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Abstract—This study presents a technique to improve the
reliability and the Mean Time to Failure (MTTF) of hardware
task graphs running on reconfigurable computers. This tech-
nique, which has been named Task Early-fetch, can be applied
to a sequence of one or several applications, represented as
task graphs. It consists in carrying out the reconfiguration of
some tasks within the execution of the previous task graph,
plus increasing the redundancy level of the early-fetched tasks.
Experimental results on actual task graphs show the positive
impacts of the proposed technique. Thus, without deteriorating
the execution time (makespan), on average, a 114% MTTF
improvement is achieved for no-fault-tolerant task graphs, and
the improvement is more significant when applying to fault-
tolerant task graphs. Finally, this paper presents a hardware
implementation of a manager that applies these techniques at
run-time and steers the execution of the running task graphs. It
demonstrates that, with 0.03% consumption of FFs and LUTs
and also 1.22% occupancy of BRAMs available on a Xilinx Virtex
UltraScale XCVU095-2FFVA2104E FPGA, the required run-time
computations can be carried out in negligible delays.

Index Terms—FPGAs, Reliability, Task Graph, Scheduling,
Early-fetch, Fault Tolerance.

I. INTRODUCTION

RAM-based Field Programmable Gate Arrays (FPGAs)
have recently drawn the attention of researchers and
manufacturers of complex electronic systems in fields such
as avionics and aerospace [1]. The reason is that, unlike
Application-Specific Integrated Circuits (ASICs), FPGAs can
be reconfigured multiple times during the mission and also
feature lower cost than ASICs, as well as less time to market
[2]. Partial reconfigurability makes FPGAs able to configure
only a portion of the device while the remaining resources
continue their normal operation. In order to execute multiple
functionalities in a time-multiplexed manner, a scheduler is
required to steer the execution of the hardware tasks [3].
Partially Run-time Reconfigurable (PRR) FPGAs suffer
from reconfiguration delay and also susceptibility to the conse-
quences of the Single Event Effects (SEEs) [4]. To alleviate the
susceptibility to consequences of SEE, Fault Tolerance (FT)
techniques are required to increase the reliability of a given
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design, but in most of the cases, they also come at the cost
of degrading the system’s performance. Therefore, reliability
and performance should be optimized simultaneously.

This paper aims at improving the reliability of applications,
represented as task graphs, running on FPGA-based reconfig-
urable computers, without deteriorating their execution time
—which is known as Makespan—. For this purpose, a novel
technique, named Task Early-fetch is presented. It consists in
carrying out two modifications on a pair of consecutive task-
graph schedules. On the one hand, it loads the configuration
data of some tasks of a given task graph within the execution
of the previous one. On the other hand, it increases the redun-
dancy level of the involved tasks to improve their reliability,
without deteriorating the makespan. In this work, it is assumed
a dynamic environment with one or more known task graphs
at design time, but an unknown execution order at run time.

The experiments on actual task graphs show that the
proposed technique improves the reliability and Mean Time
to Failure (MTTF) of the task graphs without deteriorating
their makespan. Additional experiments on hardware tasks in
fault-varying environments show that the proposed technique
outperforms other state-of-the-art FT techniques [5], [6]. Fi-
nally, the hardware implementation that has been presented
demonstrates that, with a very affordable hardware cost, the
run-time computation required to implement the proposed
technique is negligible.

The remainder of this paper is organized as follows. Section
II introduces some related work, and Section III shows illustra-
tive examples. Next, Section IV describes the proposed Early-
fetch technique. Experimental results are shown in Section V
and finally, the paper concludes in Section VI.

II. RELATED WORK

Many researchers have investigated the FT issues in FPGAs,
which can be categorized into three groups of mitigation
approaches, namely: design-based methods, placement- and
routing-based methods, and recovery-based ones.

Design-based methods are typically built upon redundancy,
which is a very effective approach to mitigate soft errors [7],
especially in environments with dynamic fault rates [5]. These
methods use different replications, at different granularities, to
increase the system reliability [8]. In this regard, different fine
and coarse grain redundancy-based FT techniques for space-
computing systems have been investigated in [9], [10]. As
an example of the application of FT techniques in FPGAs, a
system-level Duplication With Compare (DWC) FT technique
has been presented in [11] to improve the reliability of adaptive



equalizers, implemented on FPGAs. In a similar approach, [12]
presents a redundant FPGA-implemented speed controller core
for high speed trains. The application of both TMR and DWC
approaches combined with a check-pointing technique to build
reliable soft processors has also been investigated in [13].

Placement- and routing-based FT techniques increase the
reliability of a design by adapting traditional place&route
techniques for FPGAs for harsh environments, at different
design phases. For example, an interesting technique has been
presented in [14] which manages the signals between functions
in such a way that multiple errors affecting two different
connections are not possible. In a similar approach, [15]
studies both fault occurrence and error propagation probabil-
ities to propose a reliability-oriented placement and routing
algorithm. Anyway, all these techniques can be applied to a
given hardware task and, as indicated by [16], they can be used
in combination with other design-based methods to increase
the reliability of the circuits.

However, the aforementioned techniques cannot prevent
fault accumulation at run-time. Recovery-based methods are
designed to resolve the fault accumulation problem [17]. Most
of these techniques are based on recovering the value of
the faulty cells [18]. For example, the studies in [19], [20]
determine different scrubbing rates for different circuits, based
on their failure rate, in such a way that the system reliability is
maximized. Some other techniques are based upon replacing
the faulty blocks with the previously generated ones, which
are functionally equivalent block instances, that do not use
the faulty resources [21], [22].

Combining design-based and recovery-based methods is
very effective for mitigating soft errors in FPGA-based sys-
tems. For example, [23] addresses the problem of tolerat-
ing N failures in nano-satellite swarm-based systems, using
spare swarms. This work presents general ideas that are not
particularly focused on a specific device, but they can be
applied to reconfigurable computers. Similarly, [24] employs
a redundancy-based approach to employ spare units in which
each task has many redundancies, so that some of them
are active and in order to reduce power consumption the
remaining are standby. The work by Yousuf [25] is another
study in this area that combines hardware and software tasks
to guarantee a given target reliability, while reducing the
energy consumption. A similar study, has been done by [26],
[27] which introduces a task partitioning scheme to tolerate
transient and permanent faults for software/hardware tasks in
heterogeneous and reconfigurable platforms.

In embedded systems in general, and in FPGAs in particular,
applications are usually represented as a Directed Acyclic
Graph (DAG) or a Task Graph (TG), whose nodes represent
computational tasks and whose edges represent dependencies
among tasks. When such task graphs run on reconfigurable
computers, they have to be scheduled in a way that both tasks
precedence constraints and the resource limitations are met.
This requires to take task scheduling and task placement into
account [28], [29]. The performance of the scheduling methods
could be improved by employing Task Prefetch [30], or Task
Reuse techniques [31]. These techniques configure a given task

TABLE I
CHARACTERISTICS OF THE TASK GRAPH DEPICTED IN FIGURE 1. THREE
FT STRATEGIES ARE APPLIED: SINGLE MODULE (NO REDUNDANCY),
DWC (DUPLICATION WITH COMPARE) AND TMR (TRIPLE MODULAR

REDUNDANCY)
Task Computation Resources Configuration FT
Time (ms) Occupancy (%) Delay (ms) Strategy
T 140 20 80 Single
T2 439 14 56 DWC
T3 147 10 40 Single
T4 596 16 64 TMR
T5 300 14 56 DWC

in advance [32], and they can be used to improve the makespan
of task graphs [33], as well as alleviating the fragmentation
problem of FPGAs [34]. However, as it will be discussed,
these techniques have adverse effects on the task reliability.
By prefetching a task, its residency time increases on FPGA,
which as a result, increases the time that the task is exposed to
radiations. In these works, the negative effects of the prefetch
technique on the task reliability has not been evaluated nor
taken into account.

The scheduling methods can also been enhanced to take FT
requirements into account. These techniques aim at guarantee-
ing a given system performance whereas the system reliability
is increased as well. For example, a Primary/Backup scheme
is proposed in [35] in which two versions of a task run
with minimum time overlap. In [36], a real-time fault-tolerant
scheduling algorithm is proposed which, schedules hybrid
tasks able to tolerate f; faults during task execution. Our
previous study [6] showed that, by using optimization methods
and choosing, for each task, the proper FT technique from
the Pareto-set (referred to as Pareto-based FT techniques), it
is possible to increase the reliability of task graphs without
deteriorating their makespan. The application of different
FT strategies on different real-time scheduling algorithms in
reconfigurable computers have been investigated in [37]. In
order to manage these issues at run-time, some operating
systems have been introduced in [38], [39] which provide an
environment for the execution of hardware tasks by consider-
ing task communication, task placement, and especially task
fault tolerance [40].

This work presents a novel technique, named Task Early-
fetch, which aims at increasing the reliability of applications,
represented as task graphs scheduled on a FPGA-based recon-
figurable computer, without deteriorating their makespan.

III. MOTIVATIONAL EXAMPLES

In order to better clarify the proposed technique, this section
presents a couple of illustrative examples. In this work, appli-
cations are modeled as DAGs and a non-preemptible As Soon
As Possible (ASAP) scheduling strategy is used to manage
configurations and executions of tasks. It is assumed there
exists a set of one or more task graphs in the system and they
are executed serially. In this work, the concept of Stage refers
to a complete execution of a task graph.

The first example assumes the task graph with 5 tasks,
depicted in Figure 1, which is executed periodically. Its
characteristics have been detailed in Table 1.
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Fig. 1. A sample task graph with 5 tasks
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Fig. 2. Example of task graph execution depicted in Figure 1

Figure 2 depicts a simple schedule of the task graph of
Figure 1. In this case, the time and area occupied in the
reconfigurable computer are presented in the horizontal and
vertical axes, respectively. In this figure, the gray-color boxes
denote the task configuration delay, whereas the dotted ones
indicate that the task has finished its configuration, but it is
waiting for its execution to start. Therefore, in this paper it is
assumed that the configuration and execution of a given task
do not overlap, and a task can start its execution only when it
is configured completely.

For the sake of simplicity, in this paper it is also assumed
that, at any point, the total area occupied in the reconfigurable
computer is simply the addition of the resource consumption of

all the tasks that are simultaneously under execution or being
reconfigured. This actually depends on many factors, such as
the partial reconfiguration model and granularity of the target
device, or whether the hardware multitasking system that runs
the tasks but implements some sort of task defragmentation. In
any case, the technique presented in this paper is orthogonal
to all these issues, and one of the many systems that have
been proposed in the literature for managing the task graph
execution in reconfigurable computers can be used to run
the tasks [29], [38], [39], in combination with the presented
approach.

As Figure 2 shows, task prefetch allows hiding the recon-
figuration delay of some tasks by overlapping them with the
execution of other tasks. In addition, an active redundancy-
based FT strategy has been applied to tasks 75, 74 and 7s.
In a prefetch-aware scheduling algorithm, there is a time
point in which all the tasks have been configured completely,
but the execution of the task graph is not finished yet. In
this paper, we have referred to this point as LastConfigTime
and, in the example of Figure 2, this value is 771 ms (i.e.,
the end of the reconfiguration of 752). In order to define
time margins within the schedule to apply the proposed
Early-fetch technique, a Boundary value is defined so that:
LastCon figlime < Boundary < Makespan. The time
margin between boundary and makespan can be used to
configure some tasks of the next task graph. The criteria of
choosing an appropriate value for Boundary will be discussed
in the next section. Now, let the Left Side (LS) and the Right
Side (RS) of the schedule of task graph T'G; be defined as
follows:

o LS(TG;) is the sequence of scheduling orders (i.e.,
starting of reconfiguration and starting of execution)
comprised between ¢ = 0 until ¢ = Boundary (TG;).

e RS(TG;) is the sequence of scheduling orders com-
prised between t = Boundary(TG;) and t =
Makespan (TG;).

Therefore, if there are enough available resources in the
target FPGA, the time elapsed within RS (T'G;) is a good time
margin to carry out the reconfigurations of the early-fetched
tasks belonging to the task graph running immediately after
TG, because no task of T'G; is configured within this time
margin. In this example, let us assume Boundary (T'G;) =
LastCon figTime (TG;).

In order to illustrate the Early-fetch technique, Figure 3
shows two successive executions of the task graph presented in
Figure 1. In this case, the configuration of one replica of Task
To (72,1) of Stage 2 has been early-fetched. In other words, its
reconfiguration now takes place within right side of the first
stage of the execution. In addition, the configuration delay
hidden by this early-fetch has been used to configure another
replica of Task 7 (72,3) at Stage 2. Thus, this technique does
not increase the total makespan of the task graph execution in
that stage (x-axis). In addition, it does not violate the FPGA
size limitation either (y-axis). In this example, further stages
of this task graph execution are identical to the second stage
of the task graph execution in Figure 3. Finally, note that the
right side of both stages is identical, although the redundancy
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Fig. 3. A two-stage execution of the task graph of Figure 1 with early-fetch
and replication of 72

level applied to Task 75 is different for each stage. The reason
is that the early-fetched task (73) is completely executed within
LS (T'G,;). Let us bear in mind this fact for the next example.

Figure 4 shows another example in which Task 75, whose
execution time falls within the right side of the schedule, is
early-fetched instead. In this case, the configuration of 75 ; is
early-fetched within Stage 1, and a new replica of that task
(75,3) is configured at Stage 2. However, as this figure shows,
as a consequence of this, there do not exist sufficient resources
at the right side of Stage 2 to early-fetch Task 75 ; from an
additional execution of the same task graph (in Stage 3, which
is not shown in the figure for simplicity). Therefore, Stage 3
cannot benefit from this technique and its execution would be
identical to that of Stage 1. In fact, the reason of this has been
the modification of the right side of the schedule at Stage 2,
due to the addition of another instance of Task 75. In particular,
if the following condition is true:

V7; € Early_Fetched_Tasks (TG);

FinishTime (1;) < Boundary (T'G) (1)

then the applicability of the Early-fetch technique in Stage ¢ is
uniquely dependent on the task graph that runs at Stage 7 — 1.
However, if this does not happen, i.e.:

37, € Early_Fetched_Tasks (TG);

FinishTime (1;) > Boundary (T'G) (2)

then the applicability of the Early-fetch technique in Stage @
is dependent to the task-graph execution sequence in Stages
[1...7— 1]. The next section of the paper will explain in detail
the consequences of this important fact. It is also noteworthy to
remember that the task graphs running in different stages can
be the same, or completely different. At any rate, there exists a
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Fig. 4. A two-stage execution of the task graph of Figure 1 with early-fetch
and replication of 75

set of task graphs that can run in the system (which is known
in advance), but their execution order is completely unknown
at run-time. This assumption is consistent with modern FPGA-
based systems, which are dynamically adaptable depending on
the run-time requirements [3].

Finally, it is very important to mention that all the modi-
fications introduced in the original schedules are carried out
at design time, and no modifications on such schedules are
carried out at run-time. As a consequence, the presented
approach always works with static schedules. The reason is
that, if dynamic schedules were used instead, the described
modifications should be computed at run-time and, as it will
be described in the following sections, they are very compu-
tationally intensive. Hence, they may incur into unaffordable
run-time delays.

IV. EARLY-FETCH AND RELIABILITY IMPROVEMENT
A. The Scoring Function

In addition to the condition defined in Eq. (1), in order to
decide if task 7 is an appropriate candidate to apply the Early-
fetch technique, a scoring function has also been defined:

Scoring Function (1) =CHI, —CRI, —TRI, (3)

where:

1) CHI; (Configuration Hidden Impact): This metric eval-
uates how much the task graph makespan is reduced if
Task 7 has no configuration delay.

2) CRI. (Configuration Residency Impact): This metric
evaluates how much the makespan increases if Task 7
is early-fetched at right side of the previous task graph,
and therefore its configuration data reside in the FPGA
until 7 starts its execution.



3) TRI, (Task Replication Impact): This metric evaluates
how much the makespan of the task graph is increased
if the redundancy level of Task 7 increases by one.

Tasks with Scoring Function (1) > 0 that also meet Eq.
(1) are considered as candidates for early-fetch. The objective
of this technique is to improve the reliability (Rrg) and Mean
Time to Failure (MTT F'rg) of the task graph. These metrics
will be further elaborated in the next subsection.

B. Reliability and Fault Model

In this study, the failures induced by soft errors, and in
particular, by SEUs, are the object of concern. As indicated by
[41], different altitudes above the Earth surface have different
Soft Error Rates (SERs). In this paper, the reliability model
presented in our previous work [42] has been used to estimate
the reliability of a hardware task 7 (denoted as R;). R, is
the probability that the task executes from its start time to its
finish time without any failure, with the condition that the task
had no error when starting its execution.

This model assumes that at most one SEU occurs at a time,
but one or more upsets might occur during task execution.
Soft errors follow the Poisson distribution and they can be
regarded as independent and random statistical events. Thus,
the probability of a SEU in the sensitive bits of task T,
occurring j times, can be obtained as:

o b
P(FTJ) =e #TT 4
where
wr =px(TS; x SB;) x (CT, + RT;) 5)

in which p is the SER expressed in #SEUs per bit per time
unit [41], TS is task size in configuration memory, SB.
indicates the percent of sensitive bits of Task 7 [43], CT';
is task computation time, and RT'; is residency time of Task
7, indicating the time elapsed from when it is configured
until it starts its execution. As this shows, despite the prefetch
techniques increase the system performance, they also increase
the probability of upsets in the task, which leads to the
reliability degradation. The SER can be estimated by some
modeling tools such as CREME96 [44].

Let P (F;) indicate the probability of failure of task 7
given j SEUs during task execution, j ranging from 1 to co.
Therefore we have:

P(F,)=> P(F.;) 6)
j=1

By having P (F), the reliability of task 7 is obtained as:
R, =1—P(F,) 7)

In this work, it is assumed that an active redundancy-based
FT technique is used for increasing task reliability [40]. With
this technique, by replicating Task 7 for r times, using the
1 — out — of — r scheme, the reliability of the fault-tolerant
task 7 is given by [45]:

Ry =Y ( ; )(RT)’“(I ~R.)* (8)

k=1

Hence the reliability of task graph T'G, after applying FT
techniques, is obtained as [26]:

Rra= [ (B..) ©)

T €TG

Finally MTTF of the task graph is calculated as inversely
proportional to the task-graph probability of failure [43]:

MTTFpg = 516 _ Mbre
P(Frg) 1-Rrg

Where M Sp¢ is the makespan of T'G.

This reliability model has been validated and discussed in
more detail in [42]. In spite that it assumes that only SEUs
can occur, this is a simplification that many authors make in
their assumptions [43]. However, it would be easy to extend
this model to k-bit Multiple-Cell Upsets (MCUs), since for
each multiplicity &, their value of P (F ;) would be calculated
exactly as in Eq. (4), but with a different value for the SER (p).
It is even possible to model the occurrence of MCUs and SEUs
altogether, but the demonstration is too long to be included in
this paper. In addition, any other reliability estimation methods
(analytical, fault-injection, accelerated radiation tests...) can
be used instead [46], [47], since they would be completely
orthogonal to the methodology that this paper presents.

(10)

C. The Proposed Early-fetch Technique

The motivational examples of Section III have compared
two possible modes of application of the proposed Early-fetch
technique between the involved Stages ¢ — 1 and 3.

1) Some modifications are carried out in just
RS (TG (i —1)) and LS (TG (i)) (Figure 3), where
TG (1) indicates the task graph executed at Stage i. As
a consequence, the early-fetch between Stages i — 1
and ¢ does not impact the applicability of this technique
between Stages ¢ and 7 + 1.

2) Some modifications are carried out in RS (T'G (i — 1)),
LS (TG (i)) and RS (TG (i)) (Figure 4). In this case,
due to the modifications introduced in RS (T'G (1)), the
early-fetch between these two stages does impact the
applicability of the technique between Stages 7 and ¢+ 1.

In the aforementioned examples, it was assumed that the
same task graph is executed twice in the system. However, it
is clear that, if another different task graph T'G; runs at Stage
2 (both in Figure 3 and Figure 4), the modifications carried
out at the schedules of both task graphs could be completely
different. Without losing generality, if n task graphs can be
executed after the task graph of Figure 1, n different pairs
of modifications can be introduced at the schedules of the
involved task graphs.

In this study, in order to apply the Early-fetch technique,
the profiling of all the n task graphs has been carried out at
design time in order to obtain the modified versions of their
schedules. At run-time, the proper version will be dynamically
selected depending on the run-time conditions. In the previous
case 1), the profiling of T'G (%) involves examining all the n
task graphs that may run at Stage ¢ — 1. However, for the
previous case 2), such profiling would involve considering



the complete sequence of task graphs at Stages [1...7 — 1].
The reader will quickly understand that, given the potentially
large number of task graphs and stages that may exist in an
actual system, in the latter case, such profiling is absolutely
unfeasible since it would involve a combinatorial explosion of
combinations. Therefore, the early-fetch has been restricted to
what is depicted in Eq. (1) and Figure 3. In other words, only
tasks whose execution does not go further than Boundary can
be candidates to be early-fetched.

Thus, given a set of n task graphs (I'GS) that can be
executed in the system, the methodology presented in this
paper carries out a n x n design-time profiling for each
task graph TG, € TGS in order to modify the initial
schedules of all the possible pairs RS (T'G,) and LS (T'G,),
vI'G,.,TG, € TGS, by selecting the most appropriate task(s)
from T'G, to be early-fetched in TG, assuming that T'G),
runs immediately after T'G,.

In the examples of the previous section, the value of
boundary was set to LastConfigTime. However, it was
also stated that this value could actually be selected such
that: LastConfiglime < Boundary < Makespan. The
question that arises is: How to select the most appropriate
value for this parameter? In the example of Figure 4, the only
two tasks that are candidates for early-fetch are 71 and 7o,
since they are the two only ones whose execution time falls
entirely within LS (T'G). However, if boundary was set to 806
ms (i.e., the end of execution of Task 73), then 73 would also
be eligible for early-fetch, but it has the cost of reducing the
time margin of RS (T'G) from 335 ms to 300 ms to early-fetch
tasks from the next stage. In order to achieve a good trade-
off between these two metrics, in the presented approach, this
parameter has been set as follows:

Boundary (TG) = max(LastConfigTime (TG) ,

Makespan (TG) — MaxConfigDelays) (11)

where

MaxConfigDel = ConfigDelay (TG,
axConfigDelays TGTEalngS onfigDelay ( )

(12)
and

ConfigDelay (TG;) = Z Con figDelay (1;)
TjETGi

13)

which Con figDelay (7;) indicates the configuration delay of
task 7; in the target device.

The complete approach is described in Algorithm 1. First of
all, in the proposed algorithm the scoring function of the tasks
of TGy, is calculated in Lines 2-8. In the next lines (Lines
9-11), each candidate task to be early-fetched is examined
to obtain its MTTF difference (dp;rrr) when applying this
technique. Afterwards, tasks are sorted decreasingly by their
Opyrrr (Line 12). Then, the algorithm calculates the time
elapsed between boundary and the makespan of the previous
task graph execution (T'G,,), which is referred to as FreeTime
(Line 13). This time will be used to know how many tasks
from the current task graph (I'G) can be early-fetched in the
previous one (I'G,). The candidate tasks to be early-fetched

Algorithm 1 The Proposed Early-fetch and Reliability Im-
provement Approach

1: illpllt TGI, TGy; // Order of execution: TGx (Stage i), TGy (Stage i+1)

2: for all tasks ;4 in TG, do

3:  if (FinishTime(7s,y) < Boundary(TG,)) then

4: SF, ,= Scoring Function(7; y)

5:  else

6: SF; , = —1

7 end if

8: end for

9: for all tasks 7;,, in TGy with SF', /> 0 do

10:  Smrrrs, ,= MTTFnewr,,, — MTTFoa-, ,

11: end for

12: sort tasks in a decreasing order of 77T F

13: FreeTime(TG;) = Makespan(TG,) — Boundary(TGg)

14: for all sorted tasks 7; , in TGy with SF'-, > 0 do

15:  if (FreeTime(TG,) > ConfigDelay(7;,,) and increasing the
redundancy level of 7;, does not violate the time and size
limitations) then

16: EarlyFetch 7; , in TG, and increase its redundancy level
17: RSyew (TG:) = update Schedule(TG., Right)

18: LShnew (TGy) = update Schedule(TG,, Left)

19: FreeTime(TG.) = FreeTime(TG,) — ConfigDelay(7; )
20:  end if

21: end for

22: return RSpew (TGy), LSnew (TGy)

are selected according to their d,;r7rr. At each iteration, it is
assessed if each candidate task 7; can be early-fetched within
the FreeTime of the previous stage, and if its additional replica
can be added in the current one (Line 15). If this condition
is true, 7; is early-fetched, then the right side of the previous
schedule, the left side of the current one and FreeTime are
updated (Lines 16-19). The algorithm returns these two new
subschedules for RS(T'G,) and LS(T'G,) (Line 22).

D. Hardware Implementation

For each pair of task graphs 7'G, and TGy € TGS, such
that T'G,, is executed immediately after T'G, the result of the
profiling described in the previous subsection is a pair schedule
versions: one for RS(T'G;) and another one for LS(T'G,).
Therefore with n task graphs in the system, n X n schedule
versions are generated at design time for each task graph. At
run-time, the proper ones are selected dynamically, depending
on the run-time sequence of running task graphs. This is
illustrated in Figure 5, where one can see that n + 1 versions
of LS(T'G,) and another n + 1 versions for the RS(T'G,)
are possible (the n generated schedule versions plus the by-
default one). In case no information exists at run-time about
the previous or next task graphs, the selected schedule is just
the original one (this is indicated in the figure by means of
the symbol @)). This happens, for instance, when a task graph
is executed after a system reset; or when at the time a task
graph finishes its execution, no other task graph is requested
for execution yet (and hence, the system remains idle for a
while).

In order to carry out the proper run-time selection of the
task graph schedules in a transparent and efficient manner, this
paper also presents a hardware architectural support (Figure
6) that can be implemented using some of the reconfigurable
resources of the target FPGA. In our implementation, the
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pair schedules of all the possible task graphs are stored in
a memory (see the figure). It is assumed that a schedule is
composed of a set of instructions, each of which has the
following information:

o Task ID: The ID of the task that is going to be scheduled.
The ID of a task is unique among all tasks of the task
graph.

o Reconfiguration/Exec.: Indicates if the task will be re-
configured, or executed. This field is just 1 bit (‘I’ =
reconfiguration; ‘0’ = execution).

o Starting time: The starting point of time, in terms of
clock cycles, where the instruction (reconfiguration or
execution) must take place.

e Duration: The time (in terms of the number of clock
cycles) that the instruction under execution takes to be
completed.

e Early-fetched: Indicates whether the task is early-fetched
from the next task graph (‘1’) or not (‘0’). This field is
just 1 bit.

This information corresponds to the output data port of
the Schedules’ memory, where the instructions are read (see
Figure 6).

The proposed system has been designed to work au-
tonomously since the moment when the schedule of a task

Machine)

Implementation details of the proposed technique with multiple task graphs

graph is requested. It features a queue of task graphs to
be executed (Task graphs’ (TG) queue), which has been
implemented using a fixed First-In-First-Out (FIFO) approach.
This architecture is assumed to communicate with an upper
layer of middleware or an operating system that dispatches
the task graphs at run-time.

When the queue is not empty, the system starts carrying
out the proper scheduling operations assigned to the first task
graph in the queue. The hardware described in Figure 6 is
steered by a Control Unit, which has been implemented as a
finite state machine. It implements the pseudo-code presented
in Algorithm 2. Thus, if the task graphs’ queue is not empty,
the first step is to read the first task graph from the queue
(Line 2). Two pieces of information are stored for a task graph:
its unique ID, and its value for Boundary. Both of them are
read from the queue and stored in separate registers in the
architecture (see Figure 6). An additional register stores the
ID of the task graph that was executed prior to the current
one (Previous TG ID register). This register is used to select
the appropriate schedule from the memory, as it was explained
above.

With this information, the schedule of the current task
graph is retrieved from the schedules’ memory, instruction
by instruction (Lines 3-7 in Algorithm 2). The address port
of this memory is connected to the following 4 pieces of
information, sorted from the Most Significant Bit (MSB) to
the Least Significant Bit (LSB):

o One bit indicating if the instruction belongs to the left
or the right side of the schedule. This is known by
comparing the Boundary value with the total number of
clock cycles that have elapsed from the starting of the
current scheduling stage (which are stored in the Total
Cycles Counter). If Total Cycles Counter < Boundary,
this bit is ‘0’; otherwise, its value is ‘1’. Hence, the
lower half of the memory stores the left sides of all the



Algorithm 2 Implementation of the Control Unit

1: while (Task Graphs’ Queue # (}) do

2 TG = Read from queue();

3. for all instructions; in schedule (T'G) do
4

5

instruction = Read from memory (instructions;);

wait until Total Cycles Counter == Starting
time(instruction) + Duration(instruction);

6 instructions counter++;

7:  end for

8:  update Next Task Graphs’ Queue;

9:  if (Task Graphs’ Queue # () then

10: Previous TG ID register = Current TG ID register;

11:  else

12: Previous TG ID register = (;

13:  end if

14: reset counters;
15:  update Task Graphs’ Queue;
16: end while

schedules, whereas the upper half of the memory does
likewise with the schedules’ right sides.

o The ID from the previous (or the next) task graph to be
executed. This information is retrieved from the Previous
TG ID register, and from the data output port of the
task graphs’ queue, respectively, and it is selected by the
multiplexer that can be seen in Figure 6. The selection
signal of this multiplexer is the bit described in the
previous paragraph.

o The ID of the task graph currently under execution
(Current TG ID register).

o The output of a counter that keeps track of the schedule’s
instructions that have been executed so far (Instructions
Counter).

This allows storing the information of the many possible
schedules in the memory in a modular way: the instructions of
each side (left or right) of the schedules are physically placed
in adjacent positions in the memory, since the Instructions
Counter’s output is connected to the LSBs of the memory
address port. The exact location of these instructions in the
memory is determined by the values of the IDs of the previous
and next task graphs to be executed. Thus, this hardware
support allows fetching the proper instructions in an automatic
and transparent manner, with negligible delays and with low
resources consumption. Thus, at run-time, depending if the
total cycles counter is below or above the Boundary value,
the instructions will be fetched from the lower or upper half
of the memory, respectively, in a very simple but effective
manner.

When an instruction is fetched from the memory (Line 4
in Algorithm 2), the signals Current Task ID, Reconfigura-
tion/Exec. and the output of the multiplexer that is connected
to the Early-fetched bit are transmitted simultaneously both
to the hardware multi-tasking system that runs the tasks; and
to the reconfiguration circuitry (depicted in the Figure 6). The
latter multiplexer is used to select the ID of the task graph that
the current task belongs to. Thus, if Early-fetched = 0, then
the task belongs to the task graph indicated in the Current
TG ID register. Otherwise, it belongs to the next task graph,
which is indicated by the Next TG ID signal (in other words,
it has been early-fetched).

Describing the reconfiguration circuitry and the HW multi-
tasking system is out of the scope of this paper, since there are
many implementation options for both of them available in the
literature [28], [29], [39]. All of them assume that the available
resources are divided into a number of partially reconfigurable
regions that host the execution of the hardware tasks. That
system is also assumed to manage the communications among
tasks, as well as the correct execution of the tasks taking into
account their FT technique [38]. In addition, it is assumed
that the physical placement of the tasks has been decided
elsewhere: the hardware depicted in this section only triggers
the reconfiguration/execution of the tasks in the reconfigurable
hardware, exactly on the location specified in the programming
file of the task. This location has been decided at design time
by the placer in another step of the flow.

The value of the Total Cycles Counter is used to compare if
the current schedule’s instruction has finished or not (activation
of the signal Instruction Complete in Figure 6). Thus, in case
Reconfiguration/Exec. = ‘0’ (task execution), the following
condition is checked:

Total Cycles Counter == Starting time + Duration
(14)
If this condition is true, the Instruction Complete line is
activated, by selecting the result of the comparison with the
multiplexer. In case Reconfiguration/Exec. = ‘1°, an additional
condition is checked: if the reconfiguration circuitry has fin-
ished carrying out the reconfiguration of the current task (by
selecting the other input line of the multiplexer and the AND
gate). In either of these two cases, while this condition is
not true, the Control Unit increases the Total Cycles Counter
by one and the same comparison is made again and again,
cycle after cycle (Line 6 in the algorithm). When this condition
finally becomes true, the Control Unit triggers the execution of
the next schedule’s instruction by increasing the Instructions
Counter by one, then by reading the next instruction from
the memory, and by repeating again the process. All this is
equivalent to the iterations of the FOR loop in Algorithm 2.
It is important to highlight that the control word
“111...... 1117 is used to identify the end of the schedule of
the Current TG. Thus, when the End Schedule line in Figure 6
is activated, the schedule finishes, the queue of task graphs and
the Previous TG ID register are updated, and the two counters
are reset (Lines 9-14). Note that the Previous TG ID register
is updated to the value of Current TG ID only when, at that
time, there is another task graph in the queue. Otherwise, it is
updated to a null value. This is done in order to ensure that,
if the Current TG was executed assuming that the following
one is null, then the following one is also executed assuming
that the previous one is also null; and vice-versa. Finally, the
task graphs’ queue is updated only after the execution of each
task graph (hence, if there is a task graph whose execution
is requested while another one is running, the queue will be
updated only at the time instant marked by Boundary). Finally,
when a task graph finishes its execution and the Task Graphs’
Queue is not empty, the algorithm will run again, otherwise it
waits until the next request of a task graph execution.



TABLE I
ESTIMATED SERS FOR DIFFERENT ORBITS AND SOLAR CONDITIONS

SEUs/bit/Day for different solar conditions
(Xilinx Virtex-5 XUPV5LX110T FPGA)
Orbit Solar Max Worst Week | Worst Day | Peak 5-Min
GEO | 6.09x1078 | 6.47x1075 | 3.35x10~% | 1.29x103
GPS 6.09x10~8 | 5.71x107% | 2.89x10~* | 1.10x10~3
MOL | 3.01x1077 | 6.09x 1075 | 3.12x10~* | 1.18x10~3
POL 2.25x10~7 | 1.33x107° | 7.99x107° | 2.97x10~4
LEO 9.51x10~8 | 571 x 1079 | 4.19x10~9 | 1.52x10~8

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to evaluate the proposed technique, several exper-
iments have been done on actual task graphs obtained from
multi-media applications. These task graphs are categorized in
two groups:

o Image Applications: Two versions of the JPEG decoder
(Serial and Parallel), an MPEG-1 encoder, and a pattern
recognition application (HOUGH) [3].

o Video Applications: A 3D rendering application based
on the open-source Pocket-GL library (Pocket GL (1)—
Pocket GL (9)). This application contains 9 different task
graphs with 2, 4, 5, and 6 consecutive tasks [3].

The model presented in Subsection IV-B has been employed
to estimate the reliability of the tasks. For this purpose,
different values for the SER have been used. As indicated
by [48], different altitudes above the Earth have different
SERs, which can be measured as #SEUs per bit per time
unit. In order to have realistic estimations, we have used the
SERs of the following four “harsh” orbits: Geosynchronous
(GEO), Global Positioning System (GPS), Molniya (MOL),
and Polar (POL). In addition a Low Earth Orbit (LEO) has
been used as a point of reference as it features the lowest
SER (see Table II). For each orbit, the SER is estimated
for different solar conditions as: Worst Week, Worst Day,
Peak Five Minutes, and Solar Max conditions of a Solar
Energetic Particle (SEP) event [42], [47] for the Xilinx Virtex-
5 XUPVSLX110T FPGA [49], using the CREME96 tools
[44]. We believe that the estimations are reliable because the
selected FPGA’s technology has been largely studied in the
literature against different sources of radiation [50], [51]. By
using the documentation provided by the manufacturer and by
carrying out experimental measurements, it was possible to
calculate the reconfiguration overhead of tasks in this device.

In addition, the HW manager that was described in Subsec-
tion IV-D has been implemented on an FPGA. In this case, the
Xilinx Virtex UltraScale XCVU095-2FFVA2104E FPGA has
been used. We have selected that device for implementation
because it is included in the UltraScale VCU108 evaluation
kit, which is a prototyping board that includes the necessary
elements to easily implement any hardware design, at a
reasonable cost, on a state-of-the-art FPGA [52].

B. Performance Evaluation for Static Soft Error Rates

In the first experiment, task graphs are executed assuming
that the SER does not change over the time. This experiment
examines two cases: executing task graphs individually, and
executing multiple task graphs altogether. The SER that is used
in this experiment is the average value of the lowest (LEO —
Worst Day) and the highest SERs (GEO — Peak 5-Min) that
have been tabulated in Table II.

The results for individual task graphs have been presented
in Table III. Task graphs’ characteristics including task count,
makespan, boundary value, and MTTF obtained by ASAP
scheduling strategy have been depicted in the table. Then,
the MTTF and the MTTF improvement of the task graphs,
achieved by applying the proposed Early-fetch technique, have
been shown. Finally, the last column shows the number of
early-fetched tasks.

This experiment shows the positive impacts of applying
the proposed technique to actual task graphs, so that without
deteriorating their makespan, the MTTF has been improved
by 114% on average. It is noteworthy to state that using
other SERs yields very similar results in terms of MTTF
improvement.

The proposed technique has also been applied to sequences
of multiple task graphs. The obtained results have been pre-
sented in Table IV. This experiment examines three different
groups of task graphs: Image Applications, Video Appli-
cations, and a combination of all the task graphs. In this
experiment, for each set of task graphs, two different cases
have been examined:

1) Early-fetch: The performance of the proposed technique.
Let us remember that only the tasks that finish com-
pletely before the boundary are eligible to be early-
fetched. Otherwise, as discussed above, the n X n
task-graph profiling is unfeasible.

2) Ideal Early-fetch: An ideal scenario, where the run-time
task-graph execution order is known in advance. In this
case, a customized task-graph profiling has been made
to obtain the modified schedules. In this case, all the
tasks (even those finishing after boundary) were eligible
to be early-fetched. For this experiment, a sequence of
100 random stages has been generated.

As the obtained results show, in this case the proposed
Early-fetch technique has very positive impacts on the MTTF.
In addition, these results show that the ideal case yields a
MTTF improvement three or four times greater than the Early-
fetch technique. The reason is that the MTTF improvement
grows exponentially when the reliability of the task graphs
approaches 1 (see Eq. (10)). In other words, the number
of early-fetched tasks has an exponential impact on the
MTTF improvement. Thus, for instance, when one task is
early-fetched the MTTF improvement is, on average, +25%.
When two tasks are early-fetched, this improvement becomes
+110%; but when three tasks are early-fetched, +415% MTTF
improvement is achieved.



TABLE III

REAL-WORLD TASK GRAPHS USED IN THE DEVELOPED EXPERIMENTS

Task Graph Task Makespan | Boundary | MTTF Basic Improved MTTF Number of
Count (ms) (ms) (ms) MTTF (ms) Improvement (%) Early-fetched Tasks
JPEG (Serial) 4 80 73 5.1 x 10° 1.4 x 108 165.25% 3
JPEG (Parallel) 8 55 40 3.2 x 10° 1.7 x 106 426.54% 7
MPEG1 5 39 32 6.3 x 10° 1.5 x 108 141.04% 3
Hough 6 96 88 5.1 x 10° 8.1 x 10° 58.21% 3
Pocket GL (1) 2 7 4 2.1 x 108 3.2 x 106 50.00% 1
Pocket GL (2) 4 11 6 1.2 x 108 1.6 x 106 40.00% 2
Pocket GL (3) 4 35 29 7.4 x 10° 1.5 x 108 101.13% 3
Pocket GL (4) 5 54 46 5.0 x 10° 1.1 x 108 126.84% 3
Pocket GL (5) 5 11 7 1.1 x 108 1.4 x 108 28.57% 2
Pocket GL (6) 5 18 11 7.2 x 10° 9.2 x 10° 27.78% 2
Pocket GL (7) 5 33 26 5.9 x 10° 6.9 x 10° 17.14% 2
Pocket GL (8) 6 27 18 6.2 x 10° 1.1 x 108 76.92% 3
Pocket GL (9) 6 72 63 4.5 x 105 1.5 x 108 220.29% 4
TABLE IV
EXPERIMENTS ON MULTIPLE TASK GRAPHS

Task Graphs Characteristics Early-fetch Ideal Early-fetch

Task Graphs Task Graph Basic MTTF Improved MTTF Improved MTTF

Count (ms) MTTF (ms) Improvement (%) MTTF (ms) Improvement (%)

Image Apps 4 4.9 x 10° 1.0 x 108 104.48% 2.61 x 106 431%

Video Apps 9 9.0 x 10° 1.3 x 108 47.55% 3.88 x 106 329%

All Task Graphs 13 7.7 x 10° 1.2 x 108 54.77% 3.72 x 106 388%

C. Performance Evaluation for Dynamic Soft Error Rates

In the second experiment, the proposed technique has been
evaluated under a dynamic SER environment. In this case,
the aforementioned task graphs have been hardened with
two state-of-the-art FT techniques, and then the Early-fetch
technique has been applied to them. These two techniques
are:

o Adaptive Technique: It is an adaptive FT technique, also
known as “Three-mode adaptive strategy”, which has
been presented in [5]. It employs different FT techniques
for different ranges of SERs, but in each SER, a specific
FT technique is used for all the tasks. Thus, no redun-
dancy is applied when the SER is lower than 10% of
the expected range of SERs, Triple Modular Redundancy
(TMR) is applied when the SER is above 50% of the
expected range of SERs, and Duplication With Compare
(DWC) is used otherwise.

e Pareto-based Technique: In a previous work [6], the
authors have addressed the problem of applying optimal
FT techniques to task graphs, w.rt. a given schedule,
using multi-objective optimization methods. The study
has shown that it is possible to increase the MTTF
of a task graph without deteriorating its makespan, by
using some solutions of the Pareto-set obtained from the
optimization method.

The obtained results have been illustrated in Figure 7.
The experiments have been performed on SERs presented
in Table II. The SERs have been categorized based on the
Adaptive technique, but for the sake of clarity, for each SER

category, a uniformly distributed subset of three of them has
been evaluated. The obtained results show that the Early-
fetch technique outperforms both the Adaptive and the Pareto-
based techniques. In addition, the results demonstrate that the
improvements achieved are much more significant over the
Pareto-based FT technique in environments with lower SERs.
Similarly as in the results shown in Table IV, the reason is
that the MTTF increase is much faster when reliability closes
to 1, and it reaches to infinite when reliability = 1 (Eq. (10)).

D. Hardware Implementation

Finally, the amount of hardware resources used for imple-
mentation of the proposed hardware architectural support is
shown in Table V. This table shows the number of Look-Up
Tables (LUTs) and Flip-Flops (FFs) used, and breaks it down
into the different existing modules: The Next Task Graphs’
Queue, the Schedules’ Memory and the Control Unit. It can
be observed that the amount of consumed resources is very
affordable: no more than 0.03% of the total FFs and LUTs,
whereas it instantiates 1.22% of the available BRAMs. The
latter value is reasonable, taking into account that the system
needs to allow for space to store all the schedule versions for
all the task graphs, in all the possible scenarios that can exist
at run-time.

These values refer to a Xilinx Virtex UltraScale XCVU095-
2FFVA2104E FPGA [52]. These data correspond to a system
with a maximum of 16 task graphs (hence, the number of bits
to represent task graph ID, nrg,, = 4), at most 16 tasks
in each task graph (n¢qsk,, = 4), schedules with up to 32
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TABLE V
RESOURCE CONSUMPTION OF THE HW ARCHITECTURAL SUPPORT

CLB CLB Block
Module g e CARRYs | DO
Task Graphs’ 31 25 1 1
Queue (<0.01%) | (<0.01%) | (<0.01%) | (0.03%)
Memor 43 1 0 20
Yo | (<001%) | (<001%) | (0%) (1.16%)
. 08 56 12 0
Control Unit | ey | (<0.01%) |  (0.02%) 0%)
172 82 13 21
TOTAL 0.03%) | (<0.01%) | (0.02%) | (1.22%)

different schedule instructions per side (n;,s: = 5), a task
graphs’ queue with 256 positions and counters with a width
of Ncyctes = 20 bits. The latter parameter can be used to
measure times for task reconfigurations and executions, for
instance, ranging from 1 us to 1048.6 ms if the tasks’ running
clock frequency is 100 MHz. Thus, for the sake of simplicity,
in this case, the width of the fields Starting Time, Duration
(from memory data output), as well as those of the Boundary
register and the Total Cycles Counter were set to the same
value ncycies-

This system scales well for different values of the pa-
rameters described above, but it must be taken into account
that, every time the width of the memory’s address port
(2XN7G,p+Neycles+1) increases by 1, the amount of BRAMs
that are needed doubles. Figure 8 and Figure 9 show the
resources consumption for different values of this summation.
As it can be seen, the FFs and LUTs consumption keeps under
0.12% in all the cases, but when 2 X nrg,, +Ninstr +1 > 17,
the %BRAMSs consumption reaches double digits. However,
this is still an affordable cost for a system that supports a
reasonably high number of different task graphs. Additionally,
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of memory

if the length of the memory’s output data port (see Figure
6 again); i.e., 2 X Neyeles + Ntask;p + 2, becomes greater
than 64, then the total number of BRAMs doubles as well.
Nevertheless, this does not happen unless task graphs with
thousands of different tasks are used.

Focusing on the width of the output data port of the task
graphs’ queue; i.e., Neycles + NTG;p» if this value becomes
greater than 32, then the system will need 1 additional BRAM.
Something similar happens when its depth is greater than 1024
positions. In these two cases, the increase of FF and LUTs
consumption is negligible.

As discussed above, in this implementation, the bottleneck
is clearly the embedded BRAMs consumption. Thus, if for
instance, a small FPGA is used, a good solution would be to
store the schedules in an off-chip memory (such as a FLASH,
or a DDR2, commonly available in commercial FPGA-based
prototyping boards), or a memory hierarchy composed of an
on-chip cache plus an off-chip memory, which is very common
in computer architecture. Of course, in this case, a cost in
terms of performance loss has to be paid. However, even if



the performance of the proposed implementation decreased
drastically, this would not involve significant run-time delays,
since this system needs no more than 100 additional clock
cycles to carry out the run-time computations. In addition,
both this hardware and the multitasking system that steers
the execution of the hardware tasks can work at different
frequencies.

VI. CONCLUSIONS

This paper has presented a technique, named Task Early-
fetch, to improve the MTTF of hardware applications repre-
sented as task graphs running on FPGA-based reconfigurable
computers under harsh environments, without deteriorating
their makespan. This technique receives as input a set of task
graphs that can potentially run in the target system and, at
design time, it applies two modifications to their schedules:
On the one hand, it pre-fetches some tasks from a given task
graph within the execution of the previous one. On the other
hand, it increases the redundancy level of the selected tasks.
Since the actual sequence of task graphs that will run in the
system is not known at design time, this technique performs a
n x n profiling, n being the number of task graphs. This paper
has also presented a hardware architecture that carries out the
proper run-time management of the modified schedules in an
efficient and transparent manner, and with negligible run-time
overheads.

The impacts of the proposed technique have been examined
using a set of actual task graphs extracted from multimedia
applications. Experimental results have demonstrated the pos-
itive effects of the proposed technique to improve the MTTF of
hardware task graphs running on FPGA-based reconfigurable
computers, in environments with static and dynamic SERs.
Finally the low cost and the high performance of the presented
prototype has been demonstrated.
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