) = (OB (@) (R0 35
S, =B, (@ =-8¢a,-%a,-..-60a, 27 ves(5) = UL ¢ AT (UBLHE vee(Zy)
whose covariance mattix can be computed as:
Then
. . . Covivec(@)) = (TR ('@ (36)
e=via, viaa, v+ llf/Liq B g (28) k k
where °: where
. . & = G0 Dy Qg ® £) Gy D 67
e s . V'/Lu;] = [ ? %1 V"L1+q] -8 .. _Bq 0.. 0] (29) N RN Vgl M N TN
An initial estimation of vec(O), needed to evaluate D and G, can be obtained from
LS to (33). An estimation of I, can be obtained as:
6
7
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f
R e (38)

or from;

vec(ﬁﬂn) =C+¥ ®@F +.. + ‘i'zw ® ¥

29

) vee(d) (3%

once LS has been applied to model (33).

3. SIMULATION EXERCISE

Tables 1 and 2 show the simulation results for two vector processes: a VMA({1) and
a VMA(2). These models are the same used in Koreisha and Pukkila (1989) for illustrating
the propertics of their method. As these authors, we simulated 50 realizations for each
model. The sample size N was set equal to 100 and the order "L" of the long VAR was set
equal to vVN=10,

Both tables have the same structure, the first pannel shows the mean value of
paramefer estimates obtained with three different estimation procedures: Qur Generalized
Hanman Risanen (GHR) procedure, Koreisha and Pakkila’s (1989) Double Regression (DR)
procedure and Hillmer and Tiao’s (1979) Exact Maximum Likelihood estimation procedure.
The second pannel shows the mean values of the estimated standard errors associated to each
parameter. Finally, the third pannel shows the frequency of significant non-zero parameters
(95% confidence) tentatively identified by each method.

Comparative resulis are similar for both models and can be summarized as follows:

1) Afl estimation procedures yield similar parameters estimates, This result is the
same obtained by Koreisha and Pukkila {1989).

2) Estimated standard errors associated to DR estimates are greater than those
associated to GHR or EML methods. This precision gain is behind the differences in the
frequencies with which significant non-zero values are identified with the three estimation
methods. Those differences are more evident for parameter values under .3. For instance,
in the case of the VMA(1) model, the DR method identifies, as being different from zero,
the parameter .2 only in28% of cases while EML does it in 50% and GHR in 62%, On the
other hand, both GHR and EML methods lead to overparametrize the model more often than
DR.

3) All estimation procedures perform peorly in detecting low parameter values,
showing a tendenc;‘? to conclude that they arc not significant, even with moderate sample
sizes. This result stiggests that removing non significant parameters by blindly using the 95%
standard rule could lead to important misspecification errors. We leave for future research
the evaluation of the possible consequences of such an identification bias.

[INTRODUCE TABLES 1 AND 2]

4, CONCLUSIONS

‘ In this paper we generalize, for VMA models, the extension of Hannan Rissanen
estunatm.n method proposed in Koreisha and Pukkila {1989). The idea is that the differece
between mnovations associated to a VMA model and residuals from a long VAR(L) will not
follow a white noise vector, We derive its exact stochastic structure that is a
VMA(q+L-1). Taking into account this result we propose our Generalized Hannan Rissanen
(GHR) estimator.

- Simulations results indicate that GHR performs better than DR. Tt increases the
precision of parameters estimates and helps to better identify significant non-zero parameters.
This feature is particularly important in the case of low patameters values, very difficolt to
detect even using ML estimation procedures.
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TABLE 1

Summary of simulation results VMA(I), K=3, N=100, 50 replications

0 00110
0 00 0 2
,=10 00 0 0/, == 1
f.«si\?.:\,,_._‘_ '.55 0 0 .8 0 -7 1
0 00 0 6 0 -41
Mean values of the estimated parameters
GHR DR EML"
009 6,03 0.08 1.05 082 -0.05 002 0.03 .06 400 0.01 002 D06 118 0.04
001 -0.05 001 -001l 023 000 003 001 -001 0.18| .03 0.00 -0.04 005 0325
000 008 007 000 000 0.03 0.04 003 0H 0,015 0.01 0.00 002 D.01 002
£.56  0.06 0.03 073 0.08f -0.50 0.02 0.0l 077 0.016] -0.56 o0l 002 083 001
.00 003 -0.01 002 051 001 0.03 0.0 0.02 0.56] 003 400 001 002 0.63
Mean values of the estimated standard errors
{0.09y (0.08) (0.13) (0.14) @©.1%)] .11) @1 (.16 (.18 (@©.13)] €06 (@06 (0.09) (0.10) (0.07)
0.08) (0.08) (0.12) {(0.13) ©.I®] ©.11) ©.11) 017 @©.18 (0.3 ©.10 (@10 ©.18 ©0.17y (0.12}
{0.08) (0.08) (©.12) (.13 (@©.09: (0.11) (@11 (@16 (©.18) (@.13)] @O0 @©0B) {(0.12) (©.13) (0.0%)
(0.08) (0.08) (0.13) (0.14) {0.10)} (0.11) (0.10y (0.16) (0.18) (D.13)| (©.04) (0.04) (0.07) (.07} (0.05)
(0.08) (008 (©.12) (©.13) 00, ©.11 0.100 @.16) (©.18 (©.13)] ©07 Q07 (.11 (©.12) {0.08)
Frequency of significative non-zero values (%)
38 36 38 100 26 20 i2 18 100 13 14 18 24 100 24
36 44 42 38 62 i0 24 22 16 28 10 12 14 12 50
40 38 48 44 44 22 12 14 18 14 18 18 14 14 10
100 32 40 98 32 %4 16 12 94 22 {04] 18 22 160 18
30 46 42 40 92 1¢ 18 1€ 12 82 16 16 14 18 100
¢ From Koreisha and Pukkila {I1989)
P —_— e
TABLE 2
Summary of simulation results YMA(2}, K=3, N=100, 50 replications
J 0 0 o 0 0 1
8, =0 125 0|, B, =0 =75 0, I =i-71
¢ 0 0O 0 3 6 4 01
Mean values of the estimated parameters
GHR DR EML"
0.64 0.02 0.03 0.67 £0.01 0.02 0.74 .00 0.01
8, 0.00 1.14 -0.00 -0.01 1.23 8.01 0.01 129 ©.00
0.06 0.07 .12 0.03 0.02 0.06 4.0 0.00 .00
6.03 0.02 £.02 Q.04 0.01 .03 .02 0.00 0.03
9, -0.09 -0.83 0.03 -0.05 -0.78 0.02 0.02 0.78 0.01
0.0G 0.31 .37 0,01 0.30 0.54 002 0.28 0.69
Mean values of the estimated standard errors
©.14) {0.13) 0.10% ©.17 ©.16) 0.12) ©.15) 0.13) ©.11)
(©.15) (0.14) ©.11) ©0.18) ©.16  (0.12) ©.13) .13 ©.10)
&.14) 0.13) ©. 10} 0.18) ©.16) ©.12) ©.16) 0.14) ©.10)
{0.14) 0.12) ©0.10) .17 0.16) 0.1 {0.15) (0.15) 0.10)
{.15) .14 0.10) ©.18) (0.16) (0.12) 0.12) 0.13) 0.08)
(0.14} 0.13) {0.10 ©.18) 0.16) 0.1 ©.15) ©.17 0.12)
Frequency of significative non-zero values (%)
92 36 40 96 14 [} 160 10 12
40 160 28 6 100 10 28 100 20
34 40 36 12 2 8 [ 12 10
18 22 32 10 16 16 14 14 8
34 o6 38 28 92 20 20 100 14
44 64 95 18 54 %8 14 50 100

(") From Koreisha and Pukkilz (198%)




