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In the work of Das and Sharma [Phys. Rev. A 105, 033716 (2022)] the phase transitions of the Dicke model
are studied. Its main result is that, besides the well-known quantum phase transition, excited-state quantum phase
transition, and thermal phase transition exhibited by the model, there exists an upper bound energy E∗ beyond
which the model ceases to exhibit quantum chaotic behavior and the structure of the eigenfunctions changes.
Based on this finding, a number of well-established results about the Dicke model are called into question.
We argue that this result and all its consequences are spurious numerical effects resulting from an improper
truncation of the infinite-dimensional Hilbert space necessary for numerical diagonalization.
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In Ref. [1] the various phase transitions of the Dicke model
of quantum optics [2] are revisited. This model consists of
a set of N two-level atoms with constant level splitting h̄ω0

and a monochromatic bosonic (electromagnetic) field of fre-
quency ω, interacting with an intensity given by a coupling
constant g. Its Hilbert space is the direct product of the atomic
and photonic spaces, H = Hat ⊗ Hph. The atomic space is
finite dimensional for all numbers of atoms, N , whereas the
photonic Hilbert space is that of the harmonic oscillator and
thus it is infinite dimensional. Hence, the single extensive
parameter of the model is the number of atoms, N , and
computing any physical quantity requires considering the un-
bounded photonic space. For theoretical calculations, this can
be explicitly done; as well-known examples, we highlight the
following:

(1) The calculation of partition functions determining the
thermal phase transition [3–10]: In these works, the partition
function is computed by performing a finite sum in the atomic
space and an infinite sum in the photonic space, for any
number of atoms, N . The result evidences a thermal phase
transition in the thermodynamic limit, i.e., N → ∞.

(2) The semiclassical calculations (see, e.g.,
Refs. [8,11–14]): In these semiclassical analyses, the atomic
phase space is bounded (for example, the atomic classical
variables may be restricted to a two-dimensional ball of radius
2). However, the photonic classical variables can take any real
value and thus they are unbounded. The resulting classical
phase space is therefore also unbounded (a possible choice is
M = S2 × R2 ⊂ R4).

Yet, numerical calculations can only be achieved by trun-
cating the infinite-dimensional photonic space, effectively
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reducing its dimension down to a finite value nmax + 1,
where nmax ∈ N is the number of photons incorporated in
the photonic basis {|n〉}, n = 0, 1, 2, . . . , nmax < ∞ [14].
Notwithstanding, one has to be very careful with this trunca-
tion. This point is clearly explained in Ref. [15]: “[the basis of
the Dicke model] is therefore infinite and must be numerically
truncated, making the convergence test of the diagonalization
an important issue [...] In practice, one has to perform several
runs of the computation with increasing value of nmax and
compare the results obtained in each run” (notation has been
adapted).

The importance of this remark is clearly illustrated by the
following scenario. Let us imagine that we perform numerical
calculations to predict experimental results. For concreteness,
let us have in mind the famous experimental realization of the
Dicke model with a condensate of N 87Rb atoms trapped in
an optical cavity [16], and let us suppose that we have no
technological limitations and, hence, that we can control with
arbitrary precision the number of atoms of the condensate,
N , and also the atom-field coupling strength g, through the
laser frequencies and intensities [17]. The question we want
to answer is the following: What would we observe if we were
to measure any physical observable O in this experiment?
Obviously, we have no experimental control of the maximum
number of photons introduced above, nmax, because this is
not a physical parameter of the system, but just a numerical
trick needed to obtain results on a computer. Hence, because
the photonic Hilbert space of the Dicke model is infinite
dimensional, the physics of the experiment is given by the
limit nmax → ∞, for any values of N and g. Therefore, any
numerical prediction must be calculated by extrapolating the
result obtained with a finite value of nmax, O(nmax), to the limit
nmax → ∞: Oobserved = limnmax→∞ O(nmax).

In Fig. 1 we rely on numerics to illustrate this fundamental
issue. We set ω = ω0 = 1 throughout. We show here how a
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FIG. 1. Convergence of several positive-parity eigenlevels En as
a function of nmax. In all panels, from bottom to top, the level index is
n = 1, 50, 100, 200 (n = 1 stands for the ground state). (a)–(c) show
different choices of N and g. Dashed horizontal lines represent the
semiclassical ground-state energy [8,11].

number of energy levels change as a function of the value nmax

used in the numerical calculations, for different values of N
and g. The main message from all three panels is that we can
extrapolate their values in the limit nmax → ∞ if we do the
numerics with a value of nmax large enough. It is also worth
noting that, the larger the values of N , g, and the excitation
energy, the larger is the value of nmax to predict what we would
observe in an experiment. This remark is indeed well known
[15]. Results in Fig. 1(c) are especially relevant. Here, we
work with g = 4 and N = 40. For nmax ∼ 200, the value used
in Figs. 5(b) and 5(c) of Ref. [1] (with an even larger system
size, N = 60), no eigenlevel is properly converged, not even
the ground state. It follows that the results of Fig. 2, where a
huge system size, N = 512, with only nmax = 32 is used, 3, 4,
6, and 7 in Ref. [1] are incorrect: None of them would coincide
with experimental results obtained with the same values of N
and g.

From this discussion, we spotlight the following conclu-
sion: Any result depending on the maximum number of photons
considered in the truncation of the photonic space, nmax, is
spurious, does not account for the real physics of the Dicke
model, and hence cannot be observed in an experiment.

The main result in Ref. [1], the upper bound for the energy
E∗, is an example of such a spurious effect. In particular,
Eq. (16) in Ref. [1], which is used to interpret Figs. 5– 8, reads

E∗
N

= ω

N
nmax + ω0

2
, (1)

and therefore is just a consequence of the truncation of the
photonic space. In the actual Dicke model, E∗ ∝ nmax → ∞.
This means that we would see none of the main physical
results discussed in Ref. [1] if we performed an experiment at

an arbitrarily high excitation energy: neither the decrease of
the degree of chaos, nor the decrease of the density of states,
nor the decrease of the entanglement between the atoms and
the bosonic field. Additionally, the truncated Hilbert space
dimension, ND ≡ (N + 1)(nmax + 1), is not a physical param-
eter of the model, and therefore it cannot be used to infer
conclusions about the real Dicke model; yet, this is done in
Fig. 2 of Ref. [1]. As a matter of fact, the effective Hilbert
space dimension needed to get the eigenlevels up to a certain
threshold converged depends on the basis used to build the
Hamiltonian itself [18,19].

Below we discuss some other erroneous conclusions ob-
tained in Ref. [1], as a consequence of the truncation of the
photonic phase space.

(a) On the density of states (DOS): The Dicke model has a
well-known excited-state quantum phase transition (ESQPT)
[20] at Ec1/N = −1/2. Additionally, the already existing liter-
ature reports the presence of a second critical energy (whether
this may be considered as a true ESQPT is controversial),
located exactly at Ec2/N = 1/2 [8,11]. This is characterized
by a nonanalytic value of the energy, beyond which the DOS
becomes constant, resulting from the fact that the finite-
dimensional atomic Hilbert space becomes fully covered at
this point. However, in Ref. [1] it is claimed that “this feature
could be an artifact of the semiclassical analysis of earlier
studies [8,10,11].” This is a wrong conclusion. Owing to
the collective nature of the Dicke model, all semiclassical
approaches involve setting up an effective Planck’s constant
h̄eff ∝ 1/N . Therefore, the thermodynamic limit, N → ∞,
happens to coincide exactly with a semiclassical limit, h̄eff →
0 (for a detailed discussion, see Ref. [20]). Hence, the discrep-
ancy between the semiclassical calculation and the numerical
results reported in Ref. [1] is really due, again, to the improper
truncation of the bosonic Hilbert space.

We illustrate this statement in Fig. 2(a), where we rep-
resent the DOS for N = 60, g = 1, and several values of
nmax. It is clearly observed that, as nmax increases, the DOS
approaches the semiclassical limit result [8,11], depicted with
a black line, including within the flat region semiclassically
predicted for E/N > 1/2 [8,11]. Similar results were pub-
lished in Ref. [11], where the convergence was stringently
checked. It is worth noting that our result with nmax = 100
is very similar to the one depicted in Fig. 8(b) of Ref. [1]
with g = 2; both of them show a maximum at E/N = 1/2,
with a decreasing density of states for E/N > 1/2. Our results
clearly show that this is again a spurious convergence issue.
Furthermore, in Ref. [1] it is stated that “in the semiclassical
approach of Brandes [8], the upper cutoff is argued to be
exactly at ω0/2, which would be consistent with our numerical
data provided the limit N → ∞ is taken before the nmax →
∞” [1]. This sentence contains two important mistakes. First,
it does not account for a nonanalytical point in the density
of states; rather, it concerns a spurious dynamical change
due to convergence issues. Second, and more importantly, it
considers nmax as a physical parameter of the model, playing
a role similar to N when taking the thermodynamic limit. As
pointed out at the beginning of this Comment, the number of
photons nmax in the Dicke model is unbounded for any N .
Therefore, an experimental measurement of the DOS would
show a nonanalytical point at E/N = ω0/2, and a flat behavior
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FIG. 2. (a) Density of states for the Dicke model with g = 1,
N = 60, and several nmax (histograms). The black line represents the
semiclassical result from Refs. [8,11]. The dashed horizontal line
marks the energy E/N = 0.5. (b) Average level gap ratio in the range
E/N ∈ [0.5, 5.0] (points). The horizontal line represents the GOE
theoretical result [21,22].

for higher energies, as demonstrated in Ref. [11] and as shown
in Fig. 2(a) of this Comment.

As a complement, we represent in Fig. 2(b) the average
value of the ratio of consecutive level spacings as obtained
from all eigenlevels in the range E/N ∈ [0.5, 5.0] for g = 1,
N = 60, and different nmax. We choose this region as all eigen-
levels within it are perfectly converged for g = 1, N = 60,
nmax = 800. For a chaotic system, 〈r〉 is given by the result
from the Gaussian orthogonal ensemble (GOE), 〈r〉GOE ≈
0.5307 [21,22]. It is clearly observed that 〈r〉 approaches
〈r〉GOE as nmax increases, and plateaus around this value at
a given nmax. This happens once the spectrum is completely
converged in the energy range considered, i.e., further in-
creasing nmax does not alter the converged eigenvalues, and
therefore the r statistics remains unchanged. However, for
small nmax not all eigenlevels in the considered range are
converged, and therefore fluctuations are apparent in Fig. 2(b)
for small nmax. Together with our previous result about the
DOS, this implies that we can correctly predict the experi-
mental results for both the DOS and 〈r〉 for N = 60, g = 1,
and E/N � 5 by truncating the bosonic Hilbert space with
nmax = 800, but cannot reach higher energies in the same way
because our numerical calculations would require an ever-
growing nmax.

(b) On quantum chaos: The Dicke model is known to be
chaotic for g > gc ≡ √

ωω0/2 and high excitation energies
[23]; the low excitation spectrum for g > gc is approximately
integrable due to the existence of an additional approximate
integral of motion [24,25]. Nevertheless, in Ref. [1] both of
these well-established results are called into question.

For the second one, a multifractal scaling of the ground-
state wave functions is performed in terms of the spurious
Hilbert space dimension of the arbitrarily truncated infinite-

FIG. 3. (a) Level spacing distribution P(s) in the high-energy
range E/N ∈ [0.5, 5.0] for g = 1, N = 60, and nmax = 800 (his-
togram). The blue line depicts the Wigner-Dyson distribution.
(b) Power spectrum of the level motion [29] for the same energy
range (points). Results correspond to the average power spectrum as
obtained from splitting the energy interval into 50 equal parts. The
blue line represents the GOE theoretical result [30].

dimensional Hilbert space,1 ND, and applied to improperly
converged wave functions; these results are in Fig. 2 of
Ref. [1].

For the first one, they propose an upper bound for the
energy of the Dicke model, E∗, given in Eq. (16) in Ref. [1]
and in Eq. (1) in this Comment; above E∗, the dynamics of
the Dicke model is supposedly no longer chaotic. Further-
more, in Ref. [1] it is stated that “a horizontal portion [of the
DOS] in the super-radiant phase would be inconsistent with
Wigner-Dyson statistics.” As we have pointed out above, this
vanishing of chaos would not be observed in any experiment.
In Fig. 3, we focus on the properly converged eigenlevels with
N = 60, g = 1, and E/N ∈ [0.5, 5.0], for which the density
of states is perfectly flat, as shown in Fig. 2(a), to predict
what we would really observe in such an experiment. We can
see that these excited states of the Dicke model are indeed
chaotic, as originally reported in Ref. [28]. In Fig. 3(a) we

1It is possible to define an effective dimension of the Hilbert space
in terms of the number of bosons required for convergence, as done
in Refs. [26,27] to define a proper thermodynamic limit for the Rabi
model (a version of the Dicke model with just one two-level atom).
In this way, the part of the infinite Hilbert space effectively explored
by the system is taken as a real physical parameter. Yet, the method
in Ref. [1] consists in arbitrarily fixing nmax, and changing only the
number of atoms N . Therefore, not only is the scaling performed in
terms of the dimension of an arbitrarily truncated Hilbert space, but
the eigenfunctions used in the calculations become less converged as
the system size increases.
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have represented the (nearest-neighbor) level spacing distribu-
tion P(s), where the unfolded spacings (see below for details
about the unfolding procedure) {sn}n are defined from an
ordered set of eigenlevels {E1 � E2 � · · · } as sn = Sn/〈S〉,
where Sn = En+1 − En � 0 is the consecutive level gap. P(s)
is shown to agree excellently with GOE statistics, i.e., with
the Wigner-Dyson distribution P(s) = π

2 se−πs2/4. Moreover,
in Fig. 3(b) we represent the averaged power spectrum of the
level motion [29], 〈Pδ

k 〉, which is an indicator of long-range
level correlations. Our numerical result is very close to the
GOE prediction [30] for almost all frequencies k, indicating
that the spectrum exhibits GOE correlations also for quite
distant unfolded eigenlevels.

Hence, our results (in concert with original results [28])
dismiss the claim in Ref. [1] about the incompatibility of
Wigner-Dyson spectral statistics with a flat density of states.
Indeed, we find this claim to be a misinterpretation of the
well-established theory of quantum chaos [31–33]. In their
seminal work of 1984, Bohigas, Giannoni, and Schmit [34]
formulated the famous conjecture that “spectra of time-
reversal-invariant systems whose classical analogues are K
systems show the same fluctuation properties as predicted by
GOE.” One of the key elements of the theory of quantum
chaos is indeed the fluctuations of eigenlevels. To analyze
spectral statistics, one first needs to “unfold” the spectrum,
i.e., transform the eigenlevels {En}n into a dimensionless
sequence, {εn = N (En)}n [35,36]. The main effect of this
transformation is to remove the contribution of the smooth
part of the cumulative level density, N (En), to the spectral
statistics; this corresponds precisely to the semiclassical den-
sity of states [37,38] shown to be flat for the Dicke model
at E/N > 1/2 [8,11]. Therefore, despite the interpretation in
Ref. [1], the shape of the semiclassical density of states plays

absolutely no role in spectral statistics. Quite contrarily, this
regular part has to be removed to properly obtain the fluctua-
tions of energy levels, which constitute the main signature of
quantum chaos and are at the core of this theory [34].

Furthermore, the claim “the literature has many studies
[28,39] of level statistics that separately look at energy levels
below Ec and above Ec, but with no mention of the upper
cutoff. However, as our data show, the inclusion of the higher
band energies in their level statistics study would make their
Wigner-Dyson results noisy” [1], also is unsubstantiated. Re-
sults for Fig. 5(b) (inset) in Ref. [1] are obtained with g =
4, N = 60, nmax = 200, and E/N > 3.8. As clearly seen in
Fig. 1(c) of this Comment, not even the ground-state energy
is well converged with nmax = 200, g = 4, and even a smaller
value of N = 40. Hence, this spurious deviation from chaos
would not be observed in any experiment, irrespective of the
energy at which the measurement were performed.

In summary, in this Comment we have argued that the
results reported in Ref. [1] contain problems resulting from an
incorrect truncation of the infinite-dimensional Hilbert space
of the Dicke model as well as misconceptions about the mean-
ing of a semiclassical approach and the theory of quantum
chaos. Therefore, many of the conclusions presented there are
essentially flawed and do not account for the real physics of
the Dicke model.
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