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This paper deals with the M/G/1 queue with N-policy. We show some
applications of the stochastic decomposition property for the queue size.
A new stochastic decomposition property for the waiting time is observed.
Explicit expressions for the moments of the stationary waiting time are also
obtained.
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1. Introduction

Queueing models with vacations have found wide interest in theory and
applications. Doshi (1986, 1990) and Teghem (1986) provide surveys of the
results in this area. In this paper, we consider the M/G/1 queue with N-
policy, which was first studied by Yadin and Naor (1963). It is assumed that
customers arrive according to a Poisson process with parameter A and their
service times are nonnegative i.i.d. random variables with a distribution
function B(t) (+ > 0). Let B(s) be the Laplace-Stieltjes transform of B(#).
If the kth moment of the service time is denoted by i, then the traffic
intensity is given by p = A3;. We assume that p < 1. The behaviour of the
system is controlled by the N-policy. In this policy, the server is turned off
when the systemn becomes empty and turned on when the number of units
reaches N. Thus, it is clear that the particular case N = 1 reduces to the
standard M/G/1 queue. Many papers on vacation models consider variants
of the N-policy. Minh (1988) and Takagi (1990) analyze a combination
of N-policy, setup times and closedown times. Kella (1989) investigates an
M /G /1 queue in which the server takes vacations and is turned on depending
on the number of customers present in the system at the end of the vacations
periods. Lee et al. (1994) study a batch arrival queue with N-policy.

The N-policy is probably the most popular vacation policy. However, in
a more general context, we can define a vacation model as a queueing system
in which the idle time of the server may be utilized for other secondary
jobs, for instance to serve customers of another system. To that end, the
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server can switched on and off according to a wide variety of rules (see
Takagi, 1991). A remarkable result for queueing systems with vacations is
the stochastic decomposition property. That is, under adequate conditions
on the vacation, a random variable representing the number of customers
(or other performance measure such as the waiting time) in the system
with vacations has the same distribution as the sum of two independent
random variables, where one of these is the random variable representing
the same measure for the queueing system without vacations. For many
single-server queueing systems, this property has been fully characterized. In
particular, Fuhrmann and Cooper (1985) consider a class of M/G/1 queues
with generalized vacations. For such class, they showed that the stationary
queue length is the convolution of two random variables. The first one is
the stationary number of customers present in the standard M/G/1 queue.
The second contribution to the convolution is a random variable distributed
as the number of customers in the system at a random point given that the
server is on vacation. This result was generalized by Shanthikumar (1988).

Our first objective is to show some applications of the stochastic de-
composition property for the queue length. In particular, we have obtained:

1) a measure of the proximity between the M/G/1 queue with N-policy
and the standard M/G/1 queue,

ii) explicit expressions for the steady-state probabilities and the facto-
rial moments of the number of customers present in the system in the
M/H,/1 queue with N-policy.

It is well-known that the standard decomposition for the waiting time
does not hold in an M/G/1 queue with N-policy. However, we show that an
alternative stochastic decomposition can be easily derived. From a practical
point of view, it is important to know explicit expressions for the mean
and variance of the most usual queueing performance characteristics. Thus,
we also give explicit formulae for the second moment of the waiting time
in the M/G/1 queue with N-policy and for higher moments in the case of
exponential service times.

The results developed in this paper are based on simple mathematical
tools and provide new closed form expressions for the performance of the
M/G/1 queue with N-policy. Thus, we hope that our results will be useful
in application.

2. Applications of the Stochastic Decomposition Property

We denote by P;; the steady-state probability associated to the state
(7,7), where i € {0,1} and j € N. In other words, there are j customers
present in the system and % available servers. We note that Py; = 0 for
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j > N and Pj; =0 for j = 0. From Yadin and Naor (1963), we have
Poy=—L for 0<j<N-1. (1)

Let P;(z) be the generating functions of { P;;}%2,. We also consider the
marginal distribution P; = Fy; + P;; of the number of customers present in
the system and denote by P(z) its corresponding generating function.

From Fuhrmann and Cooper (1985), we have the following decomposi-
tion result:

(2a)

where Q(z2) = Z Q;2" denotes the classical Pollaczek-Khintchine formula
7=0

for the standard M/G/1 queue. In particular, we observe that Qo =1 — p

and Q1 = (1 - p)(1 = B(A))/B(A).

Then, from the definitions and (2a) we also have

Ai(z) = Q) - 1+ )T (2
At first we will derive some bounds for the proximity between the
steady-state distributions for the standard M/G/1 queue and the M/G/1
queue with N-policy. In fact, the bounds are valid for any vacation model
where the expressions (2a) and (2b) hold. The significance of these bounds
is to provide upper and lower estimates for the distance between the limit-
ing distributions of the number of customers in the queueing model under
consideration and in a standard M/G/1 queue with the same parameters.

We next show that (2a) and (2b) lead respectively to the following
bounds:

20-p)(1- 22 <Yip-aisoi-2)

I=r/ "5

Po \1=8BWN _<~1p . _ Py
2(1~p>(1—1_p) A< 1P a1 < (1 o)

The proof of (3b) is as follows. The stochastic decomposition (2b)
implies that P; can be expressed in terms of Q; and Py; in the form:

J

Fo i—k .
Plj = ZQk_]_gi_;’ fOI‘ ¥ Z 1. (4)
k=1
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Thus

Jj=1

P -Q;=0Q; ( IP_DOP - 1) +(1=615) > Qs I:OZ_:, (5)

where § denotes Kronecker’s function.
From (4) it follows that

P N Py
lPu—QHSQJ‘( = ) +(1-6) ) Q=
-P k=1 1- p
2Pyo
:P1‘7'+Qj(1—1_p>- (6)
Finally, we can show that

= P
>o1s - @l < 2(1- ). )

7=1

Now we obtain a lower bound by using the inequality |a — b] > a — b,
so that

Z [Py = Q4| = [P — Qul "f"Z(Plj - Q;)

j=1 J=2

:Ql(l_ POO)‘*‘ZPU Qj —2Q1( POO)
j=2

1-p

— 921 —p)<1 - ffop) = ;g()A). (8)

The bounds (3a) can be proven by similar arguments. For the N-policy,
Pyo = (1—p)/N and the upper bound in (3a) reduces to 2(1— N~!). Hence,
for any real number ¢ > 0, we can obtain the largest integer N, such that
2(1 - N71) <e Ife <1ore > 2 the solution is trivially N, = 1 or any
arbitrary positive integer, respectively. The case € € [1,2) leads to proper
solutions which allow us to interpret the bounds (3a) and (3b) as results
about the rate of convergence of the distribution P; to Q; as N — 1.

We have observed that similar bounds are also true for retrial queues
with two priority levels (see Falin et al., 1993).

As a second application of the stochastic decomposition property we
now study the factorial moments of the number of customers present in the
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system. Let M"[{P;}] be the nth factorial moment of {P;}32,. A rela-
tionship among M™[{P;}] and the corresponding moments in the standard
M/G/1 queue, M"[{Q;}], follows trivially by differentiating equations (2a):

n

M P = = 3 (MM R, for ne N, (9)

k=0

Observe that explicit expressions for M*[{Q,}] are only available for
a few particular service time distributions but M*[{Q;}] can be readily
obtained from the Takdcs recursive formula. Nevertheless, our main purpose
along this paper is to find closed form solutions. Thus, we will assume,
along the rest of this section, that the service times are hyperexponentially
distributed with density

f(t) = prprexp{—pit} + papoexp{—pat}, for t >0, (10)

where 0 < p1,p2 < 1, p1 +p2=1.

Note that the nth factorial moment of the standard M/M/1 queue is
given by nlp™/(1 — p)™, and the nth factorial moment a»ociated to the
sequence {Pp;}52 is given by n!(1 — p)Iq,.. N—1}(“)Z, — ( )/N Tak-
ing into account the structural form of the steady-state probabilities in the
standard M/H,/1 (see Morse (1958, pp. 82-84) and Kleinrock (1975, pp.
195-196)) we obtain for n € A/

2 min(»,N-1) k N—1 .
i=1 ' k=0 vl =k
(11)
where
A — A
H = Al o H2=1-Hi, A=Xpim +pap)/e, (12a)
1 2

Ay = —(b— (1* — 4ac)'/?) [2¢, Ay = —(b+ (b — dac)'/?)/2¢c,  (12b)
a=A, b=~ + X +p2)) ¢ =Apim +papz) + papa. (12¢)

For the sake of completeness we also give the steady-state probabilities
which are as follows:

2 +1
2 <3< N —
W E - , for 0<j3< N -1, -
P7 — 1=
1—p— HATTHAZY — 1) .
, > N.
N Z A , for 72>
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After some algebraic manipulations it is easy to prove that 0 < Ay <
A < Ay < 1. Thus, Hy € (0,1] and the sequence {P;}52, has a unique
mode in the point 75 = N — 1.

If B(t) = 1 — exp{—put}, for t > 0, then uy = ps = pu, Ay = p,
Ay = A=p/(l +p), H =1 and Hy = 0. Then, (11) and (13) reduce to
the following expressions:

n Min(n,N-1)

wip)=5(15) X (1—;—3)2@) (140)

k=0

(1-p"*tY)/N, for 0<j<N-1,
Pi=¢ (14b)
P (p™N —1)/N, for j>N.

3. Waiting Time

We assume in this section that the waiting time of a customer is defined
as the time between the arrival epoch and the beginning of the service
time. Let W (#) be the distribution function of the waiting time of a random
customer in an M/G/1 queue with N-policy and FCF'S queueing discipline,
and let W (s) denote the Laplace-Stieltjes transform of W (t). Let Y (¢) and
Y (s) be the analogous quantities for the standard M/G/1 queue.

For vacation systems where the waiting time of a customer does not
depend on the future of the arrival process that occurs after the customer’s
arrival epoch, Fuhrmann and Cooper (1985) show that W (s) can be decom-
posed as

W(s) = ¥(s)Po(1 = sA™1)/(1 - p). (15)

Nevertheless, in the M/G/1 queue with N-policy and N > 1 the waiting
times of those customers that arrive during the vacation period depend on
the future of the arrival process. Thus, expression (15) does not hold.

The time-dependent analysis of the waiting time in an M/G/1 queue
with N-policy and setup times was studied by Takagi (1992). In particular,
the steady-state transform W (s) for an M/G/1 queue with N-policy is given
by

2\ e
Wis) = 122 <A+s> Ata) L 2d —ﬂN(S))). (16)
} N 2= — B(s) s — X+ AB(s)

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




J. R. Artalejo

On the other hand, it is well-known that Y (s) is given by

7 AL = p)(L = B(s))
Y(s)=1—-p+ ST ABG) (17)

Note that (17) is obtained by adding two terms which represent the
contributions of the discrete and the continuous parts of Y (¢). These con-
tributions are respectively given by Yp(s) = 1 — p and Y;(s) = A(1 — p)(1 —
3(s))/(s — A+ AB(s)). In a similar way, we can divide W(s) in two contri-
butions associated to the state of the server (on vacation or active) at the
arrival epoch of the marked customer. It is clear that the first contribution
is given by

N-1 y A\ N-it y \ M-

7 — 2 J (o) — -1

Wols) = 3 Fu (=) Po=(5) AOTO+9506)

(18)

Observe that Py(z) = (1 - p)(1 —2")/(N(1 - 2)). Then, a straightfor-
ward manipulation over (16) leads to

A
At s

ML= B)Po(B(s)

s — A+ AB(s) (19)

_ N-1
Wi(s) = ( ) Po(ATH (A +5)8(s)) +

Hence, from (17), (18) and (19) we deduce that

B . A N-—-1
W) =T (73] RO O+ B/ A=p).  (200)
Wi(s) = F(s) PoBa)/(1 - ), (200)

where the subindexes 0 and 1 denote the contribution to the waiting time
associated to the periods during which the server is idle or busy, respectively.
The expressions (20a) and (20b) constitute two new decomposition type
results.

The question arises here is whether the physical meaning of the multi-
pliers in a decomposition result can be explained. It should be pointed out
that the second multiplier in formulas (2a) and (2b), Py(2)(1 — p)~*, is the
probability generating function of the number of customers in the system
given that the server is on vacation. On the other hand, if we turn our at-
tention to the waiting time, then we observe that the multipler Po(1—sA™!)
can be interpreted meaningfully in some particular cases. For example, it is
well-known that for the case of an M/G/1 queue with T-policy Py(1—sA™1)
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is related to the Laplace-Stieltjes transform for the residual life of a vaca-
tion. Nevertheless, a universal interpretation of Po(1 — sA™1), valid for any
vacation model, is unknown. The same comments also hold for our new
stochastic decomposition property. The expressions (20a) and (20b) reduce
the solution of the distribution for the M/G/1 queue with N-policy to that
of obtaining an additional term which is due to the effect of vacation, but
it seems difficult to provide a meaningful interpretation of the additional
terms.

With the help of expressions (20a) and (20b), we have determined the
second moment of W (t), which is as follows:

o ABs N33 (N -1)p,
W =g mn— 7t aa =)
LoD (Vo -2) o

A2 3A2

The derivation of the above expression follows after very lengthy calcu-
lations but only first principles are involved. Thus, we omit the proof. We
have to point out here that formula (16) only provides a theoretical solution
for the waiting time distribution, but in practice it is essential to know the
moments of W(#). In fact, from the first two moments of W(t) it is possible
to develop a computatlonally tractable estimation for the density of W {(t)
by using information theoretic techniques (see Falin et al.,, 1994, Artalejo
and Gomez-Corral, 1995, and the references therein). Note that the compu-
tation of higher-moments of W (#) involves the differentiation of a composite
function and the algebraic efforts can be simplified by using Faa di Bruno’s
formula (see Riordan, 1958).

To conclude we observe that the lack of memory of the exponential law
allows us to derive all moments of W(t). Thus, in what follows we assume
that B(#) = 1 — exp{—ut}, for t > 0. To compute the kth moment of W (#)
we condition on the state of the system upon arrival. Thus, we find that

N—-1 [}
EW* =Y PyE[(& +0)* + ) PLERS], for k=1,2,.., (22)
4=0 j=

where ¢; and 7; are Gamma distributed with densities

fe, (1) = AT NI 20qp{ A}/ (N — j = 2)1, for t >0, (23a)

fo, (1) = w7 exp{—put}/(j = 1)!, for t>0. (23b)
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We have assumed that £5_; and 7 are defined as zero. The kth mo-
ment of a Gamma distribution with mean p/a and variance p/a? is given by

(p+k—1)!/(a®(p — 1)!). This implies that

(1—pk! o~ = nti =1\ (N =tk —i=2
me (&)} = == 2 v b )

(24)
where ("',n 1) for m € N, is defined as Som.

From (1) and (14b) we obtain explicit expressions for { Py;}52,. There-
fore, we get

> PUER] =N p T ER]
7=1

j=1

N— oo
+ N7 plnza) Z [+ N~ Y T ERS). (25)
i=1 I=N

Substituting the moments of the Gamma distribution into (25), we
obtain

pk! ~ [(j+k
ZPN 717 —Nukf{NzQ}Z( b )

_ _ . k+N-—2
Pl Y A ) I (26)
N/,Lk’(l _ p)k—i—l N/,Lk apk = '

Finally, we also note that

sz j+ky _ (N+k-1 (27a)
: k) \ k+1 )

=0

and

e FHN2 N-1 . '
o 2 7 'Z(“i o (278)

Hence, substituting (27a) and (27b) into (26), we get

kK N- .
k /)k' TI+7—1 N-n+k—i-2
EW™] N/\k Z Z( k—1

=0 n=0
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_ (pN = 1)p*k! pk! (N+k-1
Npk(l—p)k+tl - Npbk\ o k+1

—~N+1 ‘N—l -
p k! k4+j -1\ ;
—m—z( k )ﬂ]- (28)

=1

It should be pointed out that Li and Zhu (1994) developed a recursive
method for computing the moments of the stationary waiting time in single-
server queues with N-policy. Nevertheless, their method is only valid for
customers who arrive to turn on the server or during the busy period.
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